离散型随机变量习题
原创1:2.3.1 离散型随机变量的均值(习题课)
7
a
7
∵E(Y)= ,∴- +3= ,
3
3
3
∴a=2.
两点分布与二项分布的均值
例4.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保
险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X
3
27
32 (21 43 +42 22 ൯
P(ξ=2)=
34
=
14
,
27
P(ξ=3)=
3 42 2
34
4
=
9
8
.
27
典例解析
综上知,ξ的分布列
ξ
1
2
3
P
1
27
14
27
4
9
1
14
4 65
从而有:Eξ=1× +2× +3× = .
27
27
9 27
典例解析
例2.某学校为调查高一年级学生每天晚自习自主支配学习时间(指除了完成
第二章
随机变量及其分布
§2.3.1离散型随机变量的均值(习题课)
高中数学选修2-3·精品课件
自主练习
1.若随机变量X的分布列如下表所示,已知E(X)=1.6,则a-b=(
X
0
1
2
3
P
0.1
a
b
0.1
A. 0.2
B.0.1
C.-0.2
D.-0.4
)
解析:由题意知,a+b=0.8,
且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.
专题01 离散型随机变量分布列(解析版)
概率与统计专题01 离散型随机变量分布列常见考点考点一 离散型随机变量分布列典例1.某校组织“百年党史”知识比赛,每组有两名同学进行比赛,有2道抢答题目.已知甲、乙两位同学进行同一组比赛,每人抢到每道题的机会相等.抢到题目且回答正确者得100分,没回答者得0分;抢到题目且回答错误者得0分,没抢到者得50分,2道题目抢答完毕后得分多者获胜.已知甲答对每道题目的概率为45.乙答对每道题目的概率为35,且两人各道题目是否回答正确相互独立.(1)求乙同学得100分的概率;(2)记X 为甲同学的累计得分,求X 的分布列和数学期望. 【答案】(1)37100; (2)分布列见解析,()100E X =. 【解析】 【分析】(1)应用独立事件乘法公式及互斥事件的概率求法,求乙同学得100分的概率;(2)由题意知X 可能值为{0,50,100,150,200},分别求出对应概率,写出分布列,进而求期望. (1)由题意,乙同学得100分的基本事件有{乙抢到两题且一道正确一道错误}、{甲乙各抢到一题都回答正确}、{甲抢到两题且回答错误},所以乙同学得100分的概率为1312141311113722252525252525100⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=. (2)由题意,甲同学的累计得分X 可能值为{0,50,100,150,200},1111111313134(0)225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=;121112134(50)222525252525P X ==⨯⨯⨯⨯+⨯⨯⨯⨯=;1212111414139(100)2225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=;14124(150)2252525P X ==⨯⨯⨯⨯=;14144 (200)252525P X==⨯⨯⨯=;分布列如下:所以期望44944()050100150200100 2525252525E X=⨯+⨯+⨯+⨯+⨯=.变式1-1.第24届冬季奥林匹克运动会(The XXIV Olympic Winter Games),即2022年北京冬季奥运会,于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为34;乙在第一轮和第二轮比赛中获胜的概率分别为45和58;丙在第一轮和第二轮获胜的概率分别是p和32p-,其中34p<<.(1)甲、乙、丙三人中,谁进入决赛的可能性最大;(2)若甲、乙、丙三人中恰有两人进人决赛的概率为2972,求p的值;(3)在(2)的条件下,设进入决赛的人数为ξ,求ξ的分布列.【答案】(1)甲进入决赛可能性最大(2)23 p=(3)分布列见解析【解析】【分析】(1)分别求出甲、乙、丙三人初赛的两轮均获胜的概率,然后比较即可;(2)利用相互独立事件的概率的求法分别求出甲和乙进入决赛的概率、乙和丙进入决赛的概率、甲和丙进入决赛的概率,即可通过甲、乙、丙三人中恰有两人进人决赛的概率为2972,列方程求解;(3)先确定进入决赛的人数为ξ的取值,依次求出每一个ξ值所对应的概率,列表即可.(1)甲在初赛的两轮中均获胜的概率为:13394416P =⨯= 乙在初赛的两轮中均获胜的概率为:2451582P =⨯=丙在初赛的两轮中均获胜的概率为:233322P P P P P ⎛⎫=⋅-=-+ ⎪⎝⎭∵3043012p p ⎧<<⎪⎪⎨⎪<-<⎪⎩,∵1324p <<,∵2339941616P P ⎛⎫=--+< ⎪⎝⎭ ∵甲进入决赛可能性最大. (2)()()()123132231111P P P PP P P P P P =⨯++⨯---222913931139111162216222216p p p p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯--+⨯-⨯-+⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2972=整理得21827100p p -+=,解得23p =或56p =,又∵1324p <<,∵23p =; (3)由(2)得,丙在初赛的两轮中均获胜的概率为:345199P =-=, 进入决赛的人数为ξ可能取值为0,1 ,2,3,71417(0)162972P ξ==⨯⨯=, 71591471411(1)16291629162932P ξ==⨯⨯+⨯⨯+⨯⨯=, 91495171529(2)16291692162972P ξ==⨯⨯+⨯⨯+⨯⨯=, 9155(3)162932P ξ==⨯⨯=, ∵ξ的分布列为变式1-2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)若有一辆车独立地从甲地到乙地,求这一辆车未遇到红灯的概率;(2)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望. 【答案】(1)14(2)分布列见解析,1312【解析】 【分析】(1)利用相互独立事件概率计算公式,计算出所求概率.(2)结合相互独立事件概率计算公式,计算出分布列并求得数学期望. (1)设“一辆车未遇到红灯”为事件A , 则()11111112344P A ⎛⎫⎛⎫⎛⎫=-⋅-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)随机变量X 的所以可能的取值为0,1,2,3, 则(0)P X ==1111(1)(1)(1)2344-⋅-⋅-=(1)P X ==1111111111111111123423423424⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-+-⋅⋅-+-⋅-⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (2)P X ==11111111111112342342344⎛⎫⎛⎫⎛⎫⋅-+⋅-⋅+-⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)P X ==111123424⋅⋅=. 随机变量X 的分布列:随机变量X 的数学期望:1111113()012342442412E X =⨯+⨯+⨯+⨯=. 变式1-3.对飞机进行射击,按照受损伤影响的不同,飞机的机身可分为∵,∵,∵三个部分.要击落飞机,必须在∵部分命中一次,或在∵部分命中两次,或在∵部分命中三次.设炮弹击落飞机时,命中∵部分的概率是16,命中∵部分的概率是13,命中∵部分的概率是12,射击进行到击落飞机为止.假设每次射击均击中飞机,且每次射击相互独立. (1)求恰好在第二次射击后击落飞机的概率; (2)求击落飞机的命中次数X 的分布列和数学期望. 【答案】(1)14; (2)分布列见解析,83. 【解析】 【分析】(1)把恰好在第二次射击后击落飞机的事件拆成两个互斥事件的和,再利用独立事件概率公式计算作答.(2)求出X 的可能值,并求出每个取值的概率,列出分布列并求出期望作答. (1)设恰好第二次射击后击落飞机为事件A 是第一次未击中∵部分,在第二次击中∵部分的事件与两次都击中∵部分的事件的和,它们互斥,所以25111()()6634P A =⨯+=.(2)依题意,X 的可能取值为1,2,3,4,1X =的事件是射击一次击中∵部分的事件,1(1)6P X ==,由(1)知,1(2)4P X ==, 3X =的事件是前两次射击击中∵部分、∵部分各一次,第三次射击击中∵部分或∵部分的事件,与前两次射击击中∵部分,第三次射击击中∵部分或∵部分的事件的和,它们互斥,12211111111(3)C ()()()32632623P X ==⨯⨯⨯++⨯+=, 4X =的事件是前三次射击击中∵部分一次,∵部分两次,第四次射击的事件,123111(4)C ()1324P X ==⨯⨯⨯=,所以X的分布列为:X的数学期望()11118 123464343E X=⨯+⨯+⨯+⨯=.【点睛】关键点睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成两两互斥事件的和,相互独立事件的积是解题的关键.典例2.高三学生甲、乙为缓解紧张的学习压力,相约本星期日进行“某竞技体育项目”比赛.比赛采用三局二胜制,先胜二局者获胜.商定每局比赛(决胜局第三局除外)胜者得3分,败者得1分,决胜局胜者得2分,败者得0分.已知每局比赛甲获胜的概率为23,各局比赛相互独立.(1)求比赛结束,乙得4分的概率;(2)设比赛结束,甲得X分,求X的概率分布与数学期望.【答案】(1)827;(2)分布列见解析,()14227E X=.【解析】【分析】(1)根据题意,求得得4分的事件,即可求得其概率;(2)根据题意,求得X的取值,再求概率从而求得分布列,再根据分布列求得数学期望即可.(1)若比赛结束,乙得4分,则比赛结果是甲以2:1获胜,故前两局比赛,甲胜1场,败1场,最后一局比赛,甲胜.则比赛结束,乙得4分的概率为122128 33327C⨯⨯⨯=.(2)若甲连胜2局结束比赛,甲得6分,其概率为224 39⎛⎫=⎪⎝⎭;若甲连败2局结束比赛,甲得2分,其概率为21139⎛⎫= ⎪⎝⎭;若甲以2:1结束比赛,甲得6分,其概率为12212833327C ⨯⨯⨯=; 若乙以2:1结束比赛,甲得4分,其概率为12211433327C ⨯⨯⨯=; 故X 的分布列如下所示:故()14201422469272727E X =⨯+⨯+⨯=. 变式2-1.现有甲、乙、丙三道多选题,某同学独立做这三道题,根据以往成绩,该同学多选题的得分只有2分和0分两种情况.已知该同学做甲题得2分的概率为34,分别做乙、丙两题得2分的概率均为23.假设该同学做完了以上三道题目,且做每题的结果相互独立. (1)求该同学做完了以上三题恰好得2分的概率; (2)求该同学的总得分X 的分布列和数学期望()E X . 【答案】(1)736(2)分布列见解析,数学期望()256E X = 【解析】 【分析】(1)根据相互独立事件的概率公式进行求解即可;(2)写出随机变量X 的所有可能取值,求出对应概率,从而可求出分布列,再根据期望公式即可求出期望. (1)解:记“该同学做完了以上三题恰好得2分”为事件A ,“该同学做甲题得2分”为事件B ,“该同学做乙题得2分”为事件C .“该同学做丙题得2分”为事件D ,由题意知32(),()()43P B P C P D ===, 因为A BCD BCD BCD =++,所以()()P A P BCD BCD BCD =++()()()P BCD P BCD P BCD =++()()()()()P B P C P D P B P C =+⋅()()()()P D P B P C P D +322322322711111143343343336⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)解:根据题意,X 的可能取值为0,2,4,6, 所以3221(0)11143336P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由(1)知7(2)36P X ==, 322121(6)433363P X ==⨯⨯==4(4)1(0)(2)(6)9P X P X P X P X ==-=-=-==, 故X 的分布列为所以174125()024********E X =⨯+⨯+⨯+⨯=. 变式2-2.某运动会中,新增加的“趣味乒乓球单打”是这届运动会的热门项目,比赛规则如下:两人对垒,开局前抽签决定由谁先发球(机会均等),此后均由每个球的赢球者发下一个球,对于每一个球,若发球者贏此球,发球者得1分,对手得0分;若对手赢得此球,发球者得0分,对手得2分.当有一人累计得分超过5分时,比赛就结束,得分高者获胜.已知在选手甲和乙的对垒中,发球一方赢得此球的概率都是0.6,各球结果相互独立.(1)假设开局前抽签结果是甲发第一个球,求比赛出现比分2:2的概率;(2)已知现在比分3:3,接下来由甲发球,两人又打了X 个球后比赛结束,求X 的分布列及数学期望.【答案】(1)0.304;(2)分布列见解析,() 2.904E X =. 【解析】 【分析】(1)把比赛出现比分2:2的事件拆成两个互斥的和,再分别求出每个事件的概率即可得解. (2)求出X 的所有可能值,再分析计算求出各个值的概率,列出分布列,求出期望作答.(1)比赛出现比分2:2的事件A 是甲发三球,前两球甲赢,第三球乙赢的事件1A 与甲发球乙赢、乙发球甲赢的事件2A 的和,事件1A 与2A 互斥,1()0.60.60.40.144P A =⨯⨯=,2()0.40.40.16P A =⨯=, 因此,12()()0.1440.160.304P A P A A =+=+=, 所以比赛出现比分2:2的概率为0.304. (2)X 的所有可能值为:2,3,4,因比分已是3:3,接下来由甲发球,且有一人累计得分超过5分时,比赛就结束,2X =的事件是甲发球乙赢,乙发球乙赢比赛结束的事件,(2)0.40.60.24P X ==⨯=,3X =的事件是以下3个互斥事件的和:甲发三球甲赢,比赛结束的事件;甲发第一球甲赢,发第二球乙赢,乙发球比赛结束的事件;甲发第一球乙赢,乙发第二球甲赢,甲发球比赛结束的事件,3(3)0.60.60.410.40.410.616P X ==+⨯⨯+⨯⨯=,4X =的事件是甲发前两球甲赢,发第三球乙赢,乙再发球比赛结束的事件,2(4)0.60.410.144P X ==⨯⨯=,所以X 的分布列为:X 的数学期望:()20.2430.61640.144 2.904E X =⨯+⨯+⨯=.变式2-3.为进一步加强未成年人心理健康教育,如皋市教育局决定在全市深入开展“东皋大讲堂”进校园心理健康教育宣讲活动,为了缓解高三学生压力,高三年级某班级学生在开展“东皋大讲堂”过程中,同座两个学生之间进行了一个游戏,甲盒子中装有2个黑球1个白球,乙盒子中装有3个白球,现同座的两个学生相互配合,从甲、乙两个盒子中各取一个球,交换后放入另一个盒子中,重复进行n 次这样的操作,记甲盒子中黑球的个数为n X ,恰好有2个黑球的概率为n a ,恰好有1个黑球的概率为n b .(1)求第二次操作后,甲盒子中没有黑球的概率; (2)求3X 的概率分布和数学期望()3E X .【答案】(1)427; (2)答案见解析,()32827E X = 【解析】 【分析】(1)由题意得1112,33a b ==,然后分析第二次操作后,甲盒子中没有黑球的情况,从而求解出对应概率;(2)先计算22,a b ,判断3X 的取值为0,1,2,分别计算对应的概率,列出分布列,利用期望公式求解()3E X . (1)由题意知,1112,33a b ==,两次后甲盒子没有黑球时,必须第一次甲盒子中取出一个黑球,第二次甲盒子(黑1白2)再取出一个黑球,乙盒子中(黑1白2)取出一个白球,则11243327P b =⨯⨯= (2)211121733327b a a =⨯+⨯⨯=,21121122163333327b a b ⎛⎫=⨯+⨯+⨯⨯= ⎪⎝⎭,由题意,3X 的取值为0,1,2,则32124144(0)33273243P X b ==⨯⨯+⨯=,3222112242146(1)33333273243P X a b ⎛⎫==⨯+⨯+⨯⨯+⨯= ⎪⎝⎭,32212153(2)333243P X a b ==⨯+⨯⨯=所以3X 的分布列为所以()314653281224324327E X =⨯+⨯= 【点睛】求解分布列的问题时,一般需要先判断变量的可能取值,然后分析题目中的情况计算每个取值对应的概率,从而列出分布列,代入期望公式求解期望.巩固练习练习一 离散型随机变量分布列1.暑假里大学二年级的H 同学去他家附近的某个大型水果超市打工.他发现该超市每天以10元/千克的价格从中心仓库购进若干A 水果,然后以15元/千克的价格出售;若有剩余,则将剩余的水果以8元/千克的价格退回中心仓库.H 同学记录了打工期间A 水果最近50天的日需求量(单位:千克),整理得下表:以上表中各日需求量的频率作为各日需求量的概率,解答下面的两个问题.(1)若超市明天购进A 水果150千克,求超市明天获得利润X (单位:元)的分布列及期望; (2)若超市明天可以购进A 水果150千克或160千克,以超市明天获得利润的期望为决策依据,在150千克与160千克之中应当选择哪一个?若受市场影响,剩余的水果只能以7元/千克的价格退回水果基地,又该选哪一个?请说明理由. 【答案】(1)分布列见解析,数学期望为743元 (2)超市应购进160千克,理由见解析. 【解析】 【分析】(1)求出X 的可能取值及相应的概率,进而得到分布列及数学期望;(2)设该超市一天购进水果160千克,当天利润为Y 元,求出Y 的可能取值及相应的概率,求出数学期望,与第一问求出的期望值相比,得到结论. (1)若A 水果日需求量为140千克,则()()()1401510150140108680X =⨯---⨯-=,且()56800.150P X ===, 若A 水果日需求量不少于150千克,则()1501510750X =⨯-=,且()75010.10.9P X ==-=,故X 的分布列为:()6800.17500.9743E X =⨯+⨯=元(2)设该超市一天购进水果160千克,当天利润为Y 元,则Y 的可能取值为140×5-20×2,150×5-10×2,160×5,即660,730,800 且()56600.150P Y ===,()107300.250P Y ===,()358000.750P Y ===,则()6600.17300.28000.7772E Y =⨯+⨯+⨯=,因为772>743,所以超市应购进160千克.2.某工厂生产一种产品,由第一、第二两道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.两道工序的加工结果直接决定该产品的等级:两道工序的加工结果均为A 级时,产品为一等品;两道工序恰有一道.工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示: 表一表二(1)用η(万元)表示一件产品的利润,求η的分布列和均值;(2)工厂对于原来的生产线进行技术升级,计划通过增加检测成本对第二工序进行改良,假如在改良过程中,每件产品检测成本增加()04x x ≤≤万元(即每件产品利润相应减少x 万元)时,第二工序加工结果为A 级的概率增加0.1x ,问该改良方案对一件产品的利润的均值是否会产生影响?并说明理由.【答案】(1)分布列答案见解析,()33.6E η=(2)该改良方案对一件产品的利润的均值会产生影响,理由见解析【解析】 【分析】(1)由题意η的可能取值为50,20,10,分别求出其概率得分布列,再由期望公式计算出期望; (2)设改良后一件产品的利润为ξ,同(1)求出ξ的各可能取值的概率,计算出期望,由期望函数()E ξ与()E η比较可得结论. (1)由题意可知,η的可能取值为50,20,10, 产品为一等品的概率为0.8×0.6=0.48, 产品为二等品的概率为0.8×0.4+0.2×0.6=0.44, 产品为三等品的概率为1-0.48-0.44=0.08, 所以η的分布列为()500.48200.44100.0833.6E η=⨯+⨯+⨯=.(2)改良方案对一件产品的利润的均值会产生影响,理由如下:由题意可知,改良过程中,每件产品检测成本增加()04x x ≤≤万元时,第二工序加工结果为A 级的概率增加0.1x ,设改良后一件产品的利润为ξ,则ξ可能的取值为50x -,20x -,10x -, 所以一等品的概率为()0.80.10.60.480.08x x ⨯+=+,二等品的概率为()()()0.810.60.110.80.60.10.440.06x x x ⨯-++-⨯+=-⎡⎤⎣⎦, 三等品的概率为()()10.480.080.440.060.080.02x x x -+--=-, 所以()()()()()()()0.480.08500.440.06200.080.0210 1.633.6E x x x x x x x ξ=+⨯-+-⨯-+-⨯-=+,因为()E ξ在[]0,4上单调递增,故当4x =时,()E ξ取到最大值为40, 又因为()()E E ξη≥,所以该改良方案对一件产品的利润的均值会产生影响.3.2022年北京冬奥会有包括中国队在内的12支男子冰球队参加比赛,12支参赛队分为三组,每组四队,2月9号至13号将进行小组赛,小组赛采取单循环赛制,即每个小组的四支参赛队在比赛中均能相遇一次,最后按各队在比赛中的得分多少来排列名次.小组赛结果的确定规则如下: ∵在常规时间里,获得最多进球的队为获胜者,获胜者得3分;∵在常规时间里,如果双方进球相等,每队各得1分.比赛继续进行,以突然死亡法(即在规定的时间内有一方进球)加时赛决出胜负,突然死亡法加时赛中获胜的队将额外获得1分;∵在突然死亡法加时赛中,如果双方都没有得分,那么进行点球赛,直至决出胜负,在点球赛中获胜的队将额外获得1分.若在小组赛中,甲队与乙队相遇,在常规时间里甲队获胜的概率为12,进球数相同的概率为14;在突然死亡法加时赛中,甲队获胜的概率为23,双方都没有得分的概率为16;在点球赛中,甲队获胜的概率为23,假设各比赛结果相互独立.(1)在甲队与乙队的比赛中,求甲队得2分获胜的概率;(2)在甲队与乙队的比赛中,求甲队得分X 的分布列及数学期望. 【答案】(1)736; (2)分布列见解析;3518. 【解析】 【分析】(1)由题可得甲队得2分获胜有两种情况,甲在加时赛中获胜或甲在点球赛中获胜,分别计算概率即得;(2)由题可得X 可取0,1,2,3,分别计算概率即得分布列,然后利用期望计算公式即得. (1)设甲在加时赛中获胜为事件A ,甲在点球赛中获胜为事件B , 则()(),121112143646336P A P B =⨯==⨯⨯=, ∵甲队得2分获胜的概率为()()11763636P P A P B =+=+=. (2)甲队得分X 可取0,1,2,3,()11101244P X ==--=,()121112111143646318P X ⎛⎫⎛⎫==⨯--+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()7236P X ==, ()132P X ==, ∵X 的分布列为∵甲队得分X 的数学期望为()117135012341836218E X =⨯+⨯+⨯+⨯=. 4.为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,某市建立了公共自行车服务系统,为了鼓励市民租用公共自行车出行,同时希望市民尽快还车,方便更多的市民使用,公共自行车按每次的租用时间进行缴费,具体缴费标准如下:∵租用时间不超过1小时,免费;∵超出一小时后每小时1元(不足一小时按一小时计算),一天24小时最高收费10元.某日甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5,0.4;租用时间为1小时以上且不超过2小时的概率分别是0.2,0.4. (1)求甲比乙付费多的概率;(2)设甲、乙两人付费之和为随机变量ξ,求ξ的分布列和数学期望. 【答案】(1)0.32 (2)分布列见解析,1.6 【解析】 【分析】(1)用合适的字母表达每个事件,并按照题意搞清楚事件之间的关系以及每个事件的概率即可; (2)求分布列和数学期望就是要搞清楚随机变量的可能取值范围,以及每个值都是由那些事件构成的. (1)根据题意,记“甲付费为0元、1元、2元、”为事件1A ,2A ,3A它们彼此互斥,且()10.5p A =,()20.2p A =,()()()31210.3p A P A P A =-+=⎡⎤⎣⎦, 同理,记“乙付费为0元、1元、2元”为事件1B ,2B ,3B它们彼此互斥,且()10.4p B =,()20.4p B =,()()()31110.2p B P B P B =-+=⎡⎤⎣⎦, 由题知,事件1A ,2A ,3A 与事件1B ,2B ,3B相互独立记,甲比乙付费多为事件M ,则有:213132M A B A B A B =++可得:()()()()()()()2131320.20.40.30.40.30.40.32P M P A P B P A P B P A P B =++=⨯+⨯+⨯= 故:甲比乙付费多的概率为:0.32; (2)由题知,ξ的可能取值为:0,1,2,3,4 则有:()()()1100.50.40.2P P A P B ξ===⨯=,()()()()()122110.50.40.20.40.28P P A P B P A P B ξ==+=⨯+⨯=,()()()()()()()13312220.50.20.30.40.20.40.3P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=, ()()()()()233230.20.20.30.40.16P P A P B P A P B ξ==+=⨯+⨯=, ()()()3340.30.20.06P P A P B ξ===⨯=;所以ξ的分布列为:ξ的数学期望:()00.210.2820.330.1640.06 1.6E ξ=⨯+⨯+⨯+⨯+⨯=,故答案为:0.32,1.6.5.随着2022年北京冬季奥运会的如火如茶的进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X表示每天吉祥物“冰墩墩”的需求量.(1)求X的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.【答案】(1)(2)8187(元)【解析】【分析】(1)X可取162,163,164,165,166,求出对应概率,然后再写出分布列即可;(2)设Y表示每天的利润,求出所有Y的取值,再根据期望公式即可得解.(1)解:X可取162,163,164,165,166,()21P X===,1622010()41P X===,163205()63P X===,1642010()51P X===,165204()3P X==,16620所以分布列为:(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=, 当163X =时,16350108140Y =⨯-=, 当164X =时,164508200Y =⨯=, 当165X =时,16450208220Y =⨯+=, 当166X =时,164502208240Y =⨯+⨯=, 所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元). 6.在中国共产党的正确领导下,我国顺利实现了第一个百年奋斗目标——全面建成小康社会.某地为了巩固扶贫成果,决定继续对甲、乙两家乡镇企业进行指导.指导方式有两种,一种是精准指导,一种是综合指导.已知对甲企业采用精准指导时,投资50万元,增加100万元收入的概率为0.2,增加200万元收入的概率为0.8,采用综合指导时,投资100万元,增加200万元收入的概率为0.6,增加400万收入的概率为0.4;对乙企业采用精准指导时,投资50万元,增加100万元收入的概率为0.3,增加200万元收入的概率为0.7,采用综合指导时,投资100万元,增加200万元收入的概率为0.7,增加400万元收入的概率为0.3.指导结果在两家企业之间互不影响.(1)若决策部门对甲企业进行精准指导、对乙企业进行综合指导,设两家企业增加的总收入为X 万元,求X 的分布列;(2)若有150万元无息贷款可供甲、乙两家企业使用,对两家企业应分别进行哪种指导总收入最高?请说明理由.【答案】(1)分布列见解析;(2)对甲企业进行综合指导、对乙企业进行精准指导总收入最高,理由见解析. 【解析】 【分析】(1)根据题意确定随机变量X 的所有可能取值,再求出每个取值对应事件的概率并列出分布列即可; (2)由条件知指导方案共有三种:对两家企业均进行精准指导;对甲企业精准指导、对乙企业综合指导;对甲企业综合指导、对乙企业精准指导,然后求出每种方案增加的总收入的数学期望,比较它们大小即可.(1)由题意知X 可能取值为300,400,500,600,则()3000.20.70.14P X ==⨯=,()4000.80.70.56P X ==⨯=,()5000.20.30.06P X ==⨯=,()6000.80.30.24P X ==⨯=,∵当决策部门对甲企业进行精准指导、对乙企业进行综合指导时,两家企业增加的总收入X 的分布列为(2)指导方案1:对甲、乙两家企业均进行精准指导.设两家企业增加的总收入为Y 万元,则Y 可能取值为200,300,400,且()2000.20.30.06P Y ==⨯=,()3000.20.70.80.30.38P Y ==⨯+⨯=,()4000.80.70.56P Y ==⨯=,()2000.063000.384000.56350E Y =⨯+⨯+⨯=(万元);指导方案2:对甲企业进行精准指导、对乙企业进行综合指导. 由(1)得()3000.144000.565000.066000.24440E X =⨯+⨯+⨯+⨯=(万元); 指导方案3:对甲企业进行综合指导、对乙企业进行精准指导.设两家企业增加的总收入为Z ,则Z 的可能取值为300,400,500,600, 且()3000.60.30.18P Z ==⨯=,()4000.70.60.42P Z ==⨯=,()5000.40.30.12P Z ==⨯=,()6000.40.70.28P Z ==⨯=, ()3000.184000.425000.126000.28450E Z =⨯+⨯+⨯+⨯=(万元).∵350440450<<,∵指导方案3:对甲企业进行综合指导、对乙企业进行精准指导总收入最高.7.2021年10月16日,神舟十三号载人飞船与天宫空间站组合体完成自主快速交会对接,航天员翟志刚、王亚平、叶光富顺利进驻天和核心舱,由此中国空间站开启了有人长期驻留的时代.为普及航天知识,某航天科技体验馆开展了一项“摸球过关”领取航天纪念品的游戏,规则如下:不透明的口袋中有3个红球,2个白球,这些球除颜色外完全相同.参与者每一轮从口袋中一次性取出3个球,将其中的红球个数记为该轮得分X ,记录完得分后,将摸出的球全部放回袋中.当参与完成第n 轮游戏,且其前n 轮的累计得分恰好为2n 时,游戏过关,可领取纪念品,同时游戏结束,否则继续参与游戏.若第3轮后仍未过关,则游戏也结束.每位参与者只能参加一次游戏. (1)求随机变量X 的分布列及数学期望;(2)若甲参加该项游戏,求甲能够领到纪念品的概率. 【答案】(1)分布列见解析,数学期望为1.8 (2)0.696 【解析】 【分析】(1)先得出随机变量X 可取的,并求出相应概率,列出分布列,计算数学期望;(2)分别求出甲取球1次后、取球2次后、取球3次后可领取纪念的概率,再相加得出甲能够领到纪念品的概率. (1)由题意得,随机变量X 可取的值为1,2,3,易知()10.3P X ==,()20.6P X ==,所以()30.1P X ==, 则随机变量X 的分布列如下:所以()10.320.630.1 1.8E X =⨯+⨯+⨯= (2)由(1)可知,参与者每轮得1分,2分,3分的概率依次为0.3,0.6,0.1, 记参与者第i 轮的得分为i X ,则其前n 轮的累计得分为12n Y X X X =+++,若参与者取球1次后可领取纪念品,即参与者得2分,则()20.6P Y ==;若参与者取球2次后可领取纪念品,即参与者获得的分数之和为4分,有“13+”、“31+”的情形, 则()420.30.10.06P Y ==⨯⨯=;若参与者取球3次后可领取纪念品,即参与者获得的分数之和为6分, 有“123++”、“321++”的情形,则()620.30.10.60.036P Y ==⨯⨯⨯=;记“参与者能够领取纪念品”为事件A ,则()()()()2460.60.060.0360.696P A P Y P Y P Y ==+=+==++=.8.为庆祝中国共产党建党100周年,某单位举办了以“听党召唤,使命在肩”为主题的知识竞赛活动,经过初赛、复赛,小张和小李进入决赛,决赛试题由3道小题组成,每道小题选手答对得1分,答错得0分,假设小张答对第一、第二、第三道小题的概率依次是45,34,12,小李答对每道小题的概率都是34.且他们每道小题解答正确与否相互之间没有影响,用X 表示小张在决赛中的得分,用Y 表示小李在决赛中的得分.(1)求随机变量X 的分布列和数学期望E (X ),并从概率与统计的角度分析小张和小李在决赛中谁的得分能力更强一些;(2)求在事件“4X Y +=”发生的条件下,事件“X Y >”的概率.【答案】(1)分布列答案见解析,数学期望:2.05,小李的得分能力更强一些 (2)431 【解析】【分析】(1)结合相互独立事件、独立重复试验的知识计算出X 的分布列以及()(),E X E Y ,由此作出判断. (2)利用条件概型概率计算公式,计算出事件“X Y >”的概率.(1)由题设知X 的可能取值为0,1,2,3所以()4311011154240P X ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭; ()431431431111111115425425425P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ()43143143119211154254254240P X ⎛⎫⎛⎫⎛⎫==⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()4313354210P X ==⨯⨯=, 所以随机变量X 的分布列为。
(完整版)离散型随机变量及其分布列测试题
离散型随机变量及其分布列测试题一、选择题:1、如果X 是一个离散型随机变量,则假命题是( )A. X 取每一个可能值的概率都是非负数;B. X 取所有可能值的概率之和为1;C. X 取某几个值的概率等于分别取其中每个值的概率之和;D . X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2、甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξA.4.06.01⨯-k B.76.024.01⨯-k C.6.04.01⨯-k D.24.076.01⨯-k3、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6 C . 10 D. 无法确定4、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点 D . 一枚是3点,一枚是1点或两枚都是2点5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的6. 如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3 B .5 C.6 D.107.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C .127 D.65 8.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2521(<<ξP 等于( )A.21B.91C. 61D.51 9.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为: A.41004901C C -B.4100390110490010C C C C C + C.4100110C C D.4100390110C C C .10.位于坐标原点的一个质点P ,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是21.质点P 移动5次后位于点(2,3)的概率是: A.5)21( B .525)21(C C.335)21(C D.53525)21(C C11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是A. 0.216B.0.36C.0.432 D .0.648 5.把一枚质地不均匀.....的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是: A .40243 B .1027C .516 D .1024312.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率)(B A P 等于: A9160 B 21 C 185 D 2169113.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是:A .95B .94 C .2111 D .2110 14.从甲口袋摸出一个红球的概率是31,从乙口袋中摸出一个红球的概率是21,则32是A .2个球不都是红球的概率 B. 2个球都是红球的概率C .至少有一个个红球的概率 D. 2个球中恰好有1个红球的概率 15.通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是101,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为: A .1001 B .2507 C .2501 D .10001 16. .已知随机变量ξ的分布列为:若12)(2=<x P ξ,则实数x 的取值范围是( )A.94≤<xB.94<≤xC.94≥<x x 或D.94>≤x x 或17. 12.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( )A.2101012)85()83(⋅C B .83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C18. 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )(A )175 (B ) 275 (C )375 (D )475二、填空题:19.若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____20. 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.解:由题,因为()p n B ,~ξ且ξ取不同值时事件互斥,所以,[][]n n n n n n n n n p p q p q q p C q p C q p C P P P P )21(121)()(21)4()2()0(44422200-+=-++=+++=+=+=+==-- ξξξ.(因为1=+q p ,所以p p q 21-=-)21.某射手射击1次,击中目标的概率是0.9 .她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是30.90.1⨯;③他至少击中目标1次的概率是410.1-.其中正确结论的序号是 ①③ __(写出所有正确结论的序号). 22.对有n (n ≥4)个元素的总体{}1,2,,n 进行抽样,先将总体分成两个子总体{}1,2,,m 和{}1,2,,m m n ++ (m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本.用ij P 表示元素i 和j 同时出现在样本中的概率,则1n P = ;4()m n m -三、解答题:23、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.24.一个口袋中装有n 个红球(5n ≥且n N ∈)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(Ⅰ)试用n 表示一次摸奖中奖的概率p ;(Ⅱ)若5n =,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n 取多少时,P 最大?24.(Ⅰ)一次摸奖从5n +个球中任选两个,有25n C +种,它们等可能,其中两球不同色有115n C C 种,一次摸奖中奖的概率10(5)(4)np n n =++.(Ⅱ)若5n =,一次摸奖中奖的概率59p =,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是:123380(1)(1)243P C p p =⋅⋅-=. (Ⅲ)设每次摸奖中奖的概率为p ,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为123233(1)(1)363P P C p p p p p ==⋅⋅-=-+,01p <<,2'91233(1)(31)P p p p p =-+=--,知在1(0,)3上P 为增函数,在1(,1)3上P 为减函数,当13p =时P 取得最大值.又101(5)(4)3n p n n ==++,解得20n =.25. 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31.(1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.•(1)X 的分布列为P (X=k )=·,k=0,1,2,3,4,5,6.(2)Y 的概率分布为:Y 0 1 2 3P·· ·Y 4 5 6P··(3)0.912 解析:(1)将通过每个交通岗看做一次试验,则遇到红灯的概率为,且每次试验结果是相互独立的,故X~B(6,), 2分所以X的分布列为P(X=k)=·,k=0,1,2,3,4,5,6. 5分(2)由于Y表示这名学生在首次停车时经过的路口数,显然Y是随机变量,其取值为0,1,2,3,4,5.其中:{Y=k}(k=0,1,2,3,4,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,故各概率应按独立事件同时发生计算.P(Y=k)=·(k=0,1,2,3,4,5),而{Y=6}表示一路没有遇上红灯,故其概率为P(Y=6)=.8分因此Y的概率分布为:Y 0 1 2 3P···Y 4 5 6P··12分(3)这名学生在途中至少遇到一次红灯的事件为 {X≥1}={X=1或X=2或…或X=6}, 14分 所以其概率为P (X≥1)==1-=≈0.912. 16分20.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X .22.甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、B3、C4、D5、C6、B7、C8、B二、填空题: 18、 20三、解答题:18、解:设黄球的个数为n ,由题意知 绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴ 44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种).所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X 24 8 16 ...n 2 ... P21 4181 161 ... n 21 ...∴ (10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22. [解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为: X 1 2 P3414。
高中数学离散型随机变量的期望与方差练习(含答案)
高中数学离散型随机变量的期望与方差练习(含答案)1.事件A为“三个点数都不同”,事件B为“至少出现一个6点”,求条件概率P(A|B)和P(B|A)。
2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则求P(-1<ξ<3)。
3.随机变量X的取值为1和2,若P(X=0)=0,E(X)=1,则求D(X)。
4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则求P(2<X<4)。
5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是多少?6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是多少?7.下面说法中正确的是:A.离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值;B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平;C.离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平;D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值。
8.每次试验的成功率为p,重复进行10次试验,其中前7次都未成功,后3次都成功的概率是多少?9.设随机变量X服从二项分布B(n,p),则P(X=k)的分布列为多少。
10.现在有10张奖券,其中7张未中奖,3张中奖,某人从中随机无放回地抽取1张奖券,则此人得奖金额的数学期望为多少?11.已知X~B(n,p),E(X)=2,D(X)=1.6,则n和p的值分别为多少?12.袋中有大小相同的5个球,分别标有1、2、3、4、5五个号码,现在在有放回抽取的条件下依次取出两个球,则它们的和的数学期望为多少?1.一个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A。
5B。
9C。
10D。
25.答案:C。
10.2.电灯泡使用时数在1 000小时以上的概率为0.2,则三个灯泡在1 000小时以后最多有一个坏了的概率是()A。
【高中数学】离散型随机变量及其分布列+练习题
离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η…表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…x i ,…,x n ,X 取每一个值x i (i =1,2,…,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,也用等式P(X =x i )=pi ,i =1,2,…,n 表示X 的分布列.X x 1x 2…x i …x nPp 1P 2…p i …p n三、离散型随机变量分布列的性质:1.i P ≥0,i =1,2,…,n ;211ni i p ==∑.四、常见离散型随机变量的分布列1.两点分布X 01P 1-p p如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N MnNC C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.例1:设随机变量X 的分布列如下:则p 为()X 1234P 161316pA.16B.13C.23D.12解:由16+13+16+p =1,∴p =13.2.抛掷2颗骰子,所得点数之和记为X ,那么X =4表示的随机试验结果是()A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i2a(i =1、2、3),则P (x =2)=()A.19B.16C.13D.14解:由12a +22a +32a =62a =1,得a =3.∴P (x =2)=22×3=13.=0.3,那么n =________.解:1n×3=0.3,∴n =10.例5:从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为X 012P解:P (X =0)=1C 25=110,P (X =1)=C 13C 12C 25=35,P (X =2)=C 23C 25=310.1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X 是一个离散型随机变量,其分布列为:X -101P 121-2q q 2则q 等于()A .1B .1±22C .1-22D .1+22解:由分布列的性质知1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.ξ123…nP k n k n k n …k n则k 的值为()A.12B .1C .2D .3解:由k n +k n +…+kn=1,∴k =1.ξ-2-10123P112312412112212112若P (ξ2<x )=1112,则实数x 的取值范围是__________.解:由P (ξ2<x )=1112且结合分布列得4<x ≤9.i i =1,2….2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率.例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),即X 01234P170167036701670170例10:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球解:得分ξ的取值为-3,-2,-1,0,1,2,3.ξ=-3时表示取得3个球均为红球,∴P (ξ=-3)=C 33C 311=1165.ξ=-2时表示取得2个红球和1个黑球,∴P (ξ=-2)=C 23C 15C 311=111.ξ=-1时表示取得2个红球和1个白球,或1个红球和2个黑球.∴P (ξ=-1)=C 23C 13+C 13C 25C 311=1355.ξ=0时表示取得3个黑球或1红、1黑、1白,∴P (ξ=0)=C 35+C 13C 13C 15C 311=13.ξ=1时表示取得1个白球和2个黑球或2个白球和1个红球,∴P (ξ=1)=C 13C 25+C 23C 13C 311=1355.ξ=2时表示取得2个白球和1个黑球,∴P (ξ=2)=C 23C 15C 311=111.ξ=3时表示取得3个白球,∴P (ξ=3)=C 33C 311=1165.∴所求概率分布列为:ξ-3-2-10123P116511113551313551111165例11:在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;(2)若胜场次数为X ,求X 的分布列.解:(1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为X 1234P4311831831131解:(1)所选3人中恰有一名男生的概率P =C 25C 14C 39=1021.(2)ξ的可能取值为0,1,2,3.P (ξ=0)=C 35C 39=542,P (ξ=1)=C 25C 14C 39=1021,P (ξ=2)=C 15C 24C 39=514,P (ξ=3)=C 34C 39=121.∴ξ的分布列为ξ0123P5421021514121解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η3210P5421021514121例13:第:31届奥林匹克夏季运动会于2016年8月5日至21日在里约热内卢举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm):若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为ξ0123P145528551255155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立,因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0123P0.10.350.40.15因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.离散型随机变量及其分布列训练题1一、选择题1.下列4个表格中,可以作为离散型随机变量分布列的一个是()A. B.C.D.2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A .ξ=4B .ξ=5C .ξ=6D .ξ≤53.离散型随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为()A.23B.34C.45D.564.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为()A.1220 B.2755 C.27220 D.21255.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是()A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2)二、填空题6.随机变量X 的分布列如下:X -101P a b c 其中a ,b ,c 成等差数列,则P (|X |=1)=______.7.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.三、解答题8.口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值;(2)X 的分布列.X 012P0.30.40.5X 012P0.3-0.10.8X1234P0.20.50.3X 012P1727379.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列.10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.1.C2.C3.解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1∴a =54.故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.解析:由超几何分布知P (ξ=2)=n -m A 2mA 3n答案:D6.解析:∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23238.解:(1)由P (X =2)=730知C 13C 1n +3×C 1n C 1n +2=730,∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为X 1234P710730712011209.解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13.3次试验选择了同一套方案且都试验成功的概率P =P (A 1·A 1·A 1+A 2·A 2·A 2)=313⎛⎫ ⎪⎝⎭+313⎛⎫ ⎪⎝⎭=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23),P (X =k )=C k 3313k-⎛⎫ ⎪⎝⎭23k⎛⎫⎪⎝⎭,k =0,1,2,3.X 的分布列为X 0123P127294982710.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2,依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立,所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16.(2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16,P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512.所以ξ的分布列为:ξ0356P 0.20.160.1280.512【参考答案】离散型随机变量及其分布列训练题2一.选择题(共15小题)1.设随机变量ξ的分布列由,则a 的值为()A .1B .C .D .2.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么()A .n=3B .n=4C .n=10D .n=93.下列表中能成为随机变量ξ的分布列的是()A .B .C .D .4.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值()A .0,1B .1,2C .0,1,2D .0,1,2,35.设离散型随机变量X 的概率分布如表:则随机变量X 的数学期望为()A .B .C .D .6.设随机变量X 的概率分布列为X 1234P m则P (|X ﹣3|=1)=()A .B .C .D .7.设随机变量X 的概率分布如右下,则P (X≥0)=()X ﹣101P p A .B .C .D .8.随机变量ξ的分布列为P (ξ=k )=,k=1,2,3,其中c 为常数,则P (ξ≥2)等于()A .B .C .D .9.两名学生参加考试,随机变量x 代表通过的学生数,其分布列为x 012p那么这两人通过考试的概率最小值为()A .B .C .D .10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X=4)的值为()A .B .C .D .ζ﹣101P 0.30.40.4ζ123P 0.40.7﹣0.1ζ﹣101P0.30.40.3ζ123P0.30.40.4X123P ip11.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是()A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率12.已知随机变量ξ~B(9,)则使P(ξ=k)取得最大值的k值为()A.2B.3C.4D.513.设随机变量的ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=()A.B.C.D.14.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()A.B.C.D.15.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是()A.取到红球的次数B.取到白球的次数C.2次取到的红球总数D.取球的总次数二.填空题(共5小题)16.设ξ是一个离散型随机变量,其概率分布列如下:ξ﹣101P0.5q2则q=.17.设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)=.18.随机变量X的分布列为X x1x2x3P p1p2p3若p1,p2,p3成等差数列,则公差d的取值范围是.19.设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)=.20.(2014•嘉定区校级模拟)己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m 个红球与10﹣m个白球,盒子B中有10﹣m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为时,D(ξ)取到最小值.ξ012P?三.解答题(共8小题)21.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.22.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.23.2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望.24.在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:现从第一小组、第二小组中各任选2人分析选课情况.(1)求选出的4人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.月收入(百元)赞成人数[15,25)8[25,35)7[35,45)10[45,55)6[55,65)2[65,75)1科目甲科目乙总计第一小组156第二小组246总计391225.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.26.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.一.选择题(共15小题)1.D;2.C;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.C;11.B;12.A;13.A;14.A;15.D;二.填空题(共5小题)16.;17.;18.[-,];19.;20.1或9;三.解答题(共8小题)21.解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.22.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴23.解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P (X=2)=+,.∴随机变量X 的分布列为∴E (X )==1.24.解:(1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B ,由于事件A 、B 相互独立,且P (A )=,P (B )=,所以选出的4人均选科目乙的概率为:P (A •B )=P (A )•P (B )=;(2)ξ可能的取值为0,1,2,3,则P (ξ=0)=,P (ξ=1)=+=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=,ξ的分布列为:所以ξ的数学期望为:0×+1×+2×+3×=1.25.解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=;P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.∴ξ的分布列为:ξ01234PE ξ=0×+1×+2×+3×+4×=.26.(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+++=16个,则A 事件包含基本事件的个数为=6个,则P (A )==,故1名顾客摸球3次停止摸奖的概率为,(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20.,,,,.所以,随机变量X 的分布列为:X 0123P (X )X 05101520P。
离散型随机变量练习题
离散型随机变量的分布列1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是A.5B.9C.10D.25 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于A.C 1012(83)10·(85)2 B.C 911(83)9(85)2·83 C.C 911(85)9·(83)2D.C 911(83)9·(85)2 3.现有一大批种子,其中优质良种占30%,从中任取5粒,记ξ为5粒中的优质良种粒数,则ξ的分布列是______.4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=_______.5.(2004年天津,理18)从4名男生和2名女生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.6.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号,写出随机变量ξ的分布列.7.(2004年春季安徽)已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及E ξ.8.(05重庆卷)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。
某顾客从此10张券中任抽2张,求:(1) 该顾客中奖的概率;(2) 该顾客获得的奖品总价值ξ (元)的概率分布列和期望E ξ。
答案1.B2.B3.3513 4. P (ξ=k )=C k 50.3k 0.75-k ,k =0,1,…,5 5.(1)ξ的分布列为(2)E ξ=1. (3)“所选3人中女生人数ξ≤1”的概率为P (ξ≤1)=54. 6.ξ的分布列为7. 的分布列为.9E ξ=8. (Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).离散型随机变量的期望值和方差1.设服从二项分布B (n ,p )的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n 、p 的值为A.n =4,p =0.6B.n =6,p =0.4C.n =8,p =0.3D.n =24,p =0.1 2.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为 A.2.44 B.3.376C.2.376D.2.4 3.设投掷1颗骰子的点数为ξ,则A.E ξ=3.5,D ξ=3.52B.E ξ=3.5,D ξ=1235C.E ξ=3.5,D ξ=3.5D.E ξ=3.5,D ξ=1635 4.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是A.E ξ=0.1B.D ξ=0.1C.P (ξ=k )=0.01k ·0.9910-k D.P (ξ=k )=C k 10·0.99k ·0.0110-k 5.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于 A.71 B.61 C.51 D.41 6.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D ξ等于A.0.2B.0.8C.0.196D.0.8047.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为_______.8.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.答案1—6. BCBAAC 7. 1.2.8. P (ξ=5)=473314C C C =354, P (ξ=6)=472324C C C =3518,P (ξ=7)=471334C C C =3512, P (ξ=8)=470344C C C =351,E ξ=5×354+6×3518+7×3512+8×351=35220=744.。
(完整版)离散型随机变量综合测试题(附答案)
离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X;④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( ) A.小球滚出的最大距离 B.倒出小球所需的时间C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数[答案] D [解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是( ) A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=5>4,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ) A.2 B.2或1 C.1或0 D.2或1或0 [答案] C[解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故ξ可能取值有两种0,1,故选C. 5.下列变量中,不是离散型随机变量的是( ) A.从2010张已编号的卡片(从1号到2010号)中任取一张,被取出的号数ξ B.连续不断射击,首次命中目标所需要的射击次数η C.某工厂加工的某种钢管内径与规定的内径尺寸之差ξ1 D.从2010张已编号的卡片(从1号到2010号)中任取2张,被取出的卡片的号数之和η1 [答案] C [解析] 离散型随机变量的取值能够一一列出,故A,B,D都是离散型随机变量,而C不是离散型随机变量,所以答案选C. 6.给出下列四个命题:①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.其中正确命题的个数是( ) A.1 B.2 C.3 D.4 [答案] D [解析] 由随机变量的概念知四个命题都正确,故选D. 7.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( ) A.只有X和ξB.只有Y C.只有Y和ξ D.只有ξ [答案] B [解析] 某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B. 8.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,阻值在950Ω~1200Ω之间;④一个在数轴上随机运动的质点,它在数轴上的位置记为X. 其中是离散型随机变量的是( ) A.①②B.①③ C.①④ D.①②④ [答案] A [解析] ①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量. 9.抛掷一枚均匀骰子一次,随机变量为( ) A.掷骰子的次数 B.骰子出现的点数 C.出现1点或2点的次数 D.以上都不正确 [答案] B 10.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( ) A.第5次击中目标 B.第5次末击中目标 C.前4次未击中目标 D.第4次击中目标 [答案] C [解析] 击中目标或子弹打完就停止射击,射击次数为ξ=5,则说明前4次均未击中目标,故选C. 二、填空题11.一木箱中装有8个同样大小的篮球,编号为1、2、3、4、5、6、7、8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有______种. [答案] 21 [解析] 从8个球中选出3个球,其中一个的号码为8,另两个球是从1、2、3、4、5、6、7中任取两个球.∴共有C27=21种. 12.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________. [答案] {0,1,2,3,4,5} 13.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的最大号码,则ξ=6表示的试验结果是___________________________________________________________ ________________________________________________________________________ _____________. [解析] 从6个球中选出3个球,其中有一个是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. [点评] “ξ=6”表示取出的3个球的最大号码是6,也就是说,从6个球中随机选出3个球,有一个球是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. 14.一用户在打电话时忘记了号码的最后三个数字,只记得最后三个数字两两不同,且都大于5,于是他随机拨最后三个数字(两两不同),设他拨到所要号码的次数为ξ,则随机变量ξ的可能取值共有________种. [答案] 24 [解析] 后三个数字两两不同且都大于5的电话号码共有A34=24(种).三、解答题 15.盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为ξ. (1)写出ξ的所有可能取值;(2)写出ξ=1所表示的事件. [解析] (1)ξ可能取的值为0,1,2,3. (2)ξ=1表示的事件为:第一次取得次品,第二次取得正品. 16.写出下列随机变量的可能取值,并说明随机变量的所取值表示的随机试验的结果: (1)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和; (2)某单位的某部电话在单位时间内收到的呼叫次数Y. [解析] (1)设所取卡片的数字之和为ξ,则ξ的可能取值为3,4,…,11,其中ξ=3,表示取出标有1,2的两张卡片,…,ξ=11,表示取出标有5,6的两张卡片. (2)Y 可取0,1,2,…,n,…,Y=i,表示被呼叫i次,其中i=0,1,2,…. 17.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),小王对三关中每个问题回答正确的概率依次是45,34,23,且每个问题回答正确与否相互之间没有影响,用X表示小王所获奖品的价值,写出X的所有可能取值及每个值所表示的随机试验的结果. [解析] X的可能取值为0,1 000,3 000,6 000. X=0,表示第一关就没有通过; X=1 000,表示第一关通过,而第二关没有通过; X=3 000,表示第一、二关通过,而第三关没有通过; X=6 000,表示三关都通过. 18.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ; (2)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋中随机取出3只球,被取出的最大号码数ξ; (3)电台在每个整点都报时,报时所需时间为0.5分钟,某人随机打开收音机对表,他所等待的时间ξ分. [解析] (1)ξ可取0,1,2. ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2. (2)ξ可取3,4,5. ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5. (3)ξ的可能取值为区间[0,59.5]内任何一个值,每一个可能取值表示他所等待的时间.。
离散型随机变量例题
路口3 路口2
路口1
P(X
1)
P( A1
A2 )
11 22
1 4
路口3
路口2 路口1
P(X
2)
P( A1
A2
A3 )
1 2
1 2
1 2
1 8
Chap2.2 离散型随机变 量
X 表示该汽车首次停车时已通过的路口的个数。 设 Ai = { 第i个路口遇红灯 }, i =1, 2, 3
路口3 路口2 路口1
各次试验条件就不同了,就不是贝努利概型,此
时,只能用古典概型求解。
贝努利概型与古典 概型有何区别 ?
P(
X
2)
C
915C
2 5
C3 100
贝努利概型对试验结果没有等可能的要求,但要求:
(1)每次试验条件相同,各次试验相互独立;
(2)每次试验只考虑两个互逆结果A 或 A ,
P( A1A2 A3 A4 ) P( A1)P( A2 )P( A3 )P( A4 ) (1 p)2 p2
Chap2.2 离散型随机变 量
例6若设生男孩的概率为 p,生女孩的概率为 q = 1- p,
令 X 表示随机抽查出生的4个婴儿中“男孩”的个数。 求: X 的分布律?
解: P{X 2} C42 p2(1 p)2
古典概型
P(X
2)
C113C
2 2
C135
1 35
Chap2.2 离散型随机变 量
所以其分布律为: X 0 1 2
pk
22 35
12 35
1 35
3
( 显然每个pk 0,
pk 1)
k0
图形
22 pk
课时作业19:2.3.2 离散型随机变量的方差
2.3.2 离散型随机变量的方差一、选择题1.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( ) A .m B .2m (1-m ) C .m (m -1)D .m (1-m )考点 三种常用分布的方差 题点 两点分布的方差 答案 D解析 随机变量ξ的分布列为ξ 0 1 P1-mm所以E (ξ)=0×(1-m )+1×m =m .所以D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).2.牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02,设发病的牛的头数为ξ,则D (ξ)等于( ) A .0.2 B .0.8 C .0.196 D .0.804 考点 均值、方差的综合应用 题点 求随机变量的均值与方差 答案 C3.设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k ·⎝⎛⎭⎫13n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( )A.29B .8C .12D .16 考点 三种常用分布的方差 题点 二项分布的方差 答案 B解析 由题意可知ξ~B ⎝⎛⎭⎫n ,23, 所以23n =E (ξ)=24.所以n =36.所以D (ξ)=n ×23×⎝⎛⎭⎫1-23=29×36=8. 4.若数据x 1,x 2,…,x n 的平均数为6,标准差为2,则数据2x 1-6,2x 2-6,…,2x n -6的平均数与方差分别为( )A .6,8B .12,8C .6,16D .12,16 考点 均值、方差的综合应用 题点 求随机变量的均值与方差 答案 C5.由以往的统计资料表明,甲、乙两运动员在比赛中得分情况为现有一场比赛,派哪位运动员参加较好?( ) A .甲 B .乙 C .甲、乙均可D .无法确定考点 均值、方差的综合应用 题点 均值与方差在实际中的应用 答案 A解析 E (X 1)=E (X 2)=1.1,D (X 1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D (X 2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D (X 1)<D (X 2),即甲比乙得分稳定,选甲参加较好. 6.已知随机变量ξ的分布列如下:若E (ξ)=2,则D (ξ)的最小值等于( )A.12B .2C .1D .0 考点 离散型随机变量方差的性质 题点 方差性质的应用 答案 D解析 由题意得a =1-13=23,所以E (ξ)=13m +23n =2,即m +2n =6.又D (ξ)=13×(m -2)2+23×(n -2)2=2(n -2)2,所以当n =2时,D (ξ)取最小值为0.7.某同学上学路上要经过3个路口,在每个路口遇到红灯的概率都是13,且在各路口是否遇到红灯是相互独立的,记X 为遇到红灯的次数,若Y =3X +5,则Y 的标准差为( ) A. 6 B .3 C. 3 D .2 考点 三种常用分布的方差 题点 二项分布的方差 答案 A解析 因为该同学经过每个路口时,是否遇到红灯互不影响,所以可看成3次独立重复试验,即X ~B ⎝⎛⎭⎫3,13,则X 的方差D (X )=3×13×⎝⎛⎭⎫1-13=23,所以Y 的方差D (Y )=32·D (X )=9×23=6,所以Y 的标准差为D (Y )= 6.8.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6D .6和5.6考点 三种常用分布的方差 题点 二项分布的方差 答案 B解析 因为X +Y =8,所以Y =8-X . 因此,求得E (Y )=8-E (X )=8-10×0.6=2, D (Y )=(-1)2D (X )=10×0.6×0.4=2.4. 二、填空题9.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.考点 离散型随机变量方差的性质题点 方差性质的应用 答案 59解析 由题意得⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,c -a =13,解得a =16,b =13,c =12,故D (ξ)=59.10.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则D (η)=________.考点 三种常用分布的方差 题点 二项分布的方差 答案 89解析 由随机变量ξ~B (2,p ),且P (ξ≥1)=59,得P (ξ≥1)=1-P (ξ=0)=1-C 02×(1-p )2=59,易得p =13.由η~B (4,p ),得随机变量η的方差D (η)=4×13×⎝⎛⎭⎫1-13=89. 11.有10张卡片,其中8张标有数字2,2张标有数字5,若从中随机抽出3张,设这3张卡片上的数字和为X ,则D (X )=________. 考点 均值、方差的综合应用 题点 求随机变量的均值与方差 答案 3.36解析 由题意得,随机变量X 的可能取值为6,9,12. P (X =6)=C 38C 310=715,P (X =9)=C 28×C 12C 310=715,P (X =12)=C 18×C 22C 310=115,则E (X )=6×715+9×715+12×115=7.8,D (X )=715×(6-7.8)2+715×(9-7.8)2+115×(12-7.8)2=3.36.三、解答题12.为了丰富学生的课余生活,促进校园文化建设,某校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文诵读比赛决赛.决赛通过随机抽签方式决定出场顺序.求: (1)甲、乙两班恰好在前两位出场的概率;(2)决赛中甲、乙两班之间的班级数记为X ,求X 的均值和方差. 考点 均值、方差的综合应用 题点 求随机变量的均值与方差解 (1)设“甲、乙两班恰好在前两位出场”为事件A ,则P (A )=A 22×A 44A 66=115.所以甲、乙两班恰好在前两位出场的概率为115.(2)随机变量X 的可能取值为0,1,2,3,4.P (X =0)=A 22×A 55A 66=13,P (X =1)=4×A 22×A 44A 66=415, P (X =2)=A 24×A 22×A 33A 66=15, P (X =3)=A 34×A 22×A 22A 66=215,P (X =4)=A 44×A 22A 66=115. 随机变量X 的分布列为因此,E (X )=0×13+1×415+2×15+3×215+4×115=43.D (X )=13×⎝⎛⎭⎫0-432+415×⎝⎛⎭⎫1-432+15×⎝⎛⎭⎫2-432+215×⎝⎛⎭⎫3-432+115×⎝⎛⎭⎫4-432=149. 13.有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中,ξA ,ξB 分别表示甲、乙两种材料的抗拉强度,在使用时要求抗拉强度不低于120,试比较甲、乙两种建筑材料的稳定程度(哪一个的稳定性较好). 考点 均值、方差的综合应用题点求随机变量的均值与方差解E(ξA)=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125,E(ξB)=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,D(ξA)=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,D(ξB)=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,由此可见,E(ξA)=E(ξB),D(ξA)<D(ξB),故两种材料的抗拉强度的均值相等,其稳定程度材料乙明显不如材料甲,即甲的稳定性好.四、探究与拓展14.根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表所示.若历史气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,则工期延误天数Y的方差为________.考点均值、方差的综合应用题点求随机变量的均值与方差答案9.8解析由已知条件和概率的加法公式知,P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,P(X≥900)=1-P(X<900)=1-0.9=0.1.所以随机变量Y的分布列为故E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3;D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的方差为9.8.15.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,均值E(X)及方差D(X).考点三种常用分布的方差题点二项分布的方差解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03×(1-0.6)3=0.064,P(X=1)=C13×0.6×(1-0.6)2=0.288,P(X=2)=C23×0.62×(1-0.6)=0.432,P(X=3)=C33×0.63=0.216,则X的分布列为X 012 3P 0.0640.2880.4320.216因为X~B(3,0.6),所以均值E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.。
第二章 2.1 2.1.1 离散型随机变量(优秀经典课时作业练习及答案详解)
[A组学业达标]1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②解答高考数学卷Ⅰ的时间是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3 D.4解析:由随机变量的概念可以直接判断①②③④都是正确的.答案:D2.将一个骰子掷两次,不能作为随机变量的是()A.两次掷出的点数之和B.两次掷出的最大点数C.第一次与第二次掷出的点数之差D.两次掷出的点数解析:将一个骰子掷两次,两次掷出的点数之和是一个变量,且随试验结果的变化而变化,是一个随机变量.同理,两次掷出的最大点数、第一次与第二次掷出的点数之差也都是随机变量,而两次掷出的点数不是一个变量.答案:D3.下列叙述中,是离散型随机变量的为()A.将一枚均匀硬币掷五次,出现正面和反面向上的次数之和B.某人早晨在车站等出租车的时间C.连续不断地射击,首次命中目标所需要的次数D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性解析:选项A,掷硬币不是正面向上就是反面向上,次数之和为5,是常量.选项B,是随机变量,但不能一一列出,不是离散型随机变量.选项D,事件发生的可能性不是随机变量.故选C.答案:C4.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量X ,则X 所有可能取值是( )A .1,2,…,5B .1,2,…,10C .2,3,…,10D .1,2,…,6解析:第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.答案:C5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为X ,则X =k 表示的试验结果为( )A .第k -1次检测到正品,而第k 次检测到次品B .第k 次检测到正品,而第k +1次检测到次品C .前k -1次检测到正品,而第k 次检测到次品D .前k 次检测到正品,而第k +1次检测到次品解析:X 就是检测到次品前正品的个数,X =k 表明前k 次检测到的都是正品,第k +1次检测到的是次品.答案:D6.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是________(填序号).①2枚都是4点;②1枚是1点,另1枚是3点;③2枚都是2点;④1枚是1点,另1枚是3点,或者2枚都是2点.解析:抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2,…,6. 而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧ x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2.答案:④7.下列随机变量中不是离散型随机变量的是________(填序号).①广州白云机场候机室中一天的旅客数量X ;②广州某水文站观察到一天中珠江的水位X ;③深圳欢乐谷一日接待游客的数量X ;④虎门大桥一天经过的车辆数X.解析:①③④中的随机变量X的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;②中的随机变量X可以取某一区间内的一切值,但无法按一定的次序一一列出,故不是离散型随机变量,故填②.答案:②8.一批产品共有12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数X的所有可能取值是________.解析:可能第一次就取得合格品,也可能取完次品后才取得合格品.X的结果有0,1,2,3.答案:0,1,2,39.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件次品、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为X,写出X的可能取值.解析:X的可能取值为0,1,2.X=0表示在两天检查中均发现了次品.X=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.X=2表示在两天检查中没有发现次品.10.指出下列随机变量是否是离散型随机变量,并说明理由:(1)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差;(2)在西安至成都的高铁线上,每隔500 m有一电线铁塔,将电线铁塔进行编号,则某一电线铁塔的编号X;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位X.解析:(1)不是离散型随机变量.因为实际测量值与规定值之间的差值无法一一列出.(2)是离散型随机变量.因为电线铁塔为有限个,其编号从1开始,可以一一列出.(3)不是离散型随机变量.因为水位在(0,29]范围内变化,对水位值我们不能按一定次序一一列出.[B组能力提升]11.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为()A.X=4 B.X=5C.X=6 D.X≤4解析:第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球…,共放了五回,第六次取到了红球,试验终止,故X=6.答案:C12.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为Y,则Y所有可能值的个数是()A.25 B.10C.7 D.6解析:∵Y表示取出的2个球的号码之和,又1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9,故Y的所有可能取值为3,4,5,6,7,8,9,共7个.答案:C13.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为________.解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4.答案:414.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为X,则随机变量X的所有可能取值的种数为________.解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.答案:2415.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分),若X是甲队在该轮比赛获胜时的得分(分数高者胜),写出X的所有可能取值,并说明X 的值表示的随机试验的结果.解析:X的所有可能取值是-1,0,1,2,3.(1)X=-1表示:甲抢到1题但答错了,而乙抢到2题都答错了.(2)X=0表示:甲没抢到题,乙抢到的题答错至少2个题或甲抢到2题,但回答1对1错,而乙答错1题.(3)X=1表示:甲抢1题且答对,乙抢到2题且1对1错或全错或甲抢到3题,且2对1错.(4)X=2表示:甲抢到2题均答对.(5)X=3表示:甲抢到3题均答对.16.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为X.(1)列表说明可能出现的结果与对应的X的值;(2)若规定取3个球,每取到一个白球加5分,取到黑球不加分,且最后不管结果如何都加上6分,求最终得分Y的可能取值,并判定Y的随机变量类型.解析:(1)(2)由题意可得Y=5X+6,而X可能的取值范围为{0,1,2,3},所以Y对应的各值是6,11,16,21.故Y的可能取值为6,11,16,21,显然Y为离散型随机变量.。
课时作业10:2.3.2 离散型随机变量的方差
2.3.2 离散型随机变量的方差一、选择题1.已知X ~B (n ,p ),E (X )=8,D (X )=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2D .10和0.82.若离散型随机变量X 的分布列如下,则X 的均值E (X )等于( )A.2 B .2或12C.12D .13.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .44.已知随机变量ξ的分布列如下表,则ξ的标准差为( )A.3.56 C .3.2D. 3.565.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10)则D (X )等于( )A .5B .8C .10D .166.某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x ,s 2+1002B.x +100,s 2+1002C.x ,s 2D.x +100,s 27.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k ·(13)n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( )A .8B .12 C.29 D .16二、填空题8.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=____________.9.已知某随机变量X 的分布列如下,其中x >0,y >0,随机变量X 的方差D (X )=12,则x +y=________.10.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.11.已知随机变量X 的分布列如下,若E (X )=3,则D (X )=________.三、解答题12.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,均值E (X )及方差D (X ).13.设袋子中装有a个红球、b个黄球、c个蓝球,且规定:取出1个红球得1分,取出1个黄球得2分,取出1个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每个球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列.(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=53,D(η)=59,求a∶b∶c.答案精析1.D 2.C 3.A 4.D 5.B6.D [设下月起每位员工的月工资增加100元后的均值和方差分别为x ′,s ′2,则 x ′=x 1+100+x 2+100+…+x 10+10010=x +100.方差s ′2=110×[(x 1+100-x -100)2+(x 2+100-x -100)2+…+(x 10+100-x -100)2]=s 2.故选D.] 7.A 8.599.34解析 由题意,得2x +y =1.E (X )=x +2y +3x =4x +2y =4x +2(1-2x )=2, D (X )=12=(1-2)2x +(2-2)2(1-2x )+(3-2)2x ,即2x =12,解得x =14.∴y =1-2×14=12.∴x +y =14+12=34.10.25 11.112.解 (1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216,则X 的分布列为因为X ~B (3,0.6)方差D (X )=3×0.6×(1-0.6)=0.72.13.解 (1)根据题意,得ξ的所有可能取值为2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为(2)根据题意,知η所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=⎝⎛⎭⎫1-532·a a +b +c +⎝⎛⎭⎫2-532·b a +b +c +⎝⎛⎭⎫3-532·c a +b +c =59, 化简⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.。
2021新高考数学专项训练题-离散型随机变量(含解析)
离散型随机变量问题一、单选题(共9题;共18分)1.(2021·贵阳二模)设随机变量,满足:,,若,则()A. 4B. 5C. 6D. 72.(2020·大连模拟)从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知,则A. B. C. D.3.(2018·榆社模拟)若随机变量服从二项分布,则()A. B.C. D.4.(2021·深圳模拟)已知随机变量,有下列四个命题:甲:乙:丙:丁:如果只有一个假命题,则该命题为()A. 甲B. 乙C. 丙D. 丁5.(2021·天河模拟)在某次数学测试中,学生成绩服从正态分布,若在内的概率为0.6,则任意选取两名学生的成绩,恰有一名学生成绩不高于80的概率为()A. 0.16B. 0.24C. 0.32D. 0.486.(2020高二上·黄冈期末)设随机变量服从正态分布,函数没有零点的概率是,则等于()A. 1B. 2C. 4D. 不能确定7.(2020·青岛模拟)已知某市居民在2019年用于手机支付的个人消费额(单位:元)服从正态分布,则该市某居民手机支付的消费额在内的概率为()附:随机变量服从正态分布,则,,.A. 0.9759B. 0.84C. 0.8185D. 0.47728.(2020·哈尔滨模拟)下列说法正确的是()A. 命题“ ,”的否定形式是“ ,”B. 若平面,,,满足,则C. 随机变量服从正态分布(),若,则D. 设是实数,“ ”是“ ”的充分不必要条件9.(2020·桂林模拟)已知随机变量X服从正态分布,,()A. B. C. D.二、多选题(共2题;共6分)10.(2020·枣庄模拟)下列结论正确的有()A. 若随机变量,,则B. 若,则C. 已知回归直线方程为,且,,则D. 已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为2211.(2020·济南模拟)已知在某市的一次学情检测中,学生的数学成绩服从正态分布,其中90分为及格线,120分为优秀线.下列说法正确的是().附:随机变量服从正态分布,则,,A. 该市学生数学成绩的期望为100B. 该市学生数学成绩的标准差为100C. 该市学生数学成绩及格率超过0.8D. 该市学生数学成绩不及格的人数和优秀的人数大致相等三、填空题(共3题;共3分)12.(2021·八省联考)对一个物理量做次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差,为使误差在的概率不小于0.9545,至少要测量________次(若,则).13.(2021·淄博零模)已知随机变量,若,则________.14.(2020·淄博模拟)设随机变量,若实数a满足,则a的值是________四、解答题(共12题;共120分)15.(2021·韶关模拟)在一次大范围的随机知识问卷调查中,通过随机抽样,得到参加问卷调查的100人的得分统计结果如下表所示:得分(1)由频数分布表可以大致认为,此次问卷调查的得分,近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表).①求的值;②若,求的值;(2)在(1)的条件下,为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.16.(2020·济宁模拟)过去五年,我国的扶贫工作进入了“精准扶贫”阶段.目前“精准扶贫”覆盖了全部贫困人口,东部帮西部,全国一盘棋的扶贫格局逐渐形成.到2020年底全国830个贫困县都将脱贫摘帽,最后4335万贫困人口将全部脱贫,这将超过全球其他国家过去30年脱贫人口总和.2020年是我国打赢脱贫攻坚战收官之年,越是到关键时刻,更应该强调“精准”.为落实“精准扶贫”政策,某扶贫小组,为一“对点帮扶”农户引种了一种新的经济农作物,并指导该农户于2020年初开始种植.已知该经济农作物每年每亩的种植成本为1000元,根据前期各方面调查发现,该经济农作物的市场价格和亩产量均具有随机性,且两者互不影响,其具体情况如下表:(1)设2020年该农户种植该经济农作物一亩的纯收入为X元,求X的分布列;(2)若该农户从2020年开始,连续三年种植该经济农作物,假设三年内各方面条件基本不变,求这三年中该农户种植该经济农作物一亩至少有两年的纯收入不少于16000元的概率;(3)2020年全国脱贫标准约为人均纯收入4000元.假设该农户是一个四口之家,且该农户在2020年的家庭所有支出与其他收入正好相抵,能否凭这一亩经济农作物的纯收入,预测该农户在2020年底可以脱贫?并说明理由.17.(2020·沈阳模拟)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间的人数,求X的分布列和数学期望.(附:若随机变量,则,,)18.(2020·南昌模拟)某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z来衡量产品的质量.当时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标Z的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.(1)从该企业生产的所有产品中随机抽取4件,求至少有1件优等品的概率;(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测,买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X元,求X的分布列与数学期望.19.(2020·江西模拟)冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标A.现从采集的血液样品中抽取500份检测指标A的值,由测量结果得下侧频率分布直方图:(1)求这500份血液样品指标A值的平均数和样本方差(同一组数据用该区间的中点值作代表,记作);(2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中近似为样本平均数,近似为样本方差.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标A的值,结果发现4名医生血液中指标A的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.附:参考数据与公式:,,;若,则① ;② ;③.,,,.20.(2020·漯河模拟)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:附参考数据:,若随机变量X服从正态分布,则,,.(1)根据频率分布直方图,估计50位农民的平均年收入(单位:千元);(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得=6.92,利用该正态分布,求:①在扶贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?21.(2020·龙岩模拟)交强险是车主必须为机动车购买的险种,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系.每年交强险最终保险费计算方法是:交强险最终保险费,其中a为交强险基础保险费,A为与道路交通事故相联系的浮动比率,同时满足多个浮动因素的,按照向上浮动或者向下浮动比率的高者计算.按照我国《机动车交通事故责任强制保险基础费率表》的规定:普通6座以下私家车的交强险基础保险费a为950元,交强险费率浮动因素及比率如下表:上一个年度未发生有责任道路交通事故上两个年度未发生有责任道路交通事故上三个及以上年度未发生有责任道路交通事故上一个年度发生一次有责任不涉及死亡的道路交通事故上一个年度发生两次及以上有责任道路交通事故上一个年度发生有责任道路交通死亡事故某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计结果如下表:以这100辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题.(1)记X为一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望(数学期望值保留到个位数字);(2)某二手车销售商专门销售这一品牌的二手车,且将经销商购车后下一年的交强险最终保险费高于交强险基础保险费a的车辆记为事故车,假设购进一辆事故车亏损3000元,购进一辆非事故车盈利5000元.①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆是事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望.22.(2020·南京模拟)某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成.(1)求出甲考生正确完成题数的概率分布列,并计算数学期望;(2)若考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.试从至少正确完成2题的概率分析比较两位考生的实验操作能力.23.(2020·厦门模拟)一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,若摸出的“两个都是红球”出现3次获得200分,若摸出“两个都是红球”出现1次或2次获得20分,若摸出“两个都是红球”出现0次则扣除10分(即获得-10分).(1)设每轮游戏中出现“摸出两个都是红球”的次数为X,求X的分布列;(2)玩过这款游戏的许多人发现,若干轮游戏后,与最初的分数相比,分数没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.24.(2020·莆田模拟)为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为45和55.下面是根据调查结果绘制的网民日均浏览购物网站时间的频率分布直方图,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性有10人.参考公式:,其中.参考数据:0.102.7063.841 5.024 6.635 7.879 10.828(1)根据已知条件完成下面的列联表,并判断是否有90%的把握认为是否为“网购达人”与性别有关;(2)将上述调査所得到的频率视为概率,现在从该地的网民中随机抽取3名,记被抽取的3名网民中的“网购达人”的人数为X,求X的分布列、数学期望和方差.25.(2020·池州模拟)某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:,,,,,,,,,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差,以频率值作为概率估计值.(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分及众数;(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间内的个数为,求的分布列及数学期望;(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为,依据以下不等式评判(表示对应事件的概率):① ,② ,③ ,其中.评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评?26.(2020·辽宁模拟)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有天,从这天中任取两天,设为这两天中客流量超过7万人的天数.求的分布列和期望.答案解析部分一、单选题1.【答案】A【解析】【解答】由题意可得:,解得:,则:,故答案为:A。
数学(选修23)练习8.2.6离散型随机变量的数学期望
第8章 8.21.已知随机变量ξ的分布列如下,则E (ξ)等于( )A .1B .13C .4.5D .2.4解析:E (ξ)=1×0.5+3×0.3+5×0.2=2.4. 答案:D2.有10件产品,其中3件是次品,从中任取2件,若X 表示取到的次品的个数,则E (X )等于( )A .35B .815C .1415D .1解析:离散型随机变量X 服从N =10,M =3,n =2的超几何分布. ∴E (X )=nM N =2×310=35.答案:A3.一名射手每次射击中靶的概率均为0.8,则他独立射击3次时中靶次数X 的均值为( )A .0.8B .0.83C .3D .2.4解析:射手独立射击3次中靶次数X 服从二项分布,即X ~B (3,0.8),故E (X )=3×0.8=2.4.答案:D4.口袋中有5个球,编号分别为1,2,3,4,5,从中任取3个球,以ξ表示取出球的最大号码,则E (ξ)=________.解析:由题意知,ξ的分布列为所以E (ξ)=3×110+4×310+5×610=4.5.答案:4.55.某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门,首次到达此门,系统会随机 (即等可能)为你打开一个通道.若是1号通道,则需要1 h 走出迷宫;若是2号通道、3号通道,则分别需要2 h,3 h 返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需时间.(1)求ξ的分布列. (2)求ξ的均值.解:(1)ξ的所有可能取值为1,3,4,6. P (ξ=1)=13,P (ξ=3)=16,P (ξ=4)=16,P (ξ=6)=13.所以ξ的分布列为(2)E (ξ)=1×13+3×16+4×16+6×13=72(h).。
概率论与数理统计第二章课后习题及参考答案
概率论与数理统计第二章课后习题及参考答案1.离散型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=≤=.4,1,42,7.0,21,2.0,1,0)()(x x x x x X P x F 求X 的分布律.解:)0()()(000--==x F x F x X P ,∴2.002.0)01()1()1(=-=----=-=F F X P ,5.02.07.0)02()2()2(=-=--==F F X P ,3.07.01)04()4()4(=-=--==F F X P ,∴X 的分布律为2.设k a k X P 3()(==, ,2,1=k ,问a 取何值时才能成为随机变量X 的分布律.解:由规范性,a a a n n k k 2321]32(1[32lim )32(11=--=⋅=+∞→∞+=∑,∴21=a ,此时,k k X P 32(21)(⋅==, ,2,1=k .3.设离散型随机变量X 的分布律为求:(1)X 的分布函数;(2)21(>X P ;(3))31(≤≤-X P .解:(1)1-<x 时,0)()(=≤=x X P x F ,11<≤-x 时,2.0)1()()(=-==≤=X P x X P x F ,21<≤x 时,7.0)1()1()()(==+-==≤=X P X P x X P x F ,2≥x 时,1)2()1()1()()(==+=+-==≤=X P X P X P x X P x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=.2,1,21,7.0,11,2.0,1,0)(x x x x x F .(2)方法1:8.0)2()1()21(==+==>X P X P X P .方法2:8.02.01)21(121(1)21(=-=-=≤-=>F X P X P .(3)方法1:1)2()1()1()31(==+=+-==≤≤-X P X P X P X P .方法2:101)01()3()31(=-=---=≤≤-F F X P .4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的概率都是0.4,而当第一组成功时,每年的销售额可达40000元;当第二组成功时,每年的销售额可达60000元,若失败则分文全无.以X 记这两种新药的年销售额,求X 的分布律.解:设=i A {第i 组取得成功},2,1=i ,由题可知,1A ,2A 相互独立,且4.0)()(21==A P A P .两组技术人员试制不同类型的新药,共有四种可能的情况:21A A ,21A A ,21A A ,21A A ,相对应的X 的值为100000、40000、60000、0,则16.0)()()()100000(2121====A P A P A A P X P ,24.0)()()()40000(2121====A P A P A A P X P ,24.0)()()()60000(2121====A P A P A A P X P ,36.0)()()()0(2121====A P A P A A P X P ,∴X 的分布律为5.对某目标进行独立射击,每次射中的概率为p ,直到射中为止,求:(1)射击次数X 的分布律;(2)脱靶次数Y 的分布律.解:(1)由题设,X 所有可能的取值为1,2,…,k ,…,设=k A {射击时在第k 次命中目标},则k k A A A A k X 121}{-== ,于是1)1()(--==k p p k X P ,所以X 的分布律为1)1()(--==k p p k X P , ,2,1=k .(2)Y 的所有可能取值为0,1,2,…,k ,…,于是Y 的分布律为1)1()(--==k p p k Y P , ,2,1,0=k .6.抛掷一枚不均匀的硬币,正面出现的概率为p ,10<<p ,以X 表示直至两个面都出现时的试验次数,求X 的分布律.解:X 所有可能的取值为2,3,…,设=A {k 次试验中出现1-k 次正面,1次反面},=B {k 次试验中出现1-k 次反面,1次正面},由题知,B A k X ==}{,=AB ∅,则)1()(1p p A P k -=-,p p B P k 1)1()(--=,p p p p B P A P B A P k X P k k 11)1()1()()()()(---+-=+=== ,于是,X 的分布律为p p p p k X P k k 11)1()1()(---+-==, ,3,2=k .7.随机变量X 服从泊松分布,且)2()1(===X P X P ,求)4(=X P 及)1(>X P .解:∵)2()1(===X P X P ,X 100000060000400000P0.160.240.240.36∴2e e2λλλλ--=,∴2=λ或0=λ(舍去),∴224e 32e !42)4(--===X P .)1()0(1)1(1)1(=-=-=≤-=>X P X P X P X P 222e 31e 2e 1----=--=.8.设随机变量X 的分布函数为⎩⎨⎧<≥+-=-.0,0,0,e )1(1)(x x x x F x 求:(1)X 的概率密度;(2))2(≤X P .解:(1)⎩⎨⎧<≥='=-.0,0,0,e )()(x x x x F x f x ;(2)2e 31)2()2(--==≤F X P .9.设随机变量X 的概率密度为xx Ax f e e )(+=-,求:(1)常数A ;(2))3ln 210(<<X P ;(3)分布函数)(x F .解:(1)⎰⎰+∞∞--+∞∞-+==xAx x f xx d e e d )(1A A x A x x x 2|e arctan d e 21e 2π==+=∞+∞-∞+∞-⎰,∴π2=A .(2)61|e arctan 2d e e 12)3ln 210(3ln 213ln 210==+=<<⎰-x x x x X P ππ.(3)xxxx xx t t f x F e arctan 2d e e 12d )()(ππ=+==⎰⎰∞--∞-.10.设连续型随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤<-+-≤=.a x a x a a x B A a x x F ,1,,arctan ,,0)(其中0>a ,试求:(1)常数A ,B ;(2)概率密度)(x f .解:(1)∵2arcsin (lim )0()(0)(π⋅-=+=+-=-=+-→B A a x B A a F a F a x ,1)(lim )0()(2==+==⋅++→x F a F a F B A a x π,∴21=A ,π1=B .(2)⎪⎩⎪⎨⎧≥<-='=.a x a x x a x F x f ,0,,1)()(22π.11.设随机变量X 的概率密度曲线如图所示,其中0>a .(1)写出密度函数的表达式,求出h ;(2)求分布函数)(x F ;(3)求)2(a X aP ≤<.解:(1)由题设知⎪⎩⎪⎨⎧≤≤-=其他.,0,0,)(a x x ah h x f ∵2d )(d )(10ah x x a h h x x f a=-==⎰⎰∞+∞-,∴ah 2=,从而⎪⎩⎪⎨⎧≤≤-=其他.,0,0,22)(2a x x a a x f .y hO a x(2)0<x 时,0d 0d )()(===⎰⎰∞-∞-xxt t t f x F ,a x <≤0时,220202d )22(d 0d )()(a x a x t t a a t t t f x F xx-=-+==⎰⎰⎰∞-∞-,a x ≥时,1)(=x F ,∴X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.a x a x axa x x x F ,1,0,2,0,0)(22.(3)41411(1)2()()2(=--=-=≤<a F a F a X a P .12.设随机变量X 在]6,2[上服从均匀分布,现对X 进行三次独立观察,试求至少有两次观测值大于3的概率.解:由题意知⎪⎩⎪⎨⎧≤≤=其他.,0,62,41)(x x f ,记3}{>=X A ,则43d 41)3()(63==>=⎰x X P A P ,设Y 为对X 进行三次独立观测事件}3{>X 出现的次数,则Y ~43,3(B ,所求概率为)3()2()2(=+==≥Y P Y P Y P )(()(333223A P C A P A P C +=3227)43(41)43(333223=+⋅=C C .13.设随机变量X 的概率密度为⎩⎨⎧<<=其他.,0,10,3)(2x x x f 以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,求:(1)}21{≤X 至少出现一次的概率;(2)}21{≤X 恰好出现两次的概率.解:由题意知Y ~),3(p B ,其中81d 3)21(2102==≤=⎰x x X P p ,(1)}21{≤X 至少出现一次的概率为512169)811(1)1(1)0(1)1(33=--=--==-=≥p Y P Y P .(2)}21{≤X 恰好出现两次的概率为51221811(81()1()2(223223=-=-==C p p C Y P .14.在区间],0[a 上任意投掷一个质点,以X 表示这个质点的坐标.设这个质点落在],0[a 中任意小区间内的概率与这个小区间的长度成正比例.试求X 的分布函数.解:0<x 时,事件}{x X ≤表示X 落在区间],0[a 之外,是不可能事件,此时0)()(=≤=x X P x F ;a x ≤≤0时,事件}{x X ≤发生的概率等于X 落在区间],0[x 内的概率,它与],0[x 的长度x 成正比,即x k x X P x F =≤=)()(,a x =时,1)(=≤x X P ,所以a k 1=,则此时ax x F =)(;a x ≥时,事件}{x X ≤是必然事件,有1)(=x F ,综上,⎪⎪⎩⎪⎪⎨⎧≥<≤<=,a x a x a x x x F ,1,0,,0,0)(.15.设X ~),2(2σN ,又3.0)42(=<<X P ,求)0(>X P .解:)24222()42(σσσ-<-<-=<<X P X P 3.0)0(2(=Φ-Φ=σ,∴8.03.0)0(2(=+Φ=Φσ,∴8.02(2(1)0(1)0(=Φ=-Φ-=≤-=>σσX P X P .16.设X ~)4,10(N ,求a ,使得9.0)10(=<-a X P .解:)10()10(a X a P a X P <-<-=<-)22102(a X a P <-<-=)2()2(a a -Φ-Φ=9.01)2(2=-Φ=a,∴95.02(=Φa,查标准正态分布表知645.12=a,∴290.3=a .17.设X ~)9,60(N ,求分点1x ,2x ,使得X 分别落在),(1x -∞,),(21x x ,),(2∞x 的概率之比为3:4:5.解:由题知5:4:3)(:)(:)(2211=><<<x X P x X x P x X P ,又∵1)()()(2211=>+<<+<x X P x X x P x X P ,∴25.041)(1==<x X P ,33.031)(21==<<x X x P ,125)(2=>x X P ,则5833.0127)(1)(22==>-=≤x X P x X P .∴25.0)360()360360()(111=-Φ=-<-=<x x X P x X P ,查标准正态分布表知03601<-x ,∴03601>--x ,则75.0)360(1)360(11=-Φ-=--Φx x 查标准正态分布表,有7486.0)67.0(=Φ,7517.0)68.0(=Φ,75.02)68.0()67.0(=Φ+Φ,∴675.0268.067.03601=+=--x ,即975.571=x .∵5833.0)360(360360()(222=-Φ=-≤-=≤x x X P x X P ,查标准正态分布表知5833.0)21.0(=Φ,∴21.03602=-x ,即63.602=x .18.某高校入学考试的数学成绩近似服从正态分布)100,65(N ,如果85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?解:设X 为考生的数学成绩,则X ~)100,65(N ,于是)85(1)85(≤-=>X P X P )1065851065(1-≤--=X P 0228.09772.01)2(1=-=Φ-=,即数学成绩为“优秀”的考生大致占总人数的2.28%.19.设随机变量X 的分布律为求2X Y =的分布律.解:Y 所有可能的取值为0,1,4,9,则51)0()0(====X P Y P ,307)1()1()1(==+-===X P X P Y P ,51)2()4(=-===X P Y P ,3011)3()9(====X P Y P ,∴Y 的分布律为20.设随机变量X 在)1,0(上服从均匀分布,求:(1)X Y e =的概率密度;(2)X Y ln 2-=的概率密度.解:由题设可知⎩⎨⎧<<=其他.,0,10,1)(x x f ,(1)当0≤y 时,=≤}{y Y ∅,X 2-1-013P5161511513011Y 0149P51307513011∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;e 0<<y 时,)e ()()(y P y Y P y F X Y ≤=≤=)(ln )ln (y F y X P X =≤=,此时,yy f y y y F y F y f X XY X 1)(ln 1)(ln )(ln )()(=='⋅'='=;e ≥y 时,1)()(=≤=y Y P y F Y ,0)(=y f Y ;∴⎪⎩⎪⎨⎧<<=其他.,0,e 0,1)(y y y f Y .(2)当0≤y 时,=≤}{y Y ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;当0>y 时,)e ()ln 2()()(2y Y X P y X P y Y P y F -≥=≤-=≤=)e (1)e (122y X y F X P ---=<-=,此时,222e 21)e ()e ()()(yy yX Y X F y F y f ---='⋅'-='=;∴⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY .21.设X ~)1,0(N ,求:(1)X Y e =的概率密度;(2)122+=X Y 的概率密度;(3)X Y =的概率密度.解:由题知22e 21)(x X xf -=π,+∞<<∞-x ,(1)0≤y 时,=≤=}e {y Y X ∅,∴0)()(=≤=y Y P y F Y ,0)(=y f Y ;0>y 时,)(ln )ln ()e ()()(y F y X P y P y Y P y F X X Y =≤=≤=≤=,此时,2)(ln 2e 21)(ln 1)(ln )(ln )()(y X XY X y f y y y F y F y f -=='⋅'='=π;综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2)(ln 2y y y f y Y π.(2)1<y 时,=≤+=}12{2y X Y ∅,∴0)()(=≤=y Y P y F Y ;1≥y 时,21()12()()(22-≤=≤+=≤=y X P y X P y Y P y F Y )2121(-≤≤--=y X y P 当1=y 时,0)(=y F Y ,故1≤y 时,0)(=y F Y ,0)(=y f Y ;当1>y 时⎰⎰------==210221212d e22d e21)(22y x y y x Y x x y F ππ,此时,41e)1(21)()(---='=y Y Y y y F y f π,综上,⎪⎩⎪⎨⎧≤>-=--.1,0,1,e )1(21)(41y y y y f y Y π.(3)0<y 时,=≤=}{y X Y ∅,∴0)()()(=≤=≤=y X P y Y P y F Y ,0≥y 时,)()()()(y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,0=y 时,0)(=y F Y ,∴0≤y 时,有0)(=y F Y ,0)(=y f Y ;0>y 时,22e 22)()()()()(y X X Y Y Y yf y f y F y F y f -=-+=-'+'=π,综上,⎪⎩⎪⎨⎧≤>=-.0,0,0,e 22)(22y y y f yY π.22.(1)设随机变量X 的概率密度为)(x f ,+∞<<∞-x ,求3X Y =的概率密度.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其他.,00,e )(x x f x 求2X Y =的概率密度.解:(1)0=y 时,0)()(=≤=y Y P y F Y ,0)(=y f Y ;0≠y 时,)()()()()(333y F y X P y X P y Y P y F X Y =≤=≤=≤=,3233331())(()()(-⋅=''='=y y f y y F y F y f XY Y ;∴⎪⎩⎪⎨⎧=≠=-.0,0,0),(31)(332y y y f y y f Y .(2)由于02≥=X Y ,故当0<y 时,}{y Y ≤是不可能事件,有0)()(=≤=y Y P y F Y ;当0≥y 时,有)()(()()()(2y F y F y X y P y X P y Y P y F X X Y --=≤≤-=≤=≤=;因为当0=y 时,0)0()0()(=--=X X Y F F y F ,所以当0≤y 时,0)(=y F Y .将)(y F Y 关于y 求导数,即得Y 的概率密度为⎪⎩⎪⎨⎧≤>-+=.0,0,0)],()([21)(y y y f y f y y f X X Y ,⎪⎩⎪⎨⎧≤>+=-.0,0,0),e e (21y y y y y.23.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他.,0,0,2)(2ππx xx f 求X Y sin =的概率密度.解:由于X 在),0(π内取值,所以X Y sin =的可能取值区间为)1,0(,在Y 的可能取值区间之外,0)(=y f Y ;当10<<y 时,使}{y Y ≤的x 取值范围是),arcsin []arcsin ,0(ππy y - ,于是}arcsin {}arcsin 0{}{ππ<≤-≤<=≤X y y X y Y .故)arcsin ()arcsin 0()()(ππ<≤-+≤<=≤=X y P y X P y Y P y F Y ⎰⎰-+=ππyX y X x x f x x f arcsin arcsin 0d )(d )(⎰⎰-+=ππππyy x xx xarcsin 2arcsin 02d 2d 2,上式两边对y 求导,得22222121)arcsin (21arcsin 2)(yyy yyy f Y -=--+-=ππππ;综上,⎪⎩⎪⎨⎧<<-=其他.,0,10,12)(2y y y f Y π.。
2020年高考数学复习题:离散型随机变量的期望、方差、正态分布
离散型随机变量的期望、方差、正态分布[基础训练]1.已知随机变量X 服从正态分布N (3,σ2),且P (X <5)=0.8,则P (1<X <3)= ( )A .0.6B .0.4C .0.3D .0.2答案:C 解析:由正态曲线的对称性可知,P (X <3)=P (X >3)=0.5, 故P (X >1)=P (X <5)=0.8, 所以P (X ≤1)=1-P (X >1)=0.2,P (1<X <3)=P (X <3)-P (X ≤1)=0.5-0.2=0.3.2.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的个数,则E (X )=( )A.35B.815C.1415 D .1答案:A 解析:离散型随机变量X 服从N =10,M =3,n =2的超几何分布,E (X )=nM N =2×310=35.3.某班有14名学生数学成绩优秀,如果从该班随机找出5名学生,其中数学成绩优秀的学生数X ~B ⎝ ⎛⎭⎪⎫5,14,则E (2X +1)=( )A.54 B.52 C .3D.72答案:D 解析:因为X ~B ⎝⎛⎭⎪⎫5,14,所以E (X )=54, 所以E (2X +1)=2E (X )+1=2×54+1=72.4.[2019山东淄博一模]设每天从甲地去乙地的旅客人数为随机变量X ,且X ~N (800,502),则一天中从甲地去乙地的旅客人数不超过900的概率为( )(参考数据:若X ~N (μ,σ2),有P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4)A .0.977 2B .0.682 6C .0.997 4D .0.954 4答案:A 解析:P (X ≤900)=P (X ≤700)+P (700<X ≤900)=12×(1-0.954 4)+0.954 4=0.977 2.5.已知离散型随机变量X 的分布列为则E (X )A.23 B.43 C .2 D.83答案:C 解析:由13+2-3q3+q 2=1,得 3q 2-3q =0,解得q =33或q =0(舍去),故X 的分布列为E (X )=1×13+2×13+3×3=2.6.[2019新乡模拟]某人从家乘车到单位,途中有3个交通岗亭,假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的数学期望为 ( )A .0.4B .1.2C .0.43D .0.6答案:B 解析:因为途中遇到红灯的次数X 服从二项分布,即X ~B (3,0.4),所以E (X )=3×0.4=1.2.7.[2019安徽合肥第一次教学质量检测]已知5件产品中有2件次品,现逐一检测,直至能确定所有次品,记检测的次数为ξ,则E (ξ)=( )A .3 B.72 C.185D .4答案:B 解析:由题意知,ξ的所有可能取值为2,3,4, 若将5件产品看作两类相同的元素(3个相同的白球,2个相同的黑球),则P (ξ=2)=C 22C 25=110,P (ξ=3)=C 33+C 12C 25=310,P (ξ=4)=C 13C 12C 25=35,∴E (ξ)=2×110+3×310+4×35=72. 故选B.8.[2019山东济南期末]在某项测量中,测量结果ξ服从正态分布N (0,σ2),若ξ在(-∞,-1)内取值的概率为0.1,则ξ在(0,1)内取值的概率为 ( )A .0.8B .0.4C .0.2D .0.1答案:B 解析:∵ξ服从正态分布N (0,σ2),∴曲线的对称轴是直线x =0. ∵P (ξ<-1)=0.1,∴P (ξ>1)=0.1,∴ξ在(0,1)内取值的概率为0.5-0.1=0.4,故选B.9.[2019江西高安中学等3月联考]在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 6,P (μ-2σ<X <μ+2σ)=0.954 4.A .1 193B .1 359C .2 718D .3 413答案:B 解析:对于正态分布N (-1,1)可知,μ=-1,σ=1, 正态曲线关于直线x =-1对称, 故题图中阴影部分的面积为 12×[P (-3<X <1)-P (-2<X <0)]=12×[P (μ-2σ<X <μ+2σ)-P (μ-σ<X <μ+σ)] =12×(0.954 4-0.682 6) =0.135 9,所以点落入题图中阴影部分的概率 P =0.135 91=0.135 9,投入10 000个点,落入阴影部分的个数约为10 000×0.135 9=1 359.故选B.10.一射击测试每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为23,则此人得分的均值与方差分别为________.答案:20,2003 解析:记此人三次射击击中目标X 次,得分为Y分,则X ~B ⎝ ⎛⎭⎪⎫3,23,Y =10X ,∴E (Y )=10E (X )=10×3×23=20, D (Y )=100D (X )=100×3×23×13=2003.11.[2019中山模拟]已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.答案:13 解析:由于X ~B (n ,p ),且E (X )=30,D (X )=20,所以⎩⎪⎨⎪⎧np =30,np (1-p )=20,解得p =13.[强化训练]1.某射击运动员在一次射击比赛中所得环数X 的分布列如下:已知X A .1.38 B .1.41 C .1.42D .1.56答案:B 解析:由题意知,x +0.1+0.3+y =1, 又E (X )=3x +4×0.1+5×0.3+6y =4.3, 两式联立解得x =0.4,y =0.2.所以D (X )=(3-4.3)2×0.4+(4-4.3)2×0.1+(5- 4.3)2×0.3+(6-4.3)2×0.2 =0.676+0.009+0.147+0.578 =1.41.2.[2019福州模拟]甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数X 的期望E (X )为( )A.24181B.26681C.27481D.670243答案:B 解析:依题意知,X 的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫132=59.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分, 此时,该轮比赛结果对下轮比赛是否停止没有影响. 从而有P (X =2)=59, P (X =4)=49×59=2081,P (X =6)=⎝ ⎛⎭⎪⎫492=1681,故E (X )=2×59+4×2081+6×1681=26681.3.[2019安徽合肥一模]已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ) =0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5)A .4 093件B .4 772件C .6 827件D .8 186件答案:D 解析:由题意可得,该正态分布的对称轴为x =100,且σ=2,则质量在[96,104]内的产品的概率为P (μ-2σ<X <μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P (μ-σ<X <μ+σ)=0.682 7.结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+0.954 5-0.682 72=0.818 6. 据此估计质量在[98,104]内的产品的数量为 10 000×0.818 6=8 186(件).4.[2019河北石家庄一模]设X ~N (1,σ2),其正态分布密度曲线如图所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷20 000个点,则落入阴影部分的点的个数的估计值为( )附:随机变量ξ服从正态分布N (1,σ2),则P (μ-σ<ξ<μ+σ)=0.682 6,P (μ-2σ<ξ<μ+2σ)=0.954 4.A .12 076B .13 174C .14 056D .7 539答案:B 解析:由题意,得 P (X ≤-1)=P (X ≥3)=0.022 8.∴P (-1<X <3)=1-0.022 8×2=0.954 4. ∵P (μ-2σ<ξ<μ+2σ)=0.954 4, ∴1-2σ=-1,故σ=1,∴P (0<X <1)=12P (0<X <2)=0.341 3,故估计落入阴影部分的点的个数为20 000×(1-0.341 3)=13 174.故选B.5.[2019吉林长春质检]据统计,某城市的火车站春运期间日接送旅客人数X (单位:万)服从正态分布X ~N (6,0.82),则日接送人数在6万到6.8万之间的概率为(P (|X -μ|<σ)=0.682 6,P (|X -μ|<2σ)=0.954 4,P (|X -μ|<3σ)=0.997 4)( )A .0.682 6B .0.954 4C .0.997 4D .0.341 3答案:D 解析:因为μ=6,σ=0.8, 所以P (6<X <6.8)=P (5.2<X <6.8)2=0.682 62 =0.341 3. 故选D.6.[2019河南洛阳联考]已知随机变量X ~B (2,p ),Y ~N (2,σ2),若P (X ≥1)=0.64,P (0<Y <2)=p ,则P (Y >4)=________.答案:0.1 解析:因为随机变量X ~B (2,p ),Y ~N (2,σ2),P (X ≥1)=0.64,所以P (X ≥1)=P (X =1)+P (X =2)=C 12p (1-p )+C 22p 2=0.64,解得p =0.4或p =1.6(舍去), 所以P (0<Y <2)=p =0.4, P (Y >4)=12×(1-0.4×2)=0.1.7.[2019湖北鄂南高中期末]设随机变量X 的概率分布列为则P (|X -3|=1)=答案:512 解析:由13+m +14+16=1, 解得m =14,P (|X -3|=3)=P (X =2)+P (X =4)=14+16=512.8.为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或由标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励总额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:(1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12.即顾客所获的奖励额为60元的概率为12. ②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,故X 的分布列为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元. 所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×6+60×3+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.。
高中数学选修2-3同步练习题库:离散型随机变量及其分布列(选择题:一般)
离散型随机变量及其分布列(选择题:一般)1、随机变量的分布列为,.为常数,则的值为()A. B. C. D.2、若P(ξ≤n)=1-a,P(ξ≥m)=1-b,其中m<n,则P(m≤ξ≤n)等于 ()A.(1-a)(1-b) B.1-a(1-b)C.1-(a+b) D.1-b(1-a)3、如果X是一个离散型随机变量,那么下列命题中为假命题的是 ()A.X取一个可能值的概率是非负实数B.X取所有可能值的概率之和为1C.X取某两个可能值的概率等于分别取其中两个值的概率之和D.X在某一范围内取值的概率大于它取这个范围内各个值的概率之和4、设随机变量X的分布列为P(X=k)=,k=1,2,3,则m的值为 ()A. B. C. D.5、若随机变量X的概率分布如下表所示,则表中的a的值为 ()X1234aPA. 1B.C.D.6、抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于 ( )A .B .C .D .7、为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 ( )A .10B .9C .11D .88、已知随机变量满足,,.若,则( )A .,B .,C .,D .,9、随机变量的分布列如下:-1 0 1若,则的值是( )A. B. C. D.10、已知随机变量的分布列为,则等于( )A. B. C. D.11、袋中有大小相同的3只钢球,分别标有1、2、3三个号码,有放回的依次取出2个球,设两个球号码之和为随机变量,则所有可能值的个数是( )A.9 B.8 C.6 D.512、设随机变量的分布列为,则 ( )A. B. C. D.13、随机变量的概率分布规律为其中是常数,则的值为( )A. B. C. D.14、已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P(ξ=1)=,且该产品的次品率不超过40%,则这10件产品的次品率为()A.10% B.20% C.30% D.40%15、设随机变量~B(2,p),η~B(3,p),若,则P(η≥2)的值为()A. B. C. D.16、某班有14名学生数学成绩优秀,如果从该班随机找出5名学生,其中数学成绩优秀的学生数,则A. B. C.3 D.17、已知的分布列如表:且,,则()A. B. C. D.18、若某一射手射击所得环数的分布列为456789100.020.040.060.090.280.290.22则此射手“射击一次命中环数”的概率是()A. 0.88B. 0.12C. 0.79D. 0.0919、抛掷一枚硬币,记,则()A.0 B. C.1 D.-120、设离散型随机变量的分布列为:则()A. B. C. D. b21、袋子中装有大小相同的八个小球,其中白球五个,分别编号1、2、3、4、5;红球三个,分别编号1、2、3,现从袋子中任取三个小球,它们的最大编号为随机变量X,则P(X=3)等于 ( )A. B. C. D.22、设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P(ξ=0)等于 () A.0 B. C. D.23、口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以表示取出球的最小号码,则()A.0.45 B.0.5 C.0.55 D.0.624、一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数是一个随机变量,其分布列为,则的值为()A. B. C. D.25、设X是一个离散型随机变量,其分布列如下:X-11P1-2qq2则q等于( )A.1 B.1± C.1- D.1+26、设随机变量~B(2,p),η~B(3,p),若,则P(η≥2)的值为()A. B. C. D.27、设随机变量~,又,则和的值分别是()A.和 B.和 C.和 D.和28、设随机变量X的分布列如下表,且,则()1230.10.1A.0.2 B.0.1 C. D.29、已知,,则等于()A. B. C. D.30、随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A. B. C. D.31、[2014·四川模拟]在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A. B. C. D.32、设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于() A.0 B. C. D.33、计算机考试分理论考试与实际操作考试两部分进行,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格“并颁发”合格证书“.甲、乙、丙三人在理论考试中“合格”的概率依次为,在实际操作考试中“合格”的概率依次为,所有考试是否合格相互之间没有影响。
第2章随机变量及其分布习题答案
第2章随机变量及其分布习题答案第⼆章随机变量及其分布§2.1 随机变量的概念与离散型随机变量习题 1. 解: 1112(1)121,.993θθθθ+-++-=∴=±⼜因为≤0)1(2θθ-1≤ , 所以 13θ=.2. 解:设X 表⽰任取3次,取到的不合格品数,则 1)有放回 33()0.20.8,0,1,2,3.k k k P X k C k -=== 即X 的分布律为 X 0 1 2 3 P12564125481251212512)⽆放回 328310(),3,4,5.kkC C P X k k C-===即X 的分布律为 X 0 1 2 P 1571571514. 解:设X 表⽰直⾄取到⽩球为⽌,取球的次数,则其概率分布为X 1 2 3 4P521031531015. 解:由全概率公式得42(2)()(2|)111113().423448k P Y P Xk P Y X k =======++=∑§2.2 0-1分布和⼆项分布习题1. 解:设A 表⽰“10件中⾄少有两件⼀级品”,则P (A )=1()P A -=1=--6.04.04.0911010C 0.9983.2. 解: X 0 1 2 3 4 5P 54.0 6.04.0415C 23256.04.0C 32356.04.0C 4456.40.0C 5 6.00.01024 0.0768 0.2304 0.3456 0.2592 0.077763. 解:设A 表⽰“4个灯泡中⾄少有3个能使⽤1500⼩时以上”,则4. 解:1)设A 表⽰“恰有3粒种⼦发芽”,则003764768.002.098.0)(2335==C A P2)设B 表⽰“⾄少有4粒种⼦发芽”,则=+=544598.002.098.0)(C B P 0.996§2.3 泊松分布习题1. 解:设A 表⽰“⼀页上⾄多有⼀个印刷错误”,则 010.20.20.20.2()(1)(0)(1)0.9820!1!P A P X P X P X ee--=≤==+==+=2.解:1)设X 表⽰5分钟内接到的电话个数,则0,1,2,X = 22(),0,1,2,3,4,5,6.!kP X k e k k -===2)设A 表⽰“5分钟内⾄多接到3个电话”,则∑2!2-ek k=0.8571或4()(3)1(4)1k P A P X P X +∞==≤=-≥=-∑2!2-ek k=(查表)1-0.1429=0.85713.解:1)设A 表⽰“中午12时⾄下午3时没有急症病⼈”, 则~(1.5),X π1.51.5()(0)0.223.0!P A P X e-====2)设B 表⽰“中午12时⾄下午5时⾄少有2个急症病⼈”,则~(2.5),X π12.52.5()(2)1(0)(1)2.5 2.510.7127.0!1!P B P X P X P X ee--=≥=-=-==-§2.4 随机变量的分布函数习题1. 解:1)≥<≤<≤<=2,121,2110,310,0)(x x x x x F312)()(0)(1),221(14)(2),22(14)(1)(2).3P X P X P X P X P X P X P X P X ≤==+==<≤===≤≤==+==2. 解:X 0 1 2 3 4 5P 54.0 6.04.0415C 23256.04.0C 32356.04.0C 4456.40.0C 56.00.01024 0.0768 0.2304 0.3456 0.2592 0.07776≥<≤≤<≤<≤<≤<=515492.04366.03223.021086.01001.000)(x x x x x x x x F <3. 解:X 的分布律为 X -1 0 2 4 P 0.2 0.4 0.3 0.1 §2.5 连续型随机变量习题 1. 解:1)?? =?=?=101231,1)(c dx cx dx x f2)30,0(),011,1x F x x x x=≤)41()21()2141(=-=≤≤F F x P 22219()1()1().33327P X P X F >=-≤=-= 2. 解:1)连续型随机变量的分布函数左连续,则00012l i m ()(0),l i m ()(1),l i m ()(2),10,1,2211,210,,2.2x x x F x F F x F F x F A B C C A B C ---→→→=====----====解得2),01()()2,120,x x f x F x x x <'==-≤其它3)2111117P ()1P ()1F()1().222=-=-= 3. 解:1)12011()2,~(3,),44P A xdx Y B ==则 Y 的概率分布为 Y 0 1 2 3 P642764276496412)设B 表⽰“对X 的三次独⽴重复观测中事件A ⾄多出现两次”,则3163()1()1(3)1().464P B P B P Y =-=-==-= 4.设最⾼洪⽔位为X,河堤⾄少要修c 单位⾼,由题意得:32()1()10.0110.c P X c P X c dx c x>=-≤=-≤?≥?P X dx >==设A 表⽰“3次独⽴观测中⾄少有两次观测值⼤于3”,则223321220()()().33327P A C =+=2. 解:有实根的条件:2(4)44(2)01K 2,K K K -??+≥?≤-≥或所求概率为 3P (K 2.5dx ≥=521)=5 3. 解:1)33001,|1 3.33xxk k kedx ek +∞--+∞=-==?=?即2)23 4.561.5(1.52)3.xP x edx e e ---≤≤=1(200)1,600x P X e dx e--≤==-?设A 表⽰“3只独⽴元件⾄少1只在最初200⼩时内出故障”,则13311)(1)(1)(---=-=-=eeA P A P .§2.7 正态分布习题1. :(1)(0.022.33)(2.33)(0.02)0.99010.50800.4821;P X <<=Φ-Φ=-=解( 1.850.04)(0.04)( 1.85)(0.04)[1(1.85)](0.04)(1.85)10.5160.967810.4838. P X -<<=Φ-Φ-=Φ--Φ=Φ+Φ-=+-= 2. 解:101)(716)(12)(2)(1)3(2)(1)10.97720.841310.8185;X P X P -<<=-<<=Φ-Φ-=Φ+Φ-=+-=10222)(102)()2()120.748610.4972;333x P x P --<=<=Φ-=?-=103)()0.9()0.9,(1.28)0.9,1.28,13.84.3P X αααα-<=?Φ=Φ≈-==反查表得故得3. 解:设X 表⽰螺栓长度,则:10.05(10.050.12)(2)2(2)120.977210.9544.0.06X P X P --<=<=Φ-=?-=4. 解:30(30)()2(1.5)10.8664,2020X P X P ≤=≤=Φ-=设A 表⽰“三次测量中⾄少有⼀次误差的绝对值不超过30cm ”3()1()1(0.1336)0.9976.P A P A =-=-=§2.8 随机变量函数的分布习题 1. 解:1)Y -3 2 5 6 P161 164 167 1642) Z 1 2 3 4 9 P1621641651641612. 解: 3110≤≤?≤≤y x , 当31≤≤y 时,11()();2y Y Y Y y y F y P Y y P X y P X dx f y F y ---=≤=+≤=≤= ='==;当13,y y ≤≥或时Y 的密度函数为零.故Y 的密度函数为1,13()20,Y y f y ?≤≤?=其它22222()2()22()()()(),,()(),.Y X yy yY Y X Y F y P Y y P y P X y dx y R Y f y F y y R µσµσµσµσµ∈'===∈?3.解:因为的分布函数为所以的密度函数为第⼆章随机变量及其分布复习题⼀选择题1. B2. B3. C4. D5. C ⼆填空题 1.22(),0,1,2,;!kP X k e k k -=== 0.592. 27193. ,1,21π==B A2111,,21x R xπ∈+4.,65,61 分布律:X -1 1 2P 611. 解: X 的分布律为 X 1 2 3 4 P643764196476412. 解: X 的分布律为 1(),1,2,3,.k P X k q p k -=== 3. 解:设X 表⽰两次调整之间⽣产的合格品数,则X 的分布律为1()(1),0,1,2,.k P X k p p k -==-=4. 解: X 的概率分布为55()0.250.75,0,1,2,3,4,5.k k kP X k C k -===设A 表⽰“5道选择题⾄少答对两题”,则()1(0)(1)0.3672.P A P X P X =-=-==5. 解:1)⼀天中必须有油船转⾛意味着“X .>3”242(3)0.143;!kk P X ek ∞(查泊松分布表)2) 设设备增加到⼀天能为y 艘油船服务,才能使到达港⼝的90%的油船可以得到服务.则21212()0.910.9!20.1,15 4.!kk y kk y P X y ek ey y k ∞-=+∞-=+≤≥?-≥?≤+≥?≥∑∑反查泊松分布表得6. 解:21)()()31()31(3131=+=+?>dx b ax dx b ax X P X P47,23=-=?b a7.170170170:1)()0.01()()0.99666170(2.33)0.99 2.33184.6X h h P X h P h h ---≥≥?≥解查表得2)(182)P X ≥=1821701()1(2)0.02,6--Φ=-Φ≈设A 表⽰“100个男⼦中与车门碰头⼈数不多于2个”676.002.098.002.098.098.0)(2982100991100100=++=C C A P .8. 解:(1) X 的分布函数为 1,02()11,02xx e x F x e x -?-∞<≤??=??-<<+∞??011(2)P Y P X e dx P Y P X e dx ∞--∞==>===-=≤==故Y的概率分布律为Y-1 1P1/2 1/2Y的分布函数为0,11(),1121,1YyF y yy<-=-≤<≥。
2.3.1离散型随机变量均值和方差(3课时)(选修2-3)习题全
方案 1:运走设备,需花费 3800 元; 方案 2:建一座保护围墙,需花费 2000 元;但围墙不能 防御大洪水,如遇大洪水,损失费为 60000 元; 方案 3:不采取任何措施,希望不发生洪水.如遇大洪水, 损失费为 60000 元; 如遇小洪水,损失费为 10000 元;
分析:⑴如下月没有洪水,那么方案 3 最好
(2)两点分布的均值 若X~B(1,p), 则E(X)= p (3)二项分布的均值 若X~B(n,p), 则E(X)= np
练习一
1、随机变量ξ的分布列是
ξ
1
3
5
P 0.5 0.3 0.2
(1)则Eξ= 2.4
.
(2)若η=2ξ+1,则Eη=
5.8 .
2、随机变量ξ的分布列是
ξ 4 7 9 10 P 0.3 a b 0.2
新疆 王新敞
奎屯
23
解:设X1表示甲选对的题数、X2表示乙选对的题数 它们都满足二项分布:
X1~B(20,0.9)
X2~B(20,0.25)
所以:EX1= n p =20×0.9=18
EX2= n p =20×0.25=5
甲所得分数的均值为:18×5=90
乙所得分数的均值为: 5×5=25
X
x1
(第一课时)
1
一.随机变量的分布列.
设离散型随机变量 可能取的值为 x1 , x2 ,L , xi ,L ,
取每一个值 xi (i 1, 2,L ) 的概率 P( xi ) pi则称表
L L L L P
px11
x2
p2
xi
pi
为随机变量 的概率分布列,简称为 的分布列.
对于离散型随机变量,确定了它的分布列, 就掌握了随机变量取值的统计规律.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散型随机变量习题
1、设随机变量X 的概率分布为k
P{X=k}=b ,λ k=1,2,…, b>0,则λ为
A .任意正数
B .λ = b + 1
C .
11
b + D .11b -
2、设 k c P{X=k}=,0,2,4,!
e k k λ
λ-=是X 的概率函数,则λ,c 一定满足 A .λ > 0
B .c > 0
C .c λ > 0
D .c > 0 且λ > 0
3、 已知1{}/!,1,2,,,k P X k C k k n λ-===, 其中λ> 0, 则C = 。
4、 设随机变量X ~ B (2,P ), Y ~ B (3 ,P ),且5{1}9
P X ≥=
,则{1}P Y ≥= 。
5、设随X 服从参数为λ的泊松分布,且{}{}221P X P X ===,则参数λ= 。
6、设X 的泊松分布,则使得()P X k =达到最大的k =________。
7、从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y ,则}2{=Y P =____________。
8、 若随机变量X 的概率函数为{},12k k P X x p k ===、
、 ,则0k p ≠。
9、 若随机变量X 的概率函数为{},12k k P X x p k ===、
、 ,则1k k p =∑。
10、从五个数1,2,3,4,5中任取3个数123x x x ,,,求:(1)123max{}X x x x =,,的概率分布;(2){4}P X ≤。
11、直线上一质点从原点开始作随机游动,每单位时间可以向左或向右移动一步,向左的概率为p ,向右的概率为q=1-p ,每步保持定长L ,
求:(1)三步后质点位置X 的概率分布;(2){0}P x ≥。
12、设随机变量~(,)X B n p ,即X 的概率函数为
{},0,1,2,,;1k k n k n P X k C P q k n q p -====-
求:(1)k 为何值时,{}P X k =最大;(2)最大值是多少。
13、设随机变量~()X P λ,即X 的概率函数为
{},0,1,2,;0!k
P x k e k k λλλ-===>
求:(1)k 为何值时,{}P X k =最大;(2)最大值是多少。
14、一个袋中有5只球,编号1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球
中的最大号码,求X 的分布律。