动能定理练基础习题
动能定理专项训练(含解析)
动能定理专项训练一、选择题1.有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m ,甲速度为v ,动能为E k ;乙速度为-v ,动能为E k ′,那么( )(A )E k ′=-E k(B )E k ′=E k(C )E k ′<E k(D )E k ′>E k2.甲、乙两个物体的质量分别为甲m 和乙m ,并且甲m =2 乙,它们与水平桌面的动摩擦因数相同,当它们以相同的初动能在桌面上滑动时,它们滑行的最大距离之比为( ). (A )1:1(B )2:1(C )1:2(D )2:13.两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b ,它们的初动能相同.若它们分别受到不同的阻力F a 和F b 的作用,经过相等的时间停下来,它们的位移分别为s a 和s b ,则( ). (A )F a >F b ,s a >s b(B )F a >F b ,s a <s b (C )F a <F b ,s a >s b(D )F a <F b ,s a <s b4.一个小球从高处自由落下,则球在下落过程中的动能( ). (A )与它下落的距离成正比 (B )与它下落距离的平方成正比 (C )与它运动的时间成正比(D )与它运动的时间平方成正比5.质量为2kg 的物体以50J 的初动能在粗糙的水平面上滑行,其动能的变化与位移的关系如图所示,则物体在水平面上滑行的时间为( ). A 、5s B 、4s C 、s 22 D 、2s6.以速度v 飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v 和0.6v ,则两块金属板的厚度之比为( ). (A )1:1(B )9:7(C )8:6(D )16:97.质点只受的力F 作用,F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t =0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ). (A )t 1(B )t 2(C )t 3(D )t 48.在平直公路上,汽车由静止开始作匀加速运动,当速度达到某一值时,立即关闭发动机后滑行至停止,其v -t 图像如图5—22所示.汽车牵引力为F ,运动过程中所受的摩擦阻力恒为f ,全过程中牵引力所做的功为W 1,克服摩擦阻力所做的功为W 2,则下列关系中正确的是().(A )F :f =1:3 (B )F :f =4:1(C )W 1:W 2=1:1(D )W 1:W 2=1:39.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为2E .若小物块冲上斜面的初动能变为2E ,则有( ). (A )返回斜面底端时的动能为E(B )返回斜面底端时的动能为23E(C )返回斜面底端时的速度大小为2v (D )克服摩擦阻力做的功仍为2E10.质量为m 的小球被系在轻绳的一端,在竖直平面内作半径为R 的圆周运动.运动过程中,小球受到空气阻力的作用,在某一时刻小球通过轨道最低点时绳子的拉力为7mg ,此后小球继续作圆周运动,转过半个圆周恰好通过最高点,则此过程中小球克服阻力所做的功为( ).(A )mgR (B )2mgR (C )3mgR (D )4mgR11.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程().(A )小球在水平方向的速度逐渐增大 (B )小球在竖直方向的速度逐渐增大 (C )到达最低位置时小球线速度最大(D )到达最低位置时绳中的拉力等于小球重力12.如图所示,板长为L ,板的B 端静止放有质量为m 的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,则在这个过程中().(A )摩擦力对小物体做功为μmgLcosα(1-cosα) (B )摩擦力对小物体做功为mgLsinα(1-cosα) (C )弹力对小物体做功为mgLcosαsinα (D )板对小物体做功为mgLsinα13.如图所示,物体自倾角为θ、长为L 的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s ,则物体与斜面间的动摩擦因数为( )(A )sLsin θ(B )θssin L (C )sLtan θ(D )θstan L二、填空题14.一个质量是2kg 的物体以3m /s 的速度匀速运动,动能等于______J .15.火车的质量是飞机质量的110倍,而飞机的速度是火车速度的12倍,动能较大的是______. 16.两个物体的质量之比为100:1,速度之比为1:100,这两个物体的动能之比为______.17.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量之比为______. 18.甲、乙两物体的质量之比为2:1m :m =乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______.19.自由下落的物体,下落1m 和2m 时,物体的动能之比是______;下落1s 和2s 后物体的动能之比是______.20.甲、乙两物体的质量比m 1:m 2=2:1,速度比v 1:v 2=1:2,在相同的阻力作用下滑行至停止时通过的位移大小之比为_____.21.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N .子弹射入土墙前的动能是______J ,它的速度是______m /s .22.质量为m 的物体,作加速度为a 的匀加速直线运动,在运动中连续通过A 、B 、C 三点,如果物体通过AB 段所用时间和通过BC 段所用的时间相等,均为T ,那么物体在BC 段的动能增量和在AB 段的动能增量之差为______.23.质量m =10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为______m /s .24.乌鲁木齐市达坂城地区风力发电网每台风力发电机4张叶片总共的有效迎风面积为s ,空气密度为ρ、平均风速为v .设风力发电机的效率(风的动能转化为电能的百分比)为η,则每台风力发电机的平均功率P =______.25.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于______J (g 取10m /s 2) 三、应用题26.如图所示,一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.27.一颗质量m=10g的子弹,以速度v=600m/s从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s=0.6m,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?28.一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度v.设汽max车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间.29.如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s30.在光滑水平面上有一静止的物体,现以水平恒力F1推这一物体,作用一段时间后,换成相反方向的水平恒力F2推这一物体.当F2作用时间与F1的作用时间相同时,物体恰好回到出发点,此时物体的动能为32J.求运动过程中F1和F2所做的功.参考答案1、B解析:动能是标量,由可得答案为B。
高中物理动能定理基础专练适合学考学生练基础(每日两题限时练)动能定理基础训练由易到难经典例题含答案
班级: 姓名: 得分:1、(10分)一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
解析:由抛出点到坑底:0h F -h)+m g(H f =hh H mg F f+=∴2.(10分)一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。
人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。
解析:由出发到坡底:J W mv f 6000021w -mgh 2f =∴-=班级 姓名 得分:1、(10分)一辆5吨的载重汽车从静止开上一段坡路,坡路长S=100m ,坡顶和坡底的高度差h=10m ,汽车上坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。
汽车受到的摩擦阻力时车重的0.05倍。
求汽车的牵引力。
解析:从坡底到坡顶N F mv mgs mgh Fs 212502105.02=-=--2:(10分)如图过山车模型,小球从h 高处由静止开始滑下,若小球经过半径为R 的光滑轨道上最高点不掉下来, 求h 的最小值?解析:从静止到最高点R h R mv mg mv R mg mgh 25)2()1(021222=⇒⎪⎪⎩⎪⎪⎨⎧≤-=-K Λ班级 姓名 得分:1.(10分)一架飞机,质量m=5.0×103kg ,起飞过程中从静止开始滑跑。
当位移达到l=5.3×102m 时,速度达到起飞速度v=60m/s 。
在此过程中飞机受到的平均阻力是飞机重量的0.02倍。
求飞机受到的牵引力。
解析:从静止到起飞NF mg F mv l F Fl f f 42107.1)2(02.0)1(021⨯≈⇒⎪⎩⎪⎨⎧=-=-K Λ 2.(10分)麻糍是浙西南一种非常美味的美食,在某次做麻糍时,已知杵在离麻糍高为2m 处开始落下(落下时初速度为零,且忽略空气阻力),已知杵的质量为5kg,杵落下碰到麻糍时速度为10m/s,求在此过程中人对杵做的功?解析:从举高到碰到麻糍J W mv W mgh 1500212=-=+人人班级姓名得分:1、(10分)如图所示,半径R = 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m = 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点,物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F = 15N,g取10m/s2,试求:(1)物体在B点时的速度以及此时半圆轨道对物体的弹力.(2)物体从C到A的过程中,摩擦力做的功.班级 姓名 得分:12.(10分)(2016年10月浙江选考)如图9所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图10的模型。
动能定理典型基础例题
动能定理典型基础例题动能定理典型基础例题应⽤动能定理解题的基本思路如下:①确定研究对象及要研究的过程②分析物体的受⼒情况,明确各个⼒是做正功还是做负功,进⽽明确合外⼒的功③明确物体在始末状态的动能④根据动能定理列⽅程求解。
例1.质量M=6.0×103kg的客机,从静⽌开始沿平直的跑道滑⾏,当滑⾏距离S=7.2×lO2m时,达到起飞速度ν=60m/s。
求:(1)起飞时飞机的动能多⼤?(2)若不计滑⾏过程中所受的阻⼒,则飞机受到的牵引⼒为多⼤?(3)若滑⾏过程中受到的平均阻⼒⼤⼩为F=3.0×103N,牵引⼒与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑⾏距离应多⼤?例2.⼀⼈坐在雪橇上,从静⽌开始沿着⾼度为15m的斜坡滑下,到达底部时速度为10m/s。
⼈和雪橇的总质量为60kg,下滑过程中克服阻⼒做的功。
例3.在离地⾯⾼为h处竖直上抛⼀质量为m的物块,抛出时的速度为v0,当它落到地⾯时速度为v,⽤g表⽰重⼒加速度,则在此过程中物块克服空⽓阻⼒所做的功等于:( )例4.质量为m的⼩球被系在轻绳⼀端,在竖直平⾯内做半径为R的圆周运动,运动过程中⼩球受到空⽓阻⼒的作⽤。
设某⼀时刻⼩球通过轨道的最低点,此时绳⼦的张⼒为7mg,此后⼩球继续做圆周运动,经过半个圆周恰能通过最⾼点,则在此过程中⼩球克服空⽓阻⼒所做的功为:()A.4mgRB.3mgRC.2mgRD.mgR例5.如图所⽰,质量为m的⽊块从⾼为h、倾⾓为α的斜⾯顶端由静⽌滑下。
到达斜⾯底端时与固定不动的、与斜⾯垂直的挡板相撞,撞后⽊块以与撞前相同⼤⼩的速度反向弹回,⽊块运动到⾼2h处速度变为零。
求:(1)⽊块与斜⾯间的动摩擦因数?(2)⽊块第⼆次与挡板相撞时的速度?(3)⽊块从开始运动到最后静⽌,在斜⾯上运动的总路程?例6.质量m=1.5kg的物块(可视为质点)在⽔平恒⼒F作⽤下,从⽔平⾯上A点由静⽌开始运动,运动⼀段距离撤去该⼒,物块继续滑⾏t=2.0s停在B点,已知A、B两点间的距离s=5.0m,物块与⽔平⾯间的动摩擦因数µ=0.20,求恒⼒F多⼤。
(完整版)高中物理动能定理典型练习题(含答案)
动能定理典型练习题典型例题讲解1.下列说法正确的是( )A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有0212-=mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有2210mv Fh mgh -=- ②由①②两式解得hh H mg F += 另解:研究物体运动的全过程,根据动能定理有000)(=-=-+Fh h H mg解得hh H mg F +=3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)【解析】设物体克服摩擦力图5-3-5Hh图5-3-4图5-3-6图5-3-7所做的功为W ,对物体由A 运动到B 用动能定理得221mv W mgh =- Jmv mgh W 32612151012122=⨯⨯-⨯⨯=-=即物体克服阻力所做的功为32J.课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:13.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(-C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD )A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2' B.v 2<v 2’ C.v 2=v 2’ D .沿水平面到B 点时间与沿斜面到达B 点时间相等. 7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα得αμαcos 21sin mgS 20mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传知工件与传送带间的动摩擦因数23=μ,g 取送至h =2m 的高处.已10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:图5-3-8图5-3-10V 0S 0αP 图5-3-9)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220⨯==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
动能定理简单练习题
动能定理简单练习题动能定理简单练习题动能定理是物理学中的一个基本定理,描述了物体的动能与其速度之间的关系。
它在解决各种物理问题中起着重要的作用。
本文将给出一些简单的练习题,帮助读者更好地理解和应用动能定理。
练习题一:一个质量为1 kg的物体以10 m/s的速度沿着水平方向运动,求它的动能。
解析:根据动能定理,动能等于物体的质量乘以速度的平方的一半。
即动能=1/2 × 1 × (10)^2 = 50 J。
练习题二:一个质量为2 kg的物体以2 m/s的速度运动,当它的速度增加到4m/s时,求它的动能的增加量。
解析:首先求物体在速度从2 m/s增加到4 m/s时的动能。
根据动能定理,动能等于物体的质量乘以速度的平方的一半。
即动能1=1/2 × 2 × (2)^2 = 4 J。
再求物体在速度从0 m/s增加到4 m/s时的动能。
即动能2=1/2 × 2 × (4)^2 = 16 J。
所以动能的增加量=动能2 - 动能1 = 16 J - 4 J = 12 J。
练习题三:一个质量为0.5 kg的物体以20 m/s的速度运动,当它的速度减小到10 m/s时,求它的动能的减小量。
解析:首先求物体在速度从20 m/s减小到10 m/s时的动能。
根据动能定理,动能等于物体的质量乘以速度的平方的一半。
即动能1=1/2 × 0.5 × (20)^2 = 100 J。
再求物体在速度从20 m/s减小到0 m/s时的动能。
即动能2=1/2 × 0.5× (10)^2 = 25 J。
所以动能的减小量=动能1 - 动能2 = 100 J - 25 J = 75 J。
练习题四:一个质量为10 kg的物体以5 m/s的速度运动,撞击到一个质量为5kg的静止物体,两个物体粘在一起后以共同的速度运动,求它们共同的速度。
解析:由于两个物体粘在一起后以共同的速度运动,可以利用动能守恒定理解决这个问题。
【物理】物理动能与动能定理题20套(带答案)
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
(完整版)动能定理专项练习(带答案)
动能定理专项训练1. 下列说法正确的是()A.物体所受合力为0,物体动能可能改变B.物体所受合力不为0,动能一定改变C.物体的动能不变,它所受合力一定为0 D.物体的动能改变,它所受合力一定不为2. 一质量为2 kg 的滑块,以4 m/s 的速度在光滑的水平面上向左滑行,从某一时刻起,在滑 块上作用一向右的水平力,经过一段时间,滑块的速度方向变为向右,大小为4 m/s ,在这段时间里水平力做的功为() 3. 汽车在平直公路上行驶,在它的速度从零增至的速度从v 增大至2v 的过程中,汽车所做的功为 v 的过程中,汽车发动机做的功为 W,在它 W2,设汽车在行驶过程中发动机的牵引力和所受阻力不变,则有( )A . W =2WB . W =3WC 4 •如图所示,DC 是水平面,AB 是斜面,初速为 v o 的物体从D 点出发沿DBA #到A 点且速度刚好为零。
如果斜面改为 AC 让该物体从D 点出发沿DCA t 到A 点且速度 刚好为零,则物体具有初速度(已知物体与路面之间的动摩擦因数处处相同且不为 零)( ) A .大于v o B •等于v o C •小于v o D •取决于斜面的倾角5 .假设汽车紧急刹车制动后所受阻力的大小与汽车所受重力的大小差不多, 当汽车以20m/s 的速度行驶时,突然制动。
它还能继续滑行的距离约为( )6 •质量为m 的小球用长度为 L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空 气阻力作用•已知小球经过最低点时轻绳受的拉力为 7ng ,经过半周小球恰好能通过最高点, 则 此过程中小球克服空气阻力做的功为( A . ng L /4 B . m g L /3 C . m g L /2 D 8 .将小球以初速度 V 。
竖直上抛,在不计空气阻力的理想状况下, 由于有空气阻力,小球实际上升的最大高度只有该理想高度的 小球落回抛出点时的速度大小v 。
9 .如图所示,质量为 m 的钢珠从高出地面 h 处由静止自由下落,落到地面进入沙坑 h /10 停止,则1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑 h /8 ,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻 力大小不随深度改变。
动能定理练习题(附答案)
动能定理练习题(附答案)2012年3月1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B :G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B : G F W W W ∑=+F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理: 221122mgh mv mv =-20m/s v ∴=(2) m 由A 到B ,根据动能定理3:1不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.A22t 01122mgh W mv mv -=-1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v .(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理: 221122mgH mv mv =-v ∴(2)变力6.(3) m 由B 到C ,根据动能定理:4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.v m0v 'O A →A B→v t v2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解:(1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-100m s ∴=6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解:78也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下:m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.fA(1) m 由A 到C 9:根据动能定理: f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C : f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功. 解:(1) m 由B 到C :根据动能定理: 2B1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理: 2f B 102mgR W mv +=-f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求证:hsμ=. 证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理:2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-9 也可以分段计算,计算过程略.10A又1cos l s θ=、12s s s =+ 则11:0h s μ-=即:hsμ=证毕.9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功. 解:设斜面长为l ,AB 和BC 之间的距离均为s ,物体在斜面上摩擦力做功为f W . m 由O 到B :根据动能定理:f 2cos18000mgh W f s ++⋅⋅=-m 由O 到C :根据动能定理:2f 2012cos18002mgh W f s mv ++⋅⋅=- 2f 012W mv mgh ∴=-克服摩擦力做功2f 012W W mgh mv ==-克f10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.(2)这一过程牵引力所做的功.11具体计算过程如下:由1cos l s θ=,得:12cos180cos18000mgh mg s mgs μμ+⋅⋅+⋅=-()120mgh mg s s μ-⋅+=由12s s s =+,得:0mgh mgs μ-=即:0h s μ-=(3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =⋅=⋅1000N f ∴=(2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=-800m l ∴=11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
物理动能与动能定理练习题20篇含解析
物理动能与动能定理练习题20篇含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v xm s h ==⨯=⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1)Rg (2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=-解得2 2.5Dv=-即小车无法到达D点.设小车恰能到D点时对应发动机开启的时间为2t,则有:() 20Pt f l s-+=,解得20.35st=.6.如图所示,两个半圆形的光滑细管道(管道内径远小于半圆形半径)在竖直平面内交叠,组成“S”字形通道.大半圆BC的半径R=0.9m,小半圆CD的半径r=0.7m.在“S”字形通道底部B连结一水平粗糙的细直管AB.一质量m=0.18kg的小球(可视为质点)从A点以V0=12m/s的速度向右进入直管道,经t1=0.5s 到达B点,在刚到达半圆轨道B点时,对B 点的压力为N B=21.8N.(取重力加速度g=10m/s2)求:(1)小球在B点的速度V B及小球与AB轨道的动摩擦因数μ ?(2)小球到达“S”字形通道的顶点D后,又经水平粗糙的细直管DE,从E点水平抛出,其水平射程S=3.2m.小球在E点的速度V E为多少?(3)求小球在到达C点后的瞬间,小球受到轨道的弹力大小为多少?方向如何?【答案】(1)V B=10m/s ,μ=0.4(2)V E=S/ t=4m/s(3) N C=18.25N 方向向上【解析】【详解】(1)根据牛顿第二定律有N B-mg=mV B2/RV B=10m/sa=(V0-V B)/t=4m/s2μmg=m a a =mg μ=0.4(2)H=2R+2r=3.2m2HgV E=S/ t=4m/s(3)N C- mg=mV C2/r1 2m V B2=2mg R+12m V C2N C=18.25N 方向向上7.如图所示,将一根弹簧和一个小圆环穿在水平细杆上,弹簧左端固定,右端与质量为m 的小圆环相接触,BC 和CD 是由细杆弯成的1/4圆弧,BC 分别与杆AB 和弧CD 相切,两圆弧的半径均为R .O 点为弹簧自由端的位置.整个轨道竖直放置,除OB 段粗糙外,其余部分均光滑.当弹簧的压缩量为d 时释放,小圆环弹出后恰好能到达C 点,返回水平杆时刚好与弹簧接触,停在O 点,(已知弹簧弹性势能与压缩量的平方成正比,小球通过B 处和C 处没有能量损失),问:(1)当为弹簧的压缩量为d 时,弹簧具有的弹性势能P E 是多少?(2)若将小圆环放置在弹簧的压缩量为2d 时释放,求小圆环到达最高点D 时,轨道所受到的作用力.(3)为了使物块能停在OB 的中点,弹簧应具有多大的弹性势能?【答案】(1)P 2E mgR =(2)9mg ,方向竖直向上(3)''P 1=()2E n mgR + (n =0、1、2) 【解析】 【分析】 【详解】(1)设小圆环与OB 之间的摩擦力为f ,OB=L ;从释放到回到O 点,由能量关系可知,当弹簧的压缩量为d 时,弹簧具有的弹性势能P 2E fL =小圆环从释放能到达C 点到,由能量关系可知0P E fL mgR --=可得:P 2E mgR =(2)因弹簧弹性势能与压缩量的平方成正比,则弹簧的压缩量为2d 时弹性势能为E P ´=4E P =8mgR小圆环到达最高点D 时:'2P D 122E mv mg R fL =+⋅+解得D 10v gR =在最高点D 时由牛顿第二定律:2Dv N mg m R+=解得N =9mg ,方向竖直向下由牛顿第三定律可知在D 点时轨道受到的作用为9mg ,方向竖直向上;(3)为了使物块能停在OB 的中点,则要求滑块到达的最高点为D 点,然后返回,则''P 23E fL mgR mgR ≤+=为了使物块能停在OB 的中点,同时还应该满足:''P 1(21)()22L E n f n mgR =+⋅=+ 则只能取n =0、1、2;8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.【答案】(1)0.5r m =(2)77?.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度25/a g m s μ==小物块与传送带共速时,所用的时间01v t s a== 运动的位移02.52v x m a∆==<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧轨道恰好到达N 点,故有:2Nv mg m r=由机械能守恒定律得22011(2)22N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:1()mg L x mgh μ-= 代入数据解得17.5?x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:2()mg L x mgR μ-=代入数据解得27?x m =则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?x m m m -== 则:0 5.5x m ≤≤.故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用9.如图所示,ABC 为竖直面内一固定轨道,AB 段是半径为R 的14光滑圆弧,水平段与圆弧轨道相切于B ,水平段BC 长度为L ,C 端固定一竖直挡板.一质量为m 的小物块自A 端从静止开始沿圆轨道下滑,与挡板共发生了两次碰撞后停止在水平段B 、C 之间的某处,物块每次与挡板碰撞不损失机械能(即碰撞前、后速率相同).不计空气阻力,物块与水平段BC 间的动摩擦因数为μ,重力加速度为g .试求物块 (1)第一次与挡板碰撞时的速率; (2)在水平轨道上滑行的总路程;(3)最后一次滑到圆轨道底端B 处对圆轨道的压力.【答案】(1) 12()v g R L μ-RS μ=(3) 物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83L mg R μ骣琪-琪桫 【解析】 【详解】(1)对物块第一次从A 到C 过程,根据动能定理:2112mgR mgL mv -=μ ① 解得第一次碰撞挡板的速率12()v g R L μ-(2)设物块质量为m ,在水平轨道上滑行的总路程为S ,对物块从开始下滑到停止在水平轨道上的全过程,根据动能定理:mgR -μmg ·S =0③解得RS μ=④(3)设物块最后一次经过圆弧轨道底端B 时的速率为v 2,对圆轨道的压力为FN ,则:22N v F mg m R-= ⑤第一种可能情况:物块与挡板第二次碰撞后,向右运动还未到B 点时即停下,则:22122mgR mg L mv -⋅=μ⑥由⑤⑥解得43N L F mg R ⎛⎫=- ⎪⎝⎭μ ⑦第二种可能情况:物块与挡板第二次碰撞后,向右可再一次滑上光滑圆弧轨道,则:22142mgR mg L mv -⋅=μ ⑧由⑤⑧解得83N L F mg R μ⎛⎫=- ⎪⎝⎭⑨物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫10.在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ. B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【解析】 【详解】设在发生碰撞前的瞬间,木块A 的速度大小为v 0;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量守恒定律和动量守恒定律,得2220121112222mv mv mv =+⋅ 0122mv mv mv =+ ,式中,以碰撞前木块A 的速度方向为正,联立解得:13v v =-,2023v v = 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得21112mgd mv μ=, 2221222m gd mv μ=⋅() .按题意有:21d d d =+ . 联立解得:0185v gd =μ11.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =12.如图所示,物块B 静止放置在水平面上,物块A 以一定的初速度v 0冲向B ,若在物块A 、B 正对的表面加上粘合剂,则物块A 、B 碰后一起沿水平面运动的最大距离为l ;若在物块A 、B 正对的表面加上弹性装置,则两物块将发生弹性正碰,碰后两物块间的最大距离为5l 。
动能定理练习题(附答案)
A动能定理练习题1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W m g h =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功解:(1) m 由A 到B :根据动能定理:221122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.3此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B→4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理:6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力. 8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.v t vf1cos0cos18000Fs mgs μ+=-100m s ∴=6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=- (2) m 由B 到C :f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理:2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=- 又1cos l s θ=、12s s s =+9 也可以分段计算,计算过程略. 10题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。
动能 动能定理基础习题归类
动能动能定理基础习题一、深刻理解动能定理1.一辆汽车一辆汽车以v1=6m/s的速度沿水平路面行驶时,急刹车后能滑行s1=3.6m,如果汽车以v2=8m/s的速度行驶,在同样路面上急刹车后滑行的距离s2应为()A.6。
4m B.5。
6m C.7。
2m D.10.8m2.一子弹以水平速度v射入一树干中,射入深度为S. 设子弹在树中运动所受阻力是恒定的,那么子弹以v/2的速度水平射入树干中,射入深度是( )A. S B。
S/2 C。
错误!S D。
S/43、关于物体的动能,下列说法中正确的是()A.一个物体的动能可能小于零B.一个物体的动能与参考系的选取无关C.动能相同的物体速度一定相同D.两质量相同的物体,若动能相同,其速度不一定相同4、关于公式W=E k2-E k1= E k,下述正确的是()A、功就是动能,动能就是功B、功可以变为能,能可以变为功C、动能变化的多少可以用功来量度D、功是物体能量的量度5. 光滑水平面上的物体,在水平恒力F作用下,由静止开始运动。
经过路程L1速度达到v,又经过路程L2速度达到2v,则在L1和L2两段路程中,F对物体所做功之比为( )A. 1:1B. 1:2C.1:3D.1:46。
下列说法中正确的是()A。
物体所受合外力对物体做功多,物体的动能就一定大B. 物体所受合外力对物体做正功,物体的动能就一定增大C。
物体所受合外力对物体做正功,物体的动能有可能减小D. 物体所受合外力对物体做功多,物体的动能的变化量就一定大7、下列关于运动物体所受合外力和动能变化的关系正确的是()A、如果物体所受合外力为零,则合外力对物体做的功一定为零B、如果合外力对物体所做的功为零,则合外力一定为零C、物体在合外力作用下做变速运动,动能一定发生变化D、物体的动能不变,所受合外力一定为零二、应用动能定理求变力做功8。
如图,物体沿一圆面从A 点无初速度的滑下,滑至圆面的最低点B 时速度为6m/s ,求这个过程中物体克服阻力做的功。
物理动能与动能定理题20套(带答案)
向上:
,解得
(2)小滑块在最低点时速度为 vC 由机械能牛顿第三定律得:
,方向竖直向
下 (3)从 D 到最低点过程中,设 DB 过程中克服摩擦力做功 W1,由动能定理
h=3R
【点睛】 对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要 知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点 C 水平飞出,恰好击中导 轨上与圆心 O 等高的 P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低 点运用牛顿第二定律求解.
(1).滑块运动至 C 点时的速度 vC 大小; (2).滑块由 A 到 B 运动过程中克服摩擦力做的功 Wf; (3).滑块在传送带上运动时与传送带摩擦产生的热量 Q. 【答案】(1)2.5 m/s (2)1 J (3)32 J 【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
【解析】
【详解】
(1)由 y 5 x2 得:A 点坐标(1.20m,0.80m) 9
由平抛运动规律得:xA=v0t,yA 1 gt 2 2
代入数据,求得 t=0.4s,v0=3m/s; (2)由速度关系,可得 θ=53° 求得 AB、BC 圆弧的半径 R=0.5m OE 过程由动能定理得:
mgyA﹣mgR(1﹣cos53°)
vy 2gR 2100.45 m/s=3m/s
vy tan53° 4
vD
3
所以:vD=2.25m/s
(2)物块在内轨道做圆周运动,在最高点有临界速度,则
mg=m v2 , R
解得:v gR 3 2 m/s 2
物块到达 P 的速度:
vP vD2 vy2 32 2.252 m/s=3.75m/s
动能定理练习题(附答案)
)))))))动能定理练习题1、一质量为1kg的物体被人用手由静止向上提高1m,这时物体的速度是2m/s,求:. 手对物体做功(3) . (2)合外力对物体做功. (1)物体克服重力做B 由A到B:解:(1) mJgh?10?W??m G1克服重力做功10JW?W?GG克h122到B,根据动能定理:(2) m由A2J?Wmv??0?N 2 B:(3) m由A到J1W?W?W2?W??A FFG mg的速度斜向v = 10m/sm = 100g的石块以2、一个人站在距地面高h = 15m处,将一个质量为0.若不计空气阻力,求石块落地时的速度v上抛出. (1).W(2)若石块落地时速度的大小为v = 19m/s,求石块克服空气阻力做的功t v0m1122:根据动能定理:Bm由A到解:(1) 20m/s?v?mvmgh?mv?022AB3hmg ,根据动能定理:A(2) m由到Bv1122 1.95J?W?mv?W??mvmgh0t22的速度踢出,10m/s,把一个静止的质量为1kg的球以3a、运动员踢球的平均作用力为200N 求运动员对球做的功?60m后停下. 在水平面上运动迎面飞来,踢出速度仍为10m/s3b、如果运动员踢球时球以v?v?00?v 10m/s,则运动员对球做功为多少?00m 解:OBA4:球由(3a)O到A,根据动能定理AOA?B?1250J?W?mv?0NN025:(3b)球在运动员踢球的过程中,根据动能定理fFmgmg11220mv???mvW221W?10JW?mgh默认解释为重力所做的功,而在这个过程中重在没有特别说明的情况下,不能写成:. GG . 力所做的功为负2mEW????W?E?BA?:“”,其中也可以简写成::表示动能定理.kk3WW?此处写. 的原因是题目已明确说明是克服空气阻力所做的功4踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,0 结果为然后其他形式的能又转化为动能,而前后动能相等.))))))).)))))))4、在距离地面高为H处,将质量为m的小钢球以初速度v竖直下抛,落地后,小钢球陷入泥0土中的深度为h求:(1)求钢球落地时的速度大小v. (2)泥土对小钢球的阻力是恒力还是变力?(3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. Av B:根据动能定理:(1) m由A到解:0mg11222v?v?2gH?mvmv?mgH???2 00H22162 C,根据动能定理:m由B(2)变力到. (3)mv??W?0mghvB f2mgh1ChHmg??W??mv?0v?0f2t到C:由(3) mBcos180?f?hW?f??2hHmg?mv?20?f?h2. 由静止开始运动m=60kg的冰车,=20N在水平的冰面上,以大小为F的水平推力,推着质量5、当冰车前,冰车受到的摩擦力是它对冰面压力的0. 01倍NN,冰车又前进了一段距离后撤去推力F进了s=30m后,1v m23 = 10m/s. 求:停止. 取g 21Fff冰车运动的总路(2)时的速度大小. F(1)撤去推力ssmgmg21.程s7状态:根据动能定理:m(1) 由1状态到2解:12?0?mvcos0Fs??mgscos1801123.74m/s?14m/s??v8 3状态:根据动能定理:(2) m由1状态到6,当小球在泥土中减速时,0 此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为mgmg因此可以推知,泥土对小球的力又恰等于重力泥土对小球的力必大于重力. ,而当小球在泥土中静止时,泥土对小球的力为变力.8s . 也可以用第二段来算计算过程如下:,然后将两段位移加起来2状态:根据动能定理:状态到由23m12?mv?mgscos180?02270m?s?2100m?s??ss则总位移. 21))))))).)))))))?0?cos180?Fscos0?0mgs1100m?s?B点从静止开始下滑到1.0kg的物体自A1/4圆弧半径为0.8m,有一质量为6、如图所示,光滑求:C点停止. 点,然后沿水平面前进4m,到达ROA. 在物体沿水平运动中摩擦力做的功(1)mgNx.物体与水平面间的动摩擦因数(2)ff9到C:根据动能定理:解:(1) m由A00?mgR?W?R f O?ACBmg 8J?W???mgR?mg f Nl? C:到(2) m由Bcos180xW??mg?f?f?0.2???CBmg从静止开始下滑到圆,有一质量为0.2kg的物体自最高点A7、粗糙的1/4圆弧的半径为0.45mg . 设物体与轨道间的动摩擦因数为0.5 (B弧最低点时,然后沿水平面前进0.4m到达C点停止2 ),求:= 10m/s.物体到达B点时的速度大小(1).(2)物体在圆弧轨道上克服摩擦力所做的功12?:根据动能定理:C解:(1) m由B到mv??l?cos180?0mg B22m/s??v B12到B:根据动能定理:(2) m由A??0.5?JW0?W?mvmgR?fBf20.5J??WW 克服摩擦力做功f f克的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点的物体从高为h8、质量为m s,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数与终点的水平距离为?,在水平面上运动的位移证:设斜面长为l,斜面倾角为,物体在斜面上运动的水平位移为s110N B:根据动能定理:为,如图所示m.由A到sf121??? 00cos180???mghcos180mgcos?l???mgsA2l?、又scosls?ss??N211?hmg2CfB??2smg2s19也可以分段计算,计算过程略. s10题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。
物理动能与动能定理题20套(带答案)及解析
物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。
物理动能与动能定理题20套(带答案)
(2)若滑块在 A 点以 v0=lm/s 的初速度沿斜面下滑,最终停止于 B 点,求 μ 的取值范围。
【答案】(1) t
3 3
s;(2)
1 32
3 4
或
3
13 16
。
【解析】
【分析】
【详解】
(1)设滑块从点 A 运动到点 B 的过程中,加速度大小为 a ,运动时间为 t ,则由牛顿第二
定律和运动学公式得
(1)当细线与水平杆的夹角为 β( 90 )时,A 的速度为多大?
(2)从开始运动到 A 获得最大速度的过程中,绳拉力对 A 做了多少功?
【答案】(1) vA
2gh 1 cos2
1
sin
1 sin
;(2)WT
mg
h sin
h
【解析】
【详解】
(2)A、B 的系统机械能守恒
EP减 EK加
(1)圆弧轨道的半径 (2)小球滑到 B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是 5m. (2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下. 【解析】
(1)小球由 B 到 D 做平抛运动,有:h= 1 gt2 2
x=vBt
解得: vB x
g 4 2h
10 10m / s 2 0.8
mg sin ma
s 1 at2 2
解得 t 3 s 3
(2)滑块最终停在 B 点,有两种可能:
①滑块恰好能从 A 下滑到 B ,设动摩擦因数为 1 ,由动能定律得:
mg sin
s 1mg cos
s
0
1 2
mv02
解得
1
13 16
②滑块在斜面 AB 和水平地面间多次反复运动,最终停止于 B 点,当滑块恰好能返回 A
动能定理基础训练
动能定理练习精选1•如图所示,BCD是半径R=0.4m的竖直圆形光滑轨道,D是轨道的最高点,水平面AB与圆轨道在B点相切。
一质量为m=1kg可以看成质点的物体静止于水平面上的A点。
现用F=7N的水平恒力作用在物体上,使它在水平面上做匀加速直线运动,当物体到达B点时撤去外力F,之后物体沿BCD轨道运动,物体到达D点时的速度大小v D=4m/s。
已知物体与水平面间的动摩擦因数卩=0.3,取重力加速度g=10m/s2.求:(1)在D点轨道对物体的压力大小F N;(2)物体运动到B点时的速度大小v B;(3)A与B之间的距离X。
2•如图所示,光滑丄圆弧的半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B点,然后沿水平面4前进4.0m,到达C点停止。
g取10m/s2,求:(1)物体到达B点时的速率;(2)在物体沿水平面运动的过程中摩擦力的大小;(3)物体与水平面间的动摩擦因数。
3.质量为20kg的小孩坐在秋千板上,小孩离拴绳子的横梁2.5m,如果秋千摆到最高点时,绳子与竖直方向的夹角是60°,秋千板摆到最低点时,求:(1)小孩的速度多大;(2)小孩对秋千板的压力多大?(g=10m/s2)4•如图所示,AB为固定在竖直平面内的丄光滑圆弧轨道,其半径为R=0.8m.轨道的B点与光滑水平地面相切,4质量为m=0.2kg的小球由A点静止释放,g取10m/s2.求:(1)小球滑到最低点B时,小球速度v的大小;(2) 小球刚到达最低点B 时,轨道对小球支持力F N 的大小;(3) 小球通过光滑的水平面BC 滑上固定曲面CD ,恰能到达最高点D ,D 到地面的高度为h=0.6m ,小球在曲面 CD 上克服摩擦力所做的功W f 是多少?5.如图所示,一质量m=0.4kg 的光滑小球,以速度v 0=lOllm/s 沿光滑地面滑行,然后沿光滑坡面上升到顶部水平的平台上后由平台飞出,平台高度h=5m ,g=10m/s 2.求: (1) 小球飞到平台上的速度v 的大小;(2)小球从平台飞出后水平飞行的距离x .6.如图所示,摆球质量为lkg ,让摆球从图中的A 位置由静止开始下摆,正好摆到最低点B 位置时线被拉断,设摆线长L=1.6m ,悬点到地面的竖直高度为H=6.6m ,不计空气阻力.求: (1) 绳能承受的最大拉力;(2)摆球落地时的速度.(g=10m/s 2)Bl II \— c D7. 质量为5kg 的物体置于水平地面上,受到水平恒力F 作用一段时间后撤去,运动图象如图2所示。
动能定理精华习题【含答案】
动能定理习题(含答案)例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C.gh v 220+ D.gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.2-7-32-7-2例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
动能定理习题(附答案)
A1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W m g h =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:221122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.3此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B→4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理:1cos0cos18000Fs mgs μ+=-100m s ∴=6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力. 8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.v t vfA6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理:2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=- 又1cos l s θ=、12s s s =+ 则11:0h s μ-= 即: h sμ=9 也可以分段计算,计算过程略.10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。
动能定理练基础习题
动能定理练基础习题动能定理练1.关于运动物体所受合外力做功和动能变化的关系,以下哪个说法正确?(多选)A。
如果物体所受合外力为零,则合外力对物体所做的功一定为零。
B。
如果合外力对物体所做的功为零,则合外力一定为零。
C。
物体在合外力作用下做变速运动,动能一定发生变化。
D。
物体的动能不变,所受合力一定为零。
2.以下哪个说法正确?(多选)A。
某过程中外力的总功等于各力做功的代数之和。
B。
外力对物体做的总功等于物体动能的变化。
C。
在物体动能不变的过程中,动能定理不适用。
D。
动能定理只适用于物体受XXX作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么以下哪个说法是正确的?(多选)A。
水平拉力相等。
B。
两物块质量相等。
C。
两物块速度变化相等。
D。
水平拉力对两物块做功相等。
4.质点在XXX作用下从静止开始做直线运动,则此质点任一时刻的动能与它通过的位移s成()。
A。
正比。
B。
与它通过的位移s的平方成正比。
C。
与它运动的时间t成正比。
D。
与它运动的时间的平方成正比。
5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为()。
A。
sB。
s/2C。
s/2D。
s/46.两个物体A、B的质量之比)。
A。
B。
C。
D。
7.质量为m的金属块,当初速度为v时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v,在同一水平面上该金属块最多能滑行的距离为()。
A。
LB。
2LC。
4LD。
0.5L8.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为()。
A。
sinθB。
cosθC。
tanθD。
cotθ9.将质量为1kg的物体以20m/s的速度竖直向上抛出。
当物体落回原处的速率为16m/s。
在此过程中物体克服阻力所做的功大小为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理练习
一、不定项选择题(每小题至少有一个选项)
1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是()A.如果物体所受合外力为零,则合外力对物体所的功一定为零;
B.如果合外力对物体所做的功为零,则合外力一定为零;
C.物体在合外力作用下做变速运动,动能一定发生变化;
D.物体的动能不变,所受合力一定为零。
2.下列说法正确的是()
A.某过程中外力的总功等于各力做功的代数之和;
B.外力对物体做的总功等于物体动能的变化;
C.在物体动能不变的过程中,动能定理不适用;
D.动能定理只适用于物体受恒力作用而做加速运动的过程。
3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定()
A.水平拉力相等 B.两物块质量相等
C.两物块速度变化相等D.水平拉力对两物块做功相等
4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能()
A.与它通过的位移s成正比
B.与它通过的位移s的平方成正比
C.与它运动的时间t成正比
D.与它运动的时间的平方成正比
5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为()
/s D.s/4
A.s B.s/2 C.2
6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为()
A .s A ∶s
B =2∶1 B .s A ∶s B =1∶2
C .s A ∶s B =4∶1
D .s A ∶s B =1∶4
7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( )
A .L
B .2L
C .4L
D .0.5L
8.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( )
A .sin 2θ
B .cos 2θ
C .tan 2θ
D .cot 2θ
9.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。
当物体落回原处的速率为16m/s 。
在此过程中物体克服阻力所做的功大小为( )
A .200J
B .128J
C .72J
D .0J
10.一质量为1kg 的物体被人用手由静止向上提升1m ,这时物体的速度为2m/s ,则下列说法中正确的是( )
A .手对物体做功12J
B .合外力对物体做功12J
C .合外力对物体做功2J
D .物体克服重力做功10J
11.物体A 和B 叠放在光滑水平面上m A =1kg ,m B =2kg ,B 上作用一个3N
的水平拉力后,A 和B 一起前进了4m ,如图1所示。
在这个过程中B 对A 做
的功等于( )
A .4J
B .12J
C .0
D .-4J
12.汽车在拱形桥上由A 匀速率地运动到B ,如图1所示,下列说法中正确的是( )
A .牵引力与摩擦力做的功相等;
B .牵引力和重力做的功大于摩擦力做的功;
C .合外力对汽车不做功;
D .合外力为零。
13.如图2所示,质量为m 的物体,由高为h 处无初速滑下,至平面上A 点静止,不考虑B 点处能量转化,若施加平行于路径的外力使物体由A 点沿原路径返回C 点,
则外力至少做功为( )
图
1
A .mgh ;
B .2mgh ;
C .3mgh ;
D .条件不足,无法计算。
二、填空题
14.如图3所示,地面水平光滑,质量为m 的物体在水平恒力F 的作
用下,由静止从A 处移动到了B 处;此过程中力F 对物体做正功,使
得物体的速度 (增大、减少、不变)。
如果其它条件不变,
只将物体的质量增大为2m ,在物体仍由静止从A 运动到B 的过程中,
恒力F 对物体做的功 (增大、减少、不变);物体到达B 点
时的速度比原来要 (大、少、不变)。
如果让一个具有初速度的物体在粗糙水平地面上滑行时,物体的速度会不断减少,这个过程中伴随有 力做 功(正、负、零)。
可见做功能使物体的速度发生改变。
15.一高炮竖直将一质量为M 的炮弹以速度V 射出,炮弹上升的最大高度为H ,则炮弹上升的过程中克服空气阻力所做的功为 ,发射时火药对炮弹做功为 。
(忽略炮筒的长度)
16.质量为m 的物体静止在水平桌面上,物体与桌面间的动摩擦因数为μ,今用一水平力推物体,使物体加速运动一段时间,撤去此力,物体再滑行一段时间后静止,已知物体运动的总路程为s ,则此推力对物体做功 。
三、计算题
17.一个质量为m=2kg 的铅球从离地面H=2m 高处自由落下,落入沙坑中h=5cm 深处,
如图所示,求沙子对铅球的平均阻力。
(g 取10m/s 2)
18.质量为m的物体由半圆形轨道顶端从静止开始释放,如图4所示,A为轨道最低点,A与圆心0在同一竖直线上,已知圆弧轨道半径为R,运动到A点时,物体对轨道的压力大小为2.5m g,求此过程中物体克服摩擦力做的功。
19.如图6所示,m A=4kg,A放在动摩擦因数μ=0.2的水平桌面上,m B=1kg,B与地相距h=0.8m,A、B均从静止开始运动,设A距桌子边缘足够远,g取10m/s2,求:
(1)B落地时的速度;
(2)B落地后,A在桌面滑行多远才静止。
动能定理练习参考答
一、选择题 1.A 2.AB 3.D 4.AD 5.D 6.B 7.C 8.C 9.C 10.ACD 11.A
12.C 13.B
二、填空题
14.增大;不变;小;滑动摩擦;负; 14.
mgH mv -221;221mv 16.μmgs 三、计算题
17.∵全过程中有重力做功,进入沙中阻力做负功
∴W 总=mg (H+h )—fh
由动能定理得:mg (H+h )—fh=0—0 得h
h H mg f )(+= 带入数据得f=820N 18.物体在B 点:R
v m mg 2
=-N ∴mv B 2=(N-mg )R=1.5mgR ∴
mgR mgR 4
375.0mv 212B == 由动能定理得:mgR 43W mgR f =+ ⇒ mgR 4
1W f -= 即物体克服摩擦力做功为mgR 41 19.从开始运动到B 落地时,A 、B 两物体具有相同的速率。
①以A 与B 构成的系统为研究对象,根据动能定理得 2)(21v m m gh m gh m B A A B +=
-μ B
A A
B m m gh m m v +-=)(2μ,带入数据得v=0.8m/s ②以A 为研究对象,设滑行的距离为s ,由动能定理得:
2210v m gs m A A -=-μ,得g
v s μ22=,带入数据得s=0.16m。