材料力学主要知识点归纳

合集下载

(完整版)材料力学重点总结

(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3。

材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5。

材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。

因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。

应力的单位是帕斯卡(Pa),即XXX/平方米。

第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。

应变分为线性应变和非线性应变两种。

线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。

非线性应变则不满足这个比例关系。

2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。

3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。

XXX模量的大小反映了材料的柔软程度和刚度。

杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。

综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。

构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。

截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。

胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。

应力是指在截面m-m上某一点K处的力量。

它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。

其中,σ称为正应力,τ称为切应力。

将应力的比值称为微小面积上的平均应力,用表示。

在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。

杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。

某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学主要知识点归纳

材料力学主要知识点归纳

材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。

2、可变形固体的两个基本假设:连续性假设、均匀性假设。

另外对于常用工程材料(如钢材),还有各向同性假设。

3、什么是应力、正应力、切应力、线应变、切应变。

杆件截面上的分布内力集度,称为应力。

应力的法向分量σ称为正应力,切向分量τ称为切应力。

杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。

4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。

5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。

6、强度理论及其相当应力(详见材料力学ⅠP229)。

7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。

B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。

C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。

② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。

二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。

C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。

材料力学复习笔记

材料力学复习笔记

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。

为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。

【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。

【内容讲解】一、基本概念强度—-构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形.刚度-—构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。

稳定性--构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。

杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。

根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。

二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。

(一)连续性假设-—假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。

这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。

(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。

按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体).(三)各向同性假设——沿各个方向均具有相同力学性能。

具有该性质的材料,称为各向同性材料。

综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。

三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力.外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等.当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况.在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。

材料力学各章重点内容总结

材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

“材料力学”重点归纳

“材料力学”重点归纳

“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。

重点掌握:掌握各种力系的简化和平衡方程应用。

了解材料力学的发展沿革,理解本课程的任务、内容、目的。

第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。

重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。

第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。

应力分析理论、应变分析理论。

重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。

第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。

重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。

第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

一、基本变形材料力学总结变形现象: 平面假设: 应变规律: = d ∆l = 常数dx变形现象:平面假设: 应变规律:=d = dx变形现象:平面假设: 应变规律:= y= N =T= T = MyI Z = M max WZ= QS * z I z b = QS max max I bz max W= E (单向应力状态) = G(纯剪应力状态)=⎛ N ⎫≤ []maxA ⎪ ⎝ ⎭max[]=un塑材:u=s 脆材:u =bmax= ⎛ T ⎫ ≤ [] ⎪ ⎝ W t ⎭max弯曲正应力 1. [t ]= [c ]max≤ []2. [t ]≠ [c ] t max ≤ [t ] cmac ≤ [c ]弯曲剪应力=Q max S max ≤ [] max I bz轴向拉压扭转弯曲刚度条=T ⋅180 ≤[]max GIP注意:单位统一ymax≤[y]max≤[]件变形d∆l=N ; ∆L =NLdx EA EAEA—抗拉压刚度=d=Tdx GIZ=TLGIPGI p—抗扭刚度1=M (x)(x) EIy '' =M (x)EIEI—抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bhbh 3bh 2IZ=12;WZ=6实心圆A= d 24d4d3IP=32;Wt=16d4d3IZ=64;WZ=32空心圆D 2A =(1-2)4d44IP=32(1 -)d 3W =(1 -4)t16d 4I =(1-4)Z64d34WZ=32(1-)其(1)'剪切(1)强度条件:=Q≤[]A—剪切面积A(2)挤压条件:=P bs ≤[]bs A bsJA j—挤压面积矩形:=3Qmax 2 A圆形:=4Qmax 3A环形:= 2Qmax Amax均发生在中性轴上它公(2)GE式2(1 )二、还有:(1)外力偶矩:m = 9549 N (N •m)n(2)薄壁圆管扭转剪应力:=TN—千瓦;n—转/分2r 2t(3)矩形截面杆扭转剪应力:max =Tb2h;=TG b3hDB c AD 'Z ZC c cn n三、截面几何性质(1)平行移轴公式:I =I +a 2A;(2)组合截面:IYZ=IZ Y+abA1.形心:y c∑A i y ci=i =1 ;∑A ii =1∑A i z ciz =i =1∑A ii =12.静矩:S Z =∑A i y ci ;S y =∑A i z ci3.惯性矩:I Z =∑(I Z ) i ;I y =∑(I y ) i四、应力分析:(1)二向应力状态(解析法、图解法)a.解析法: b.应力圆:n σ:拉为“+”,压为“-”xτ:使单元体顺时针转动为“+”x yx y cos 2sin 2α:从x 轴逆时针转到截面的法线为“+”2 2 xx y sin 2cos 22 xtg22xmaxminxx yy2c:适用条件:平衡状态(2)三向应力圆:;; 1 3max 1 min 3 max 2nn2x y22xyxc121223311(3) 广义虎克定律:1(1 (1E 123xE xyz1 ( 1(2E 231yE yzx1(1(3E3 1 2zExy*适用条件:各向同性材料;材料服从虎克定律(4) 常用的二向应力状态 31. 纯剪切应力状态:1,20 ,3x2. 一种常见的二向应力状态:132r 3r 4五、强度理论破坏形式脆性断裂塑性断裂强度理论 第一强度理论(最大拉应力理论)莫尔强度理论 第三强度理论 (最大剪应力理论) 第四强度理论(形状改变比能理论) 破坏主要因素 单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件 1 = bmax =su f = u fs强度条件 1 ≤ [] 1-3≤ []适用条件 脆性材料 脆性材料 塑性材料 塑性材料*相当应力:r,,]r 11r 313r 4222242232r=2+42≤[]=2+32≤[]4r22(M +N ) + 4≤ []r3 =r=(M+N)2+32≤[]WM 2 +T 2r3 =圆截面WM 2 + 0.75T 2r4=(M+N)2 + 4(T)2W Z A W t(M+N)2 + 4(T)2W Z A W t α 中性轴ZMpr3 =≤ []r 4 =≤ []i 2I Z*y =-=-ZAe y e ytg=y=-I ZtgZ I y中性轴Z≤ []Z≤ []A W≤ []P Mmax =±max ±max≤ []sincos( +)W Z W y=max maxM强度条件43=±P ±MA W)I yI Z=M (y c os+z s in公式简图弯扭拉(压)弯扭拉(压)弯斜弯曲类型六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段b强度指标s ,b e sα塑性指标,tg E七.组合变形只有σs,无σbb剪断断口垂直轴线拉断断口与轴夹角45ºb45º拉断铸铁断口垂直轴线剪断s b 滑移线与轴线45︒,剪45低碳钢扭压拉八、压杆稳定欧拉公式: P=2EI min,=2E,应用范围:线弹性范围,σ<σ ,λ>λcr(l ) 2cr2crpp柔度:=ul;=E;0 =a -s, σib柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:cr =2E2临界应力λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σsλoλPλ稳定校核:安全系数法: n P c rP I n w ,折减系数法:P []A提高杆件稳定性的措施有: 1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===n i i ni ci i c A y A y 11 ; ∑∑===ni i ni ci i c A z A z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-”τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min 2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:i ul =λ;ρρσπλE=;ba s σλ-=0, 柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w Icr n P P n ≥=,折减系数法:][σϕσ≤=A P提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等问题的一门学科。

它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩在拉伸和压缩的情况下,我们主要关注杆件的内力、应力和变形。

内力是指杆件在外力作用下,其内部各部分之间相互作用的力。

通过截面法可以求出内力。

应力则是单位面积上的内力。

正应力计算公式为σ = N / A ,其中 N 为轴力,A 为横截面面积。

对于拉伸和压缩变形,其变形量Δl 可以通过公式Δl = Nl / EA 计算,其中 E 为材料的弹性模量,l 为杆件长度。

二、剪切与挤压剪切是指在一对相距很近、大小相同、指向相反的横向外力作用下,杆件的横截面发生相对错动的变形。

剪切应力τ = Q / A ,其中 Q 为剪力,A 为剪切面面积。

挤压是连接件在接触面上相互压紧的现象,挤压应力σbs = Fbs /Abs ,Fbs 为挤压力,Abs 为挤压面面积。

三、扭转当杆件受到绕轴线的外力偶作用时,会发生扭转。

扭矩 T 可以通过外力偶矩计算得到。

圆轴扭转时的切应力分布规律是沿半径线性分布,最大切应力在圆轴表面。

扭转角φ 可以通过公式φ = Tl / GIp 计算,G 为材料的切变模量,Ip 为极惯性矩。

四、弯曲弯曲是指杆件在垂直于轴线的横向力或作用于轴线平面内的力偶作用下,轴线由直线变为曲线的变形。

弯矩是弯曲内力的一种,通过截面法可以求出。

弯曲应力的分布与截面形状有关,对于矩形截面,最大正应力在截面边缘。

挠度和转角是弯曲变形的两个重要参数,可以通过积分等方法求解。

五、应力状态与强度理论一点的应力状态可以用应力单元体来表示。

常用的强度理论有第一强度理论(最大拉应力理论)、第二强度理论(最大伸长线应变理论)、第三强度理论(最大切应力理论)和第四强度理论(形状改变比能理论)。

强度理论用于判断材料在复杂应力状态下是否发生破坏。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、基本概念1、外力:作用在物体上的力,包括载荷和约束力。

2、内力:物体内部各部分之间相互作用的力。

3、应力:单位面积上的内力。

4、应变:物体在受力时发生的相对变形。

二、轴向拉伸与压缩1、轴力:杆件沿轴线方向的内力。

轴力的计算通过截面法,即假想地将杆件沿某一截面切开,取其中一部分为研究对象,根据平衡条件求出截面处的内力。

2、拉压杆的应力正应力计算公式为:σ = N / A,其中 N 为轴力,A 为横截面面积。

应力在横截面上均匀分布。

3、拉压杆的变形纵向变形:Δl = Nl / EA,其中 E 为弹性模量,l 为杆件长度。

横向变形:Δd =μΔl,μ 为泊松比。

三、剪切与挤压1、剪切:在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。

2、剪切力:平行于横截面的内力。

3、切应力:τ = Q / A,Q 为剪切力,A 为剪切面面积。

4、挤压:连接件在接触面上相互压紧的现象。

5、挤压应力:σbs = Pbs / Abs,Pbs 为挤压力,Abs 为挤压面面积。

四、扭转1、扭矩:杆件受扭时,横截面上的内力偶矩。

扭矩的计算同样使用截面法。

2、圆轴扭转时的应力横截面上的切应力沿半径线性分布,最大切应力在圆周处,计算公式为:τmax = T / Wp,T 为扭矩,Wp 为抗扭截面系数。

3、圆轴扭转时的变形扭转角:φ = TL / GIp,G 为剪切模量,Ip 为极惯性矩。

五、弯曲内力1、平面弯曲:梁在垂直于轴线的平面内发生弯曲变形,且外力和外力偶都作用在该平面内。

2、剪力和弯矩剪力:梁横截面上切向分布内力的合力。

弯矩:梁横截面上法向分布内力的合力偶矩。

材料力学重点总结

材料力学重点总结

材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。

它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。

以下是材料力学的重点总结。

一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。

正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。

2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。

线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。

3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。

二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。

2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。

当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。

3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。

三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。

在应力达到屈服强度后,材料开始发生塑性应变。

2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。

3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。

四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。

韧性高的材料能够承受较大的变形和吸能。

2.断裂强度:指材料在断裂前所能承受的最大应力值。

断裂强度高的材料具有较好的抗拉强度。

3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。

五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。

疲劳强度与材料的强度和韧性都有关。

2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。

疲劳寿命与材料的疲劳强度和循环载荷有关。

3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 x22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论σxσ破坏主要因素 单元体的最大拉应力单元体的最大剪应力 单元体的改变比能破坏条件b σσ=1s ττ=max fs f u u =强度条件[]σσ≤1 []σσσ≤-31 适用条件 脆性材料 脆性材料塑性材料塑性材料*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r 六、材料的力学性质脆性材料 <5% 塑性材料 ≥5%低碳钢四阶段: (1)弹性阶段 (2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ, E tg ==εσα 拉压扭低碳钢断口垂直轴线 剪断τs τb 铸铁拉断 断口垂直轴线b σ 剪断拉断断口与轴夹角45ºτb七.组合变形类型 斜弯曲 拉(压)弯弯扭 弯扭拉(压)简 图bσsσαe σρσεσ4545º 中性轴 ZαϕM p滑移线与轴线45︒,剪断只有σs ,无σb八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用围:线弹性围,σcr <σp ,λ>λp柔度:iul=λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学 知识要点

材料力学 知识要点

第一章绪论一、基本概念:强度:构件抵抗破环的能力1.构件应满足的三个要求:刚度:构件抵抗变形的能力稳定性:构件保持原有平衡的能力连续性假设:固体物质不留空隙的空满固体所占的空间2.变形固体的三个基本假设均匀性假设:固体内各处有相同的力学性能各向同性假设:在任一方向,固体的力学性能都相同注:各向同性材料:金属等各向异性材料:木材,胶合材料,复合材料3,两个限制条件:线弹性:材料变形处于线弹性阶段。

?小变形:变形及变形引起的位移,都远小于物体的最小尺寸4,原始尺寸原理:小变形条件下,常用变形前构件的尺寸代替变形后的构件尺寸来计算,即不考虑变形带来的影响。

(一处例外:压杆稳定)5,圣维南原理:如用与外力系静力等效的合力来代替原力系,则除在原力系作用区域内有明显,差别外,在离外力作用区域略远处,这种代替带来的误差很小,可以不计。

6,材力中的力:表面力集中力分布载荷作用方式:体积力外力按种类分内力:在外力作用下,构件因反抗或阻止变形而产生于物体内部的相互作用力按作用方式分静载荷交变载荷动载荷冲击载荷1,截(取):用假象面把构件分成两部分7,研究内力的基本方法----截面法2,代(替):用内力代替截去的部分的作用3,平(衡方程):列静力平衡方程,求解未知内力8,应力-----内力的集度(任一应力应指明两个要素:哪一点,哪个方向上)(1)平均应力定义:单位面积上的内力 定义式:A Fp m = ( 注意:m p 是一个矢量,有方向)(2) 应力定义:平均应力的极限定义式:dA dFm p = )0dA (→单位:MPa ,矢量性:是矢量,有大小,方向。

正应力: 定义:应力垂直于截面的分量(F ∆垂直于截面的分量N F ∆在截面上的应力) 定义式: )0(→=dA dA dF N σ切应力: 定义:应力平行于截面的分量(F ∆平行于截面的分量S F ∆在截面上的应力) 定义式: ()0d →=dA AdFs τ9,变形与应变变形:在外力作用下,构件尺寸、形状发生变化的现象。

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

(完整版)材料力学必备知识点

(完整版)材料力学必备知识点

材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。

2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。

3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。

4、 低碳钢:含碳量在0.3%以下的碳素钢。

5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。

>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。

12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。

16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形轴向拉压扭转弯曲外力外力合力作用线沿杆轴线力偶作用在垂直于轴的平面内外力作用线垂直杆轴,或外力偶作用在杆轴平面内力轴力:N规定:拉为“+”压为“-”扭转:T规定:矩矢离开截面为“+”反之为“-”剪力:Q规定:左上右下为“+”弯矩:M规定:左顺右逆为“+”微分关系:;应力几何方面变形现象:平面假设:应变规律:常数变形现象:平面假设:应变规律:弯曲正应力弯曲剪应力变形现象:平面假设:应变规律:应力公式应力分布应用条件等直杆外力合力作用线沿杆轴线圆轴应力在比例极限内平面弯曲应力在比例极限内应力-应变关系(单向应力状态)(纯剪应力状态)强度条件塑材:脆材:弯曲正应力1.2.弯曲剪应力轴向拉压扭转弯曲刚度条件注意:单位统一变形;EA—抗拉压刚度GIp—抗扭刚度EI—抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩A=bh形实心圆A=空心圆其它公式(1)(2)剪切(1)强度条件:A—剪切面积(2)挤压条件:Aj—挤压面积矩形:圆形:环形:均发生在中性轴上二、还有:(1)外力偶矩:N—千瓦;n—转/分(2)薄壁圆管扭转剪应力:(3)矩形截面杆扭转剪应力:三、截面几何性质(1)平行移轴公式:(2)组合截面:1.形心:;2.静矩:;3. 惯性矩:;四、应力分析:(1)二向应力状态(解析法、图解法)a.解析法: b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x轴逆时针转到截面的法线为“+”c:适用条件:平衡状态(2)三向应力圆:;;(3)广义虎克定律:*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:,,2.一种常见的二向应力状态:五、强度理论破坏形式脆性断裂塑性断裂强度理论第一强度理论(最大拉应力理论)莫尔强度理论第三强度理论(最大剪应力理论)第四强度理论(形状改变比能理论)破坏主单元体内的最大单元体内的最大剪应力单元体内的改变比能要因素拉应力破坏条件强度条件适用条件脆性材料脆性材料塑性材料塑性材料*相当应力:,,六、材料的力学性质脆性材料δ<5%塑性材料δ≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段强度指标塑性指标拉压扭低碳钢滑移线与轴线45,剪断只有s,无b断口垂直轴线剪断铸铁拉断断口垂直轴线剪断拉断断口与轴夹角45o七.组合变形类型斜弯曲拉(压)弯弯扭弯扭拉(压)简图公式强度条件圆截面中性轴八、压杆稳定欧拉公式:,,应用范围:线弹性范围,cr<p,>p柔度:;;,柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑Pcr↓σcr↓临界应力>p——大柔度杆:o<<p——中柔度杆:cr=a-b<0——小柔度杆:cr=s稳定校核:安全系数法:,折减系数法:提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度;断裂特征:断裂前无显著塑性变形;断口特征:断口成光滑区和粗糙区。

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

以家为家,以乡为乡,以国为国,以天下为天下。——《管子·牧民》
六、材料的力学性质
脆性材料 <5%
塑性材料 ≥5% 低碳钢四阶段: (1)弹性阶段
(2) 屈服阶段 (3) 强化阶段 (4) 局部收缩阶段
强度指标 s , b
e
塑性指标 ,


α
s
tg
b
E 扭
45



滑移线与轴线 45,剪
只有s,无b
( l)2
cr
2
cr p
p
柔度:
ul

i
E

0
a s b

柔度是一个与杆件长度、约束、截面尺寸、形 状有关的数据,λ↑Pcr↓σcr↓
>p——大柔度杆:
cr
2E
2
临界应力
o<<p——中柔度杆:cr=a-b
cr cr=s o
cr=a-b
2E
cr
2
P
<0——小柔度杆:cr=s
P 稳定校核:安全系数法: n cr n ,折减系数法:
材料疲劳极限:材料经无限次应力循环而不发生疲劳破坏的应力极限值——N=107:
1
条件疲劳极限:(有色金属)无水平渐近线:N=(5-7)107 对应的
1
构件疲劳极限:考虑各种因素 0
;
1
0 1
1 k
1 k
6
谋事在人,成事在天!——《增广贤文》
我尽一杯,与君发三愿:一愿世清平,二愿身强健,三愿临老头,数与君相见。——《白居易》
P
[]
P
w
A
I
提高杆件稳定性的措施有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学主要知识点
一、基本概念
1、构件正常工作的要求:强度、刚度、稳定性。

2、可变形固体的两个基本假设:连续性假设、均匀性假设。

另外对于常用工程材料(如钢材),还有各向同性假设。

3、什么是应力、正应力、切应力、线应变、切应变。

杆件截面上的分布内力集度,称为应力。

应力的法向分量σ称为正应力,切向分量τ称为切应力。

杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。

4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。

5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。

6、强度理论及其相当应力(详见材料力学ⅠP229)。

7、截面几何性质
A 、截面的静矩及形心
①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=A
y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。

B 、极惯性矩、惯性矩、惯性积、惯性半径
① 极惯性矩:⎰=A P dA I 2ρ
② 对x 轴惯性矩:⎰=
A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=A
xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。

C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b
为y c 距y 轴距离。

② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,
b 为截面形心距y 轴距离。

二、杆件变形的基本形式
1、轴向拉伸或轴向压缩:
A 、应力公式 A
F =
σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。

C 、应变公式E σ
ε=
D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。

2、扭转
A 、切应力:p W T Tr ==p I τ,r
I W p p =;p I 为圆截面极惯性轴,p W 为扭转截面系数。

B 、切应变G τγ=
,G 为切变模量。

3、剪切
A 、切应力一般公式b S F z s z *I =τ,s F 为横截面上剪力;z I 为横截面对中性轴的惯性矩;b 为计算点处截面宽度;*z S 为横截面上距中性轴为y 的横线以外部分的面积对中性轴的静矩。

B 、矩形截面切应力A 23s F =
τ, C 、圆形截面:A
34s F =τ; 注:在剪切实用计算中采用名义切应力A s F =
τ进行简化计算(详见材料力学ⅠP270)。

D 、工字型截面:d
S F z s z *I =τ,d 为腹板厚度。

4、弯曲
A 、中性轴:①中性轴处正应力为0;②中性轴通过截面形心。

B 、正应力公式z
I My =σ 最大正应力z max W M =
σ,max y z z I W =;z W 称为弯曲截面系数。

三、弯矩及剪力图绘制
1、左端向上,右端向下相对错动时,剪力为证;微段弯曲为向下凸起,弯矩为正。

注:剪力图正值汇在梁体上侧,弯矩正值画在梁的受拉侧。

2、对弯矩函数求导,可得剪力函数;对剪力函数求导,可得均布荷载集度。

3、弯矩图与剪力图特征(详见材料力学ⅠP105)。

4、利用叠加原理进行内力图绘制。

四、梁弯曲时的位移计算
1、基本方程:)('
'x M EI -=ω;ω为梁变形后轴线函数,)(x M 为梁弯矩函数。

2、对基本方程进行积分,利用已知边界条件求出积分常数,即可得挠曲线方程。

注:挠度以向下为正值。

3、梁的挠度和转角同样可以通过叠加原理求解。

4、梁的刚度校核:挠度与跨度比满足条件。

五、超静定问题处理
1、确定基本静定系:解除多余约束,并在该处施加与该解除的约束相对应的支反力,从而得到一个作用有荷载和多余未知力的静定结构。

2、根据变形的几何相容条件建立附加的几何相容方程。

六、强度理论
A 、在验算截面正应力与切应力组合时,采用如下公式判断:
][322στσ≤+(由形状改变能密度理论推导出)
七、组合变形及连接部分计算
1、连接件的计算:
在工程设计中,通常按照连接的破坏可能性,采用既能反映受力的基本特征,又能简化计算的假设,计算其名义应力,然后根据直接实验的结果,确定其相应的需用应力,来进行强度计算。

这种简化计算方法,称为工程实用计算法。

2、剪切实用计算:][ττ≤=s
s A F ;式中Fs 为剪切面上的剪力,As 为剪切面的面积。

3、挤压实用计算:][bs bs bs A F σσ≤=
;bs F 为接触面上的挤压力,bs A 为计算挤压面积(当接触面为圆柱面时,计算挤压面面积取为实际接触面在直径平面上的投影面积);
4、铆钉组承受扭转荷载计算:
A 、确定铆钉组截面形心
B 、每个铆钉所受的力与该铆钉截面中心至截面形心的距离成正比,其方向垂直于铆钉截面中心与截面形心的连线。

C 、计算公式:i
i e a F Fe M ∑== 注:当铆钉组同时承受横向荷载和扭转荷载时,两者剪力叠加。

八、压杆稳定计算
1、细长中心受拉杆临界力欧拉公式:)
(22l EI F cr μπ= 2、柔度i l μλ=
;i 为惯性半径,l 为杆长,μ为长度因数; 3、][σϕ≤A
F ,ϕ为压杆稳定系数,可通过μ查表求得。

4、压杆稳定的适用范围:p cr E σλ
πσ≤=22 九、组合梁计算:
1、换算截面,确定中性轴;
2、计算换算截面应力;
3、计算实际截面应力。

相关文档
最新文档