人教版高中数学排列组合教案设计
人教版高中选修2-31.2排列与组合课程设计
人教版高中选修2-31.2排列与组合课程设计课程设计背景排列与组合是高中数学必修课程,也是高等数学课程中的重要内容,是概率论、数理统计等其他数学领域的基础和重要组成部分。
本课程设计旨在通过让学生深入理解和掌握排列组合基本概念、性质、应用等方面的内容,提高他们的数学思维能力和创造性,为进一步学习数理统计、概率论等专业领域的数学课程打下坚实的基础。
课程设计目标1.理解排列组合的基本概念、性质及其应用,掌握排列、组合、重排列的计算方法和技巧。
2.提高学生的数学思维和创造性,培养他们的数学分析和解决问题的能力。
3.引导学生热爱数学,探求数学知识的深层次内涵,培养学生数学思考的兴趣和能力。
课程设计内容第一节:排列组合的基本概念和性质1.排列组合的定义和基本性质2.排列组合的计算公式和推导过程3.排列组合的应用领域1.排列的计算方法和实例2.组合的计算方法和实例3.重排列的计算方法和实例第三节:排列组合的应用1.扑克牌、骨牌、麻将等游戏的排列组合问题2.有放回抽样、无放回抽样、二项式分布等统计学中的应用3.生活中的排列组合问题:座位安排、演出节目安排等第四节:课程总结与归纳1.知识点总结与梳理2.课程重难点回顾与巩固3.课程思维重点导向与拓展课程设计要点第一节:排列组合的基本概念和性质1.对于排列、组合、重排列的定义,要求掌握其数学知识点,并能运用其定义解决各类具体问题。
2.让学生通过丰富的例子,掌握排列组合在中公式的推导过程, 以及运用数学公式解决具体问题。
3.同时要求学生了解排列组合的应用领域,理解排列组合在数学中的重要性和作用。
1.对于排列、组合、重排列的计算方法,要求学生了解它们之间的异同点,以及如何在具体问题中应用。
2.通过一些典型的例题,让学生运用排列、组合和重排列的计算方法解决实际问题。
第三节:排列组合的应用1.针对扑克牌、骨牌、麻将等游戏的排列组合问题,引导学生根据题目条件进行分析并运用排列组合的方法,解决实际问题。
高中数学排列组合精选教案
高中数学排列组合精选教案课题:排列与组合
教学目标:
1. 了解排列与组合的基本概念和性质。
2. 掌握排列与组合的计算方法。
3. 能够灵活运用排列与组合解决实际问题。
教学重点:
1. 排列的计算方法和性质。
2. 组合的计算方法和性质。
教学难点:
1. 排列与组合的混合运用。
2. 解决实际问题中的排列与组合计算。
教学准备:
1. 教案、课件、黑板笔等教学工具。
2. 练习题册、实例题册等教学资料。
教学过程:
一、导入(5分钟)
通过介绍生活中的排列和组合问题引出本节课的主题。
二、概念讲解(10分钟)
1. 解释排列和组合的概念及其区别。
2. 讲解排列与组合的计算方法。
三、案例分析(15分钟)
1. 给出一些实例让学生尝试计算排列和组合。
2. 解析实例,指导学生正确计算排列和组合。
四、练习巩固(15分钟)
让学生进行一些练习题,加深对排列和组合的理解和掌握。
五、实际问题解决(10分钟)
给出一些实际问题,让学生运用排列和组合知识解决问题。
六、课堂小结(5分钟)
总结本节课的重点内容,强调排列和组合的计算方法和应用。
七、作业布置(5分钟)
布置一些相关的作业给学生,巩固本节课的内容。
教学反思:
通过本节课的教学,学生能够更加深入地理解排列与组合的概念和计算方法,为后续学习奠定了基础。
在教学中,要注重引导学生灵活运用排列与组合知识解决实际问题,培养学生的思维能力和解决问题的能力。
高中数学排列组合教案
高中数学排列组合教案高中数学排列组合教案(精选篇1)教学内容:简单的排列和组合教学目标:1.知识能力目标:①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。
②初步培养有序地全面地思考问题的能力。
③培养初步的观察、分析、及推理能力。
2.情感态度目标:①感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。
②初步培养有顺序地、全面地思考问题的意识。
③使学生在数学活动中养成与人合作的良好习惯。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教学准备:多媒体课件、数字卡片、1角、2角、5角的人民币。
教学过程:一、创设情境,引发探究师:今天老师带你们去一个很有趣的地方,哪呢?我们今天要到“数学广角”里去走一走、看一看。
二、操作探究,学习新知。
(一)组合问题l、看一看,说一说师:今天老师给大家带来了几件漂亮的衣服,你们来挑选吧。
(课件出示主题图)师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)2、想一想,摆一摆(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?①学生小组讨论交流,老师参与小组讨论。
②学生汇报(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在纸板上。
(要求:小组长拿出学具衣服图片、纸板。
)①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:第一种方案(按上装搭配下装)有几种穿法?(4种)第二种方案(按下装搭配上装)有几种穿法? (4种)师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。
在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
、操作探究,学习新知。
(二)排列问题1、初步感知排列(1)师:我们穿上漂亮的衣服,来到了数学广角,可是这有一扇密码门,(出示课件:密码门)我们只要说对密码,就可以到数学广角游玩了。
高中数学教案排列组合
高中数学教案排列组合教学目标:1. 了解排列组合的基本概念和性质;2. 熟练运用排列组合的公式计算各种问题;3. 发展学生的逻辑思维和解决问题的能力。
教学重点:1. 排列的计算方法和性质;2. 组合的计算方法和性质;3. 解决实际问题时的排列组合应用。
教学难点:1. 熟练掌握排列组合的计算方法;2. 理解排列组合的实际应用。
教学准备:1. 教学课件;2. 黑板、粉笔等教学工具。
教学过程:一、导入(5分钟)通过一个排列组合的实际问题引入本节课的教学内容,引发学生的兴趣和思考。
二、讲解排列的概念与性质(15分钟)1. 定义:排列是指从一组元素中取出若干个元素按照一定次序排成一列的方式;2. 计算方法:全排列的计算公式以及不同元素之间的重复情况;3. 性质:排列中的元素顺序不同,排列也不同。
三、讲解组合的概念与性质(15分钟)1. 定义:组合是指从一组元素中取出若干个元素,不考虑元素的顺序;2. 计算方法:组合的计算公式以及不同元素之间的重复情况;3. 性质:组合中元素组合不同,但元素一样的情况。
四、解题示范(20分钟)通过几个排列组合的实例,进行详细的解题分析,引导学生掌握解题的方法和技巧。
五、练习与拓展(15分钟)布置一些练习题让学生自主练习,巩固所学知识,同时提出一些拓展性问题,激发学生的思考和探索。
六、总结与展望(5分钟)对本节课的内容进行总结,回顾本节课的重点难点,展望下节课的学习内容。
教学反思:在本节课中,通过实例和练习,学生基本掌握了排列组合的基本概念和计算方法,但对于应用问题的思考还需要继续加强,下节课需要进一步讲解实际问题的排列组合应用。
排列组合的经典教案
排列组合的经典教案排列组合的经典教案作为一位杰出的教职工,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。
如何把教案做到重点突出呢?下面是店铺收集整理的排列组合的经典教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
排列组合的经典教案篇1一、课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。
二、命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。
排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。
考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。
三、要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。
3.排列(1)排列定义,排列数(2)排列数公式:系= =n·(n-1)…(n-m+1);(3)全排列列: =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区别;(2)组合数公式:Cnm= = ;(3)组合数的性质①Cnm=Cnn-m;② ;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;6.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。
高中组合排列数学教案全册
高中组合排列数学教案全册教案一:组合排列的基本概念一、教学内容:1. 组合排列的基本概念2. 组合排列的计算公式3. 组合排列的数学应用二、教学目标:1. 了解组合排列的基本概念2. 熟练掌握组合排列的计算方法3. 能够运用组合排列解决实际问题三、教学重点:1. 组合排列的定义和计算方法2. 组合排列的数学应用四、教学难点:1. 组合排列的计算公式的推导和运用2. 组合排列在实际问题中的应用五、教学准备:1. 教材《高中数学》2. 讲义和练习册3. 板书和彩色粉笔4. 实物道具(例如彩球)教学过程:1. 开场导入(5分钟)教师出示一个含有几个不同颜色的球的容器,让学生思考有多少种排列方式,引出组合排列的概念。
2. 讲解组合排列的基本概念(10分钟)教师讲解组合排列的定义和区别,引导学生理解排列是有序的,而组合是无序的。
3. 计算组合排列的方法(15分钟)教师通过几个实例演示如何计算组合排列,引导学生注意排列中元素的不同位置对结果的影响。
4. 练习和讨论(20分钟)学生分组完成练习册上的一些练习题,教师巡视指导,并就学生遇到的问题展开讨论。
5. 实际问题解决(15分钟)教师出示一些实际问题,让学生尝试用组合排列的方法进行解决,培养学生的应用能力。
6. 总结归纳(5分钟)教师针对本节课的内容进行总结,概括组合排列的基本概念和计算方法,强调学生在学习中的重点。
7. 作业布置(5分钟)布置相关练习题目作业,让学生巩固本节课的内容。
教案二:组合排列的高级应用一、教学内容:1. 多重组合排列的计算2. 排列组合在概率中的应用3. 排列组合在几何中的应用二、教学目标:1. 熟练掌握多重组合排列的计算方法2. 理解排列组合在概率和几何中的应用3. 能够运用排列组合解决实际问题三、教学重点:1. 多重组合排列的计算方法2. 排列组合在概率中的应用3. 排列组合在几何中的应用四、教学难点:1. 排列组合在概率和几何中的高级应用2. 如何将排列组合应用到实际问题中五、教学准备:1. 教材《高中数学》2. 讲义和练习册3. 板书和彩色粉笔4. 实物道具(例如扑克牌)教学过程:1. 开场导入(5分钟)教师出示一些扑克牌,让学生思考有多少种不同花色和数字组合的方式,引出多重组合排列的概念。
高中数学排列与组合教案
高中数学排列与组合教案教学目标:1. 理解排列与组合的概念。
2. 能够应用排列与组合的知识解决实际问题。
3. 提高学生的逻辑思维能力和解决问题的能力。
教学内容:1. 排列的概念及其性质。
2. 组合的概念及其性质。
3. 排列与组合的应用。
教学过程:第一课时:1. 引入排列与组合的概念,通过实际例子引发学生对排列与组合的认识。
2. 讲解排列的定义和性质,例如排列中元素不重复出现的特点。
3. 给学生布置一些排列练习题,让他们熟悉排列的运算方法和规律。
第二课时:1. 复习排列的概念和性质。
2. 讲解组合的定义和性质,例如组合中元素可重复出现的特点。
3. 给学生布置一些组合练习题,让他们熟悉组合的运算方法和规律。
第三课时:1. 复习排列与组合的概念和性质。
2. 讲解排列与组合的应用,例如在排队、选做题目等实际问题中的运用。
3. 给学生布置一些综合排列与组合的练习题,让他们能够灵活运用排列与组合的知识解决问题。
教学反馈:1. 对学生在排列与组合方面的理解进行总结和反馈。
2. 引导学生思考排列与组合在日常生活中的应用,并展开讨论。
教学评价:通过作业、课堂表现和练习题的表现评价学生对排列与组合的掌握程度和应用能力。
教学延伸:鼓励学生深入学习排列与组合知识,并拓展到更高级的数学领域,如概率论等。
教学资源:教科书、课件、练习题。
教学提醒:教师应注意引导学生通过实例来理解排列与组合的概念,激发学生的学习兴趣和思考能力。
同时,要关注学生的学习状态,及时调整教学方法,确保学生的学习效果。
(完整版)高中数学《排列组合》教学设计
高中数学《排列组合》教案设计【教案目标】1.知识目标(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;(4)进一步增强分析、解决排列、组合应用题的能力。
2.能力目标认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。
3.德育目标(1)用联系的观点看问题;(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。
【教案重点】:排列数与组合数公式的应用【教案难点】:解题思路的分析【教案策略】:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。
【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究.【教案过程】一、知识要点精析(一)基本原理1.分类计数原理2。
分步计数原理3。
两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点:①“斥”——互斥独立事件;②模式:“做事”——“分类”——“加法”③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。
(2)对于乘法原理有以下三点:①“联”——相依事件;②模式:“做事”—-“分步”——“乘法"③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立.(二)排列1.排列定义2.排列数定义3.排列数公式(三)组合1.组合定义2.组合数定义3.组合数公式4.组合数的两个性质(四)排列与组合的应用1。
排列的应用问题(1)无限制条件的简单排列应用问题,可直接用公式求解。
(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法"求解。
2.组合的应用问题(1)无限制条件的简单组合应用问题,可直接用公式求解.(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法"求解.3.排列、组合的综合问题排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
排列组合教案优秀高中数学
排列组合教案优秀高中数学目标:通过本节课程的学习,学生将能够理解排列与组合的概念, 掌握排列组合的计算方法,并能够熟练应用于实际问题中。
教学内容:1. 排列的定义与性质2. 排列的计算方法3. 组合的定义与性质4. 组合的计算方法5. 排列组合在应用问题中的应用教学步骤:第一步:导入教师通过一个生活场景引入排列组合的概念,让学生了解排列组合在日常生活中的实际应用。
第二步:讲解排列的概念与性质教师向学生介绍排列的定义,并说明排列中元素的顺序是有意义的。
通过几个简单的例子,让学生理解排列的概念和性质。
第三步:讲解排列的计算方法教师向学生介绍如何计算排列的数量,包括全排列、循环排列和重复排列。
通过多个例题,让学生掌握排列的计算方法。
第四步:讲解组合的概念与性质教师向学生介绍组合的定义,并说明组合中元素的顺序是无关紧要的。
通过几个简单的例子,让学生理解组合的概念和性质。
第五步:讲解组合的计算方法教师向学生介绍如何计算组合的数量,包括从n个元素中选取r个元素的方法。
通过多个例题,让学生掌握组合的计算方法。
第六步:应用解决问题教师设计一些实际问题,让学生运用所学的排列组合知识进行解决。
通过让学生思考、分析和计算,培养学生的解决问题的能力。
第七步:总结与拓展教师对本节课的内容进行总结,复习排列组合的知识点。
同时,引导学生思考排列组合在更复杂问题中的应用,并鼓励他们自主学习。
教学活动设计:1. 小组讨论:学生分组讨论排列组合的相关问题,并向全班汇报他们的讨论结果。
2. 案例分析:教师给予学生一些排列组合的实际案例,让学生运用所学知识解决问题。
3. 游戏竞赛:设计一个排列组合游戏,让学生在游戏中体验排列组合的乐趣并巩固所学知识。
教学评价:教师通过观察学生的表现、听取学生的解题思路和整理学生的作业,对学生的学习情况进行评价。
同时,可以设计一些综合性的测试题,进行学生的能力评估。
拓展延伸:1. 学生个性化探究:允许学生在学习过程中提出问题,鼓励他们独立探索,并给予适当的指导。
排列组合数学教案设计
排列组合數學教案設計标题:排列组合数学教案设计一、课程介绍排列组合是高中数学的重要组成部分,它主要研究如何从有限的元素中取出一部分或全部进行排序或组合的问题。
通过学习排列组合,学生可以了解并掌握解决实际问题的方法和技巧。
二、教学目标1. 学生能够理解和掌握排列和组合的基本概念。
2. 学生能够熟练运用公式进行排列和组合的计算。
3. 学生能够将排列组合的知识应用到实际生活中,解决相关问题。
三、教学内容1. 排列的概念与计算方法2. 组合的概念与计算方法3. 排列与组合的区别与联系4. 实际问题的应用四、教学步骤1. 引入:以生活中的实例引入排列组合的概念,如从5本书中选择2本,有多少种选法?2. 讲解:详细讲解排列和组合的概念,以及它们之间的区别和联系。
并通过具体的例子演示排列和组合的计算过程。
3. 练习:提供一些简单的排列和组合的题目,让学生自己动手做,然后集体讨论答案,加深理解。
4. 应用:提出一些实际生活中的问题,让学生尝试用排列组合的知识来解决。
5. 总结:回顾本次课程的主要内容,强调排列和组合在实际生活中的重要性。
五、教学评估1. 课堂表现:观察学生在课堂上的参与度,是否能积极思考并回答问题。
2. 作业反馈:通过批改学生的作业,了解他们对排列组合的理解程度。
3. 小测试:定期进行小测试,检查学生的学习进度。
六、教学资源1. 教科书:《高中数学》2. 参考书:《排列组合教程》3. 在线资源:Khan Academy、Coursera等在线教育平台的相关课程。
七、教学建议1. 利用生动的例子帮助学生理解抽象的数学概念。
2. 鼓励学生积极参与课堂讨论,提高他们的思维能力和解决问题的能力。
3. 定期复习,巩固学生的学习成果。
数学排列组合教案高中
数学排列组合教案高中
教学目标:
1. 理解排列组合的概念及应用;
2. 能够灵活运用排列组合的知识解决实际问题;
3. 培养学生的逻辑思维和数学推理能力。
教学重点:
1. 排列组合的概念及性质;
2. 排列组合的计算方法;
3. 排列组合在实际问题中的应用。
教学难点:
1. 理解排列组合的概念;
2. 灵活运用排列组合的知识解决复杂问题。
教学准备:
1. 教学课件;
2. 教学板书;
3. 练习题册;
4. 课堂互动环节的准备。
教学过程:
Step 1:导入
教师通过举例介绍排列组合的概念,引发学生对排列组合的兴趣和好奇心。
Step 2:讲解
1. 教师详细讲解排列和组合的概念,并介绍它们的性质和相互之间的区别;
2. 通过实例演示排列和组合的计算方法,让学生掌握计算排列和组合的技巧。
Step 3:练习
1. 让学生在课堂上进行简单的排列组合练习,巩固所学知识;
2. 布置课后作业,让学生进一步巩固和练习排列组合的知识。
Step 4:拓展
1. 教师引导学生思考排列组合在实际问题中的应用,例如生日问题、选课问题等;
2. 让学生自主探究并解决这些实际问题,培养他们的综合运用能力。
Step 5:总结
教师对今天的教学内容进行总结,并回顾重要知识点,巩固学生的理解。
教学反思:
1. 教师要注重学生的实践操作能力,让学生通过实际练习提高排列组合的运用能力;
2. 教师要激发学生的思维和创新能力,引导他们探究更多排列组合问题的解决方法;
3. 教师要及时总结教学内容,帮助学生理清思路,加深对知识点的理解。
高中数学排列组合系列教案
高中数学排列组合系列教案一、教学目标:1. 理解排列组合的基本概念;2. 掌握排列组合的计算方法;3. 解决实际问题中的排列组合应用;4. 提高学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 排列的概念及计算方法;2. 组合的概念及计算方法;3. 排列组合的应用实例。
三、教学方法:1. 讲述与示范教学相结合,以讲解基本概念和计算方法为主;2. 练习与实际应用结合,通过练习题和实例分析提高学生的解题能力;3. 启发式教学,引导学生主动思考、探索问题。
四、教学过程:1. 排列的概念和计算方法的讲解(20分钟)- 介绍排列的定义和性质;- 解释排列的计算方法,包括全排列和部分排列的计算;- 演示几个排列的计算例题。
2. 组合的概念和计算方法的讲解(20分钟)- 介绍组合的定义和性质;- 解释组合的计算方法,包括全组合和部分组合的计算;- 演示几个组合的计算例题。
3. 排列组合的综合应用实例(20分钟)- 给出几个实际问题,让学生应用排列组合的知识进行解答;- 分析解决过程,引导学生理解应用技巧;- 练习排列组合的应用题。
4. 综合训练与作业布置(10分钟)- 给学生布置综合训练题目,巩固排列组合知识;- 提醒学生独立完成作业,及时解决问题。
五、教学评估:1. 课堂练习:通过课堂练习检查学生对排列组合知识的掌握情况;2. 作业评讲:在下堂课进行作业评讲,及时纠正学生的错误。
六、教学反思:通过本节课的教学,发现学生对排列组合知识的掌握情况较好,但在实际应用中仍存在一定的困难。
下节课将结合更多的实际问题及经典案例,帮助学生更好地掌握排列组合的应用技巧。
高中数学排列组合教案
高中数学排列组合教案教案一:学习目标:了解排列组合的概念,并能够应用排列组合的方法进行问题求解。
教学重点:排列组合的概念及应用教学难点:应用排列组合的方法解决实际问题教学过程:一、导入新知识1. 引入排列组合的概念,通过一个示例引发学生对排列和组合的思考。
2. 提问学生,他们对排列和组合有什么理解?让学生通过举例子的方式向全班分享自己的理解。
二、学习排列的概念及应用1. 引导学生理解排列的概念,讲解排列的定义和表示方法。
2. 引导学生掌握排列计数的方法,通过示例进行讲解。
3. 给学生一些练习题,让他们巩固排列计数的方法。
三、学习组合的概念及应用1. 引导学生理解组合的概念,讲解组合的定义和表示方法。
2. 引导学生掌握组合计数的方法,通过示例进行讲解。
3. 给学生一些练习题,让他们巩固组合计数的方法。
四、应用排列组合解决实际问题1. 引导学生思考排列组合在生活中的应用,例如抽奖、安排座位等。
2. 给学生提供一些实际问题,让他们应用排列组合的方法进行求解。
三、梳理知识点1. 确认学生对排列和组合的概念及应用有了基本的理解。
2. 与学生一起总结排列组合计数的基本方法。
教案二:学习目标:掌握排列组合的基本概念,能够通过排列组合解决实际问题。
教学重点:排列组合的概念及应用教学难点:应用排列组合的方法解决复杂问题教学过程:一、导入新知识1. 引入排列组合的概念,通过一个生活实例展示排列组合的应用。
2. 提问学生,他们对排列和组合有什么理解?让学生用自己的话解释这两个概念。
二、学习排列的概念及应用1. 讲解排列的定义和表示方法,通过示意图帮助学生理解。
2. 讲解排列计数的方法,引导学生在解题过程中灵活运用。
3. 给学生一些练习题,巩固排列的应用能力。
三、学习组合的概念及应用1. 讲解组合的定义和表示方法,通过实例帮助学生理解。
2. 讲解组合计数的方法,引导学生灵活运用。
3. 给学生一些练习题,巩固组合的应用能力。
高中数学排列组合和概率人教版全部教案
高中数学排列组合和概率人教版教案(一)【教学目标】知识与技能:理解排列组合的基本概念,掌握排列数公式和组合数公式,能够应用排列组合知识解决实际问题。
过程与方法:通过探究排列组合问题,培养学生的逻辑思维能力和解决问题的能力。
情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
【教学重点】排列数公式和组合数公式的理解与应用。
【教学难点】排列组合问题的解决方法。
【教学过程】一、导入教师通过引入生活中的实际问题,如“如何安排一场比赛的活动顺序?”、“如何从若干个人中选取一部分人组成一个小组?”等,引导学生思考排列组合的问题。
二、新课导入1. 排列的概念:教师介绍排列的定义,即从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。
2. 排列数公式:教师引导学生探究排列数公式的推导过程,得出排列数公式:$A_n^m = \frac{n!}{(n-m)!}$。
3. 组合的概念:教师介绍组合的定义,即从n个不同元素中取出m(m≤n)个元素,但不考虑元素的顺序。
4. 组合数公式:教师引导学生探究组合数公式的推导过程,得出组合数公式:$C_n^m = \frac{n!}{m!(n-m)!}$。
三、案例分析教师给出几个排列组合的案例,引导学生运用所学的排列组合知识解决问题。
四、课堂练习教师布置一些排列组合的练习题,让学生独立完成,巩固所学知识。
【教学评价】通过课堂表现、练习题和课后作业等方式评价学生在排列组合知识方面的掌握情况。
高中数学排列组合和概率人教版教案(二)【教学目标】知识与技能:理解排列组合的实际应用,能够运用排列组合知识解决生活中的问题。
过程与方法:通过探究生活中的排列组合问题,培养学生的实践能力和解决问题的能力。
情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
【教学重点】排列组合在实际生活中的应用。
【教学难点】如何将实际问题转化为排列组合问题。
【教学过程】一、导入教师通过引入生活中的实际问题,如“如何安排一场比赛的活动顺序?”、“如何从若干个人中选取一部分人组成一个小组?”等,引导学生思考排列组合的问题。
高中数学老师排列组合教案
高中数学老师排列组合教案
主题:排列与组合
目标:学生能够理解排列与组合的概念,掌握排列与组合的计算方法。
一、引言(5分钟)
1. 引入排列与组合的概念,让学生了解排列与组合在日常生活中的应用。
二、概念讲解(15分钟)
1. 讲解排列与组合的定义及区别。
2. 解释排列与组合的计算公式和步骤。
3. 举例说明排列与组合的应用场景。
三、练习与讨论(20分钟)
1. 让学生做一些排列与组合的练习题,帮助他们掌握计算方法。
2. 引导学生讨论排列与组合在实际问题中的应用。
四、拓展与应用(10分钟)
1. 给学生提供一些拓展题目,让他们进一步巩固排列与组合的知识。
2. 讨论排列与组合在实际工作中的应用,如何用排列与组合解决实际问题。
五、总结与作业(5分钟)
1. 总结本节课学习的内容,并强调排列与组合在数学学习中的重要性。
2. 布置作业,让学生继续练习排列与组合的计算方法。
备注:本教案根据排列与组合的教学特点设计,旨在帮助学生全面理解排列与组合的概念,掌握计算方法,并能够灵活运用排列与组合解决实际问题。
愿学生在本节课学习中取得进步,提高数学学习能力。
高中数学排列组合教案
高中数学排列组合教案教学目标:1. 理解排列和组合的概念,能够区分二者之间的不同。
2. 能够根据题目要求应用排列和组合的知识,解决相关问题。
3. 发展学生的逻辑思维能力和数学解题能力。
教学重点:1. 理解排列和组合的概念。
2. 掌握排列和组合的计算方法。
3. 能够应用排列和组合的知识解决实际问题。
教学难点:1. 区分排列和组合的不同。
2. 理解和应用排列和组合的计算方法。
教学准备:1. 教学课件。
2. 习题集。
3. 笔、纸。
教学过程:一、导入新知识(5分钟)学生回顾排列和组合的概念,并简单说明二者之间的区别。
二、讲解排列的概念和计算方法(15分钟)1. 介绍排列的概念和计算公式。
2. 展示一些排列的例题,让学生自行尝试解答。
三、讲解组合的概念和计算方法(15分钟)1. 介绍组合的概念和计算公式。
2. 展示一些组合的例题,让学生自行尝试解答。
四、综合练习与讨论(15分钟)1. 给学生一些综合排列和组合的习题,让学生尝试解答。
2. 学生完成后,逐一讨论解题思路及答案。
五、拓展延伸(10分钟)老师提供一些延伸题目,要求学生思考更复杂的排列组合问题,拓展学生的思维。
六、作业布置(5分钟)布置排列组合的相关作业,让学生巩固所学知识。
七、课堂总结(5分钟)老师对今天的课堂学习进行总结,强调排列组合的重要性和实际应用价值。
鼓励学生继续深入学习相关知识。
教学反思:通过本节课的教学,我发现学生对排列组合的理解程度有所不同,其中有些学生在区分排列和组合时存在一定的困惑,需要加强梳理和讲解。
下一节课,我将更多地引导学生进行实际运用,提高他们的解题能力和应用能力。
高中数学排列组合教案(6篇)
高中数学排列组合教案(6篇)高中数学排列组合教案(精选篇1)教学主题:主要涉及到简洁排列组合问题,相同元素和不同元素排列组合问题。
捆绑法插空法特别元素法特别位置法定序法分组安排教学内容及分析:排列组合问题是高中数学学问的一个重要组成部分,在高考中也是必考内容,难度一般在中等偏上,只要把握的排列组合的几种典型方法,就能快速理解题型题意,快速找到突破口,对症下药,事半功倍,关键是要把握住什么题型用什么方法,通过题型对比分析相同点和不同点,区分易错的,难点。
另外,排列组合在适应新高考有着自然出题优势,由于排列组合更贴近显示生活,可以把我们课本上的抽象概念和数学公式和实际生活联系起来,数学学问走进生活,学问来与是但高于生活,最终回归于生活,才是我们学习学问,专研学问的立足点。
本文就对数学中概率统计中的一小点内容——排列组合,做一个简洁的对比分析。
教学对象及特点:排列组合在高中数学选修2—3。
人教版教材,高二的同学在日常生活中,有许多需要用排列组合来解决的学问。
作为二班级的同学,已有了肯定的生活阅历及解决问题的力量。
因此,在设计中,我通过创设一个完整的、好玩的生活情境来进行教学,力求使同学在经受日常生活最简洁的事例中体验到重要的数学思想方法,从而也感受到数学思想也是依托于生活,来源于生活,是有生命活力的。
教学目标:基于对教材的理解,我把本节课的教学重点定为:在经受简洁事物排列与组合规律的过程中体会排列与组合的数学思想。
教学难点定为:培育同学全面有序的思索问题的意识。
通过观看、猜想、比较、试验等活动,培育同学学习初步的观看、分析力量和有序、全面地思索问题的意识。
培育同学大胆猜想、乐观思维的学习方法,使同学感受学习数学的欢乐,进一步激发同学学习数学的爱好。
教学过程:一、排列问题例1:有4个男生,5个女生站队,在下列条件下,有多少种状况?(1)9个人全部站成一排;(2)9个人站成两排,前排站4人,后排站5人;(3)9个人全部站一排,全部女生站在一起;(捆绑法)(4)9个人全部站一排,全部男生都不相邻;(插空法)(5)9个人全部站一排,甲乙相邻,丙丁不相邻;(6)9个人全部站一排,甲不在两端;(特别元素法,特别位置法)(7)9个人全部站一排,甲不在最左边,乙不在最右边;(8)9个人全部站一排,甲在乙的左边,可以不相邻;(定序)(9)9个人全部站一排,甲在乙的前面,乙在丙的前面,可以不相邻;(10)9个人全部站一排,甲在乙和丙的中间,可以不相邻;二、组合问题例2:有25件产品,其中5件次品,从中任取3件,在下列条件下,有多少种状况?(1)次品甲在内;(2)次品甲不在内;(3)恰有1件次品;(4)至少1件次品;(5)至少2件次品;三、分组安排问题(不同元素)例3:有6名同学安排到三个班级,在下列条件下,有多少种状况?(1)随机安排;(2)每个班表达对一名同学的争取意愿,6名同学实力相当;(3)安排到三个班的人数分别为1、2、3人;(4)安排到三个班的人数分别为1、1、4人;(5)安排到三个班的人数分别为2、2、2人;四、分组安排问题(相同元素)例4:9个相同的乒乓球分给3个不同的人,在下列条件下,有多少种状况?(1)3个人分别分到2个乒乓球,3个乒乓球,4个乒乓球;(2)3个人分别分到2个乒乓球,2个乒乓球,5个乒乓球;(3)3个人平均分,每人得到3个乒乓球;(4)3个人每人至少分到1个乒乓球;(5)3个人每个人至少分到2个乒乓球;(6)3个人随机安排这9个乒乓球;五、分组安排问题(部分元素相同)例5:有外形大小相同,颜色不全相同的乒乓球,其中红色乒乓球,黄色乒乓球,黑色乒乓球分别有5个,从中取出四个乒乓球排一排,在下列条件下,有多少种状况?(1)取3个红色乒乓球,1个黄色乒乓球;(2)取2个红色乒乓球,2个黄色乒乓球;(3)取2个红色乒乓球,1个黑色乒乓球,1个黄色乒乓球;(4)取出的4个乒乓球中刚好3个乒乓球颜色相同;(5)取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色也相同;取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色不同;所选技术以及技术使用的目的:选取的技术是PPT演示文稿,电子文档,交互式电子白板,目的是能和同学共享资源,实时授课,不用边抄题目边讲课,节省时间,集中精力。
高中数学排列组合和概率人教版全部教案
高中数学排列组合和概率人教版教案(一)教学内容:排列的概念及排列数的计算公式。
教学目标:1. 理解排列的概念,掌握排列数的计算公式。
2. 能够运用排列数公式解决实际问题。
教学重点:1. 排列的概念。
2. 排列数的计算公式。
教学难点:1. 排列数的计算公式的应用。
教学过程:一、导入(5分钟)1. 引入排列的概念,引导学生思考在日常生活中遇到的排列问题。
2. 引导学生总结排列的特点和意义。
二、新课讲解(15分钟)1. 讲解排列数的计算公式。
2. 通过例题讲解排列数的计算过程。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固排列数的计算方法。
2. 讲解练习题的解题思路和技巧。
四、拓展与应用(10分钟)1. 引导学生思考如何运用排列数公式解决实际问题。
2. 举例讲解排列数在实际问题中的应用。
五、课堂小结(5分钟)1. 回顾本节课所学内容,总结排列的概念和排列数的计算公式。
2. 强调排列数的计算公式的应用。
教学评价:1. 课后作业:布置有关排列数的计算和应用的题目,检验学生掌握情况。
2. 课堂练习:观察学生在课堂练习中的表现,了解学生对排列数的计算公式的掌握程度。
高中数学排列组合和概率人教版教案(二)教学内容:组合的概念及组合数的计算公式。
教学目标:1. 理解组合的概念,掌握组合数的计算公式。
2. 能够运用组合数公式解决实际问题。
教学重点:1. 组合的概念。
2. 组合数的计算公式。
教学难点:1. 组合数的计算公式的应用。
教学过程:一、导入(5分钟)1. 引入组合的概念,引导学生思考在日常生活中遇到的组合问题。
2. 引导学生总结组合的特点和意义。
二、新课讲解(15分钟)1. 讲解组合数的计算公式。
2. 通过例题讲解组合数的计算过程。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固组合数的计算方法。
2. 讲解练习题的解题思路和技巧。
四、拓展与应用(10分钟)1. 引导学生思考如何运用组合数公式解决实际问题。
人教版高中数学《排列组合》教案
人教版高中数学《排列组合》教案排列与组合一、教学目标1、知识传授目标:正确理解和掌握加法原理和乘法原理2、能力培养目标:能准确地应用它们分析和解决一些简单的问题3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力二、教材分析1.重点:加法原理,乘法原理。
解决方法:利用简单的举例得到一般的结论.2.难点:加法原理,乘法原理的区分。
解决方法:运用对比的方法比较它们的异同.三、活动设计1.活动:思考,讨论,对比,练习.2.教具:多媒体课件.四、教学过程正1.新课导入随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。
排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.种走法到达B村后,再从B村到C村又有2种不同的走法.因此,从A村经B村去C村共有 3X2=6种不同的走法.一般地,有如下原理:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1 m2…m n种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.答:从书架L任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法.练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,有多少种不同取法?例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.答:可以组成125个三位数.练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、…、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、…、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出多少个加法式子?3.题2的变形4.由0-9这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法其次要注意怎样分类和分步,以后会进一步学习练习1.(口答)一件工作可以用两种方法完成.有 5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?2.在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的选法?3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?作业:排列【复习基本原理】1.加法原理做一件事,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二办法中有m2种不同的方法……,第n 办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…m n种不同的方法.2.乘法原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n 步有m n种不同的方法,.那么完成这件事共有N=m1⨯m2⨯m3⨯…⨯m n种不同的方法.3.两个原理的区别:【练习1】1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出.【基本概念】1.什么叫排列?从n个不同元素中,任取m(nm≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m 个元素的一个排列.... 2. 什么叫不同的排列?元素和顺序至少有一个不同.3. 什么叫相同的排列?元素和顺序都相同的排列.4. 什么叫一个排列?【例题与练习】1. 由数字1、2、3、4可以组成多少个无重复数字的三位数?2.已知a 、b 、c 、d 四个元素,①写出每次取出3个元素的所有排列;②写出每次取出4个元素的所有排列.【排列数】1. 定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n p 表示.用符号表示上述各题中的排列数.2. 排列数公式:m n p =n(n-1)(n-2)…(n-m+1)=1n p ;=2n p ;=3np ;=4n p ;计算:25p = ; 45p = ;215p = ;【课后检测】1. 写出:① 从五个元素a 、b 、c 、d 、e 中任意取出两个、三个元素的所有排列;② 由1、2、3、4组成的无重复数字的所有3位数.③ 由0、1、2、3组成的无重复数字的所有3位数.2. 计算:① 3100p ② 36p ③ 2848p 2p - ④ 712812p p 排 列课题:排列的简单应用(1)目的:进一步掌握排列、排列数的概念以及排列数的两个计算公式,会用排列数公式计算和解决简单的实际问题.过程:一、复习:(引导学生对上节课所学知识进行复习整理)1.排列的定义,理解排列定义需要注意的几点问题;2.排列数的定义,排列数的计算公式)1()2)(1(+---=m n n n n A m n 或)!(!m n n A m n -= (其中m ≤n m,n ∈Z )3.全排列、阶乘的意义;规定 0!=14.“分类”、“分步”思想在排列问题中的应用.二、新授:例1:⑴ 7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列——77A =5040⑵ 7位同学站成两排(前3后4),共有多少种不同的排法? 解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040 ⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——66A =720⑷ 7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理:第一步 甲、乙站在两端有22A 种;第二步 余下的5名同学进行全排列有55A 种 则共有22A 55A =240种排列方法⑸ 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步 从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步 从余下的5位同学中选5位进行排列(全排列)有55A 种方法 所以一共有25A 55A =2400种排列方法.解法二:(排除法)若甲站在排头有66A 种方法;若乙站在排尾有66A 种方法;若甲站在排头且乙站在排尾则有55A 种方法.所以甲不能站在排头,乙不能排在排尾的排法共有77A -662A +55A =2400种.小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑.例2 : 7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有66A 22A =1440⑵甲、乙和丙三个同学都相邻的排法共有多少种? 解:方法同上,一共有55A 33A =720种.⑶甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法.解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,所以丙不能站在排头和排尾的排法有960)2(225566=⋅-A A A 种方法.解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有14A 55A 22A =960种方法.小结二:对于相邻问题,常用“捆绑法”(先捆后松). 例3: 7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种? 解法一:(排除法)3600226677=⋅-A A A解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002655 A A 种方法.⑵甲、乙和丙三个同学都不能相邻的排法共有多少种? 解:先将其余四个同学排好有44A 种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种.小结三:对于不相邻问题,常用“插空法”(特殊元素后考虑). 三、小结:1.对有约束条件的排列问题,应注意如下类型: ⑴某些元素不能在或必须排列在某一位置; ⑵某些元素要求连排(即必须相邻); ⑶某些元素要求分离(即不能相邻); 2.基本的解题方法:⑴ 有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);⑵ 某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;⑶ 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;⑷ 在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基.四、作业:《课课练》之“排列 课时1—3” 课题:排列的简单应用(2)目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解.过程: 一、复习:1.排列、排列数的定义,排列数的两个计算公式; 2.常见的排队的三种题型:⑴某些元素不能在或必须排列在某一位置——优限法;⑵某些元素要求连排(即必须相邻)——捆绑法; ⑶某些元素要求分离(即不能相邻)——插空法. 3.分类、分布思想的应用. 二、新授:示例一: 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑)1360805919=A A 解法二:(从特殊元素考虑)若选:595A ⋅ 若不选:69A 则共有 595A ⋅+69A =136080解法三:(间接法)=-59610A A 136080 示例二:⑴ 八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,则共有多少种不同的排法?略解:甲、乙排在前排24A ;丙排在后排14A ;其余进行全排列55A . 所以一共有24A 14A 55A =5760种方法. ⑵ 不同的五种商品在货架上排成一排,其中a , b 两种商品必须排在一起,而c, d 两种商品不排在一起, 则不同的排法共有多少种? 略解:(“捆绑法”和“插空法”的综合应用)a , b 捆在一起与e 进行排列有22A ;此时留下三个空,将c, d 两种商品排进去一共有23A ;最后将a , b “松绑”有22A .所以一共有22A 23A 22A =24种方法.⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?略解:(分类)若第一个为老师则有33A 33A ;若第一个为学生则有33A 33A所以一共有233A 33A =72种方法. 示例三:⑴ 由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?略解:3255545352515=++++A A A A A ⑵ 由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?解法一:分成两类,一类是首位为1时,十位必须大于等于3有3313A A 种方法;另一类是首位不为1,有4414A A 种方法.所以一共有3313A A 1144414=+A A 个数比13 000大.解法二:(排除法)比13 000小的正整数有33A 个,所以比13 000大的正整数有-55A 33A =114个.示例四: 用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.⑴ 第114个数是多少? ⑵ 3 796是第几个数?解:⑴ 因为千位数是1的四位数一共有6035=A 个,所以第114个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有1224=A 个;同理,以“36”、“37”、“38”开头的数也分别有12个,所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968” 是第114个数.⑵ 由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.示例五: 用0,1,2,3,4,5组成无重复数字的四位数,其中 ⑴ 能被25整除的数有多少个? ⑵ 十位数字比个位数字大的有多少个?解: ⑴ 能被25整除的四位数的末两位只能为25,50两种,末尾为50的四位数有24A 个,末尾为25的有1313A A 个,所以一共有24A +1313A A =21个.注: 能被25整除的四位数的末两位只能为25,50,75,00四种情况.⑵ 用0,1,2,3,4,5组成无重复数字的四位数,一共有3003515=A A 个.因为在这300个数中,十位数字与个位数字的大小关系是“等可..能的..”,所以十位数字比个位数字大的有150213515=A A 个. 三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性.四、作业:“3+X ”之 排列 练习 组 合 ⑴课题:组合、组合数的概念目的:理解组合的意义,掌握组合数的计算公式. 过程:一、复习、引入:1.复习排列的有关内容:以上由学生口答. 2.提出问题:示例1: 从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2: 从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的.引出课题:组合..问题.二、新授:1.组合的概念:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 注:1.不同元素 2.“只取不排”——无序性 3.相同组合:元素相同判断下列问题哪个是排列问题哪个是组合问题:⑴ 从A 、B 、C 、D 四个景点选出2个进行游览;(组合) ⑵ 从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.(排列)2.组合数的概念:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.例如:示例2中从3个同学选出2名同学的组合可以为:甲乙,甲丙,乙丙.即有323 C 种组合.又如:从A 、B 、C 、D 四个景点选出2个进行游览的组合:AB ,AC ,AD ,BC ,BD ,CD 一共6种组合,即:624=C在讲解时一定要让学生去分析:要解决的问题是排列问题还是组合问题,关键是看是否与顺序有关.那么又如何计算m n C 呢?3.组合数公式的推导⑴提问:从4个不同元素a ,b ,c ,d 中取出3个元素的组合数34C 是多少呢?启发: 由于排列是先组合再排列.........,而从4个不同元素中取出3个元素的排列数34A 可以求得,故我们可以考察一下34C 和34A 的关系,如下:组 合 排列dcbcdb bdc dbc cbd bcd bcddca cda adc dac cad acd acd dba bda adb dab bad abd abd cba bca acb cab bac abc abc,,,,,,,,,,,,,,,,,,,,→→→→ 由此可知:每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数34A ,可以分如下两步:① 考虑从4个不同元素中取出3个元素的组合,共有34C 个;② 对每一个组合的3个不同元素进行全排列,各有33A 种方法.由分步计数原理得:34A =⋅34C 33A ,所以:333434A A C =.⑵ 推广: 一般地,求从n 个不同元素中取出m 个元素的排列数m n A ,可以分如下两步:① 先求从n 个不同元素中取出m 个元素的组合数m n C ;② 求每一个组合中m 个元素全排列数mm A ,根据分布计数原理得:m n A =m n C m m A ⋅⑶ 组合数的公式:!)1()2)(1(m m n n n n A A C m m m n mn+---==或 )!(!!m n m n C m n -=),,(n m N m n ≤∈*且⑷ 巩固练习:1.计算:⑴ 47C ⑵ 710C2.求证:11+⋅-+=m n m n C mn m C 3.设,+∈N x 求321132-+--+x x x x C C 的值.解:由题意可得:⎩⎨⎧-≥+-≥-321132x x x x 即:2≤x ≤4 ∵,+∈N x ∴x =2或3或4当x =2时原式值为7;当x =3时原式值为7;当x =2时原式值为11.∴所求值为4或7或11. 4.例题讲评例1. 6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?略解:90222426=⋅⋅C C C例2.4名男生和6名女生组成至少有1个男生参加的三人实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有34C ,1624C C ⋅,2614C C ⋅,所以一共有34C +1624C C ⋅+2614C C ⋅=100种方法.解法二:(间接法)10036310=-C C 5.学生练习:(课本99练习) 三、小结:此外,解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理.四、作业:课堂作业:教学与测试75课 课外作业:课课练 课时7和8 组 合 ⑵课题:组合的简单应用及组合数的两个性质目的:深刻理解排列与组合的区别和联系,熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题.过程:一、复习回顾:1.复习排列和组合的有关内容:强调:排列——次序性;组合——无序性.2.练习一: 练习1:求证:11--=m n m n C mn C . (本式也可变形为:11--=m n m n nC mC ) 练习2:计算:① 310C 和710C ; ② 2637C C -与36C ;③ 511411C C +答案:① 120,120 ② 20,20 ③ 792 (此练习的目的为下面学习组合数的两个性质打好基础.) 3.练习二:⑴ 平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵ 平面内有10个点,以其中每2个点为端点的有向线段共有多少条?答案:⑴45210=C (组合问题) ⑵90210=A (排列问题) 二、新授:1.组合数的 性质1:m n n m n C C -=.理解: 一般地,从n 个不同元素中取出m 个元素后,剩下n - m 个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=.在这里,我们主要体现:“取法”与“剩法”是“一一对应”的思想.证明:∵)!(!!)]!([)!(!m n m n m n n m n n C m n n -=---=-又)!(!!m n m n C m n -=∴m n n m n C C -=注:1︒ 我们规定 10=n C2︒ 等式特点:等式两边下标同,上标之和等于下标. 3︒ 此性质作用:当2n m >时,计算m n C 可变为计算m n n C -,能够使运算简化.例如:20012002C =200120022002-C =12002C =2002.4︒ y n x n C C =y x =⇒或n y x =+2.示例一:(课本101例4)一个口袋内装有大小相同的7个白球和1个黑球.⑴ 从口袋内取出3个球,共有多少种取法?⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:⑴ 5638=C ⑵ 2127=C ⑶ 3537=C 引导学生发现:=38C +27C 37C .为什么呢?我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.一般地,从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是m n C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m -1个元素与1a 组成的,共有1-m n C 个;不含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m 个元素组成的,共有m n C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.3.组合数的 性质2:m n C 1+=m n C +1-m n C . 证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n)!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m n m n C 1+= ∴ m n C 1+=m n C +1-m n C .注:1︒ 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.2︒ 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.4.示例二:⑴ 计算:69584737C C C C +++⑵ 求证:n m C 2+=n m C +12-n m C +2-n m C ⑶ 解方程:3213113-+=x x C C⑷ 解方程:333222101+-+-+=+x x x x x A C C ⑸ 计算:4434241404C C C C C ++++和554535251505C C C C C C +++++ 推广:n nn n n n n nC C C C C 21210=+++++- 5.组合数性质的简单应用: 证明下列等式成立:⑴ (讲解)11321++---=+++++k n k k k k k n k n k n C C C C C C ⑵ (练习)1121++++++=++++k k n k n k k k k k k k C C C C C⑶ )(23210321nn n n n n n n n C C C nnC C C C +++=++++6.处理《教学与测试》76课例题 三、小结:1.组合数的两个性质; 2.从特殊到一般的归纳思想. 四、作业: 课堂作业:《教学与测试》76课 课外作业:课本习题10.3;课课练课时9 组 合 ⑶课题:组合、组合数的综合应用⑴目的:进一步巩固组合、组合数的概念及其性质,能够解决一些较为复杂的组合应用问题,提高合理选用知识的能力.过程:一、知识复习:1.复习排列和组合的有关内容:依然强调:排列——次序性;组合——无序性. 2.排列数、组合数的公式及有关性质性质1:m n n m n C C -= 性质2:m n C 1+=m n C +1-m n C 常用的等式:111010====+++k k k k k k C C C C 3.练习:处理《教学与测试》76课例题 二、例题评讲:例1.100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴ 都不是次品的取法有多少种? ⑵ 至少有1件次品的取法有多少种? ⑶ 不都是次品的取法有多少种?解:⑴ 2555190490=C ; ⑵ 13660354101903102902103901104904100=+++=-C C C C C C C C C ; ⑶ 39210154901103902102903101904104100=+++=-C C C C C C C C C . 例2.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?解:分为三类:1奇4偶有4516C C ;3奇2偶有2536C C ;5奇1偶有56C所以一共有4516C C +2536C C +23656=C . 例3.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:① 让两项工作都能担任的青年从事英语翻译工作,有2324C C ;② 让两项工作都能担任的青年从事德语翻译工作,有1334C C ;③ 让两项工作都能担任的青年不从事任何工作,有2334C C .所以一共有2324C C +1334C C +2334C C =42种方法.例4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)422131424152426=+-C C C C C C 解法二:分为两类:一类为甲不值周一,也不值周六,有2414C C ;另一类为甲不值周一,但值周六,有2324C C .所以一共有2414C C +2324C C =42种方法.例5.6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?解:第一步从6本不同的书中任取2本“捆绑”在一起看成一个元素有26C 种方法;第二步将5个“不同元素(书)”分给5个人有55A 种方法.根据分步计数原理,一共有26C 55A =1800种方法.变题1:6本不同的书全部送给5人,有多少种不同的送书方法? 变题2: 5本不.同的书全部送给6人,每人至多1本,有多少种不同的送书方法?变题3: 5本相.同的书全部送给6人,每人至多1本,有多少种不同的送书方法?答案:1.1562556=; 2.72056=A ; 3.656=C . 三、小结:1.组合的定义,组合数的公式及其两个性质;2.组合的应用:分清是否要排序. 四、作业:《3+X 》 组合基础训练 《课课练》课时10 组合四组 合 ⑷课题:组合、组合数的综合应用⑵目的:对排列组合知识有一个系统的了解,掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题.过程:一、知识复习: 1.两个基本原理;2.排列和组合的有关概念及相关性质. 二、例题评讲:例1.6本不同的书,按下列要求各有多少种不同的选法: ⑴ 分给甲、乙、丙三人,每人两本; ⑵ 分为三份,每份两本;⑶ 分为三份,一份一本,一份两本,一份三本;⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本; ⑸ 分给甲、乙、丙三人,每人至少一本. 解:⑴ 根据分步计数原理得到:90222426=C C C 种.⑵ 分给甲、乙、丙三人,每人两本有222426C C C 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x 种方法;第二步再将这三份分给甲、乙、丙三名同学有33A 种方法.根据分步计数原理可得:33222426xC C C C =,所以1533222426==A C C C x .因此分为三份,每份两本一共有15种方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档排列与组合一、教学目标1、知识传授目标:正确理解和掌握加法原理和乘法原理2、能力培养目标:能准确地应用它们分析和解决一些简单的问题3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力二、教材分析1.重点:加法原理,乘法原理。
解决方法:利用简单的举例得到一般的结论.2.难点:加法原理,乘法原理的区分。
解决方法:运用对比的方法比较它们的异同.三、活动设计1.活动:思考,讨论,对比,练习.2.教具:多媒体课件.四、教学过程正1.新课导入随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。
排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.实用文档2.新课我们先看下面两个问题.(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?板书:图因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理:加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m种不同的方法,在第二类办法中有m种不同的方法,……,21在第n 类办法中有m种不同的方法.那么完成这件事共有N=m十m2n1十…十m种不同的方法.n(2) 我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?板书:图这里,从A村到B村有3种不同的走法,按这3种走法中的每一实用文档种走法到达B村后,再从B村到C村又有2种不同的走法.因此,从A村经B村去C村共有 3X2=6种不同的走法.一般地,有如下原理:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m种不同的方法,做第二步有m种不同的方法,……,做第n步有21m种不同的方法.那么完成这件事共有N=m m…m种不同的方法.n12n例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.答:从书架L任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是 N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法.练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,有多少种不同取法?实用文档例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.答:可以组成125个三位数.练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、…、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、…、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出实用文档多少个加法式子?3.题2的变形4.由0-9这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法其次要注意怎样分类和分步,以后会进一步学习练习1.(口答)一件工作可以用两种方法完成.有 5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?2.在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的选法?3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?作业:实用文档排列】【复习基本原理类办法,第一类办法n 做一件事,完成它可以有1.加法原理办种不同的方法……,第n中有m种不同的方法,第二办法中有m21 m种不同的方法,那么完成这件事共有法中有n…m+m+m+N=m n231种不同的方法.步 n个步骤,做第一.2乘法原理做一件事,完成它需要分成步n 种不同的方法,做第二步有m种不同的方法,……,做第有m21那么完成这件事共有种不同的方法,.有m n?mmm??…N=m?n231. 种不同的方法 3.两个原理的区别: 1】【练习北京、上海、广州三个民航站之间的直达航线,需要准备多少1. 种不同的机票?可以组成多少个无重复数字的二位数?请一一32、12.由数字、.列出【基本概念】(这个元素m(个不同元素中,任取)什么叫排列?从1.n n?m一定的顺序叫做从n按照里的被取元素各不相同)个不同排成一列,.....一个排列个元素的m元素中取出....实用文档2.什么叫不同的排列?元素和顺序至少有一个不同.什么叫相同的排列?元素和顺序都相同的排列3..什么叫一个排列? 4.【例题与练习】1.由数字1、2、3、4可以组成多少个无重复数字的三位数?2.已知a、b、c、d四个元素,①写出每次取出3个元素的所有排列;②写出每次取出4个元素的所有排列.【排列数】1.定义:从n个不同元素中,任取m()个元素的所有排n?m列的个数叫做从n个元素中取出m元素的排列数,用符号表示.用符号表示上述各题中的排列数.m p n2.排列数公式:=n(n-1)(n-2)…(n-m+1);;;312?ppp??nnnm p n;4?p n计算:= ;= ;42pp55= ;2p15【课后检测】1.写出:①从五个元素a、b、c、d、e中任意取出两个、三个元素的所有排列;②由1、2、3、4组成的无重复数字的所有3位数.③由0、1、2、3组成的无重复数字的所有3位数.实用文档2.计算:②③①④334212pp?p2p8610087p12排列8p课题:排列的简单应用(1)目的:进一步掌握排列、排列数的概念以及排列数的两个计算公式,会用排列数公式计算和解决简单的实际问题.过程:一、复习:(引导学生对上节课所学知识进行复习整理)1.排列的定义,理解排列定义需要注意的几点问题;2.排列数的定义,排列数的计算公式n!mn m,nZ)≤(其中?mm或?A)?1m?)(n2)(n???An(n1 nn(n?m)! 3.全排列、阶乘的意义;规定0!=14.“分类”、“分步”思想在排列问题中的应用.二、新授:例1:⑴ 7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列——=5040 7A7⑵ 7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040⑶ 7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——=7206A6实用文档⑷ 7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步甲、乙站在两端有种;第二2A2步余下的5名同学进行全排列有种则共有=240种排列方552AAA552法⑸ 7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位2A5同学中选5位进行排列(全排列)有种方法所以一共有=525AAA5552400种排列方法.解法二:(排除法)若甲站在排头有种方法;若乙站在排尾6A6有种方法;若甲站在排头且乙站在排尾则有种方法.所以甲不56AA56能站在排头,乙不能排在排尾的排法共有-+=2400种.576AAA2576小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑.例2 : 7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学6A6“松绑”进行排列有种方法.所以这样的排法一共有=1440⑵甲、乙和丙三个同学都相邻的排法共有多少种?622AAA622解:方法同上,一共有=720种.35AA35实用文档⑶甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的42A5个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行4A4排列有种方法.所以这样的排法一共有=960种方法.2242AAAA5242解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,所以丙不能站在5A5排头和排尾的排法有种方法.256960A??2A)?(A265解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进行全排列共有种51AA54方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有521AAA542=960种方法.小结二:对于相邻问题,常用“捆绑法”(先捆后松).例3: 7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)2673600??A?AA267解法二:(插空法)先将其余五个同学排好有种方法,此时他5A5们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法.2253600AAA 656实用文档⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一4A4共有=1440种.34AA54小结三:对于不相邻问题,常用“插空法”3A5(特殊元素后考虑).三、小结:1.对有约束条件的排列问题,应注意如下类型:⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);2.基本的解题方法:⑴有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);⑵某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;⑶某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;⑷在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基.四、作业:《课课练》之“排列课时1—3”课题:排列的简单应用(2)实用文档目的:使学生切实学会用排列数公式计算和解决简单的实际问题,进一步培养分析问题、解决问题的能力,同时让学生学会一题多解.过程:一、复习:1.排列、排列数的定义,排列数的两个计算公式;2.常见的排队的三种题型:⑴某些元素不能在或必须排列在某一位置——优限法;⑵某些元素要求连排(即必须相邻)——捆绑法;⑶某些元素要求分离(即不能相邻)——插空法.3.分类、分布思想的应用.二、新授:示例一:从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑)51A 136080A99解法二:(从特殊元素考虑)若选:若不选:65A5?A99则共有+=136080136080 解法三:(间接法)56AA??109示例二:65A?A599⑴八个人排成前后两排,每排四人,其中甲、乙要排在前排,丙要排在后排,则共有多少种不同的排法?实用文档略解:甲、乙排在前排;丙排在后排;其余进行全排列.521AAA544=5760种方法.所以一共有521AAA544ab两种商品必须, ⑵不同的五种商品在货架上排成一排,其中c, d两种商品不排在一起, 则不同的排法共有多少种?排在一起,而abe捆在一起与“捆绑法”和“插空法”的综合应用), 略解:(进行排列有;2A2c, da,;最后将两种商品排进去一共有此时留下三个空,将2A3b“松绑”有.所以一共有=24种方法.2222AAAA3222⑶ 6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的坐法有多少种?略解:(分类)若第一个为老师则有;若第一个为学生则有33AA33所以一共有2=72种方法.33AA33示例三:33AA33⑴由数字1,2,3,4,5可以组成多少个没有重复数字的正整数?略解:45231A325A??A?A??A55555⑵由数字1,2,3,4,5可以组成多少个没有重复数字,并且比13 000大的正整数?解法一:分成两类,一类是首位为1时,十位必须大于等于3有种方法;另一类是首位不为1,有种方法.所以一共有4131AAAA3344个数比13 000大.4131114A?A?AA3344实用文档解法二:(排除法)比13 000小的正整数有个,所以比13 0003A3大的正整数有=114个.35A?A35示例四:用1,3,6,7,8,9组成无重复数字的四位数,由小到大排列.⑴第114个数是多少?⑵ 3 796是第几个数?解:⑴因为千位数是1的四位数一共有个,所以第114360A?5个数的千位数应该是“3”,十位数字是“1”即“31”开头的四位数有个;同理,以“36”、“37”、“38”开头的数也分别有12个,212?A4所以第114个数的前两位数必然是“39”,而“3 968”排在第6个位置上,所以“3 968”是第114个数.⑵由上可知“37”开头的数的前面有60+12+12=84个,而3 796在“37”开头的四位数中排在第11个(倒数第二个),故3 796是第95个数.示例五:用0,1,2,3,4,5组成无重复数字的四位数,其中⑴能被25整除的数有多少个?⑵十位数字比个位数字大的有多少个?解:⑴能被25整除的四位数的末两位只能为25,50两种,个,末尾为50的四位数有个,末尾为25的有所以一共有+1122AAAA3344=21个.11AA33注:能被25整除的四位数的末两位只能为25,50,75,00四种情况.⑵用0,1,2,3,4,5组成无重复数字的四位数,一共有31AA300?55实用文档个.因为在这300个数中,十位数字与个位数字的大小关系是“等可..1,所以十位数字比个位数字大的有个.能的”31150AA?..552三、小结:能够根据题意选择适当的排列方法,同时注意考虑问题的全面性,此外能够借助一题多解检验答案的正确性.X”之排列练习四、作业:“3+组合⑴课题:组合、组合数的概念目的:理解组合的意义,掌握组合数的计算公式.过程:一、复习、引入:1.复习排列的有关内容:定特相公点义同排列式排以上由学生口答.2.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,实用文档有多少种不同的选法?引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的.引出课题:组合问题...二、新授:nmmn)个组合的概念:一般地,从(个不同元素中取出≤1.nm个元素的一个组合元素并成一组,叫做从.个不同元素中取出注:1.不同元素 2.“只取不排”——无序性 3.相同组合:元素相同判断下列问题哪个是排列问题哪个是组合问题:A、B、C、D四个景点选出2个进行游览;从(组合)⑴⑵从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.(排列)nmmn)个元素的.组合数的概念:从(个不同元素中取出≤2nm个元素的组合数.所有组合的个数,叫做从用个不同元素中取出符号表示.m C n例如:示例2中从3个同学选出2名同学的组合可以为:甲乙,甲丙,乙丙.即有种组合.23C?3A、B、C、DAB,又如:从2个进行游览的组合:四个景点选出ACADBCBDCD一共6,种组合,即:,,,26C?4在讲解时一定要让学生去分析:要解决的问题是排列问题还是实用文档组合问题,关键是看是否与顺序有关.那么又如何计算呢?m C n3.组合数公式的推导abc,d中取出,3⑴提问:从4个不同元素个元素的组合数,3C4是多少呢?启发:由于排列是先组合再排列,而从4个不同元素中取出3.........个元素的排列数可以求得,故我们可以考察一下和的关系,333AAC444如下:组合排列abc?abc,bac,cab,acb,bca,cbadba?,adb,abd,bad,bdadab,abdadc,?,cda,dcadac,acd,cadacdbdcbcd?,cbd,cdb,dcb,,dbcbcd由此可知:每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步:①考3A4虑从4个不同元素中取出3个元素的组合,共有个;②对每一个3C4组合的3个不同元素进行全排列,各有种方法.由分步计数原理得:3A33A=,所以:.33334A?CA?C34443A3nm个元素的排列数一般地,求从个不同元素中取出⑵推广:nm个元素的组先求从个不同元素中取出,可以分如下两步:①m A n m 个元素全排列数,根据分布计数原;合数②求每一个组合中mm AC mn 理得:=mmm AC?A mnn⑶组合数的公式:m An(n?1)(n?2)(n?m?1) mn?C?nm!mA m实用文档n!或m??C)nmN?,且(n,m?n m!(n?m)!⑷巩固练习:1.计算:⑴⑵47CC107m?1 2.求证:1mm?C??C nn n?m3.设求的值.?12x?3x CC?,?Nx13x2?x??2x?3?x?1?x≤4 即:2 解:由题意可得:≤?x?1?2x?3?x=2或3或∵∴4,Nx??xxx=2时原式7;当;当=3 当时原式值为=2时原式值为7值为11.∴所求值为4或7或11.4.例题讲评例1. 6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?略解:22290?CC?C?246例2.4名男生和6名女生组成至少有1个男生参加的三人实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1,所以一共有=男2女,分别有,,++2112221133CCC?CC?C??CCCC4466646444100种方法.解法二:(间接法)33C?C?100106实用文档5.学生练习:(课本99练习)三、小结:定特相公式组合义点同排列组合此外,解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理.四、课作业:课堂作业:教学与测试758 和课时课外作业:课课练 7组⑵合课题:组合的简单应用及组合数的两个性质熟练掌握组合数的计目的:深刻理解排列与组合的区别和联系,并且能够运用它解决一些简单的应算公式;掌握组合数的两个性质,用问题.过程:一、复习回顾: 1.复习排列和组合的有关内容:强调:排列——次序性;组合——无序性. 2.练习一:实用文档n.(本式也可变形为:练习1:求证:)1?mm1?mm mCnC?C?C1nn?1?nn m练习2:计算:①和;②与;③3323754C?CCCCCC?67106101111答案:① 120,120 ② 20,20 ③ 792(此练习的目的为下面学习组合数的两个性质打好基础.)3.练习二:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵平面内有10个点,以其中每2个点为端点的有向线段共有多少条?(组合问题)⑵(排列问题)答案:⑴22C90?A?451010二、新授:1.组合数的性质1:.mn?m CC?nn nmnm个不同元素中取出个元素后,剩下?理解:一般地,从个元素.因nmn?个不同元素中取出个元素的每一个组合,与剩下的为从mnm个元个不同元素中取出个元素的每一个组合一一对应,所以从....nnm个元素的组合数,即:个元素中取出素的组合数,等于从这?.在这里,我们主要体现:“取法”与“剩法”是“一一对mmn?CC?nn应”的思想.n!n!证明:∵m?n??C n(n?m)![n?(n?m)]!m!(n?m)!n!又∴mn?m CC?m?C nn n)!mn?!m(注:1?我们规定01?C n实用文档2?等式特点:等式两边下标同,上标之和等于下标.n时,计算可变为计算此性质作用:当,能够使运3?mm?n C C?m nn2算简化.例如:===2002.200120012002?1CCC200220022002 4?或2.示例一:(课本101例4)一个口袋内装有大小相同yx CC?n?x?y?x?y nn的7个白球和1个黑球.⑴从口袋内取出3个球,共有多少种取法?⑵从口袋内取出3个球,使其中含有1个黑球,有多少种取法?⑶从口袋内取出3个球,使其中不含黑球,有多少种取法?解:⑴⑵⑶32335C21CC?56??787引导学生发现:.为什么呢?我们可以这样解释:从口袋内的8个球中所取出的3个球,323C??CC787可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.nm个元素的这一般地,从个不同元素中取出+1 a ,,a,a1?21n组合数是,这些组合可以分为两类:一类含有元素,一类不含m Ca1n?1nm ?1的组合是从.含有这个元素中取出个元素有aa,a ,,aa1n23?11n个元的组合是从个;不含有这组成的,共有与1?m Ca ,,,aaaa n12?n311m个元素组成的,共有素中取出个.根据分类计数原理,可以得m C n到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.实用文档3.组合数的性质2:=+.1m?mm CCC nn?n1n!n!证明:1?mm???CCnn m!(n?m)!(m?1)![n?(m?1)]!n!(n?m?1)?n!m?)!(n?m?1!m(n?m?1?m)n!?m!(n?m?1)!(n?1)!?m!(n?m?1)!m C?1n?∴=+.1mmm?CCC n1nn?注:1?公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.2?此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.4.示例二:⑴计算:6453C?CC??C9787⑵求证:=++ 2nnn?1n?CCCC2mmm?2m⑶解方程:解方程:⑷3?2x?3x ACC??3x?2x??2x10⑸计算:和3x?x?12C?C13131推广:nn2n?101C2??C??C?C?C nnnnn5.组0412*******CC?C?C?C?C??C?C?CC?C55555544444合数性质的简单应用:证明下列等式成立:⑴(讲解)1?kkkkkk CC ??CC??CC??nn?3?11n?kn2?k⑵(练习)1?kkkkk CCC? ?C???C1k?nn?1kk?k2?k?实用文档n⑶n1123n0)?CC?C? ?2C?3C ?nC?(?C nnnnnnn26.处理《教学与测试》76课例题三、小结:1.组合数的两个性质;2.从特殊到一般的归纳思想.四、作业:课堂作业:《教学与测试》76课课外作业:课本习题10.3;课课练课时9组合⑶课题:组合、组合数的综合应用⑴目的:进一步巩固组合、组合数的概念及其性质,能够解决一些较为复杂的组合应用问题,提高合理选用知识的能力.过程:一、知识复习:1.复习排列和组合的有关内容:依然强调:排列——次序性;组合——无序性.2.排列数、组合数的公式及有关性质性质1:性质2:=+ 1mmmn?mm?CC?CCC nn1nnn?常用的等式:3.练习:处理《教学与测试》76课例题1?0kk01?CC??C?C1k1kkk??二、例题评讲:例1.100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴都不是次品的取法有多少种?实用文档⑵至少有1件次品的取法有多少种?⑶不都是次品的取法有多少种?;解:⑴4C?255519090;⑵412344132C?1366035C?C?CC?C?C?CC1001090909090101010.⑶例2.从编号为1,2,3,…,431441322C3921015?CC?C???CCC?CC100109010109090109010,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?;3奇2偶有;5奇1 解:分为三类:1奇4偶有2341CCCC6655偶有++.所以一共有51432CC?CC236C65566例3.现有8名青年,其中有5 5C6名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有;22CC34②让两项工作都能担任的青年从事德语翻译工作,有;31CC34③让两项工作都能担任的青年不从事任何工作,有.23CC34所以一共有++=42种方法.223123CCCCCC334434例4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲实用文档。