华中科技大学大学物理下复习资料
大学物理下册总复习汇总
(D)都小于 L / 2 。
[D ]
16
设两个半环式的螺线管的自感系数为L’,
I
I
1
(L d I dt
M
dI dt
)
(L
M)
dI dt
2
(L d I dt
M
dI dt
电磁学、相对论、量子物理总复习
教师: 李美姮
1
一、选择题:
1. 半径分别为 R,r 的两个金属球,相距很远。用一根细长
导线将两球连接在一起并使它们带电,在忽略导线的影响
下,两球表面的电荷面密度之比 R / r 为:
(A) R / r , (B)R2 / r2 ,
(C)r2 / R2 , (D)r / R .
并联: I p Rp IQ RQ IQ 2I p
Wp
L
p
I
2 p
1
WQ
LQ
I
2 Q
2
15
14. 已知圆环式螺线管的自感系数为 L ,若将该螺线管锯成 两个半环式的螺线管,则两个半环式的螺线管的自感系数为:
(A)都等于 L / 2 ;
(B)有一个大于 L / 2 ,另一个下于 L / 2 ;
(C)都大于 L / 2 ;
带电体产生的.
(A) 半径为R的均匀带电球面; (B) 半径为R的均匀带电球体;
E dS
1
S
0
i
q内
(C) 点电荷;
(D) 外半径为R,内半径为R / 2的均匀带电球壳体.
E Er 关系曲线
E
E 1/ r2
R
3 0
r2
OR
r
O
R
r
[A ]
大学物理下学期重点(含答案).doc
def 过程吸热。
abc 过程和def 过程都放热。
1. 一定量的理想气体,分别 经历如图(1)所示的abc 过程 (图中虚线QC 为等温线),如 图(2)所示的碇广过程(图中虚 线df 为绝热线)。
判断这两个 过程是吸热还是放热:(A) abc 过程吸热,洵'过程放热。
(B) (B) abc 过程放热,(C) abc 过程和def 过程都吸热。
解:先看abc 过程:由于ac (虚线)是等温线,所以△ E=E c —E a =Q,对abc 过程有Q=AE+A,所以Q=A>Q ,吸热。
再看脅过程:因/(虚线)是绝热线,所以AE=~A e <0;对阿过程。
=△ E +A =-A Q +A=-(A Q -A )<O ,放热。
因此,选择答 案(A)。
[注意:回答此类问题应当学会利用题给的参考过程,如该题中的等温过程、绝 热过程。
] 2.定量的理想气体,分别进行如图所示的两个 卡诺循环abed 和a'b'c'd'。
若在P~V 图上这两个 循环曲线所围面积相等,则可以由此得知这两个 循环 (A) 效率相等。
(B) 由高温热源处吸收的热量相等。
(C) 由低温热源处放出的热量相等。
(D)在每次循环中对外做的净功相等。
[] 答:因为两个循环曲线所围面积相等,在每次循环中对外做的净功相等。
所以应 当选择答案(D)。
3. 设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体;(设活塞与器壁无摩擦) (2) 缓慢地旋转叶片使绝热容器中的水温上升; (3) 冰溶解于水;(4) 一个不受空气阻力及其他摩擦力作用的单摆的摆动。
其中是可逆过程的为(A ) ⑴ ⑵、(4);(B ) ⑴、 ⑵、(3);(C)⑴、 ⑶、(4); (D ⑴、 (4); [ ] 答:(1)是无摩擦的准静态过程,因而是可逆过程;(4)是一个典型的理想化理学过程,因而也是可逆过程。
大学物理下复习资料
电位移矢量 D0EP
介质中的高斯定理 SDdSq0
极化率
对于均匀介质 Pe0E r 1e
D
0E
真空中
0rE介质中
15
电容器的能量
q2 W
1CU21qU
2C 2
2
静电场的能量密度
we
1E2
2
静电场的能量
WVwedVV12E2dV
1 DEdV
V2
16
第十一章 恒定磁场
11-1 恒定电流 11-2 磁场 磁感应强度 11-3 毕奥萨伐尔定律 11-4 磁场的高斯定理和安培环路定理 11-5 带电粒子在电场和磁场中的运动 11-6 磁场对载流导线和载流线圈的作用 *11-7 电磁场的相对论变换
电磁铁,继电器 、电机、以及 各种高频电磁 元件的磁芯
磁棒
记忆元件
35
第十三章 变化的电磁场
13-1 电磁感应定律 Laws of Induction 13-2 动生电动势和感生电动势 Motional Emf and Induced Emf 13-3 自感和互感Self-Induction and Mutual Induction 13-4 磁场的能量Energy in a Magnetic Field 13-5 麦克斯韦电磁场理论 Maxwell’s Theory of Electromagnetism 13-6 电磁波波动方程 13-7 电磁波的能量和动量 13-8 电磁波的辐射
U U 1 U 2 U n
q q 1 q 2 q n b
C C 1 C 2 C n
电容器的串联
q 1 q 2 q n q
q q qq q q
U U 1U 2 U n a
研究生入学考试华中科技大学大学物理下复习重点
2. 同方向,頻率相差很小的简谐振动的合成:拍现象。
拍频:Δ |1 2 |
3. 同频率、垂直 振动合成:
右旋,顺时针: 0
4
2
3 4Leabharlann 0 左旋,逆时针:
2
5 4
3 2
7 5
2
四 阻尼振动
阻尼较小时,弱阻尼:
2
2 0
x(t ) Ae t cos( t 0 ) 02 2
i (2)定容、定压摩尔热容:CV ,m 2 R
C p,m CV ,m
(3)理想气体等值过程,绝热,多方过程,循环过程的:
R
Q、A、
E、S的计算。
等温过程:A V 2 pdV RT ln V2
V1
准静态绝热过程:泊松方程: pV
多方过程的热容:Cn,m CV ,m
(4)热机、制冷机效率:
单摆周期:T 2 2 l
g
x02
v02
2
,
tg v0 x0
二 旋转矢量法:求位相。
三 简谐振动的合成:
1. 同方向、同頻率的简谐振动的合成
A2 A12 A22 2A1 A2 cos 2 1 ,
tg A1 sin1 A2 sin2 A1 cos1 A2 cos2
2k : Amax A1 A2; (2k 1) : Amin A1 A2
光的干涉:一 光程:几何长度与折射率的乘积
位相差表示的干涉极大、极小条件:
2k : 干涉极大
(2k 1) : 干涉极小
光程差表示的干涉极大、极小条件:
k : 干涉极大 (2k 1) / 2 : 干涉极小
二 杨氏干涉 三 薄膜干涉
条纹间距:x D
d
等倾干涉: 光程差: 2dn2 cos / 2 k(明条纹)
大学物理(物理学第五版)下册期末复习范围PPT
在磁感应线圈中的磁场强度与穿过线圈的电流成正比,与线圈的匝数成正比。
用于计算磁场强度和电流之间的关系,是电磁学中的基本定律之一。
安培环路定律
安培环路定律的应用
安培环路定律的表述
1
2
3
当载流导体处于磁场中时,会受到力的作用,这个力被称为洛伦兹力。
载流导体在磁场中的受力
根据左手定则判断洛伦兹力的方向,洛伦兹力垂直于导体运动方向和磁感应线方向。
衍射条纹的形成
衍射现象在光学仪器、光谱分析和光学通信等领域有广泛应用。
衍射的应用
光的衍射
03
偏振的应用
光的偏振在光学仪器、显示技术和光学通信等领域有广泛应用。
01
光的偏振原理
光波的振动方向在垂直于其传播方向的平面内只沿一个特定的方向,这种性质称为光的偏振。
02
偏振现象的分类
根据光波的偏振状态,光的偏振可以分为线偏振、椭圆偏振和圆偏振。
电场与电场强度
掌握高斯定理的表述及其应用,理解电场线与电通量的关系。
总结词
高斯定理表述为通过任意闭合曲面的电通量等于该闭合曲面所包围的电荷的代数和除以真空介电常数。高斯定理在静电场中具有重要的应用,可以推导出电场分布、电势差等重要物理量。
详细描述
静电场中的高斯定理
理解电势的概念,掌握电势的计算方法,理解电势差与电场强度的关系。
总结词
详细描述
自感与互感
磁场能量与磁能密度
描述磁场中所蕴含的能量。
总结词
磁场能量是指磁场中所蕴含的能量,其密度与磁感应强度的平方成正比。磁能密度是描述单位体积内的磁场能量,是磁感应强度和磁场能量的乘积。在电磁感应过程中,磁场能量的储存和释放会对电路中的电流产生影响。
大学物理 下册 9-15章 (彭志华 付茂林 著) 华中科技大学出版社 课后答案 12章节习题 课后答案【khdaw_lxywy
12-4 一导线 ac 弯成如图所示形状,且 ab=bc=10cm,若使导线在磁感应强度 B= 问 ac 间电势差多大?哪一端 2 5 10-2 T 的均匀磁场中,以速度 v 1.5 cm·s-1 向右运动。 电势高? 解:
w.
C 端电势高。
Hale Waihona Puke kh Bvbc sin 30 0
1.88×10-5 (V)
A B A B
D
D
C
v
A
D
C v I l 0 Idl 0 Idl 1 1 v 0 [ ] B 2 ( a vt ) 2 (b vt ) 2 a vt b vt
实际上, 某 t 时刻线簇内的电动势就等于 AD 和 BC 两段导线在:时刻切割磁力线产生的电动 势之差,因此也可以直接写出
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
Ii
(2)在 2 秒内通过线圈 A 的感应电量为
q
t2 t1
12-2 一条铜棒长为 L = 0.5m,水平放置,可绕距离 A 端为 L/5 处和棒垂直的轴 OO` 在水平面内旋转,每秒转动一周。铜棒置于竖直向上的匀强磁场中,如习题图 12-2 所示, O` 磁感应强度 B = 1.0×10-4T。求: (1)A、B 两端的电势差; (2)A、B 两 B 端哪一点电势高? ω A B 解:设想一个半径为 R 的金属棒绕一端做匀速圆周运动,角速度为 L/5 ω,经过时间 dt 后转过的角度为 O dθ = ωdt 习题 12-2 图 扫过的面积为 dS = R2dθ/2 切割的磁通量为 L dΦ = BdS = BR2dθ/2 ω l 动生电动势的大小为 dθ o ε = dΦ/dt = ωBR2/2 R 根据右手螺旋法则,圆周上端点的电势高。 AO 和 BO 段的动生电动势大小分别为
大学物理 下册 9-15章 (彭志华 付茂林 著) 华中科技大学出版社 课后答案 第10章 导体和电介质 课后答案【kh
R1
R2 R E1 dr E 2 dr E3 dr
课
当 R1 r R2 时, V2
R2
r
R E 2 dr E3 dr
R2
当 r R2 时, V3
ww
10-2 一带电量为 q,半径为 rA 的金属球 A,与一原先不带电、内外半径分别为 rB 和 rC 的金属球壳 B 同心放置,如图所示,则习题 10-2 图中 P 点 的电场强度如何?若用导线将 A 和 B 连接起来, 则 A 球的电势为 rC 多少?(设无穷远处电势为零) A rB 解:过 P 点作一个同心球面作为高斯面,尽管金属球壳内侧 o 会感应出异种,但是高斯面内只有电荷 q。根据高斯定理可得 rA P E4πr2 = q/ε0 B 可得 P 点的电场强度为
ww
w.
kh
Uo
4 0 r
da
4 0 a 4 0 b
10-4 如习题 10-4 图所示,金属球壳原来带有电量 Q,壳内外半径分别为 a、b, 壳 内距球心为 r 处有一点电荷 q,求球心 o 的电势为多少? 解:点电荷 q 在内壳上感应出负电荷-q,不论电荷如何分布, 距 b 离球心都为 a。外壳上就有电荷 q+Q,距离球为 b。球心的电势是所 o 有电荷产生的电势叠加,大小为 a r q 1 q 1 q 1 Qq
课
后 答
w.
案 网
可得电位移为 D = λ/2πr 其方向垂直中心轴向外。 电场强度为 E = D/ε0εr = λ/2πε0εrr 方向也垂直中心轴向外。
co
d Ñ D dS
S2
m
10-3 同轴电缆是由半径为 R1 的直导线和半径为 R2 的同轴薄圆筒构成的,其间充 满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线和圆筒的带电量分别为+λ 和-λ,则通过介质内长为 l,半径为 r 的同轴封闭圆柱面的电位移通量为多少?该圆柱面上 任一点的场强为多少? r R2 S1 解:介质中的电场强度和电位移是轴对称分布的.在内外半径之 R1 间作一个半径为 r、长为 l 的圆柱形高斯面,根据介质中的高斯定理, D 通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = l S0 λl 。 εr 设高斯面的侧面为 S0,上下两底面分别为 S1 和 S2。通过高斯面 的电位移通量为
华中科技大学【大学物理复习(下学期)】
∴ x = f kλ / a
π d sin θ sin α 2 Iθ = I 0 ) cos β , ( β = λ α
sin Nβ 2 Iθ = I 0 ( ) ( ) sin β α2,±3 ⋅ ⋅⋅)
π a sinθ π d sinθ α= β= λ λ
↑
膜厚变化时,条纹的移动:k一定 , d ↑ 膜厚变化时,条纹的移动: 对于靠近中心的条纹: 对于靠近中心的条纹: γ
→ γ , i ↑ → rk
膜厚增大,条纹向外扩张;膜厚减小,条纹向内收缩。 膜厚增大,条纹向外扩张;膜厚减小,条纹向内收缩。
∆d = ∆k
λ
≈0
一个波长光程的变化对应一个干涉条纹的移动。 一个波长光程的变化对应一个干涉条纹的移动。 波长对条纹的影响: 波长对条纹的影响: k , d 一定, λ↑ → γ , i ↓→ rk ↓ 波长越长,形成的干涉圆环半径越小。 波长越长,形成的干涉圆环半径越小。
用惠更斯原理作o、 光在晶体内的传播图 光在晶体内的传播图。 用惠更斯原理作 、e光在晶体内的传播图。 椭圆偏振光、圆偏振光的获得与检验 获得与检验。 波晶片、 波片: 椭圆偏振光、圆偏振光的获得与检验。 波晶片、λ/4 波片: 量子物理 一 光的波粒二象性
2
光的衍射
中央明纹(零级衍射亮斑 中央明纹 零级衍射亮斑): θ = 0 零级衍射亮斑 k = ±1,±2,⋯⋯ 暗纹: 暗纹 a sinθ = kλ 次极大(高级衍射亮斑)大约在暗纹中间。 次极大(高级衍射亮斑)大约在暗纹中间。 暗纹位置: 暗纹位置:x / f = sinθ ≈ tanθ = kλ / a 双缝衍射光强分布: 二 双缝衍射光强分布: 2 明纹条件: 明纹条件:d sinθ 多缝—光柵衍射 三 多缝—光柵衍射
(完整版)大学物理下册考题大全
真空中的静电场1、一均匀带电球面,电荷面密度为,球面内电场强度到处为零,球面上边元dS的一个带电量为 ds 的电荷元,在球面内各点产生的电场强度(A)到处为零.(B)不必定都为零.(C)到处不为零.(D)没法判断.2、在边长为a的正方体中心处搁置一电量为Q的点电荷,则正方体顶角处的电场强度的大小为:Q Q(A)120a 2.(B)60 a 2.Q Q(C)30 a2.(D)0 a2.3、如图示,直线MN长为2l,弧OCD是以N点为中心,l 为半径的半圆弧,N点有正电荷+q,M点有负电荷q.今将一试验电荷q0从O点出发沿路径OCDP移到无量远处,设无量远处电势为零,则电场力作功(A)A<0且为有限常量.(B)A>0且为有限常量.(C)A=∞.(D)A=0.第3题图第4题图4、图中实线为某电场中的电力线,虚线表示等势(位)面,由图可看出:(A)E A>E B>E C,U A>U B>U C.(B)E A<E B<E C,U A<U B<U C.(C)E A>E B>E C,U A<U B<U C.(D)E A <E B<E C,U A>U B>U C.5、真空中有两个点电荷M、N,相互间作用力为 F ,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力F(A)大小不变,方向改变.(B)大小改变,方向不变.(C)大小和方向都不变.(D)大小和方向都改变.6、电量之比为1∶3∶5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的地点使B所受电场力为零时,AB 与BC 的比值为(A)5.(B)1/5.(C) 5 .(D)1 5 .7、关于电场强度与电势之间的关系,以下说法中,哪一种是正确的?(A)在电场中,场强为零的点,电必定为零.(B)在电场中,电势为零的点,电场强度必为零.(C)在电势不变的空间,场强到处为零.(D)在场强不变的空间,电势到处相等8、在空间有一非均匀电场,其电力线分布以以下图.在电场中作一半径为R的闭合球面S,已 知经过球面上某一面元 S 的电场强度通量为ΔΦ e ,则经过该球面其他部分的电场强度通量为4 R 2(B)Se(A)e..4R 2S(C)Se.(D) 0第8题图第9题图9、 一电量为-q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,以以下图.现将一试验电荷从A点分别挪动到B、C、D各点,则(A)从A到B,电场力作功最大.(B)从A到C,电场力作功最大.(C)从A到D,电场力作功最大.(D)从A到各点,电场力作功相等.10、 在边长为a的正方体中心处搁置一电量为Q的点电荷,设无量远处为电势零点,则在一个侧面的中心处的电势为:Q Q(A)4a.(B)2 0a.QQ(C)0 a . (D) 2 20 a. 11、在边长为a的正方体中心处搁置一点电荷Q,设无量远处为电势零点,则在正方体顶角处的电势为:QQ (A)430a.(B)230a.QQ(C)6a .(D) 12 0 a12. 以以下图,O点是两个相同的点电荷所在处连线的中点,P点为中垂线上的一点,则O、P两点的电势和场强盛小有以下关系:(A) U 0 U P ,E 0 E p . (B)U 0 U P ,E 0E p . (C) U 0U P , E 0 E p . (D)U 0U P , E 0E p .第 12题图第 14题图13、 依据高斯定理的数学表达式 E ds q 0可知下述各种说法中,正确的选项是: S(A)闭合面内的电荷代数和为零时,闭合面上各点场强必定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强必定到处不为零. (C)闭合面内的电荷代数和为零时,闭合面上各点场强不必定到处为零.(D)闭合面上各点场强均为零时,闭合面内必定到处无电荷.14、 一带电量为-q的质点垂直射入开有小孔的两带电平行板之间,以以下图.两平行板之间的电势差为U,距离为d,则此带电质点经过电场后它的动能增量等于(A)-qU /d .(B)+qU.(C)-qU.(D)qU /d15、 真空中有一电量为Q的点电荷,在与它相距为r的a点处有一试验电荷q.现使试验电荷q从a点沿半圆弧轨道运动到b点,以以下图.则电场力作功为Qqr 2 Qq2r(A)40 r 22 .(B)40 r 2.Qq2r(C)40 r.(D) 0.第 15题图第16题图16、一电场强度为 E 的均匀电场, E 的方向与X轴正向平行,以以下图.则经过图中一半径为R的半球面的电场强度通量为(A) R 2E .1 R2 E(B) 2 .(C)2 R 2E . (D)0.17、 关于电场强度定义式E F q 0,以下说法中哪个是正确的? (A)场强 E 的大小与尝试电荷 q 0 的大小成反比.(B)对场中某点,尝试电荷受力 F 与 q 0 的比值不因 q 0 而变.(C)尝试电荷受力F 的方向就是场强 E 的方向.(D)若场中某点不放尝试电荷q 0 ,则 F =0,从而 E =0.18、一带电体可作为点电荷办理的条件是(A)电荷一定呈球形分布. (B)带电体的线度很小.(C)带电体的线度与其他有关长度对比可忽视不计.(D)电量很小.E dsVdV19、高斯定理s(A)合用于任何静电场.(B)只合用于真空中的静电场.(C)只合用于拥有球对称性、轴对称性和平面对称性的静电场.(D)只合用于固然不拥有(C)中所述的对称性、但可以找到适合的高斯面的静电场. 和R (R <R ) 所带电量分别为Q20、两个齐心均匀带电球面,半径分别为Ra a和Q .设某babb点与球心相距r,当Ra <r<Rb 时,该点的电场强度的大小为:1Q aQ b1 Q aQ b(A)4r 2 .(B)4r2.1Q a Q b )1Q a4 0( 224 0 2(C) rb. (D)r .R21、半径为r的均匀带电球面1,带电量为q;其外有一齐心的半径为R的均匀带电球面2,带电量为Q,则此两球面之间的电势差U-U2为:1q(11 ) q(11 ) (A)40 rR .(B)4Rr .4 1 ( qQ )q(C) 0 rR .(D) 4 0 r .22、已知一高斯面所包围的体积内电量代数和∑qi =0,则可必定:(A)高斯面上各点场强均为零.(B)穿过高斯面上每一面元的电通量均为零.(C)穿过整个高斯面的电通量为零.(D)以上说法都不对.23、 有四个等量点电荷在OXY平面上的四种不一样组态,全部点电荷均与原点等距.设无量远处电势为零 , 则原点O处电场强度和电势均为零的组态是 (D)24. 在静电场中,有关静电场的电场强度与电势之间的关系,以下说法中正确的选项是:(A)场强盛的地方电势必定高.(B)场强相等的各点电势必定相等.(C)场强为零的点电势不必定为零.(D)场强为零的点电必定定是零.25、 正方形的两对角上,各置电荷Q,在其他两对角上各置电荷q,若Q所受合力为零,则Q与q的大小关系为(A)Q22q . (B) Q 2q .(C) Q4q .(D) Q2q .有导体和介质的静电场1. 关于高斯定理,以下说法中哪一个是正确的?(A)高斯面内不包围自由电荷,则面上各点电位移矢量 D 为零.(B)高斯面上到处D 为零,则面内必不存在自由电荷.(C)高斯面的 D 通量仅与面内自由电荷有关.(D)以上说法都不正确.2. 关于静电场中的电位移线,以下说法中,哪一种是正确的?(A)起自正电荷,止于负电荷,不形成闭合线,不中断.(B)任何两条电位移线相互平行.(C)起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不订交.(D)电位移线只出此刻有电介质的空间.3.两个半径相同的金属球,一为空心,一为实心,把二者各自孤即刻的电容值加以比较,则(A)空心球电容值大.(B)实心球电容值大.(C)两球电容值相等.(D)大小关系没法确立.4. C1和C2两空气电容器串通此后接电源充电.在电源保持联接的状况下,在C 2 中插入一电介质板,则(A)C 1 极板上电量增添,C 2 极板上电量增添.(B)C 1 极板上电量减少,C 2 极板上电量增添.(C)C 1 极板上电量增添,C 2 极板上电量减少.(D)C 1 极板上电量减少,C 2 极板上电量减少.第4题图第5题图5. C1和C 2 两空气电容器串通起来接上电源充电.而后将电源断开,再把一电介质板插入C1中,则(A)C 1 上电势差减小,C 2 上电势差增大.(B)C 1 上电势差减小,C 2 上电势差不变.(C)C 1 上电势差增大,C 2 上电势差减小.(D)C 1 上电势差增大,C 2 上电势差不变.6. C1和C2两空气电容器并联此后接电源充电.在电源保持联接的状况下,在C质板,则1 中插入一电介(A)C 1 极板上电量增添,C 2 极板上电量减少.(B)C 1 极板上电量减少,C 2 极板上电量增添.(C)C 1 极板上电量增添,C 2 极板上电量不变.(D)C 1 极板上电量减少,C 2 极板上电量不变.第6题图第7题图7. C1和C2两空气电容器,把它们串通成一电容器组.若在C(A)C 1 的电容增大,电容器组总电容减小.(B)C 1 的电容增大,电容器组总电容增大.(C)C 1 的电容减小,电容器组总电容减小.(D)C 1 的电容减小,电容器组总电容增大.1 中插入一电介质板,则8.有两个带电不等的金属球,直径相等,但一个是空心,一个是实心的.现使它们相互接触,则这两个金属球上的电荷(A)不变化.(C)空心球电量多.(B)均匀分配.(D)实心球电量多.9.在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,以以下图.当电容器充电后,若忽视边沿效应,则电介质中的场强 E 与空气中的场强E0对比较,应有(A)E E0,二者方向相同.(B) E E0,二者方向相同.(C) E E0,二者方向相同.(D) E E0,二者方向相反.第9题图10.两个半径不一样带电量相同的导体球,相距很远.今用一修长导线将它们连接起来,则:(A)各球所带电量不变.(B)半径大的球带电量多.(C)半径大的球带电量少.(D)没法确立哪一个导体球带电量多.真空中的稳固磁场1.一铜条置于均匀磁场中,铜条中电子流的方向以以下图.试问下述哪一种状况将会发生?(A)在铜条上a、b两点产生一小电势差,且U a >U b . (B)在铜条上a、b两点产生一小电势差,且U a <U b .(C)在铜条上产生涡流.(D)电子遇到洛仑兹力而减速.第1题图第2题图2. 边长为 l 的正方形线圈,分别用图示两种方式通以电流I(此中ab、cd与正方形共面),在这两种状况下,线圈在此中心产生的磁感觉强度的大小分别为(A) B 1 0,B 2 0 .(B)B 1 0,B 2 22 0 I / l.(C)B12 2 0 I / l ,B 2 0 .(D)B 1 2 2 0 I / l ,B 2 2 2 0 I / l .3. 一电荷量为q的粒子在均匀磁场中运动,以下哪一种说法是正确的?(A)只要速度大小相同,粒子所受的洛仑兹力就相同.(B)在速度不变的前提下,若电荷q变成-q,则粒子受力反向,数值不变. (C)粒子进入磁场后,其动能和动量都不变.(D)洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.4. 两个齐心圆线圈,大圆半径为R,通有电流I 1;小圆半径为r,通有电流I 图.若 r<<R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线 圈所受磁力矩的大小为2,方向如I1I 2 r 20 I 1I 2 r 2(A)2R.(B)2R.0 I 1I 2R 2(C) 2r. (D)0第 4题图第5题图5. 以以下图,在磁感觉强度为B 的均匀磁场中,有一圆形载流导线,a、b、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A)F a >F b >F c .(B)F a <F b <F c .(C)F b >F c >F a .(D)F a >F c >F b .6. 电流由长直导线1沿切向经a点流入一个电阻均匀分布的圆环,再由b点沿切向从圆环流出,经长直导线2返回电源 (如图) .已知直导线上电流强度为I,圆环的半径为R,且a、b和圆心O在同向来线上.设长直载流导线1、 2 和圆环分别在O点产生的磁感觉强度为B1 ,B 2 ,B 3,则圆心处磁感觉强度的大小(A)B=0,因为B=B =B =0.123 (B)B=0,因为固然B 1≠0,B 2≠0,但 B 1B 2 0 , B 3=0.(C)B≠0,因为B1≠0,B 2≠0,B 3≠0.(D)B≠0,因为固然B3=0,但B 1 B 2 0 .第6题图 第 7题图7. 在图(a)和(b)中各有一半径相同的圆形回路L、L 2,圆周内有电流I1、I ,其分布12相同,且均在真空中,但在(b)图中L2回路外有电流I,P 1、P2为两圆形回路上的对应3点,则:(A) L 1B dlL 2 B dl , B P 1B P 2(B) L 1 B dl L 2B dl , B P 1 B P 2 .(C) L 1 BdlL 2B dl , B P 1B P 2 .B dlB dl , B P 1BP 2(D)L 1L 2.8. 一电子以速度v 垂直地进入磁感觉强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A)正比于B,反比于v 2 .(B)反比于B,正比于v 2 .(C)正比于B,反比于v .(D)反比于B,反比于v .第 8 题图第 9题图9.把轻的正方形线圈用细线挂在载流直导线AB的周边,二者在同一平面内,直导线AB固定,线圈可以活动.当正方形线圈通以以以下图的电流时线圈将(A)不动.(B)发生转动,同时凑近导线AB. (C)发生转动,同时走开导线AB. (D)凑近导线AB.(E)走开导线AB.10. 两根载流直导线相互正交搁置,以以下图.I1 沿Y轴的正方向流动,I2 沿Z轴负方向流动.若载流I 1 的导线不可以动,载流I 2 的导线可以自由运动,则载流I 2 的导线开始运动的趋向是(A)沿X方向平动.(B)以X为轴转动.(C)以Y为轴转动.(D)没法判断.第 10题图第 11题图11. 在匀强磁场中,有两个平面线圈,其面积A1=2A 2,通有电流I1=2I 2,它们所受的最大磁力矩之比M1/M 2 等于(A)1.(B)2.(C)4.(D)1/4.12. 如图,无穷长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A)向着长直导线平移.(B)走开长直导线平移.(C)转动.(D)不动.13. 取一闭合积分回路L,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A)回路L内的∑I不变,L上各点的 B 不变. (B)回路L内的∑I不变,L上各点的 B 改变. (C)回路L内的∑I改变,L上各点的B 不变.(D)回路L内的∑I改变,L上各点的B 改变.14. 四条平行的无穷长直导线,垂直经过边长为a= 20cm的正方形极点,每条导线中的电流都是I= 20A,这四条导线在正方形中心O点产生的磁感觉强度为-(A) B 0.(B) (C) B 0.8 104T .(D)B104T .B104T .第 14题图 第 15题图15. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A)ab边转入纸内,cd边转出纸外.(B)ab边转出纸外,cd边转入纸内.(C)ad边转入纸内,bc边转出纸外.(D)ad边转出纸外,bc边转入纸内.16. 一个电流元idl位于直角坐标系原点,电流沿Z轴方向,空间点P(x,y,z)的磁感应强度沿x轴的重量是:(A)0;(B)(4 )i y dl (x 2 y 2z 2 )3 2 ;(C)(4 )i x dl (x 2 y 2z 2 ) 3 2 ;222(D) ( 0 4 )i y dl (x y z ) .17. 图为四个带电粒子在O点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片 . 磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电量大小也相等,则此中动能最大的带负电的粒子的轨迹是(A)Oa.(B)Ob.(C)Oc.(D)Od.第 17题图第 18题图18. 把轻的导线圈用线挂在磁铁N极周边,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,以以下图.当线圈内通以以以下图方向的电流时,线圈将(A)不动.(B)发生转动,同时凑近磁铁. (C)发生转动,同时走开磁铁. (D)不发生转动,只凑近磁铁.(E)不发生转动,只走开磁铁.19. 磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上,图(A)~(E)哪一条曲线表示B-x的关系? (B)20. 有一由N匝细导线绕成的平面正三角形线圈,边长为a,通有电流I,置于均匀外磁场中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩Mm 值为:B(A)3Na 2IB 2 .(B)3Na 2IB 4 . (C) 3Na 2IB sin 60 0. (D)0.21. 如图,两根直导线ab和cd沿半径方向被接到一个截面到处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感觉强度B dlB 沿图中闭合路径L的积分L等于(A) I . (B) I/3 .(C) I/4 .(D) 2 I /3.第 21题图第23题图22. 若要使半径为4 10 -3m 的裸铜线表面的磁感觉强度为 7.5 10- 5T ,则铜线中需要经过的电流为(A) A. (B)A. (C) 14A.(D) A.23. 以以下图带负电的粒子束垂直地射入两磁铁之间的水平磁场,则:(A)粒子以原有速度在本来的方向上连续运动.(B)粒子向N极挪动.(C)粒子向S极挪动.(D)粒子向上偏转.(E)粒子向下偏转.24. 若空间存在两根无穷长直载流导线,空间的磁场分布就不拥有简单的对称性,则该磁场分布(A)不可以用安培环路定理来计算. (B)可以直接用安培环路定理求出.(C)只好用毕奥-萨伐尔-拉普拉斯定律求出.(D)可以用安培环路定理和磁感觉强度的叠加原理求出.25. 图示一测定水平方向匀强磁场的磁感觉强度 B (方向见图) 的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调理均衡;通电后,因为磁场对线框的作用力而破坏了天平的均衡,须在天平左盘中加砝码m才能使天平重新均衡.若待测磁场的磁感觉强度增为本来的3倍,而经过线圈的电流减为本来的 1/2,磁场和电流方向保持不变,则要使天平重新均衡,其左盘中加的砝码质量应为(A)6m.(C)2m/3.(B)3m/2.(D)m/6.(E)9m/2.第 25题图有介质时的稳恒磁场1. 关于稳恒磁场的磁场强度 H 的以下几种说法中哪个是正确的?(A) H 仅与传导电流有关.(B)若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零.(C)若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零.(D)以闭合曲线L为边沿的任意曲面的H 通量均相等.2. 图示为载流铁芯螺线管,此中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力 线方向相互不矛盾.)(C)第3题图3. 附图中,M、P、O由软磁资料制成的棒,三者在同一平面内,当K闭合后,(A)M的左端出现N极.(B)P的左端出现N极.(C)O的右端出现N极.(D)P的右端出现N极.4. 磁介质有三种,用相对磁导率 r 表征它们各自的特征时,(A)顺磁质 >0,抗磁质 r <0,铁磁质 r >>1 .r (B)顺磁质 r >1,抗磁质 r =1,铁磁质 r >>1 .(C)顺磁质r >1,抗磁质 r <1,铁磁质r >>1 .(D)顺磁质r >0,抗磁质r <0,铁磁质 r >1.5. 用细导线均匀密绕成长为l 、半径为 a(l>> a)、总匝数为N的螺线管,管内充满相对磁导率为r 的均匀磁介质.若线圈中载有稳恒电流I,则管中任意一点的(A)磁感觉强度大小为 B= 0 r NI .(B)磁感觉强度大小为B= rNI /l(C)磁场强度大小为H=NI /l .(D)磁场强度大小为H=NI /l .电磁感觉1. 在一中空圆柱面上绕有两个完整相同的线圈aa'和bb',当线圈aa'和bb'如图(1)绕制及联系时,ab间自感系数为L1;如图(2)相互重叠绕制及联系时,ab间自感系数为L2.则(A)L 1=L 2=0.(B)L1=L2≠ 0.(C)L 1=0,L 2≠0.(D)L1≠ 0,L2=0.第1题图第2题图2.面积为S和2S的两圆线圈1、2如图搁置,通有相同的电流I.线圈1的电流所产生的经过线圈2的磁通用Φ21 表示,线圈2的电流所产生的经过线圈1的磁通用Φ12 表示,则Φ21和Φ 12 的大小关系为:/2.(A)Φ 21=2Φ 12 .(B)Φ 21 =Φ 12(C)Φ 21 =Φ 12.(D)Φ 21>Φ 12.3. 一根长度为L的铜棒,在均匀磁场 B 中以匀角速度旋转着, B 的方向垂直铜棒转动的平面,如图.设t=0时,铜棒与Ob成角,则在任一时辰t这根铜棒两端之间的感觉电动势是:(A)L2 Bcos(t+).(B) [ L2Bcost ]/2.(C)2L2Bcos(t+).(D)L2 B.(E)L2B /2.第3题图第5题图4.用线圈的自感系数L来表示载流线圈磁场能量的公式W m=LI 2/2(A)只合用于无穷长密绕螺线管.(B)只合用于单匝圆线圈.(C)只合用于一个匝数很多,且密绕的螺线环.(D)合用于自感系数L必定的任意线圈.5. 有甲乙两个带铁芯的线圈以以下图.欲使乙线圈中产生图示方向的感生电流i ,可以采纳下列哪一种方法?(A)接通甲线圈电源.(B)接通甲线圈电源后,减少变阻器的阻值.(C)接通甲线圈电源后,甲乙相互凑近.(D)接通甲线圈电源后,抽出甲中铁芯.旋转(如图所6. 一矩形线框长为a宽为b,置于均匀磁场中,线框绕OO 轴,以匀角速度示).设t=0时,线框平面处于纸面内,则任一时辰感觉电动势的大小为(A) 2abBcos t(B)abB .1abB cos t(C)2.(D)abBcos t(E)abBsin t第 6题图第 7题图7. 以以下图的电路中,A、B是两个完整相同的小灯泡,其内阻r>> R,L是一个自感系数相当大的线圈,其电阻与R相等.当开关K接通和断开时,关于灯泡A和B的状况下边哪一种说法正确?(A)K接通时,I A >I B . (B)K接通时,I (C)K断开时,两灯同时熄灭.(D)K断开时,I8. 两根无穷长平行直导线载有大小相等方向相反的电流I,I以一矩形线圈位于导线平面内(如图),则:A =IB .A =IB .dI/dt的变化率增添,(A)线圈中无感觉电流.(B)线圈中感觉电流为顺时针方向. (C)线圈中感觉电流为逆时针方向.(D)线圈中感觉电流方向不确立.第8题图第9题图9. 如图,两个线圈P和Q并联地接到一电动势恒定的电源上.线圈P的自感和电阻分别是线圈Q的两倍,线圈P和Q之间的互感可忽视不计.当达到稳固状态后,线圈P的磁场能量与Q的磁场能量的比值是(A)4.(B)2.(C)1.(D) 1/2 .10. 如图,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd(A)不动.(B)转动. (C)向左挪动.(D)向右挪动.第10题图第 11题图11. 如图,矩形地域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O作逆时针方向匀角速转动,O点是圆心且恰好落在磁场的边沿上,半圆形闭合导线完整在磁场外时开始计 时.图(A)─(D)的-t函数图象中哪一条属于半圆形导线回路中产生的感觉电动势?12. 在以以下图的装置中,把静止的条形磁铁从螺线管中按图示状况抽出时(A)螺线管线圈中感生电流方向如A点处箭头所示.(B)螺线管右端感觉呈S极.(C)线框EFGH从图下方粗箭头方向看去将逆时针旋转.(D)线框EFGH从图下方粗箭头方向看去将顺时针旋转.第 12题图第 13题图13. 如图,导体棒AB在均匀磁场B中绕经过C点的垂直于棒长且沿磁场方向的轴OO'转动(角速度与 B 同方向),BC的长度为棒长的1/3 .则 (A)A点比B点电势高. (B)A点与B点电势相等.(C)A点比B点电势低.(D)有稳恒电流从A点流向B点.14. 一个圆形线环,它的一半放在一分布在方形地域的匀强磁场B 中,另一半位于磁场以外,以以下图.磁场 B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感觉电流,应使(A)线环向右平移.(B)线环向上平移.(C)线环向左平移.(D)磁场强度减弱.第14题图第 17题图15. 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b,a 和b相对地点固定.若线圈b中没有电流经过,则线圈b与a 间的互感系数:(A)必定为零.(B)必定不为零.(C)可以不为零.(D)是不行能确立的.16. 一块铜板放在磁感觉强度正在增大的磁场中时,铜板中出现涡流(感觉电流),则涡流将(A)加快铜板中磁场的增添. (B)减缓铜板中磁场的增添.(C)对磁场不起作用.(D)使铜板中磁场反向.17. 如图,长度为 l 的直导线ab在均匀磁场B 中以速度 v挪动,直导线ab中的电动势为(A) Blv .(B) Blv sin .(C) Blv cos .(D)0.18. 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,环中:(A) 感觉电动势不一样.(B) 感觉电动势相同,感觉电流相同. (C) 感觉电动势不一样,感觉电流相同.(D) 感觉电动势相同,感觉电流不一样.19. 在无穷长的载流直导线周边搁置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作以以下图的三种不一样方向的平动时,线圈中的感觉电流(A)以状况Ⅰ中为最大.(B)以状况Ⅱ中为最大.(C)以状况Ⅲ中为最大.(D)在状况Ⅰ和Ⅱ中相同. 第19题图第22题图20. 一导体圆线圈在均匀磁场中运动,能使此中产生感觉电流的一种状况是(A)线圈绕自己直径轴转动,轴与磁场方向平行.(B)线圈绕自己直径轴转动,轴与磁场方向垂直. (C)线圈平面垂直于磁场并沿垂直磁场方向平移.(D)线圈平面平行于磁场并沿垂直磁场方向平移.21. 自感为 0.25 H的线圈中,当电流在( 1/ 16)s内由2A均匀减小到零时,线圈中自感电动势的大小为:(A) 7.8 × 10-3V.(B) 2.0 V.(C) 8.0 V.(D)× 10-2V.22. 以以下图,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感觉电流 i ,以下哪一种状况可以做到?(A)载流螺线管向线圈凑近.(B)载流螺线管走开线圈.(C)载流螺线管中电流增大.(D)载流螺线管中插入铁芯.23. 真空中一根无穷长直细导线上通有电流强度为I的电流,则距导线垂直距离为a的空间某点处的磁能密度为1(0 I) 21(0 I)2(B)202 a(A) 22 a1 2 a21( 0 I22 ()2)(C)0 I(D)2a24. 以以下图,闭合电路由带铁芯的螺线管,电源,滑线变阻器构成.问在以下哪一种状况下可使线圈中产生的感觉电动势与原电流I的方向相反.(A)滑线变阻器的触点A向左滑动.(B)滑线变阻器的触点A向右滑动.(C)螺线管上接点B向左挪动(忽视长螺线管的电阻).(D)把铁芯从螺线管中抽出.25. 将形状完整相同的铜环和木环静止搁置,并使经过两环面的磁通量随时间的变化率相等,则(A)铜环中有感觉电动势,木环中无感觉电动势. (B)铜环中感觉电动势大,木环中感觉电动势小. (C)铜环中感觉电动势小,木环中感觉电动势大.(D)两环中感觉电动势相等.光的干涉1. 在真空中波长为λ的单色光,在折射率为n的透明介质中从A沿某路径流传到B,若A、B两点位相差为3 ,则此路径AB的光程为(A)λ. (B) nλ. (C) 3λ.(D) λ/n2. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A)流传的行程相等,走过的光程相等.(B)流传的行程相等,走过的光程不相等.(C)流传的行程不相等,走过的光程相等.(D)流传的行程不相等,走过的光程不相等.3.用白光光源进行双缝实验,若用一个纯红色的滤光片掩饰一条缝,用一个纯蓝色的滤光片掩饰另一条缝,则(A)干涉条纹的宽度将发生改变.(B)产生红光和蓝光的两套彩色干涉条纹.(C)干涉条纹的亮度将发生改变.(D)不产生干涉条纹.4.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采纳的方法是(A)使屏凑近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度略微调窄.(D)改用波长较小的单色光源5.在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A)2(n-1)d.(B)2nd.(C)2(n-1)d+λ/2.(D)nd.(E)(n-1)d.6. 在双缝干涉实验中,光的波长为600 nm( 1nm= 10-9m),双缝间距为2mm,双缝与屏的间距为 300cm.在屏上形成的干涉图样的明条纹间距为(A)mm.(B)mm.(C) 3.1 mm(D) 1.2 mm.7.在迈克尔逊干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A)λ/2.(B)λ/(2n).(C)λ/n.(D)λ /2( n -1)8. 如图,S1、S2是两个相关光源,它们到P点的距离分别为r 1 和r 2.路径S1P垂直穿过一块厚度为t 1,折射率为n 1 的介质板,路径S2P垂直穿过厚度为t 2,折射率为n 2 的另一介质板,其他部分可看作真空,这两条路径的光程差等于(A)(r 2+n 2t 2)-(r 1+n 1t 1)(B) [r2+ (n2- 1)t2]- [r1+ (n1- 1)] t1(C)(r 2-n 2t 2)-(r 1-n 1t 1)(D)n 2t 2-n 1t 1第8题图第9题图9. 在双缝干涉实验中,若单色光源S到两缝SS 1、S 2 距离相等,则观察屏上中央明条纹位于图中O处.现将光源S向下挪动到表示图中的地点,则(A)中央明条纹也向下挪动,且条纹间距不变.(B)中央明条纹向上挪动,且条纹间距不变.(C)中央明条纹向下挪动,且条纹间距增大.(D)中央明条纹向上挪动,且条纹间距增大10.真空中波长为λ的单色光,在折射率为n的均匀透明媒质中,从A点沿某一路径流传到B点,路径的长度为 L .A、B两点光振动位相差记为Δφ,则(A) L=3λ/2,Δφ=3π.(B) L=3λ/(2n),Δφ=3nπ.(C) L=3λ/(2n),Δφ=3π.(D) L =3nλ/2,Δφ=3nπ光的衍射1.丈量单色光的波长时,以下方法中哪一种方法最为正确?。
(完整word版)大学物理下期末知识点重点总结(考试专用)
1)明、暗条纹的条件:
2)相邻明纹对应劈尖膜的厚度差为
3)相邻明(暗)纹间距为
3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉)
1)明环和暗环的半径:
③相邻明环、暗环所对应的膜厚度差为 。
三、迈克尔逊干涉仪
1)可移动反射镜移动距离d与通过某一参考点条纹数目N的关系为
2)在某一光路中插入一折射率n,厚d的透明介质薄片时,移动条纹数N与n、d的关系为
2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。
4. 制冷机的制冷系数:
卡诺制冷机的制冷系数:
五. 热力学第二定律
开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效率为 是不可能的)。
克劳修斯表述:热量不能自动地从低温物体传到高温物体。
两种表述是等价的.
4.机械振动
一. 简谐运动
振动:描述物质运动状态的物理量在某一数值附近作周期性变化。
k=0、1、2、3 称为0级、1级、2级、3级 明纹
3、缺级条件 七、光的偏振
1、马吕斯定律 ( 为入射偏振光的振动方向与偏振片的偏振化方向间的夹角)
2、布儒斯特定律 , 称为布儒斯特角或起偏角。
当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。
华中科技大学大物(下)9、10篇答案
9-T1 氧气瓶的容积为3.2⨯10-2m 3,其中氧气的压强为1.30⨯107Pa,氧气厂规定压强降到1.0⨯106Pa 时,就应重新充气,以免要经常洗瓶。
某小型吹玻璃车间平均每天用去0.40m 3在1.01⨯105Pa 压强下的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变)解: 令332536271m40.0m102.3,Pa 1001.1,Pa 100.1,Pa 1030.1='⨯=⨯=⨯=⨯=-V V p p p设氧气的摩尔质量为M 。
在用气前,根据理想气体状态方程,瓶内氧气质量RTVMp m 11=当瓶内氧气压强降为p 2时, 氧气质量为RTVMp m 22=因此,氧气瓶重新充气时,用去的氧气质量为)(2121p p RTMVm m -=- 每天用去的氧气质量为 RTV Mp m '=33一瓶氧气能用的天数即为d 5.9)(321321='-=-=p V p p V m m m N 9-T2 某种气体分子的方均根速率为s /m 4502=v ,压强为Pa 1074⨯=p ,则气体的质量密度ρ=?解: 22,3)21(3232v m nv m n n p f f t k ===ε由于 ρ===V m m V N nm f f所以得 231v p ρ=32422mkg 04.14501073)(3-⋅=⨯⨯==v pρ9-T3 一容器内储有氧气,其压强为 1.01105Pa ,温度为27.0C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)分子的平均平动动能.解: (1)nkT p =,525-3231.01102.4410m 1.0810300p n kT -⨯===⨯⨯⨯ (2)3m kg 30.1-⋅===RTpM V m ρ(3)J 211021.623-⨯==kT k ε9-T4 体积为1.010-3m 3的容器中含有 1.011023个氢气分子,如果其中压强为1.01105Pa 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v B d ;
b a
直导线: i
v B
动生电动势的方向: v B 方向,即正电荷所受的洛仑兹力方向。 (注意)一般取 v B 方向为 d 方向。如果 v -1-
B,
但导线方向与 v B 不在一直线上(如习题十一填空 2.2 题) ,则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。 (2) 感生电动势(回路或导体L不动,已知 B / t 的值) : i 磁场的时变在空间激发涡旋电场 E i :
1 1
等价,但统一取+π,波程差 1 2 等价。
6. 驻波:两列振幅相等的相干波,在同一直线上沿相反方向传播,所形成的分段振动的现象。相邻波节(或波腹)之间的距离 为 2 λ 。取波腹为坐标原点,则波节位置= k / 2 ,波腹位置= (k
1 1 2
) / 2
(k=0,1,2…) 。
1. 简谐运动的定义: (1) F合
d x kx ; (2) dt 2 x ; (3)x=Acos(ωt+φ) 2
2. 求振动方程 x
A cos(t ) ——由已知条件(如 t=0 时 x 0 的大小,v0 的方向 正、负)求 A、φ。其中求φ是关
-2-
键和难点。 (其中φ的象限要结合正弦或余弦式确定)。 弹簧振子 T
v y / t A sin(t 2x / ) ,根据题给条件求 A、 、 。其方法与求振动方程相似。
公式法:将题中条件(如 t=0 时 x 处 y 值及 v 正负)代入波动方程与速度式,可联立求解 值。 波动曲线法:由图可知 A、 、u 的方向(决定波动方程中 x 项的符号) ,以及波形图所对应的 t’时刻各质元的位移、速度方 向(按波速方向平移波动曲线可得) 。按公式法,由 x、v 值可求出 ,如果给出了 t 0 时的波形图,还可求出 。 旋转矢量法:根据某一时刻(t=0 或 t’时刻) 、某一点的 y 值以及 v 的方向作矢量图,可确定 值。 对两列波在某一点处的合振动,由φ1 与φ2 作相量图,对特殊角可直接求φ,对一般角可确定φ的象限。 2. 由波动方程求某处质元的振动方程与速度:将 x 值代入上面的波动方程与速度公式即可,也可画振动曲线。 -3-
《大学物理》下学期复习资料
【磁场力(洛仑兹力、安培力) ,磁力矩】 1. 洛仑兹力 : Fm qv B
(1)大小: Fm
qvB sin 。
(2)方向:正电荷受力为 v B 方向,垂直于 v 、 B 构成的平面。对负兹力对电荷不作功。
4.通电线圈的磁矩 p m IS (沿回路平面的法向,与电流成右螺旋关系。S 是线圈面积) 磁力矩(磁场力对转动的通电线圈产生的力矩) : M IS B sin
方向由 p m 其中
(p m , B) ,
B 确定,磁力矩M的单位为 N m
(矢量式 M
pm B )
【电磁感应与电磁波】
1. 感应电动势——总规律:法拉第电磁感应定律
i
d d m , 多匝线圈 , N m 。 i dt dt
。 i 方向即感应电流的方向,在电源内由负极指向正极。由此可以根据计算结果判断一段导体中哪一端的电势高(正极) ①对闭合回路, i 方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生 i ) (1) 动生电动势( B 不随 t 变化,回路或导体L运动) 一般式: i
弦线上形成驻波的条件:L= n / 2 (n=1,2…) 典型驻波:波从波疏媒质传向固定端并形成驻波时,是半波反射,固定端是波节;波从波密媒质传向自由端并形成驻波时, 是全波反自由端是波腹。 注意:对于角频率相同的两个振动或两列波的合成问题,如果初相位为
这时,用加下标的 y 表示具体点的振动位移(不要将其写作 x) 。 3. 波的能量 波的传播是能量的传播。在传播过程中质元的动能和势能在任何时刻都相等(与质点的振动不同……
ΔWk=ΔWp A 2 y 2
在平衡位置处最大,在最大位移处ΔWk=ΔWp=0 ①相干条件:频率相同,振动方向一致,位相差恒定;
f ILB sin IBL
(对平面上的曲线电流,取垂直于磁场方向的投影长度 L )
(3)两平行载流导线:同向电流相互吸引,异向电流相互排斥。单位长度受力: df
/ d I B 。
(4)闭合载流线圈:在均匀磁场中,所受的合磁场力为零。 (但运动线圈中的电动势一般不等于零)
q
(电场中的高斯定理——电荷总伴有电场,电场为有源场)
i
(2)
L
B E d dS S t
(电场与磁场的普遍关系——变化的磁场必伴随电场)
(3) (4)
B dS 0
S
(磁场中的高斯定理——磁感应线无头无尾,磁场为无源场)
L
H d
【简谐波】
T
u ,ω=2π ,κ=2π/λ。 由振源的振动决定,u、λ因介质的性质而异。
1. 求波动方程(波函数)的方法 (1)已知原点 O 处的振动方程:直接由 y0=Acos(ωt+φ)写出波动方程 y=Acos[ω(t
x u
)+φ]
[注意] 当波沿 x 轴负向传播时,上式中 x 前改为+号。波动方程表示 x 轴上任一点(坐标为 x)的振动。 (原点处振动传到 x 处需时间等于 u
4. 波的干涉(两相干波的叠加)
②相位差与相长干涉、相消干涉:Δφ=φ2-φ1=
2π λ
( r 2 - r1 ) =
{
± 2kπ
加强
(Δ r = r2 - r1 = ± kλ )
± (2k + 1)π 减弱 (Δ r = r2 - r1 = ±(2k + 1) λ 2)
5. 半波损失:波从波疏媒质(ρu 较小)传向波密媒质(ρu 较大) ,在反射点处,反射波与入射波的相位差Δφ= ,波程差 Δ= 2 λ (相当于反射波多走了 2 λ ) 。 (注)相位差
3. 安培力(安培定律) :矢量式 df Id B ,其中 I、B 分别是 d 中的电流与 d 所在处的磁感应强度。
(1)电流元所受磁场力: df
IdB sin
, 方向: Id B
( d 的方向即电流I方向)
*当各处电流元受力同向时,对标量式直接积分;反之,先计算 df 在各坐标轴的分量,积分后求合力。 (2)一段载流直导线:
2
2
k m
可直接写φ的情况:振子从 x 轴正向最远端 x m 处由静止释放时φ=0,A= x m ,从 x 轴负向最远端由静止释放时 (1) 公式法: (一般取|φ|≤π)
到两个值,这时必须结合 sin 或 cos 的正、负关系判定其象限,也可应用旋转矢量确定 值或所在象限。 (2) 旋转矢量法:由 t=0 时 x 0 的大小及 v0 的方向可作出旋转矢量图。反之,由图可知 A、φ值及 v0 方向。 (3) 振动曲线法:由 x-t 图观察 A、T。由特征点的位移、速度方向(正、负) ,按方法(1)求φ。 其中振动速度的方向是下一时刻的位置移动方向,它不同于波动中用平移波形图来确定速度方向。 3. 简谐振动的能量:Ek=
其中:
(B/ t) dS d
D S ( j c t ) d S (全电流定律——电流及变化的电场都能产生磁场)
m
/ dt , (D / t) dS de / dt , jc dS I c
2
【简谐振动】
dt dt
12 21
;
12 MI 2 , 21 MI 1 , M 12 M 21 M ;互感系数 M 1 2
I2 I1
3. 电磁场与电磁波
D D 位移电流: I D= S t d S , jD t
全电流定律:
(各向同性介质 D
当v
B 时,电荷在磁场中作圆周运动 qvB mv 2 / r
2. 霍耳效应——电流与磁场方向垂直,在垂直于 I 与 B 的方向上存在电势。
霍耳电势差 U H
1 1 IB ,霍耳系数 R H (b 是导体在B方向的厚度) ne ne b
(正、负载流子分别与电流同向、反向,根据它们在洛仑兹力作用下的运动方向,可判定导体表面电荷的正、负)
B dS ,再用
Ei
i
d m 求电动势,最后指出电动势的方向。 (不用法拉弟定律:①直导线切割磁力线;②L不动且已知 B / t 的值) dt
[注] ①此方法尤其适用动生、感生兼有的情况;②求 m 时沿 B 相同的方向取 dS ,积分时 t 作为常量;③长直电流
L
B Ei d ds s t
B B s t d s ,B与回路平面垂直时 i t S
B (B增大时 同磁场方向,右图) t
S
B t
[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出 t 时刻穿过回路的磁通量 m
2 tg A1 A2 2 2A 1 A 2 cos( 2 1 ) ,
1 A1 sin 1 A 2 sin 2 A1 cos 1 A 2 cos 2
A=A1+A2 (加强) 当Δφ=φ2-φ1=(2k+1)π时: A=|A1-A2| (减弱)