直线的倾斜角与斜率(教学设计课题)
直线的倾斜角和斜率教学设计
直线的倾斜角和斜率教学设计教学设计:直线的倾斜角和斜率一、教学目标:1.知识目标:理解直线的倾斜角和斜率的概念,能够计算直线的斜率。
2.能力目标:能够运用直线的倾斜角和斜率解决实际问题。
3.情感目标:培养学生对数学的兴趣和积极参与数学学习的态度。
二、教学内容:1.直线的倾斜角和斜率的概念介绍。
2.直线的斜率的计算方法。
3.直线的倾斜角和斜率在实际问题中的应用。
三、教学过程:1.导入新知识(5分钟)让学生观察一些直线的图片,引导学生思考直线的特征和性质。
然后提出问题:“如何刻画直线的倾斜程度?”进一步引导学生思考斜率的概念。
2.概念讲解(10分钟)介绍直线的倾斜角和斜率的概念,并进行示例说明。
通过几个具体图例,让学生理解倾斜角和斜率的计算方法。
3.斜率计算练习(15分钟)在黑板上给出几组直线的坐标,让学生自行计算斜率。
然后互相交流答案,老师给予必要的指导和讲解。
4.斜率的性质探究(10分钟)在黑板上给出不同的两条直线,让学生分别计算斜率并进行比较,引导学生发现两条平行线的斜率相等,两条垂直线的斜率的乘积为-15.应用实例探讨(20分钟)以实际问题为例,引导学生应用倾斜角和斜率的概念计算问题。
例如,计算两个点之间的坡度、判断两个线段的交叉情况等。
6.巩固练习(15分钟)提供一些练习题,要求学生计算直线的斜率,并在给出的坐标系中绘制这些直线。
让学生将所学知识应用到实际问题中,巩固对倾斜角和斜率的理解和计算能力。
7.拓展应用(15分钟)让学生从生活实际中寻找更多的与斜率相关的问题,并用倾斜角和斜率的概念解决这些问题。
鼓励学生讨论和分享解决思路,加深对知识的理解和应用能力。
8.知识总结(5分钟)让学生自主总结直线的倾斜角和斜率的关系,并展示自己的总结。
教师进行点评和补充说明。
四、课堂训练:借助数字资源软件或练习册等材料,布置适量的作业题目,巩固学生对直线的倾斜角和斜率的理解和应用。
五、教学反思:本教学设计通过多种方式引导学生理解直线的倾斜角和斜率的概念,并加以实际问题的应用,既注重了学生的思维能力培养,又培养了学生对数学的兴趣和动手能力。
直线的倾斜角与斜率教案
直线的倾斜角与斜率教案一、引言在平面几何中,直线是最基本的图形之一,而直线的倾斜角和斜率则是直线的两个重要特征。
本教案将介绍直线的倾斜角和斜率的概念、计算方法以及应用。
二、直线的倾斜角1. 概念直线的倾斜角是指直线与水平方向的夹角,通常用角度制表示,取值范围为0°~90°。
2. 计算方法设直线的倾斜角为α,则有:•当直线向右倾斜时,0°≤α≤90°,且tanα=斜率;•当直线向左倾斜时,90°<α≤180°,且tan(α-90°)=斜率。
3. 应用直线的倾斜角可以用于解决一些实际问题,如:•在建筑设计中,需要计算房屋屋顶的倾斜角度;•在地理学中,需要计算山坡的倾斜角度;•在物理学中,需要计算斜面的倾斜角度等。
三、直线的斜率1. 概念直线的斜率是指直线上任意两点之间的高度差与水平距离之比,通常用斜率公式表示,即:k=y2−y1 x2−x1其中,(x1,y1)和(x2,y2)为直线上的两个点。
2. 计算方法直线的斜率可以通过斜率公式进行计算,也可以通过直线的倾斜角进行计算,具体方法如下:•当直线向右倾斜时,斜率为正,且斜率等于tanα;•当直线向左倾斜时,斜率为负,且斜率等于tan(α-180°)。
3. 应用直线的斜率可以用于解决一些实际问题,如:•在数学中,可以用斜率来判断两条直线是否平行或垂直;•在物理学中,可以用斜率来计算物体的速度、加速度等;•在工程学中,可以用斜率来计算斜坡的坡度、道路的坡度等。
四、练习题1.某条直线的斜率为2,求该直线的倾斜角。
2.某条直线的倾斜角为30°,求该直线的斜率。
3.某条直线过点(1,2)和(3,6),求该直线的斜率。
4.某条直线过点(1,2)和(3,6),求该直线的倾斜角。
五、总结本教案介绍了直线的倾斜角和斜率的概念、计算方法以及应用。
通过学习,我们可以更好地理解直线的特征和性质,为解决实际问题提供了有力的工具。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明教案说明:本教案旨在帮助学生理解直线的倾斜角与斜率的概念,掌握计算方法,并能应用于解决实际问题。
通过本教案的学习,学生应能理解直线的倾斜角与斜率之间的关系,并能运用斜率计算直线的倾斜角,反之亦然。
教学目标:1. 理解直线的倾斜角的概念。
2. 掌握计算直线的斜率的方法。
3. 理解直线的斜率与倾斜角之间的关系。
4. 能运用直线的斜率和倾斜角解决实际问题。
教学内容:一、直线的倾斜角1. 直线的倾斜角的定义。
2. 直线的倾斜角的计算方法。
二、直线的斜率1. 直线的斜率的定义。
2. 直线的斜率的计算方法。
三、直线的斜率与倾斜角之间的关系1. 斜率与倾斜角的定义及关系。
2. 斜率与倾斜角的计算方法。
四、运用直线的斜率和倾斜角解决实际问题1. 运用斜率和倾斜角计算直线的长度。
2. 运用斜率和倾斜角计算直线的交点。
五、巩固练习1. 计算给定直线的斜率和倾斜角。
2. 解决实际问题,运用直线的斜率和倾斜角。
教学方法:1. 采用直观演示法,通过图形和实例引导学生理解直线的倾斜角和斜率的概念。
2. 采用讲解法,讲解直线的倾斜角和斜率的计算方法。
3. 采用实践法,让学生通过实际问题解决来运用直线的斜率和倾斜角。
教学评估:1. 课堂练习:学生在课堂上完成给定的练习题,检验对直线的倾斜角和斜率的理解和应用能力。
2. 课后作业:布置相关的作业题,巩固学生对直线的倾斜角和斜率的掌握。
3. 考试:设置有关直线的倾斜角和斜率的考试题目,全面评估学生的掌握情况。
教学资源:1. 教学PPT:提供直观的图形和实例,帮助学生理解直线的倾斜角和斜率的概念。
2. 练习题库:提供丰富的练习题,供学生课堂练习和课后作业。
3. 实际问题案例:提供实际问题,供学生解决,运用直线的斜率和倾斜角。
教学步骤:一、直线的倾斜角1. 引入直线的倾斜角的概念,引导学生理解直线的倾斜角的意义。
2. 讲解直线的倾斜角的计算方法,引导学生掌握计算直线的倾斜角的方法。
直线的倾斜角与斜率(教学设计)
《8.2直线的倾斜角和斜率》教学设计【课题】直线的倾斜角和斜率【课时】 1课时(45分钟)【授课时间】2015年5月19日【授课类型】新授【设计理念】本节课以一个情境贯串教学始终,层层深入,采用问题引领的探究式教学法,借助一个教学平台,贯串两条教学主线,再现三次教学情境,设置多次学生活动,根据“情境创设生活化,问题探究活动化,辨析质疑及时化,习题设置梯度化”的原则,让不同层次的学生都经历概念的形成、发展和应用过程,从而将本节课的教学步步推向高潮.【内容解析】本节课选自江苏教育出版社出版的《数学》第二册第八章第二节《直线的倾斜角和斜率》.直线的倾斜角和斜率,分别从几何和代数的角度刻画了直线的倾斜程度,两者的联系桥梁是正切函数值,是解析几何的重要概念之一,也是研究直线方程及其位置关系等思维的起点.因此,本节起到“开启全章、承前启后”的作用.同时,本节课内容在机械工程等方面有着广泛应用,为生活生产提供了理论依据.【学情简析】本节课的授课对象1406班是高职一年级的数控专业的学生,班级共38人,36位男生,2位女生.学生数学基础较好,已初步具备解析几何的基本思想.学生思维活跃,善于交流,动手操作能力强,这些特点为本堂课的有效教学提供了质的保障.【教学目标】知识与技能:(1)理解直线的倾斜角和斜率的概念;(2)会求过两点的直线的斜率;过程与方法:(1)经历倾斜角与斜率概念的形成过程,初步领悟解析几何思想;(2)借助过两点的直线斜率公式的推导过程,进一步渗透分类讨论思想;情感态度价值观:通过情境贯串教学,让学生感知数学来源于生活,又应用于生活,从而激发学生的学习激情.【教学重点和难点】重点:直线的倾斜角和斜率的概念、过两点的直线斜率计算公式难点:过两点的直线斜率公式的推导过程关键点:借助问题情境的创设,设置学生活动;借助几何画板的演示,体验知识的形成过程.【教学方法】教法:情境教学法问题驱动法演示实验法学法: 观察讨论法自主探究法类比归纳法【教学用具】多媒体、几何画板【教学过程】以境导学︵约30分钟︶2.媒体——析疑播放几何画板,演示直线绕点P的旋转过程.展示:(1)根据直线分类所得倾斜角的四种情形:(2)直线倾斜角的范围:0180[0,180)α≤<,即3.练习——答疑练习1:1.测量图中x轴-400处所在直线AB的倾斜角练习2.按要求作图:过点P作一条倾斜角为60的直线.探究二:直线斜率的定义及直线倾斜角与斜率之间的关系1.情境——设疑问题4:在日常生活中我们经常会遇到上坡下坡问题,那么对于斜坡的倾斜程度可以用什么量来反映?展示:(1)坡比公式:;(2)直线斜率的概念:倾斜角α的正切值叫做直线l的斜率.(3)注意点:直线倾斜角为90时,直线斜率不存在.教师引导学生观察直线倾斜角大小与直线陡缓程度的关系,并探索直线倾斜角的范围.师问:根据直线的分类,可以将直线倾斜角分成几种情形?教师巡视指导学生寻找并测量直线的倾斜角及规范学生作图.教师引导学生类比坡比概念结合正切函数引出直线斜率的概念.教师强调直线斜率的定义及注意点.学生观察几何画板的演示.学生分析,将形成的直线类型作于活动纸上.学生测量直线倾斜角并作图..学生领悟.几何画板的动态演示让学生直观感受倾斜这一几何量的形成过程,体悟知识的形成过程.通过“找—量—画”三个环节,正逆运用新知,有效检测学生的新知落实情况,也为探究二的学习埋下伏笔.通过问题驱动,让学生观察、类比得出斜率的概念,培养学生的知识迁移能力;并体验从直观到抽象的过程.前进量升高量坡比=以境导学︵约30分钟︶2.媒体——析疑(1)完成下表:角度04590135斜率3333-33-(2)观察表中数据,阐述直线倾斜角与直线斜率之间的变化关系.(3)播放几何画板,演示直线倾斜角与斜率之间的关系.展示:(1)直线倾斜角与斜率之间的关系(2) 当090α≤<,倾斜角越大,斜率越大;当90α=,斜率不存在;当90180α<<,倾斜角越大,斜率越大.3.练习——答疑练习2:问题大挑战.①是否每条直线都有斜率?②是否每条直线都有倾斜角?③直线倾斜角越大,直线斜率是否越大?练习3:根据探究一所得直线AB的倾斜角,计算直线AB的斜率探究三:过两点的直线斜率公式截取图中一条直线11(,)x y300-300-400▪▪PQαM教师复习特殊角的正切函数值.教师引导学生观察表格,寻找直线倾斜角与斜率之间的关系.教师引导学生运用分类讨论思想来探索直线倾斜角与斜率之间的关系.教师纠正学生易混淆的概念.教师巡视指导学生计算直线的斜率.教师一条直线,再次展示情境.学生完成表格.学生观察数据,积极思考,分享成果.学生领悟直线倾斜角与斜率之间的关系.学生思辨并作答,领悟知识要点.学生计算.学生观察图像.填表有效检测学生对特殊角正切函数值的落实情况.利用几何画板动态直观展示直线倾斜角与斜率之间的关系,有助于学生加深对理解.通过三个易混淆的概念判断,有利于进一步强化概念;练习2的设计,落实知识重点,也为探究三知识的验证埋下伏笔.学以致用︵约5分钟︶现欲加工如图所示零件,根据零件标注的要求,采用手动编程完成该零件,在用手工编程过程中,以O点为坐标原点进行编程,A点坐标为(0,15),则需要计算以下内容才能完成手工编程:(1)若直线AB的斜率为1,则点B的坐标为多少?(2)尺寸如图所标,求直线CD的斜率是多少?教师引导学生分析编程中的数据,结合过两点的直线斜率公式解决问题。
《直线的倾斜角和斜率》教案(公开课)
《直线的倾斜角和斜率》教案(公开课)直线的倾斜角和斜率直线的斜率和倾斜角是数学中的重要概念,它们帮助我们理解和描述直线的特性。
本文将介绍直线的倾斜角和斜率的概念,并提供一些实例来帮助读者更好地理解。
1. 斜率的定义和计算方法斜率是直线上的两个点之间纵坐标变化量与横坐标变化量的比值。
用数学符号表示,斜率可以表示为:m = (y₂ - y₁)/(x₂ - x₁)其中,(x₁, y₁)和(x₂, y₂)是直线上的两个点。
例如,有一条直线上的两个点分别为A(1, 2)和B(4, 5),我们可以计算这条直线的斜率:m = (5 - 2)/(4 - 1)= 3/3= 1所以,这条直线的斜率为1。
2. 斜率的特性斜率可以帮助我们判断直线的特性,如下所示:- 当斜率为正数时,直线是向上倾斜的。
斜率越大,直线的倾斜程度越大。
- 当斜率为负数时,直线是向下倾斜的。
斜率越小,直线的倾斜程度越大。
- 当斜率为0时,直线是水平的。
- 当斜率不存在(除数为0)时,直线是垂直的。
通过计算直线的斜率,我们可以快速了解直线的倾斜情况,并对其特性进行分析。
3. 倾斜角的定义和计算方法倾斜角是直线与水平线之间的夹角,用数学符号表示为θ。
对于任意一条直线,可以通过其斜率来计算倾斜角。
倾斜角的计算方法如下:- 当直线向上倾斜时,倾斜角为θ = arctan(m)。
- 当直线向下倾斜时,倾斜角为θ = arctan(m) + π。
- 当直线是水平的时,倾斜角为θ = 0。
- 当直线是垂直的时,倾斜角不存在。
4. 实例分析让我们通过几个实例来进一步理解直线的倾斜角和斜率。
实例一:有一条直线通过点A(-2, 1)和B(4, 9)。
计算直线的斜率和倾斜角。
通过斜率的计算公式,我们可以得到直线的斜率:m = (9 - 1)/(4 - (-2))= 8/6= 4/3接下来,我们可以计算直线的倾斜角:θ = arctan(4/3)实例二:有一条直线通过点C(3, 2)和D(3, 8)。
直线的倾斜角与斜率教案
直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。
3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。
二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。
2. 教学难点:直线的倾斜角与斜率之间的关系的运用。
三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。
2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。
3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。
四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。
2. 教学素材:几何图形、实际问题。
3. 教学工具:黑板、粉笔、直尺、圆规。
五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。
3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。
4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。
5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。
6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。
7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。
如有问题,要及时调整教学方法,提高教学质量。
七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。
八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。
2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。
2. 教学难点:直线的斜率与倾斜角的计算。
三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。
3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。
4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。
四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。
(1)直线y = 2x + 3;(2)直线x = 4。
五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。
在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。
布置适量的练习题,让学生巩固所学知识。
在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。
六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。
2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 让学生能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
4. 求直线的倾斜角和斜率的方法。
5. 直线的倾斜角和斜率在实际问题中的应用。
三、教学重点与难点:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。
2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。
3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。
3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。
4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。
5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。
6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。
说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。
在教学过程中,注意启发学生的思维,培养学生的动手能力。
六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。
2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。
3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。
七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。
2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角:定义、求法。
2. 斜率与倾斜角的关系:正切函数的应用。
3. 直线的斜率:定义、求法。
4. 实际问题中的应用:求直线的倾斜角和斜率。
三、教学重点与难点:1. 重点:直线的倾斜角的概念、斜率与倾斜角的关系。
2. 难点:直线的斜率的求法、实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解直线的倾斜角和斜率的定义及求法。
2. 利用例题,演示直线的倾斜角和斜率的计算过程。
3. 引导学生运用直线的倾斜角和斜率解决实际问题。
五、教学过程:1. 导入新课:回顾直线的倾斜角和斜率的概念,引导学生思考两者之间的关系。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解求法,举例说明。
3. 讲解斜率与倾斜角的关系:引入正切函数,讲解斜率与倾斜角的关系,举例说明。
4. 讲解直线的斜率:介绍直线的斜率的定义,讲解求法,举例说明。
6. 课堂练习:布置练习题,巩固所学知识。
8. 布置作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂讲解:评估学生对直线的倾斜角和斜率概念的理解程度,观察学生能否正确求解直线的倾斜角和斜率。
2. 课堂练习:评估学生运用直线的倾斜角和斜率解决实际问题的能力,观察学生是否能够正确计算和应用。
3. 课后作业:评估学生对直线的倾斜角和斜率知识的掌握程度,检查学生是否能够独立完成相关练习。
七、教学反思:1. 反思教学内容:根据学生的学习情况,调整直线的倾斜角和斜率的教学内容,确保学生能够理解和掌握。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高学生的学习兴趣和参与度。
八、教学拓展:1. 直线的倾斜角和斜率在实际应用中的例子:如工程测量、物理学中的运动分析等。
直线的倾斜角和斜率教学教案
直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。
直线的倾斜角与斜率教学设计
2.1直线的倾斜角与斜率第一课时:倾斜角与斜率教学设计教学目标:1.初步了解直线的倾斜角和斜率的概念.2.初步掌握过两点的直线斜率的计算公式,会求直线的倾斜角和斜率.3.通过斜率概念的建立和斜率公式的推导,经历几何问题代数化的过程,经历从特殊到一般,从感性到理性的认知过程,体会数形结合和化归转化思想.教学重点:理解直线的倾斜角和斜率概念,初步掌握过两点的直线斜率的计算公式教学难点:直线的倾斜角、斜率概念的形成,两点斜率公式的建构。
教学过程:新课引入:在以往的几何学习中,我们常常通过直观感知、操作确认、思辨论证、度量计算等方法研究几何图形的形状、大小和位置关系,这种方法通常称为综合法.本章我们采用一种新的方法——坐标法研究几何图形的性质.坐标法是解析几何中最基本的研究方法.解析几何是17世纪法国数学家笛卡儿和费马创立的,它的基本内涵和方法是:通过坐标系,把几何的基本元素——点和代数的基本对象——数(有序数对)对应起来,在此基础上建立曲线(点的轨迹)的方程,从而把几何问题转化为代数问题,通过代数方法研究几何图形的性质.解析几何的创立是数学发展史上的一个里程碑,数学从此进入变量数学时期,它为微积分的创建奠定了基础.本章我们将在平面直角坐标系中,探索确定直线位置的几何要素,建立直线的方程,并通过直线的方程研究两条直线的位置关系、交点坐标以及点到直线的距离等.探究新知:我们知道,点是构成直线的基本元素. 在平面直角坐标系中,点用坐标表示,那么,直线如何表示呢?自主学习:阅读课本51-52页探究上方问题1确定一条直线位置的几何要素是什么?对于平面直角坐标系中的一条直线l,如何利用坐标系确定它的位置?教师讲解:两点以及一点和一个方向可以确定一条直线,由方向向量我们可以知道,两点确定一条直线可以归结为一点和一个方向确定一条直线.问题2如何表示直线的方向?教师讲解:在平面直角坐标系中,我们规定一条直线向上的方向为这条直线的方向. 因此,这些直线的区别在于它们的方向不同. 如何表示这些直线的方向?我们看到,这些直线相对于x 轴的倾斜程度不同,也就是它们与x 轴所成的角不同. 因此,我们可以利用这样的角来表示这些直线的方向.新知:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角问题3 当直线l 与x 轴平行或重合时,其倾斜角大小为多少?直线的倾斜角的取值范围是什么?当直线l 与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为0°≤α<180°.这样,平面直角坐标系中,每一条直线都有一个确定的倾斜角,而且方向相同的直线,其倾斜程度相同,倾斜角相等;方向不同的直线,其倾斜程度不同,倾斜角不相等. 因此,我们可以用倾斜角表示平面直角坐标系中一条直线的倾斜程度,也就表示了直线的方向. 探究: (1)已知直线l 经过点O (0,0),P (√3,1),α与点O ,P 的坐标有什么关系? (2)类似地,如果直线l 经过点P 1(-1,1),P 2(√2,0),α与点P 1,P 2的坐标又有什么关系?对于问题(1),如图,向量OP ⃗⃗⃗⃗⃗ =(√3,1),且直线OP 的倾斜角也为α.由正切函数的定义,有tan α=√3=√33. 对于问题(2),如图,P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−1−√2,1−0)=(−1−√2,1).平移向量P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ 到OP ⃗⃗⃗⃗⃗ ,则点P 的坐标为(−1−√2,1),且直线OP 的倾斜角也是α.由正切函数的定义,有tan α=−1−√2=1−√2.1)0)一般地,如图,当向量21P P 的方向向上时,),(121221y y x x P P --=.平移向量21P P 到OP ,则点P 的坐标为,且直线OP 的倾斜角也是α,由正切函数的定义,有tan α=.同样,当向量12P P 的方向向上时,如图,),(212112y y x x P P --=,也有tan α==.新知:直线l 的倾斜角α与直线l 上的两点P 1(x 1,y 1), P 2(x 2,y 2)(x 1≠x 2)的坐标有如下关系:tan α=y 2−y 1x 2−x 1.我们把一条直线的倾斜角α的正切值叫做这条直线的斜率(slope ),斜率常用小写字母k 表示,即k =tan α.日常生活中常用“坡度”表示倾斜面的倾斜程度:坡度=铅直高度水平宽度.问题3 当直线的倾斜角由0o 逐渐增大到180o 时,其斜率如何变化?为什么? 当倾斜角α满足0o ≤α<90o 且逐渐增大时,斜率k 逐渐增大; 当倾斜角α=90o ,斜率不存在;当倾斜角α满足90o <α<180o 且逐渐增大时,斜率k 逐渐增大.由正切函数的单调性,倾斜角不同的直线其斜率也不同.因此,我们可以用斜率表示倾斜角不等于90o 的直线相对于x 轴的倾斜程度,进而表示直线的方向.由tan α=y 2−y1x 2−x 1及k =tan α知,k = y 2−y1x 2−x 1.2121(,)--x x y y 2121y y x x --1212y y x x --2121y y x x --问题4 直线的方向向量与斜率k 有什么关系?我们知道,直线P 1P 2上的向量21P P 及与它平行的向量都是直线的方向向量. 直线P 1P 2的方向向量21P P 的坐标为2121(,)--x x y y , 当直线P 1P 2与x 轴不垂直时,12≠x x . 此时向量21121P P x x -也是直线P 1P 2的方向向量,且它的坐标为2121211(,),---x x y y x x 即21211y y x x --(,)=(1,),k 其中k 是直线P 1P 2的斜率.因此,若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=y k x. 例1、 如图,已知A (3,2),B (-4,1),C (0,-1),求直线AB ,BC ,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.解:直线AB 的斜率k AB =1243---=17; 直线BC 的斜率k BC =1104----()=24-=-12;直线CA 的斜率k CA =2-(-1)30-=33=1.由k AB >0及k CA >0可知,直线AB 与CA 的倾斜角均为锐角; 由k BC <0可知,直线BC 的倾斜角为钝角. 随堂练习:1.已知坐标平面内三点A(-1,1)、B(1,1)、C(2,3+1). 求直线AB 、BC 的斜率和倾斜角;2.若A(1,0),B(-3,m),直线AB 的斜率为-12,则m =( ) A .-8 B .-2 C .2D .8CBAxyO3、若直线过点(1,3),(4,3+3),则此直线的倾斜角是 ( ) A .π6 B .π4 C .π3D .2π34、已知点M(0,b)与点N(-3,1)连成直线的倾斜角为120°,则b =_______. 课堂小结本节课,我们在平面直角坐标系中,讨论了确定直线位置的几何要素,即两点确定一条直线以及一点和一个方向确定一条直线. 并从形和数的角度利用倾斜角和斜率来刻画直线的倾斜程度,即表示了直线的方向,并探讨了倾斜角、斜率与直线上两点坐标的关系,探讨了直线的方向向量与斜率的关系.在此过程中体会到了数形结合数学思想以及将几何问题转化为代数问题的化归转化思想.知识点回顾:(1)倾斜角的定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.直线的倾斜角α的取值范围为 0°≤α<180°.(2)k=tan α k=y 2−y 1x 2−x 1.(3)若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=yk x. 作业:课本55页练习。
直线的倾斜角与斜率教案
直线的倾斜角与斜率教案直线的倾斜角与斜率教案一、教学目标:1. 知识目标:了解直线的倾斜角和斜率的概念;2. 能力目标:能够计算直线的倾斜角和斜率;3. 情感目标:培养学生对数学知识的兴趣和自信心。
二、教学重难点:1. 重点:直线的倾斜角和斜率的概念;2. 难点:直线的斜率的计算方式。
三、教学过程:1. 导入(5分钟):通过给学生出示两条不同斜率的直线,让学生观察并思考,引导学生讨论直线的倾斜角和斜率的关系,激发学生学习的兴趣。
2. 了解直线的倾斜角和斜率(10分钟):通过简单直观的图形,引导学生理解直线的倾斜角和斜率的概念。
并且给出直线的斜率公式:k = tanθ,其中k为直线的斜率,θ为直线的倾斜角。
3. 计算直线的倾斜角和斜率(25分钟):(1)通过给出两个点的坐标,引导学生计算直线的斜率的计算方法:k = (y2 - y1) / (x2 - x1);(2)通过给出直线方程,引导学生计算直线的倾斜角的计算方法:θ = arctank。
4. 练习与巩固(15分钟):让学生进行相关的计算练习,巩固和加深对直线的倾斜角和斜率的理解。
通过多种情况的练习,让学生熟练掌握计算直线斜率和倾斜角的方法。
5. 拓展(10分钟):通过给学生展示各种曲线的斜率和倾斜角的计算方法,引导学生思考如何计算曲线的斜率和倾斜角。
通过观察各种曲线的特点,引导学生发现曲线斜率和倾斜角的规律。
6. 总结(5分钟):对刚才的学习内容进行总结,帮助学生回顾和巩固所学知识。
引导学生思考直线斜率和倾斜角的重要性以及实际应用。
四、教学反思:本节课通过以具体的图形为例,引导学生理解直线倾斜角和斜率的概念,通过具体的计算方法,让学生能够实际计算直线的斜率和倾斜角。
同时,通过拓展的内容引导学生思考更加复杂形状的曲线的斜率和倾斜角的计算方法,培养学生的综合应用能力。
针对学生的不同水平,提供了多种练习,巩固学生对知识的掌握,创设了有利于学生自主思考和交流的氛围。
直线的倾斜角和斜率教学设计
§ 3.1.1 直线的倾斜角和斜率一、教材分析本课是解析几何第一课时。
“万事开头难”, “好的开始是成功的一半”, 解析几何的基本思想和方法都应当得到适当的体现, 因此教学内容不仅有倾斜角、斜率的概念, 还应当包含坐标法、数形结合思想、解析几何发展史等。
直线的倾斜角和斜率都描述了直线的倾斜程度, 倾斜角用几何位置关系刻画, 斜率从数量关系刻画, 二者的联系桥梁是正切函数值, 并且可以用直线上两个点的坐标表示。
建立斜率公式的过程, 体现了坐标法的基本思想: 把几何问题代数化, 通过代数运算研究几何图形的性质。
本课涉及两个概念——倾斜角和斜率。
倾斜角是几何概念, 它主要起过渡作用, 是联系新旧知识的纽带, 研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念, 不仅其建立过程很好地体现了解析法, 而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用, 这是因为在直角坐标系下, 确定直线的条件最本质条件是直线上的一个点及其斜率, 其他形式都可以化归到这两个条件上来。
综上, 从解析几何的基本方法——坐标法的基本思想考虑, 斜率概念是本课时的核心概念。
(一)直线的斜率在高中数学课程中的地位作用随着后续内容的学习, 我们逐渐发现, 一点和倾斜程度确定直线的很多应用: 直线的方向向量、直线的参数方程等等。
另外, 从加强知识内容的联系性, 从不同角度看待同一数学内容的角度看, 如果把函数看作描述客观世界变化规律的数学模型, 那么从变化的角度看, 直线是线性的, 它描述的是均匀变化, 是最简单的变化之一。
即直线在某个区间上的平均变化率, 与直线上任意一点的瞬时变化率(导数)是相同的, 都等于这条直线的斜率。
一切不均匀的变化或者非线性的变化, 在某个很小的区间(领域)内都可以由线性的、均匀的变化近似代替。
这也是为什么用线性的研究非线性的, 以直代曲, 用平均变化率研究瞬时变化率(导数)的原因。
(完整版)直线的倾斜角和斜率教案
《直线的倾斜角和斜率》教案教学目的:1。
了解“坐标法”2.理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率公式并牢记斜率公式的特点及适用范围;3。
已知直线的倾斜角,求直线的斜率4。
已知直线的斜率,求直线的倾斜角5.培养学生“数形结合”的数学思想.教学重点: 斜率概念,用代数方法刻画直线斜率的过程.教学难点: 1直线的斜率与它的倾斜角之间的关系。
2运用两点坐标计算直线的斜率授课类型:新授课课时安排: 1课时教具:多媒体教学过程:一。
知识背景与课题的引入1.从本章起,我们研究什么?怎样研究?解析几何是17世纪法国数学家笛卡尔和费马创立的,解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期。
解析几何由此成为近代数学的基础之一。
在解析几何学中,我们常常用一种方法:坐标法. 研究几何图形的性质.坐标法是以坐标系为基础,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法.本章首先在平面直角坐标系中,建立直线的方程。
然后通过方程,研究直线的交点、点到直线的距离等.2.课题的引入下面就让我们就一起踏着前人的足迹去学习和体会这一门科学的思想方法,用坐标法研究几何问题时,我们首先研究最简单的几何对象-—直线,学习直线的倾斜角和斜率.二。
新课1问题1对于平面直角坐标系内的一条直线它的位置由哪些条件可以确定呢?一个点可以确定一条直线的位置吗?分析:对,两点可以确定一条直线,过一个点可以画出无数条直线,这些直线都与轴正向成一定的角度,我们把直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,于是可以这样确定一条直线,过个定点,确定一个倾斜角便可以确定一条直线;这种方法与两点确定一条直线的方法是一致的.先固定个点,再确定另外一点相当于确定这条直线的方向,确定了方向也就等同于确定了该直线的倾斜角.注:平行于轴或于轴重合的直线的倾斜角为0°问题2直线倾斜角的范围是多少?这样在平面直角坐标系内每一条直线都有一个确定的倾斜角,倾斜角刻画了直线倾斜的程度,且倾斜程度相同的直线,其倾斜角相等,倾斜程度不相同的直线,其倾斜角也不相等.问题3(斜率的概念)日常生活中我们可以用一个比值表示倾斜程度的量:例如:坡度(比)= 升高量/前进量能否用一个比值刻画斜率呢?如果是一条直线的倾斜角,我们把倾斜角的正切值叫做这条直线的斜率(slop)记作:tank问题4(1)是不是所有的直线都有倾斜角?是(2)是不是直线都有斜率?倾斜角为90°时没有斜率, 因为90°的正切不存在。
直线的倾斜角与斜率教学设计
直线的倾斜角与斜率教学设计一、教学目标1.理解直线的斜率和倾斜角的概念及其在几何问题中的意义。
2.掌握计算直线斜率和倾斜角的方法。
3.能够应用直线斜率和倾斜角解决几何问题。
二、教学内容1.直线斜率的定义和计算方法。
2.直线倾斜角的定义和计算方法。
3.直线斜率和倾斜角在几何问题中的应用。
三、教学过程一、引入活动(15分钟)1.师生对话引入:教师可以与学生进行对话,通过问题引导学生思考直线斜率和倾斜角的概念。
教师:同学们,你们都知道直线吧?直线在几何学中很重要,我们今天要学习直线的一个重要特征,那就是斜率和倾斜角。
那你们知道直线的斜率和倾斜角在几何问题中有什么作用呢?学生:斜率和倾斜角可以帮助我们描述直线的倾斜程度和方向,可以用来计算两点之间的斜率和倾斜角以及解决几何问题。
教师:对的,直线的斜率和倾斜角可以帮助我们更好地理解直线的性质和特征,也可以应用到实际问题中。
接下来,我们就来具体学习一下直线的斜率和倾斜角。
二、讲解直线斜率的概念和计算方法(20分钟)1.定义斜率:斜率指直线上两点之间纵坐标的变化量与横坐标的变化量的比值。
斜率=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点。
2.示例讲解:教师通过示意图和具体计算进行示例讲解。
示例:已知直线上有两个点A(2,3)和B(5,7),求直线AB的斜率。
计算过程:斜率=(7-3)/(5-2)=4/3解释:直线AB的斜率为4/3,表示直线从点A到点B的上升程度(纵坐标增加的量)每增加3个单位,水平坐标(横坐标)增加4个单位。
3.学生练习:学生进行类似的计算练习,教师随机抽查学生的答案。
三、讲解直线倾斜角的概念和计算方法(20分钟)1.定义倾斜角:倾斜角指直线与坐标轴正方向之间的夹角。
2.计算倾斜角:可以利用直线的斜率来计算直线的倾斜角。
倾斜角 = arctan (斜率)注:这里的arctan是反正切函数,可以使用计算器或数学软件进行计算。
《直线的倾斜角与斜率》教案及说明
《直线的倾斜角与斜率》教案及说明一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 掌握直线的斜率与倾斜角的关系,能够计算直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容1. 直线的倾斜角的概念:直线与x轴正方向所成的角称为直线的倾斜角。
2. 直线的斜率与倾斜角的关系:直线的斜率k等于tan(倾斜角)。
3. 直线的斜率的计算:给定直线的倾斜角,可以计算出直线的斜率。
三、教学方法1. 采用讲解法,讲解直线的倾斜角的概念和斜率与倾斜角的关系。
2. 采用例题解析法,通过例题讲解如何计算直线的斜率。
3. 采用练习法,让学生通过练习题巩固所学知识。
四、教学步骤1. 导入新课:通过提问方式引导学生回顾初中阶段学习的直线倾斜角的概念。
2. 讲解直线的倾斜角的概念,解释斜率与倾斜角的关系。
3. 讲解直线的斜率的计算方法,并通过例题进行讲解。
4. 布置练习题,让学生巩固所学知识。
五、教学评价1. 课堂讲解:评价学生对直线倾斜角的概念和斜率与倾斜角的关系的理解程度。
2. 练习题:评价学生运用直线的倾斜角和斜率解决问题的能力。
说明:本教案分为五个部分,包括教学目标、教学内容、教学方法、教学步骤和教学评价。
在教学过程中,要注意引导学生理解直线的倾斜角的概念,掌握斜率与倾斜角的关系,并通过练习题让学生巩固所学知识。
教案中的教学内容可以根据实际情况进行调整。
六、教学拓展1. 讨论斜率的正负性:解释当倾斜角大于45度时,斜率为正;小于45度时,斜率为负。
2. 探究斜率与倾斜角的关系:引导学生通过绘制不同倾斜角的直线,观察斜率的变化。
七、实际应用1. 生活实例:举例说明直线的倾斜角和斜率在生活中的应用,如建筑物的屋顶斜率、道路的坡度等。
2. 数学应用:引导学生运用直线的倾斜角和斜率解决数学问题,如计算直线与坐标轴的交点、直线的方程等。
八、课堂小结1. 回顾本节课所学的内容,强调直线的倾斜角的概念和斜率与倾斜角的关系。
人教版高中数学《直线的倾斜角和斜率》教案
课题:直线的倾斜角和斜率教材:普通高中课程标准实验教科书(人教版)数学第3章第1节一、教学目标:1、知识及能力:(1)理解直线的倾斜角和斜率的概念.(2)掌握过两点的直线的斜率公式,会求直线的斜率和倾斜角.(3)理解直线的倾斜角和斜率之间的相互关系.2、过程及方法:(1)经历直线倾斜角概念的形成过程,理解直线倾斜角和斜率之间的关系.(2)从数及形两方面让学生明白,倾斜角和斜率都是刻画直线相对于x轴的倾斜程度.渗透数形结合思想.(3)通过问题,层层设疑,提高学生分析、比较、概括、化归的数学思维能力,使学生初步了解用代数方程研究几何问题的思路.3、情感态度及价值观:1.从生活中的坡度,自然迁移到数学中直线的斜率,让学生感受数学来源于生活,渗透辩证唯物主义世界观.2.帮助学生进一步了解分类思想、数形结合思想,在教学中充分揭示“数”及“形”的内在联系,体现数、形的统一,激发学生学习数学的兴趣,培养学生勇于探索、勇于创新的精神.二、教学重点:直线的倾斜角和斜率的概念,直线的斜率公式推导和应用.三、教学难点:倾斜角概念的形成,斜率公式的推导四、教学方法及手段:计算机辅助教学及发现法相结合.即在多媒体课件支持下,创设情境问题,层层设疑,制造认知冲突,引发争论,让学生在教师引导下,积极探索,亲身经历概念的发现及形成过程,体验公式的推导过程,主动建构自己的认知结构.【教学过程】一、知识导入在初中,我们学过了函数的图象,知道在直角坐标系中,点可以用有序实数对)x来表示和确定.则直线呢?在平面直角坐标系中,(y,问题:经过一点P的直线L的位置能确定吗预案:不能.如图, 过一点P就可以作无数多条直线.则,问题:这些直线之间又有什么联系和区别呢短暂思考和讨论后,学生可以回答预案:(1)它们都经过点P.(2)它们的“倾斜程度”不同.则,我们应该怎样描述这种不同直线的“倾斜程度”呢?〖设计意图〗学生刚刚学完立体几何,对解析几何已经有些陌生.所以从简单问题入手,便于激发学生学习热情,同时又能引入倾斜角的概念,起到承上启下的作用.二、知识探索(一)直线倾的斜角1.定义:直线L及x轴相交时,我们取x轴作为基准,x轴正向及直线L向上的方向之间所成的角 叫做直线L的倾斜角.教师指出:对于定义的理解,我们强调的是x轴正向及直线L向上的方向所成的角.为了帮助学生加深理解,此时,可以借助几何画板来直观呈现.如下图所示:教师在演示的过程中再次向学生强调:从x轴正方向出发,到直线向上的方向之间所成角α就是直线L的倾斜角.〖设计意图〗学生开始对倾斜角概念还有些模糊,再此数形结合,向学生动态、直观的展示给定直线倾斜角的形成过程,加深学生对概念的理解.【快速练习一】1.下列四图中,表示直线的倾斜角的是( )A B C D2.请标出下列直线L的倾斜角α.〖设计意图〗该题组的设计均为加深学生对倾斜角概念的理解.第一题比较简单,通过PPT 展示出来后,让学生集体回答即可.第二题稍难一些,在实际授课时,教师将四个图形画到黑板上,请一个同学到黑板上来画.这个题目看起来简单,而实际上,题目中设置了一些问题,图(4)情况的倾斜角学生找一会儿,可就是找不到的!这样就给学生的制造了一定的认知冲突,激发了学生学习探究的兴趣,同时加深了学生对图(4)这种特殊情况下倾斜角的记忆.教师一边巡查一边指导.待学生完成后指出,图(1)的倾斜角是锐角,图(2)是钝角,图(3)是直角.那图(4)呢?问题:为什么图(4)的倾斜角我们没能标出来呢?则它到底应该是多少呢?学生可能难以回答.此时让学生再看到倾斜角的定义,然后学生可以发现:预案:定义中的倾斜角是要求直线L及x轴相交的,而图(4)中的直线L却是及x轴平行的.教师指出:因此,对于图(4)的直线的倾斜角并不能用该定义标出.所以,我们对于此类直线,也就是当直线L及x轴平行或是重合时,我们规定它们的倾斜角均为00.所以,根据上述四种情况,我们可以得到直线L倾斜角的范围为:00≤α<1800.〖设计意图〗至此,直线倾斜角的定义从引入到解读基本完成.由易到难,由旧到新,符合学生的认知过程.学生很自然的完成了知识的过渡,并通过动态演示、认知冲突加深了对倾斜角这个概念的理解,让学生明白了“直线的倾斜角通俗的讲就是直线对x轴正方向的倾斜程度.”为了更加深直线和倾斜角之间的关系,我们继续提问:问题:在平面坐标系中,每一条直线有多少个倾斜角呢?预案:有且只有一个.问题:一个倾斜角对应的直线有多少条呢?预案:无数条.它们都是互相平行的.如右图.所以仅有倾斜角是不能确定直线的!问题:倾斜角再加什么条件就可以确定直线呢?预案:再加一个点.即一个点P和倾斜角α可以唯一确定一条直线.〖设计意图〗每提出一个问题,让学生自己先行思考,或是合作讨论,老师再加以点评.以加深对直线倾斜角的理解,明晰直线和倾斜角之间的关系.(二)直线的斜率问题:除了倾斜角外,我们还有没有其他表示倾斜程度的量呢?学生可能难以回答此问题.老师可以慢慢引导.在日常生活中,我们还会遇到一个叫“坡度”的概念,坡度即是坡面的铅直高度和水平长度之比(如右图).其实坡度的实际就是倾斜角α的正切.用类似的方法我们可以定义一个新的量来刻画直线的倾斜程度.1.直线斜率的定义:我们把直线的倾斜角α的正切值叫做这条直线的斜率.用小写字母 k 表示,即αtan =k .【快速练习二】已知直线的倾斜角如下,分别求出其斜率.(1)030=α (2)060=α (3)090=α (4)0120=α〖设计意图〗学生对于初中学过的特殊角的三角函数值已经有些陌生,在此既复习特殊角的三角函数值,又熟悉直线斜率的求法.对于(4)要告诉同学们公式0tan(180)tan αα-=-(α是锐角).同时,根据题目可以总结出一些结论,承上启下.教师:从上面的运算或是正切的计算可以得到:(设直线的倾斜角为α)我们也可以通过几何画板来直观演示斜率的正负和倾斜角的关系,请大家看屏幕.(略) 问题:任何一条直线都有斜率吗?预案:倾斜角为900的直线没有斜率.教师:所以,我们要知道,所有的直线都有倾斜角,但是并不是所有的直线都有斜率的. 〖设计意图〗加深对倾斜角和斜率之间的关系的理解.2.过两点的直线斜率的公式学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度了.我们知道,如果给定直线的倾斜角α()︒≠90α,我们当然可以根据斜率的定义αtan =k 求出直线的斜率.我们也知道,两点确定一条直线,也就是给定直线上两点坐标,直线就确定了,倾斜角也就确定了,则怎么求出该直线的斜率呢?也就是:问题:已知直线L 上两个点的坐标),(),,(222111y x P y x P ,21x x ≠,如何求直线L 的斜率呢? 对于这个问题,学生一下难以回答.教师可以先给出一个图形(图一),一定要让学生结合图形思考,先让学生提出思路,教师启发引导,最后共同完成公式的推导(图二),得出1212x x y y k --=. 图一 图二图三教师:我们知道倾斜角还有可以是钝角,则当α为钝角时,公式还成立吗?在此老师要适当引导学生,得出0180αθ+=(如图三),再利用诱导公式0tan(180)tan αα-=-钝角的情况转化为锐角来求解.具体过程由同学们自己推导.让一个学生到黑板上推导.〖设计意图〗整个斜率的推导过程体现了数形结合和分类讨论的思想,教学中一定要向学生不断渗透这些数学思想.师生共同完成了倾斜角为锐角的推导过程,而倾斜角为钝角的推导则通过教师引导,由学生自己完成,让学生真正体会到知识的形成过程,并利用这一过程将外在的知识点内化成自身知识体系的一部分,完成知识飞跃,完善知识结构.问题:当α=00时,公式1212x x y y k --=还成立吗? 预案:当α=00时,直线及x 轴平行或重合.000=tan .12y y =,此时0=k ,所以当α=00时公式依然成立.问题:及P 1,P 2在直线上的顺序有关吗?让学生思考,讨论.学生开始会觉得及顺序有关,但是后来有觉得应该是没有关系的,但说不出具体的利用.此时教师结合几何画板,再结合图象,拖动点P 1,P 2的位置,让学生直观发现直线L 的斜率并没有因P 1,P 2位置的改变而改变.详细推导过程留给学生课外完成.预案:无关.即21y y ,和21x x ,在公式中的前后次序可以同时交换, 但分子、分母不能交换. 问题:从几何角度怎样理解公式中要求21x x ≠呢?预案:当21x x =,直线垂直x 轴,倾斜角为900,此时斜率不存在.所以一定要注意公式适用的范围.〖设计意图〗通过问题引导,层层推进,分解公式难点,挖掘公式中的隐含知识点.同时结合几何画板,加深对公式的理解.留下一定的思考题,将课堂内容延伸到课外,培养学生合作探究的能力和习惯.教师:到现在为止,我们用代数的方法刻画出了直线的斜率公式.我们也有两种方式来求直线的斜率了.一是利用倾斜角,二是利用直线上两点的坐标.而且我们还可以先利用直线上两点的坐标算出斜率,进而求得直线的倾斜角.三、知识应用例1:关于直线的倾斜角和斜率,下列哪些说法是正确的:(1)任一条直线都有倾斜角,也都有斜率 ( )(2)直线的倾斜角越大,它的斜率就越大 ( )(3)平行于x 轴的直线的倾斜角是00或1800( )(4)两直线的倾斜角相等,它们的斜率也相等 ( )〖设计意图〗斜率及倾斜角概念的辨析题,巩固对斜率及倾斜角的理解.例2:已知A(3,2),B(-4,1),C(0,1),求直线AB 、BC 、CA 的斜率,并判断这些直线的倾斜任意拖动改变P1,P2位置斜率k 的大小并没有改变角是锐角还是钝角.〖设计意图〗斜率公式的直接应用和斜率的正负及倾斜角之间的关系.练习:1.求经过点A(2,-1)和点B(a ,-2)的直线L 的斜率,并讨论a 为何值时,直线L 的倾斜角是锐角、钝角、直角?〖设计意图〗例2知识点的延伸,同时隐含了分类讨论的思想.2.已知三点A(a ,2),B(3,7),C(-2,-9a )在一条直线上,求实数a 的值.〖设计意图〗加深对斜率公式的理解,让学生明白斜率的求得及直线上的点的选择无关.同时此题也是用斜率研究三点共线问题,为后面的学习做铺垫.〖题组设计意图〗整个练习的设计围绕斜率和倾斜角展开,由浅入深.同时注意了知识的承上启下和数学思想的渗透.四、知识小结1、直线的倾斜角定义及其范围:00≤α<18002、倾斜角和斜率k 之间的关系:3、直线斜率的两种求法:①若已知倾斜角)(090≠αα时,αtan =k②若知直线过两点),(),,(222111y x P y x P 且21x x ≠,1212x x y y k --=五、板书设计 教案说明全课以化归思想为主线,达到化未知为已知,化难为易,化几何问题为代数问题的目的.通过利用多媒体课件辅助教学,帮助学生变抽象为具体,破解教学难点.本节课在教法上力求通过设置问题,层层递进,揭示知识的形成发展过程,讲清知识的来龙去脉,突出知识的本质特征,整节课突出“问题解决”.从而使学生对所学的知识理解得更加深刻.(一)设置层层疑问,促进学生探究在教学过程中按照“教、学、研同步协调原则”,充分发挥教师的主导作用和学生的主体地位.借助提问,给学生营造一个思考情境,促进学生探究,给每个学生提供思考、创造、表现及获得成功的机会,使学生在民主开放、和谐愉悦的教学氛围中获取新知识,提高能力,发展自我.(二)引导学生反思,渗透数学思想.数学思想方法是数学问题的灵魂.解析几何是用代数方法研究几何问题,坐标法思想则是解析几何的核心思想.本节课注重了启发学生思维,引导学生反思思维过程,注重了数学思想方法的渗透.在贯穿坐标法思想的同时渗透了数形结合思想、转化化归思想、分类讨论思想等.(三)灵活应用多媒体,突破教学难点多媒体的灵活运用,很好的帮助学生突破了难点.倾斜角概念的形成、斜率公式的得到以及倾斜角和斜率之间的关系等,都是本节课知识的难点.借助几何画板,直观、动态演示了形成过程和变化趋势,很好的帮助学生解决了难点,内化了知识.。
直线的倾斜角和斜率教案
直线的倾斜角和斜率教案一、教学目标1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学重点与难点1. 教学重点:直线的倾斜角和斜率的概念,求直线的倾斜角和斜率的方法。
2. 教学难点:直线的倾斜角和斜率在实际问题中的应用。
三、教学方法采用讲解法、演示法、练习法、讨论法等相结合的方法进行教学。
四、教学准备1. 教学课件。
2. 练习题。
3. 黑板、粉笔。
五、教学过程1. 导入新课通过复习旧知识,引导学生回顾直线方程的基本形式,提出直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角讲解直线的倾斜角的定义,通过图形演示直线的倾斜角,让学生理解直线的倾斜角的概念。
3. 讲解直线的斜率讲解直线的斜率的定义,通过图形演示直线的斜率,让学生理解直线的斜率的概念。
4. 求直线的倾斜角和斜率讲解如何求直线的倾斜角和斜率,通过例题演示求直线的倾斜角和斜率的方法,让学生跟随讲解,理解求直线的倾斜角和斜率的过程。
5. 练习巩固布置练习题,让学生独立完成,巩固直线的倾斜角和斜率的概念。
6. 课堂小结对本节课的内容进行小结,强调直线的倾斜角和斜率的概念及求法。
7. 作业布置布置课后作业,让学生进一步巩固直线的倾斜角和斜率的知识。
六、教学拓展1. 讨论斜率与倾斜角的关系:斜率k 与倾斜角α的关系是k = tan(α)。
通过这个关系,学生可以理解为什么斜率是倾斜角的正切值。
2. 探索非锐角直线的斜率:讨论当直线倾斜角大于90度时,斜率是什么。
学生将了解到,当直线垂直于x轴时,倾斜角为90度,斜率是无穷大;当直线逆时针旋转超过90度时,斜率变为负无穷。
七、应用实例1. 实际问题:给定直线的倾斜角,求直线的方程。
学生可以通过已知的倾斜角和一点来求解直线的斜率和方程。
2. 实际问题:给定直线的斜率,求直线的倾斜角。
学生可以通过已知的斜率来求解直线的倾斜角,并理解斜率与倾斜角的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年全国中职学校“创新杯”教师信息化教学设计和说课大赛8.2.1 直线的倾斜角与斜率教学设计方案2014年11月《8.2.1 直线的倾斜角与斜率》教学设计方案【授课对象】计算机网络专业二年级学生【教材】《数学》(基础模块)下册(主编:广全尚志高等教育出版)【教学容】直线的方程——直线的倾斜角与斜率【授课类型】课堂教学【授课时间】1课时【教材分析】直线的倾斜角和斜率是解析几何的重要概念之一,是以坐标化(解析化)的方式来研究直线的相关性质的重要基础。
直线的斜率是后继容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要的作用。
因此,正确理解直线斜率的概念,熟练掌握直线的斜率公式是学好这一章的关键。
【学情分析】教学对象是计算机网络专业二年级的学生。
他们思维活跃,勇于挑战,且具有一定的网络知识,但数学基础相对薄弱。
在教学中,我力求将数学与专业相结合,充分利用《几何画板》等信息化手段去帮助学生理解、掌握本节课容。
【教学目标】根据中职数学新大纲的要求,结合学生的实际情况,确立了如下的教学目标:(一)知识目标1. 理解直线的倾斜角和斜率的概念。
2. 掌握直线的斜率公式及应用。
(二)能力目标通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括的能力。
(三)情感目标通过合作探索,互相交流,增强团队意识,培养协作能力。
【教学重难点】重点:直线的倾斜角和斜率的概念,直线斜率公式及其应用;难点:斜率公式的推导。
突破难点的关键:充分利用数形结合,并引导学生分类讨论问题。
【教学策略】1.教学方法:问题探究法课前下发导学提纲,学生预习提出问题,课上通过任务展示、问题交流、小组竞赛的形式引导学生自主学习。
2.学习方法:小组合作、自主探究按照强弱搭配的原则将学生分为5个小组,通过讨论交流共同完成学习任务。
3.评价方法:综合评价尊重学生个体差异,关注学习过程中学生的表现和变化,通过自评、互评和师评对学生进行全面动态的评价,使合作学习更加富有成效。
【教学设备】多媒体投影仪,电脑,素描纸,展示板,自制教具。
【设计思路】首先,通过生活实例,把数学植根于生活。
教具的制作,锻炼了学生的动手能力和学习热情。
通过课前导学及微课引导学生自主探究是完成教学任务的主要环节,课上再通过ppt、《几何画板》等信息化手段化解难点。
【教学过程】教学环节设计思路一、课前导学提纲【学习目标】1.理解直线的倾斜角和斜率的概念。
2. 会求直线的斜率:(1)根据直线的倾斜角求斜率(2)根据直线上两点的坐标求斜率【课前准备】1. 举出生活中可以抽象为直线的物体:(1)上网搜集图片(2)手机拍摄图片2. 画图说明什么叫直线的倾斜角?3. 制作两条直线相交的教具,说一说直线的倾斜角的取值围是什么?4.什么叫做直线的斜率?用什么符号表示?5. 填表:6. 已知直线上两个点的坐标,如何求直线的斜率?【问题汇总】学生将预习中存在的问题发送到班级QQ群里,大家共同探讨。
(直线的倾斜角的定义及围可从群共享里查看微课帮助预习)二、课上教学环节(一)知识回顾(用时约5分钟)1.两点间的距离公式按照组强弱搭配,组间能力均衡的原则将学生分为5个小组.教师根据本课的知识点和学生的计算机专业水平设计课前导学提纲,学生分小组完成任务,将搜集到的实例、制作的教具准备好,并把学习过程中存在的问题在规定时间发至班级的qq群里.设计目的:1.让学生带着问题有目的地预习;2.提高学生的观察能力和搜集信息的能力;3.培养学生的动手实践能力;4. 通过小组合作完成任务,培养学生的团结协作的精神;5. 通过课前问题汇总,让课堂真正成为解决学生问题的平台.按照学号顺序,每次课由一名同学充当复习“小老师”,带领同学们复习。
小老师根据(三)学习目标(用时约1分钟)学习新课之前,给出本节课的学习目标:1. 理解直线的倾斜角和斜率的概念. 2. 掌握直线的斜率公式.(四)自主探究(用时约15分钟)问题1. 画图说明什么叫直线的倾斜角? 问题2. 直线的倾斜角的取值围是什么?0180α<≤问题 3. 什么叫做直线的斜率?用什么符号表示?tan(90)kαα=≠问题4. 已知直线上两个点的坐标,如何求直线的斜率?图(1)学生利用课前自制的体现两条直线相交的模型,在教师指导下将其中一条线视为直角坐标系中的x轴,演示观察倾斜角的变化,并说出倾斜角的围。
教师再利用《几何画板》进一步演示,并对倾斜角能否等于1800进行提问。
这样,学生就会更加准确地得出倾斜角的取值围。
学生了解了直线的倾斜角的定义以及取值围之后,教师提问:是不是只有倾斜角才能刻画直线的倾斜程度呢?自然引出下一个问题:让学生体会斜率与倾斜角之间的关系。
学生在求tan120时可能会遇到困难,这时,我让会做的一名同学在黑板上写出求解过程并讲解,如果学生都不会,我再讲解。
做此题的目的也是为后面推导斜率公式作一个铺垫。
问题4是本节课的难点,课上可以先让学生小组讨论,然后请一名同学上台结合倾斜角是锐角的图示进行讲解和推导,得出方法后,再让学生讨论倾斜角是钝角的情况,若仍然没有思路时,这时教师可以引导学生从直线倾斜图(2)图(3)图(4)(五)反馈练习(用时约15分钟)1.热身训练判断题(每题1分)(1)任意一条直线都有倾斜角.( ) (2)任意一条直线都有斜率.( ) (3)直线的倾斜角的顶点有可能在y 轴上.( ) (4)倾斜角越大,斜率越大.( )(5)若直线的倾斜角为30,则该直线的斜率为12. ( ) (6)已知直线的斜率为 1,则该直线的倾斜角为45.( )(7)已知直线上两点111(,)P x y 、222(,)P x y 且12≠x x ,则1212-=-y y k x x . ( )角的定义入手,结合图形给出如下提示:之后教师再给出直线上两点的横坐标相等和纵坐标相等的两种特殊情况让学生探讨,得出斜率不存在和斜率为零的结论。
本环节采用“数形结合”的方法,分四种情况研究了斜率公式,环环相扣的设计起到了分散难点的作用,同时培养学生学会有条理的思考问题。
2. 合作展示根据下列各直线满足的条件,分别求直线的斜率:(每题2分)(1)倾斜角α为135;(2)倾斜角α为π3;(3)过点(2,2)A-,(3,1)B-;(4)过点(1,5)P-,且平行于x轴;(5)过点(2,3)P,且平行于y轴.(六) 拓展延伸(用时约2分钟)已知直线l的斜率 3.5k=,求它的倾斜角?(七) 小结与评价(用时约3分钟)1. 知识要点:反馈练习分为两部分,第一部分是热身训练,以抢答的形式给出,让学生通过判断理解直线的倾斜角和斜率的概念,熟悉求斜率的两种方法。
这个环节使用了计时器和计分器,要求抢到题的小组在规定时间作答,营造出紧有序的比赛氛围;答题完毕后,教师利用计分器给答对的小组加分,这样设计既活跃了课堂气氛,也增强了组与组之间的竞争意识。
合作展示环节采用抽签的形式进行,抽到题的小组在规定时间讨论完成后,教师随意抽取该小组一名同学上台板演并讲解。
这样设计可以充分发挥小组学习的作用,提高组成员主动参与讨论的热情。
并通过组间互评,教师讲评进一步加深学生对知识的理解。
此环节设计的题目在课本例1的基础上对题型进行了变换和丰富,难度由浅入深,加深学生对直线的斜率与倾斜角概念的理解,考查学生对公式的灵活运用程度。
通过反馈练习,学生对倾斜角和斜率之间的关系有了更深一步的理解。
这时教师提出问题:已知任意一条直线的2.倾斜角与斜率的关系:tan k α=3.有了直线的倾斜角来刻画直线的倾斜程度,为什么还要引入斜率?(八) 布置作业(用时约2分钟)1.课本50页练习8.2.12.探究黑板的对角线相对黑板下边的倾斜角和斜率.3.按小组上网查找方法解决拓展延伸的问题,下节课演示并讲解.4.结合导学案预习8.2.2直线的点斜式方程与斜截式方程.斜率,你都能求出它的倾斜角吗?进而将问题拓展延伸,这个问题我让学生利用专业知识课下编程解决。
课堂小结由学生完成,先让学生说一说这节课学了哪些概念和公式,在运用公式的过程中有哪些需要注意的问题,教师出示本节课知识要点,并引导学生探讨倾斜角不同时斜率相应的变化。
接着,再对倾斜角和斜率的关系作补充说明,直线的倾斜角和斜率都是刻画直线的倾斜程度的,但前者是从形的角度来刻画的,后者是从数的角度来刻画的。
而解析几何是用代数的方法来研究几何问题的,因此,我们要重点研究直线的斜率。
向学生渗透解析几何的思想和方法。
最后,再由课代表对各小组的课上表现作点评并公布本节课的优秀小组。
作业分为巩固练习、实际应用、拓展延伸和预习新知四方面,将课成果引向课外,让学生学以致用。
【板书设计】【教学反思】1.导学提纲、教师微课、生活实例、问题设置,体现教师的 “导”;2.自制教具、小组合作与竞赛、问题探究等,突出学生的 “学”;3.通过讨论提出问题、共同探究解决问题,展示小组的“议”; 4.复习小老师、小组代表展示板演,训练学生的“讲”;5.热身、反馈、总结、评价,利用专业知识解决数学问题,强化学生的“练”。
总之,导学议讲练五环,环环相扣;再加上几何画板软件、计时器与计分器的使用,生动形象、激发学生兴趣。
信息化手段还可以多元化,这是我今后努力的方向。
我的说课到此结束,请各位评委老师多多指正。
90) 2)x附表:数学课堂活动评价表班级::得分:时间:。