河道水流和泥沙的一般特性[内容充实]
河流动力学第三章 泥沙特性
三、泥沙的水下休止角
– 定义:静水中、不致塌落的倾角 – 影响因素:泥沙粒径、级配及形状 – 变化范围:32º-39 º
三、泥沙的水下休止角 f tgφ
• 根据天津大学研究成果,泥沙水下休止角(°)与粒径D(mm)
有如下关系: 32.5 1.27d
抛石
➢ 0.5 <Red<1000时,由于Cd 为ω及d的函数,目 前无合适的计算公式,只能借助实验资料来计算
ω及Red。
21
22
三、泥沙的沉速
– 天然泥沙不是球体,需要考虑差异 – 基本原理、基本方法大同小异 – 相关研究较多,但所得公式结构相近 – 过渡区复杂,各家公式百花齐放 – 水电部规范综合了多家公式
– 特点
♥ 包含孔隙在内: s = s (1-e) ♥ 变幅较大:最大1.7t/m3,最小0.3t/m3 ♥ 原因:孔隙变化较大
二、泥沙的干容重与干密度
– 影响因素
♥ 泥沙粒径 ➢ 颗粒越细其值越小:
D<0.005mm0.56t/m3 ➢ 颗粒越细变幅越大:0.56-1.35t/m3 ♥ 泥沙淤积厚度 ➢ 淤积深度越深干容重越大,变幅越小
1.72 s gd 0.41 m / s
Red= D/ =0.41×3.5/1000/10-6=1432.1>1000,假定符合,
属紊流
泥沙的水力特性
四、其他影响因素
– 泥沙形状
♥ 细颗粒不重要 ♥ 砾石、卵石、块石应考虑(越扁平,沉速越小)
– 水质
♥ 絮凝的影响 ♥ 出现絮凝后,沉速增加,一般0.4-0.5mm/s
D
(
6V
)1/
3
河道水流和泥沙的一般特性
河流动力学
精选课件
29
泥沙的粒径(续)
对较粗的天然沙粒测量成果的统计分析表 明,沙粒的中轴长度,和其长、中、短三 轴的几何乎均值(即等容粒径)接近相等且 略大
对于粒径在0.062~32.0mm之间的沙粒,一 般采用筛析法
用筛析法量得的粒径应相当于各粒径组界 限沙粒的中轴长度。可以近似地看成等容 粒径,或者直接称为筛径
河流动力学
精选课件
32
河流动力学
精选课件
33
三、泥沙的空隙率
孔隙率:泥沙中孔隙的容积占沙样总容积的百分比称为孔隙率
• 泥沙孔隙率因沙粒的大小及均 匀度、沙粒的形状、沉积的情 况以及沉积后受力大小及历时 长短而有不同。
• 对各类泥沙孔隙率一般为 粗 沙 : 的 孔 隙 率 39 % ~ 40 % , 中沙:41%-48%,
不同粒径级的颗粒具有不同的矿物组成 不同粒径级的颗粒具有不同的物理化学特性
河流动力学
精选课件
26
河流泥沙的几何特性
河流动力学
精选课件
27
泥沙的粒径
泥沙的几何特性系指泥沙颗粒的形状和大小, 或者说泥沙颗粒的形状与粒径
泥沙的粒径
泥沙的粒径是泥沙颗粒大小的量度
所谓等容粒径,就是体积与泥沙颗粒相等的球体的 直径。设某一颗沙的体积为v,则其等容粒径为, 单位mm
河道水流和泥沙的一般特性
精选课件
1
河道水流的一般特性
河流动力学
精选课件
2
河道水流的基本特性
天然河道中的水流属于明渠流,在很多情 况下可以沿用水力学中明渠流的有关结果
二相流特性 三维性 不恒定性 非均匀性
河流动力学
精选课件
3
第4章 河流泥沙运动规律
第一节 河流泥沙特性
河流泥沙运动规律与泥沙的特性密切相关。因此,在研究河流泥沙运动规律之前,首先
要了解泥沙的特性。
(一)河流泥沙的分类
河流泥沙分类方法有多种,如按泥沙粒径的大小进行分类,按泥沙在河流中的运动状态
分类等,这里主要介绍这两种分类的方法。
1.按泥沙粒径的大小分类
河流泥沙粒径,大至 1~2m 的漂石,小至 0.004mm 以下黏粒,大小相差可达数百万倍。
2.泥沙颗粒级配特性 河流中的泥沙是由许许多多粒径不同的泥沙颗粒组成。从这些泥沙中取出一部分有代表 性的沙样进行颗粒分析,沙样中各种粒径的泥沙相对含量(以百分比计),称为泥沙的颗粒 级配。泥沙的颗粒级配常用粒配曲线表示,这种粒配曲线通常都画在半对数坐标纸上,其横 坐标为粒径,纵坐标为小于此粒径的泥沙占沙样总重量或质量的百分比,如图 4-1 所示。泥 沙的颗粒级配特性是影响泥沙运动的主要因素。 在解决实际问题时,为了便于分析,常将床沙、推移质和悬移质 3 种泥沙的颗粒级配曲 线绘在同一张图上,如图 4-1 所示。从图中可以看出,悬移质的沙样颗粒较推移质的为小, 而推移质的沙样较床沙的均匀。推移质、床沙和悬移质 3 者比较起来悬移质最细,床沙最粗, 曲线亦相应自右至左分布。
漂石
<0.004 0.004~0.062 0.062~2.0 2.0~16.0 16.0~250.0 >250.0
2.按泥沙在河流中的运动状态分类 按照泥沙的运动状态,可将泥沙分为床沙(亦称河床质)、推移质及悬移质 3 大类。床沙 是组成河床表面静止的泥沙。推移质是沿河床床面滚动、滑动或跳跃前进的泥沙,一般粒径 比较粗。它们是由近底水流对床面颗粒在绕流运动过程中所产生的水流作用力推动的结果, 它们的运动范围都在床面附近的区域。推移质运动呈明显的间歇性,往往运动一阵,停止一 阵。运动时为推移质,静止时为床沙,推移质与床沙经常彼此交换。当河床上有一定数量的 推移质向前运动的时候,河床表面往往形成起伏的沙波。推移质前进的速度远较水流速度为 小,但它在水流作用下,有一个增速过程,即运动速度由小到大。这种增速过程,要消耗水 流的能量。悬移质是随水流浮游前进的泥沙,一般粒径较小。悬移质运动的速度基本上与水 流运动速度相同,浮游的位置时上时下,较细的泥沙能上升至接近水面,较粗的泥沙有时甚 至回到河床上与床沙发生置换。维持泥沙悬浮的能量,来自水流的紊动动能。在靠近床面附 近,各种泥沙在不断地交换,推移质与床沙之间,悬移质和推移质之间都在交换,很难把它 们截然分开。就同一种粒径的泥沙来说,在某一河段可能是停止不动的床沙,在另一河段可 能作推移质或悬移质运动。在同一断面上亦因流速不同,会出现不同的运动状态,因此泥沙 运动状态除取决于泥沙本身的粒径外还取决于水流条件。 (二)泥沙的几何特性 1.泥沙颗粒的形状和大小 河流泥沙形状极不规则。常见的卵石、砾石,外形比较圆滑,有圆球状的,有椭球状的 也有片状的,但均无尖角和棱线。沙类和粉土类泥沙外形多有尖角和棱线。黏土类泥沙一般 呈扁平状或针状。泥沙颗粒的形状,常用球度系数表示,它是指泥沙颗粒的实际表面积与之 等体积的球体的表面积之比,其表达式如下:
【VIP专享】河流动力学2-泥沙特性
Chap1 泥沙特性本章知识要点: 泥沙粒径表达形式 泥沙的组成与粒配曲线 比表面积的意义 双电层与结合水 泥沙干容重及其影响因素 泥沙沉速与层流、紊流、过渡区 絮凝现象●泥沙来源:①流域地表冲蚀而来;②从原河床上冲起的。
●土壤侵蚀最严重的黄河中游的黄土高原永定河和西辽河流域,相当于地表每年普遍冲掉0.6毫米的厚度,加上人类活动,如盲目开垦等,含沙量很高的正是黄河中游的一些干支流,年均含沙量高达300公斤/m 2以上,而南部一些省份,年均含沙量不足1公斤/m 2。
§1-1 泥沙的几何特性一、泥沙的粒径●泥沙的不同形状与它们在水流中的运动状态有关,较粗的沿河底推移前进,碰撞机会多,动量较大易磨损;反之不易磨损而保持棱角峥嵘的外貌。
为比较不同泥沙颗粒的形状、大小的异同,必须有某些指标对它们进行对比。
泥沙的形状的表达方式●球度系数:(因为泥沙接近于球体,所以以球体作参照物)与沙粒等体积的球体的表面积与泥沙的实际表面积之比(与球接近的程度)。
研究表明,球度系数相等的两颗泥沙,在水中的流体动力特性大致相同。
由于球度系数难以测定(V 可用排水、称重法确定,但表面积难以测定),常用泥沙的长、中、短三个轴a, b, c,按下式近似表示:Φ=(1942年克来拜因提出)●形状系数: ab c S P =1、等容粒径:泥沙颗粒的大小通常用泥沙颗粒直径来表示,泥沙颗粒形状不规则,难以确定泥沙的粒径,实际中采用等容粒径来表示。
即:与泥沙颗粒体积相等的球体直径。
(泥沙体积可用称重、排水等方法测出:W V g ρ=)——对比水力学中表面粗糙度∆的确定136V d π⎛⎫= ⎪⎝⎭ 式中:V 为泥沙颗粒的体积。
2、算术平均粒径:用长、中、短轴(a 、b 、c )的算数平均值来表征泥沙粒径1()3d a b c =++3、几何平均粒径:d = 当泥沙形状为椭球体时,等容粒径与几何平均粒径相同(V=лabc/6=лd 3/6)4、中轴长度:接近而偏大于几何平均粒径(较粗天然沙测量的结果)5、筛径:仅对于单颗的卵石、砾石等可以通过称重,再除以泥沙的重率,得到体积而后求其等容粒径,或直接量测其三轴长度,再求其平均值。
河流泥沙特性及其相关测定
河流泥沙理化特征及其测定方和效应分析摘要:本文就河流泥沙的理化特征及其测定方法进行介绍,并通过河流泥沙在运输过程中与水体污染物的相互作用,讨论河流泥沙对重金属、氮、磷和其他污染物的影响,并最终影响河流水质。
最后讨论了泥沙的环境效应,并对不同季节,不同河流的泥沙环境效应进行简要叙述。
关键词:河流泥沙理化特征吸附环境效应一、引言对河流水环境和水质而言,河流泥沙不仅其本身就是水体污染物,而且河流泥沙通常具有较大的比表面,并含有大量活性官能团,因而成为水体中微量污染物的主要载体,在很大程度上决定着这些污染物在水体中的迁移、转化和生物效应等。
因此,河流水环境研究和水资源保护不能忽视河流泥沙。
二、河流泥沙的理化特征及测定方法河流泥沙的理化特征包括:几何特性,如:粒度大小、比表面积和粒径分布;水力特性,如:泥沙沉速;泥沙的重度:如容重和密度,干容重和干密度;以及泥沙的化学组成和电化学特性,泥沙絮团的压密特性,河流含沙量等。
1、粒径大小和粒径分布及其测定泥沙颗粒的大小通常用粒径D表示,按照粒径大小,将泥沙颗粒分为:粘粒、粉砂、沙粒、砾石、卵石和漂石。
粒径较大的泥沙通常被限制在河床底部随水流以滑动、滚动或跳跃的形式运动,而粒径较小的泥沙是在水流的紊动扩散作用下悬浮于水体中的泥沙, 在水体中的空间分布范围非常大, 与进入水体中的污染物的接触面比推移质要大得多, 它对进入水体中的污染物具有很强的吸附作用。
粒径的测量方法有超声测量法等。
超声法测粒是指利用声波在介质传播中的声能衰减、颗粒对声波的散射、以及相速度的改变等效应测量颗粒粒度及浓度。
由于超声频率具备较宽的频带,可以确保测量从纳米级到毫米级的很宽范围的颗粒。
且声波穿透率强, 因此, 超声法在高浓度颗粒两相介质测量方面具备了很多其他测粒方法所不具备的特点和无可比拟的优越性, 该特性使其在无须稀释、快速、可靠的在线颗粒测量时可以得到很好的应用。
对于泥沙的粒径分布目前可用超声衰减谱法测量颗粒两相流粒径分布,过程可以概括为:基于一个合适的理论模型对已知物性参数的颗粒两相流预测其声衰减谱,再根据实测的系统声衰减谱,结合颗粒系和声衰减谱对应的模型矩阵进行数据反演,最终得到颗粒两相流系统的真实粒度分布。
第3章 河道水流运动基本规律
[7]
(3-4)
式中:A、B 分别为待定常数,众多试验资料表明 ,A=5.75、B=8.5; K s 为边壁粗糙度。 (2)指数流速分布公式
vx v max
z h
m
(3-5)
式中:m 为指数,常以 1/n 形式表示,在清水水流中 n 约等于 5~8,一般取 n=6。流速分布 愈均匀,n 值愈大;在浑水水流中,含沙量愈高(但非高含沙水流),n 值愈小。 指数流速分布公式(3-5)和对数流速分布公式(3-2)都是描述明渠垂线流速分布的公式, 两者/(C0 ) 相互转换 ,
河道水流运动基本特性可以概括如下。
(一)河道水流的非恒定性
河道水流的非恒定性主要表现在以下两个方面: 一是来水来沙情况随时间变化。 大多数河道来水来沙情况主要受降水影响, 而降水在一 年各季之间以及年际之间的变化幅度是相当大的。 因此, 各河流的来水来沙变化幅度也相当 大。 二是河床经常处于冲淤变化中,河床边界也随时间变化。一方面水流造就河床,适应河 床,改造河床;另一方面河床约束水流,适应水流,受水流的改造。河床与水流之间存在着 相互依存、相互制约、相互影响的关系。因此,河道来水来沙情况的不恒定性,必不可免地 要引起河床时而剧烈、时而缓慢的变化,呈现出与水沙情况相应而滞后的不恒定性。 (二)河道水流的非均匀性 均匀流首先必须是恒定流, 而河道水流一般为非恒定流, 这就否定了在一般情况下它呈 均匀流的内在可能性。其次,均匀流的边界必须是与流向平行的棱柱体,这样才能保证流线 平直,物理量沿流程的偏导数为零。而这一点在天然河流中是很难做到的。再次,沿河床推 移的泥沙, 在绝大多数情况下往往在河床表面形成波状起伏并向下游移动的沙波。 由于在沙 波的不同部位,床面起伏高低不同,所以近底的流态与流速也不同。这就是说,即使上游来 水来沙情况是恒定的,河床边界沿流向是平直的,河道水流的某些物理量仍然沿流程变化。 如果这种非均匀性仅仅是由沙波所造成的床面起伏所引起, 而沙波又可简化为二维问题。 在 这种情况下,取长度等于一个或若干个沙波的河段,就平均情况来看,水流才可以近似地视 [1,2] 为均匀流。但实际上,大多数沙波在床面上具有明显的三维性 。 严格地说,河道水流为非均匀流。但对于一个比较顺直的短河段,来水来沙情况基本稳 定,河床基本处于不冲不淤的相对平衡情况,过水断面及流速沿程变化不大,水面坡降、床 面坡降及能坡基本平直而相互平行,就可以简化为均匀流处理。 (三)河道水流的三维性 在水力学中,明渠流常简化为一维流或二维流问题来研究。严格说来,在天然河流中, 不存在水力学中所讨论的一维流或二维流问题。 在天然河道中大量经常出现的是具有不规则 的过水断面的三维流。过水断面不规则的程度,一般以山区河流为最大,以冲积平原中的顺 直河段为最小。河道水流的三维性与过水断面的宽深比密切相关,宽深比愈小,三维性愈强 烈。在顺直宽浅的平原河道上,水流的宽深比较大,可能呈现出一定程度的二维性;而在宽 深比很小的山区河段中,水流的三维性就较强。 因此, 在进行河道水流的分析计算中, 应区别不同河道水流在三维性问题上的一些特点, 避免不顾实际情况将所有河流简化为二维流或一维流问题来研究。 (四)河道水流的二相性 物质可分为四相,即固、液、气和等离子。所谓二相流或多相流是指同时考虑物质二相 或多相的力学关系的流动。水是比重接近于 1 的可以视为连续介质的液体。在水力学中,讨
第2章 泥沙的一般特性
D2
筛析法示意图
两筛之间泥沙颗粒的粒径可以用两筛网孔径 的算术平均值或几何平均值计算。
15Biblioteka 19表2-1 筛号与孔径之间的关系
筛孔孔径 D
(mm) 1.168
上下两筛中径 Di
(mm) 1.001
介于上下两筛孔间的重量百 分比△pi
(%) 0.48 5.29 21.68 52.23 18.39 1.48 0.1 0.05
17
23
• 运用该方法,可以把变化相当大的粒径 范围用变化不大的整数φ来表示,φ值越 大表示粒径越细。
… 2 … 2 粒径 … … … 8 4 2 1 0.5 0.25 0.125 … … …
n 3
2
2
2
1
2
0
2
-1
2
-2
2
-3
…
2
-n
…
Φ值
… -n … -3 -2 -1
0
1
2
3
…
n
…
18
24
3、水利工程界分类
尺量法 (称重法,适用于卵石以上的较大颗粒)
等容粒径
筛析法 水析法
(适用于砾石、沙粒) 筛分粒径 (沉降法,适用于粉沙、粘土) 沉降粒径
12
16
㈠、等容粒径
⒈ 定义 等容粒径是指体积与泥沙颗粒相等的球体直径。 ⒉ 计算测量方法 ① 测定泥沙颗粒的重量(或体积)
6W 6V D s
这样所求出的粒径实质上是与泥沙颗粒密度 相同、沉速相等的球体直径。
16
22
㈣ 泥沙按粒径大小分类
1、分类原则
• 表示出不同粒径级泥沙性质上的显著差异和性质变 化的规律性; • 各级分界粒径尺度成一定的比例。
Ch1 河道水流、泥沙特性2014021
u y 1 m U h
m
§1.2 泥沙特性
• 泥沙概念 泥沙:指所有在流体中运动或受水流、风力、波浪、 冰川及重力作用移动后沉积下来的固体颗粒碎屑 (钱宁、1983)。粒径大小可差数十~数万倍。粒径 大小一般变化在0.001~100.0mm 。 泥沙来源:主要来自岩石的风化,土壤侵蚀,火山 喷发产生的火山灰、生物骨骼、贝壳分解及人类各 种生产活动的废弃物。 • 河流泥沙的来源可以分为两类:一类是来自流域降 雨形成的地面径流对地表的冲蚀,通常称为水土流 失;另一类是从原河床沉积层冲刷起来的。河流泥 沙在运动过程中与床沙相互交换,塑造了不表粒径: 中值粒径:d50(median size):级配曲线中p=50%对应 的粒径。 算术平均粒径(mean diamnter): Dm,几何平均粒径 dmg n
Dm
D
i 1
im i
P
100
(2)非均匀特性:拣选系数φ 和均方差σ(几何标准 1 D84 D50 偏差) D75
第一章:河道水流、泥沙基本特性
• • • • • • • 本章内容: 1、天然河道水流特性; 2、河流泥沙的来源及几何特性; 3、细颗粒泥沙的物理化学特性; 4、泥沙的重力特性; 5、泥沙沉速; 6、泥沙分类。
第一章:河道水流、泥沙基本特性
§1.1 河道水流基本特性 河流是河床和水流两部分相互作用下的水流泥沙 运动。河道由泥土、沙砾、卵石和顽石等组成。河 道水流与明渠水流有较大差异 1、河道水流的两相性:水(连续介质)和沙(非连 续介质的颗粒群体)。(two phase flow-两相流) (1)重力、(2)惯性力、(3)阻力 2、河道水流的三维性:河道断面不规则,顺直段很 短,宽深比小,尤其是弯曲河流。 3、河道水流的非恒定性:来水来沙随时间变化;河 床处于不断的变化中。 4、河道水流的非均匀性: 5、不平衡输沙;
第3章 河道水流运动基本规律
四、河道水流的环流结构
环流结构是河道水力学中一个颇为重要的问题。 前面已经提到, 河道水流除了主流以外, 还有次生流。具有复归性的次生流被称之为环流。主流一般以纵向为主。环流则否然,它因 产生的原因不同,具有不同的轴向。因此输沙的方向,也不限于纵向。可以这样地说,河流 中的横向输沙主要是有关的环流造成的, 而不是主流或纵向水流造成的。 河道水流的输沙自 然是纵横两向彼此联系的。因此,一个河段的冲淤状况,除了受主流的影响之外,还受环流 的影响。环流就其生成原因而言,可以区别为以下几种。 1.因离心惯性力而产生的弯道横向环流 水流通过弯道时,在弯道离心力的作用下,水流中出现离心惯性力。离心惯性力的方向 是从凸岸指向凹岸,结果使凹岸水面高于凸岸水面,形成横向水面比降。 为了计算横向水面比降的大小,在弯段水 流中曲率半径为 R 的流线上,取一个长、宽各 为一个单位的微小水柱,如图 3-1 所示,分析 水柱受力情况。为了简化起见,只考虑二维恒 定环流。这样,水柱的上下游垂直面中的内摩 阻力可以不计。在这种情况下,水柱在横向受 的力有:离心力 F,两侧动水压力差
[8]
其中 m 为指数流速分布公式中的指数;C 0 为无量纲谢才系数,C0 C / g , (这里的 C 为 谢才系数),与对数流速分布公式中的摩阻流速有下列关系; v v / C 0 ,其中 v 为垂线平 均流速。只要已知 C 0 与 m 之间的关系,便可实现式(3-2)及式(3-5)之间的转换。
83
侧或一侧,有平均单宽流量较小的、近岸的边流带。主流线及主流带对河段的流态及发展趋 势有决定性的作用,是河流水力学分析主要研究对象之一。 除主流线之外, 还可取最大单宽动量线(亦称动力轴线)或最大单宽动能线来表示河道水 流的轴线。 主流线、 最大单宽动量线及最大单宽动能线在河段正流中的位置相近而不一定重 合。在很多情况下,可任取三者之一作为河道水流的轴线,差别不是很大。但在研究某些特 殊问题时,则三者的代表性会有明显不同。如研究堤防受水流顶冲强度,则以采用最大单宽 动量线为宜。 此外,沿河床各横断面中高程最低点的平面平顺连接线,称为深弘线。某些河段的深弘 线位置,可能在同一时段与主流相近或相重合,但也可能相差很远。 在河道水流中,与正流相对应的,有副流或次生流。所谓副流或次生流就是从属于正流 的水流,不能单独存在。这种副流或次生流,有的具有复归性,或者基本上与正流脱离,在 一个区域内呈循环式的封闭流动; 或者与正流或其他副流结合在一起, 呈螺旋式的非封闭的
河道水流的基本特性
河道水流的基本特性河道水流居高向下、向低处流,走比降大、畅通无阻的路,也就是走直路、近路,总是沿着阻力最小的方向流动,这是河道水流的最基本机理。
一、“水行性曲”剖析“水行性曲”常常被当作对游荡性河流进行弯曲治理的依据之一。
严格的讲,“性曲”只是“水行”的规律,是水体受软硬不均、不均衡的边界条件约束而造成的,并不是水体自身的特性。
水体自身的特性应是在不受边界条件约束或在均衡的边界条件下的状态,无风时的大气边界可视为是均衡的,水体在这样的边界下的运行叫做“飞流直下”,就是瀑布,这也就是说,水体自身的特性是“直”,而不是“曲”。
不能简单的讲“水行性曲”,要透过“行曲”的表象看到“本性走直”的本质,把水体自身的特性与“水行性曲”区别开来。
二、水流走直最基本机理的生动体现由于河道水流的最基本机理是走直,向低处流,要走近路,因此,当环流紊动造成的弯曲导致水流不畅时,就会自然裁弯取直。
河流的自然裁弯取直是河道水流走直最基本机理的生动体现。
“大水走直”是河道水流走直最基本机理的又一生动体现。
“大水走直,小水走弯”是河势演变的一般规律,由于黄河游荡性河道河槽极为宽浅,河槽对水流的约束作用弱,因此在洪水期(大水时)形成的河槽总是顺直的,洪水沿着最大比降方向流动,这就是洪水期河势趋直的原因所在;至于河流的弯曲,则是由于小水期受河床上犬牙交错边滩条件的制约而被迫沿着弯曲的流路流动。
大水动量大,克服了边滩的约束,走直;小水动量小,克服不了边滩的约束,走弯。
如果真的是“水行性曲”,或者是“水性行曲”,那么为什么不“大水走弯”、“瀑布走曲”呢?三、河道水流影响因子重力属性和克氏力属性是河道水流本身所固有的属性;环流弯曲是边界条件的不均衡所致,不是河道水流本身所固有的属性;而河道水流本身所固有的属性中,重力相较于克氏力而言,占据绝对的主导地位,所以说河道水流的最基本机理是走直。
四、黄河下游均是顺直微弯规顺河道黄河下游河道无论是游荡性河段、过渡河段还是所谓的弯曲性河段,包括河口段在内,实际情况均是顺直为主、附以微弯的顺直微弯规顺河道(见表1),这主要是河水走直最基本机理起主导作用和排沙要求河水畅通的结果。
河流泥沙特性及其相关测定
河流泥沙理化特征及其测定方和效应分析摘要:本文就河流泥沙的理化特征及其测定方法进行介绍,并通过河流泥沙在运输过程中与水体污染物的相互作用,讨论河流泥沙对重金属、氮、磷和其他污染物的影响,并最终影响河流水质。
最后讨论了泥沙的环境效应,并对不同季节,不同河流的泥沙环境效应进行简要叙述。
关键词:河流泥沙理化特征吸附环境效应一、引言对河流水环境和水质而言,河流泥沙不仅其本身就是水体污染物,而且河流泥沙通常具有较大的比表面,并含有大量活性官能团,因而成为水体中微量污染物的主要载体,在很大程度上决定着这些污染物在水体中的迁移、转化和生物效应等。
因此,河流水环境研究和水资源保护不能忽视河流泥沙。
二、河流泥沙的理化特征及测定方法河流泥沙的理化特征包括:几何特性,如:粒度大小、比表面积和粒径分布;水力特性,如:泥沙沉速;泥沙的重度:如容重和密度,干容重和干密度;以及泥沙的化学组成和电化学特性,泥沙絮团的压密特性,河流含沙量等。
1、粒径大小和粒径分布及其测定泥沙颗粒的大小通常用粒径D表示,按照粒径大小,将泥沙颗粒分为:粘粒、粉砂、沙粒、砾石、卵石和漂石。
粒径较大的泥沙通常被限制在河床底部随水流以滑动、滚动或跳跃的形式运动,而粒径较小的泥沙是在水流的紊动扩散作用下悬浮于水体中的泥沙, 在水体中的空间分布范围非常大, 与进入水体中的污染物的接触面比推移质要大得多, 它对进入水体中的污染物具有很强的吸附作用。
粒径的测量方法有超声测量法等。
超声法测粒是指利用声波在介质传播中的声能衰减、颗粒对声波的散射、以及相速度的改变等效应测量颗粒粒度及浓度。
由于超声频率具备较宽的频带,可以确保测量从纳米级到毫米级的很宽范围的颗粒。
且声波穿透率强, 因此, 超声法在高浓度颗粒两相介质测量方面具备了很多其他测粒方法所不具备的特点和无可比拟的优越性, 该特性使其在无须稀释、快速、可靠的在线颗粒测量时可以得到很好的应用。
对于泥沙的粒径分布目前可用超声衰减谱法测量颗粒两相流粒径分布,过程可以概括为:基于一个合适的理论模型对已知物性参数的颗粒两相流预测其声衰减谱,再根据实测的系统声衰减谱,结合颗粒系和声衰减谱对应的模型矩阵进行数据反演,最终得到颗粒两相流系统的真实粒度分布。
河流动力学课程报告专题一泥沙的特性
《河流动力学》课程报告专题一:泥沙的特性一、概述泥沙运动的基本规律和河道的演变基本规律是河流动力学这一学科的主要部分。
因此研究泥沙的特性,并对影响泥沙运动特性直接相关的因素进行概念定义、参数化和尺度化等工作,显得十分重要。
以此为基础可以更有效集中的来分析其中的规律性。
当然这其中也应该考虑到泥沙运动本身的复杂性,孤立因素的考虑必须与整体实际分析相结合,本部分概念的介绍以及相关参数的确定过程体现了这一理念。
本部分主要涉及泥沙的粒径、密实重率、干容重和水力粗度这几个概念。
二、主要知识要点1.泥沙粒径的确定方法、特征值及其意义泥沙的粒径是用以量度泥沙颗粒的大小的。
由于泥沙颗粒本身形状不规则,大小不等,所以需要用等容粒径(或球状粒径)来表示泥沙颗粒的大小。
等容粒径即是容积与泥沙相等的球体的直径,可测出容积后用相关数学公式进行换算。
不过测容积本身比较复杂,实际工作中常用筛分析法、比重法等来确定泥沙的粒径。
并用粒配曲线来更清晰地表明泥沙各大小颗粒的组成情况,可以清楚地判断其粒配是否均匀。
根据粒配曲线,可以采用粒径的某种特征值来表达沙样粒径的相对大小,常用的有两个,一个是中值粒径(粒配曲线中与纵坐标50%相应的粒径),一个是平均粒径(分组并加权平均计算的方法得出)。
粒径大小是泥沙的一个重要特性。
粗粒泥沙没有粘粒,细沙则具有粘性,因此粒径不同会表现出不同的运动状态;较细的泥沙有较大的空隙率和较小的干容重,泥沙多半是棱角峥嵘的。
应注意问题:(1)粒径分析应该细致进行,保证结果的精度,以建立可靠的粒径资料。
(2)天然河道往往上有泥沙粗下游细,不能把泥沙的沿程磨损作为主要因素去解释这一现象,主要原因可归结到不同的水流情况。
2. 泥沙的密实重率、干容重以及影响干容重的因素泥沙的密实重率,是泥沙各个颗粒实有的重量与泥沙各个颗粒实有的体积的壁纸,一般说来变化不大,常取γs=2650kg/m3泥沙的干容重γ'是沙样烘干后的重量与原状沙样的整个体积(包括泥沙颗粒实体和空隙)的比值。
第三节 河流泥沙的基本特性
第三节河流泥沙的基本特性一、几何特性泥沙的几何特性指泥沙颗粒的形状、粒径及其组成。
泥沙的形状棱角峥嵘、极不规则,常可近似地视为球体或椭球体。
泥沙粒径的求法:对于较大颗粒的卵石、砾石,可以通过称重求其等容粒径。
所谓等容粒径,就是体积V与泥沙颗粒体积相等的球体的直径,即d=(6V/π)1/3。
或者,通过量出颗粒的长轴a、中轴b、短轴c,算其几何平均粒径 d=abc,这实际上是将泥沙颗粒视为椭球体而求得的椭球体的等容粒径。
对于较细颗粒的泥沙,实际工作中,通常采取筛分析法或沉降分析法求其粒径。
筛析法的作法是,将孔径不同的公制标准筛,按孔径上大下小原则叠置在一起,放在振动机上,将沙样倒在最上一级筛上,把经振动后恰通过的筛孔孔径作为该颗粒的粒径,并称此粒径为筛径。
采用沉降法求其粒径并称为沉降Array粒径,其原理是,通过测量沙粒在静水中的沉降速度,按照粒径与沉速的关系式((3-2))反算出粒径。
泥沙的组成常用粒配曲线表示。
即通过沙样颗粒分析,求出其中各粒径级泥沙的重量及小于某粒径泥沙的总重量,算出小于某粒径的泥沙占总沙样的重量百分数,在半对数纸上图3-3 半对数纸上的泥沙粒配曲线绘制如图3-3 所示的泥沙粒配曲线。
据此粒配曲线,可反映沙样粒径的粗细及其组成的均匀性。
如图3-3 所示,Ⅰ、Ⅱ两组沙样相比较,沙样Ⅰ的组成要粗些、均匀些;沙样Ⅱ的组成要细些、不均匀些。
根据图3-2示粒配曲线,易于确知沙样的中值粒径d50。
它的意义是,沙样中大于和小于这一粒径的泥沙重量各占50%。
在实际工作中,通常可以中值粒径d50作为沙样的代表粒径。
二、重力特性1.泥沙的容重与密度泥沙颗粒实有重量与实有体积的比值,称为泥沙的容重γS,单位为N/m3。
泥沙颗粒实有质量与实有体积的比值,称为泥沙的密度ρs,单位为t/m3或kg /m3。
泥沙的容重γS 与密度ρs 的关系:γS =ρs .g 。
这里g 为重力加速度。
工程上,泥沙密度常取ρs =2.65t/m 3 = 2650 kg /m 3由于河流泥沙处在水中运动,其实际容重应为(γS -γ),因此在工作中,常采用有效容重系数a 表示其重力特性。
泥沙颗粒基本性质
特点;(2)结构特点:土质疏松,大孔隙,湿陷性
二、黄土成因
(2)残积说:认为黄土是在干燥气候条件下,由 下伏基岩经风化残积作用形成的,黄土的许多 性质与风化壳的黄土化作用有关。 (3)黄土多成因说:认为黄土是由多种地质作用, 如冲积作用、洪积作用、坡积作用、风积作用 和冰川作用等,在相似的气候条件下逐渐堆积 而成的,其物质来源主要是区内或邻近地区的 早期堆积物和基岩风化碎屑物。 (4)洪积说: 李明光多次赴黄土高原、青藏高原 、西北等地考察。认为欧亚板块和印度板块相 碰撞,释放出巨大能量,产生多次灾变性洪水 ,洪水从西北向东南方向漫滋,带来大量黄土 物质,形成巨厚的黄土沉积并抬升,由于气候 干燥黄土得以保存。
及硫酸盐遭到强烈淋失,甚至溶解度较小的碳酸钙也被淋 层
溶,而铝、铁、硅等元素尚有残留。如高岭土
4)铁铝化类型
岩பைடு நூலகம்
硅酸盐矿物全部分解,转变为以次生铁、铝矿物和高岭 基
石粘土矿物为主。如红土
二、黄土成因(research of loess genesis)及黄土演变
黄土(loess)为干寒气候环境的产物,是一种“母岩 ”而并不是真正的“土壤”。 黄土物质来源:不是主要来自于沙漠环境,而是来 源青藏高原第四纪冰川和冰缘作用区。
不同气候下土壤的形成分析
南方湿热
风化强烈
盐基淋失多 土壤pH低
原 生 矿 物 少 , 且 粘 土 矿 物 以 Ki 值 较 低
的高岭石为主
南方湿热 生物生长旺盛 微生物活动强烈
有机质积累少H/F(胡敏酸与富里酸之比)<0.5
东北地区冷湿 风化不强 盐基淋失少(盐基饱和) pH 高
东北地区冷湿
1泥沙特性
泥沙沉降形式主要与什么参数有关?
ReD
D
r ' r ' K lg T ⑶淤积历时:影响排水固结充分程度→影响孔隙率n
sT s1
沉积越短, gs’越小;沉积越长, gs’越大,然后趋于稳定值;大颗粒 稳定历时短,细颗粒稳定历时长
⑷级配:影响孔隙率n
组成越均匀,孔隙率越大,gs’越小;组成越不均匀,孔隙率越小,gs’越大
1.3.3 第一章 1.3 泥沙的重力特性
㈠概念
泥沙特性
三、泥沙的水下休止角
水下休止角:泥沙在静水下自然堆积而不塌落的坡面倾角,° 水下摩擦系数:f=tg
㈡水下休止角Φ与粒径D的关系
天津大学,试验范围:D=0.2~4.37mm 32.5 1.27 D 说明:粒径越大,水下休止角越大,摩擦系数越大,坡度越陡
㈢水下休止角的其它影响因素:
㈢影响干容重的主要因素:
⑴粒径:影响孔隙率n
泥沙特性
二、泥沙的干容重和干密度
g s g s 1 n
不变
粒径↑,n↓,gs’ ↑,变化范围↓;粒径↓ , n ↑ , gs’ ↓,变化范围↑ 如:D=0.005mm,s’ =0.56~1.35t/m3; D=0.08mm,s’ =1.4~1.7 t/ m3 ⑵淤积厚度:影响土的自重应力,自身固结压缩→影响孔隙率n 淤积越深,gs’越大,变化范围越小;淤积越浅,gs’越小,变化范围越大 官厅水库淤厚10m,gs’ =14.4~15.2KN/ m3;1m,gs’ =7.15~12.7 KN/ m3
第一章 泥沙特性
前言: 水流挟带的泥沙沉积于河床->河床淤积 水流从床面上攫取泥沙带走->河床冲刷 河床演变
泥沙是水流与河床相互作用的中介 泥沙运动规律是河流动力学研究的重要内容之一 要研究泥沙运动规律,首先应了解泥沙的基本特性,包括: 1.几何特性:形状、大小及群体泥沙的组合特性 2.重力特性:容重、干容重 3.水力特性:沉速 4.细颗粒泥沙的物理化学特性 (粘性沙)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等课件
12
弯道环流图
图中,a为平面,b为 横剖面
高等课件
13
河流泥沙的来源和组成
高等课件
14
泥沙的来源
河流泥沙的最根本来源是岩石的风化 河流中运动着的泥沙,其来源主要包括流域地表的冲蚀和
河床的冲刷
风沙运动给河流带来的泥沙首先在规模上不如前二者;其次,从 广义的角度也可以归入流域地表的冲蚀;再者,风沙运动带来的 泥沙绝大部分属于冲泻质,对河流的冲淤影响较小
29
泥沙的粒径(续)
对较粗的天然沙粒测量成果的统计分析表 明,沙粒的中轴长度,和其长、中、短三 轴的几何乎均值(即等容粒径)接近相等且 略大
对于粒径在0.062~32.0mm之间的沙粒,一 般采用筛析法
河道水流和泥沙的一般特性
高等课件
1
河道水流的一般特性
高等课件
2
河道水流的基本特性
天然河道中的水流属于明渠流,在很多情 况下可以沿用水力学中明渠流的有关结果
二相流特性 三维性 不恒定性 非均匀性
高等课件
3
河道水流中的阻力
明渠二维水流的阻力损失
高等课件
4
河道水流阻力损失
与水力学中顺直管道和棱柱体明槽水流中发生的紊动 相比,河道水流的紊动在尺度、紊源上要复杂得多
明槽主要是粗糙边壁附近小尺度的紊动,由大、中、 小尺度构成的紊动结构虽不能完全排除,但不占主导 地位
河道水流,根据张瑞理的研究,紊源除了普通意义的 粗糙边壁外,还包括河势、河相、成型淤积体、河底 或河岸的大凸大凹、沙纹及沙波等,这些紊源的尺度 是边壁粗糙完全不能比拟的
高等课件
5
因此对于河道水流,“糙率系数”n的内 含应该是极为复杂的
作为属于阻力平方区的时均流速U的表达式中 代表水流阻力效果的综合因素,它当然直接与 水流中的紊源和紊动结构有关,与大至河势, 小至河床床沙粒径有关
高等课件
6
河道水流的运动特性
高等课件
7
河道水流的流型、主副流及流速分布
河道水流的流型
河道水流的主流与副流
主流(又称正流、元生流)是水流沿着河槽总方向的 流动。它一般是在重力作用下产生的。在流动过 程中,水流的流线基本上是相互平行的,水流的 速度向量也是互相平行的,而且都平行于河槽的 轴线
高等课件
23
泥沙的矿物成分与分类
泥沙的矿物成分
既然泥沙来源于岩石风化,则风化岩石的矿 物成分决定泥沙的矿物成分;不同的风化方 式对岩石矿物成分的影响程度不同,因此风 化方式也影响泥沙的矿物成分
物理风化、化学风化以及生物过程
矿物的物理性质
比重或密度:2.65 硬度:≧5,水轮机过流部件硬度一般≦5
不同粒径级的颗粒具有不同的矿物组成 不同粒径级的颗粒具有不同的物理化学特性
高等课件
26
河流泥沙的几何特性
高等课件
27
泥沙的粒径
泥沙的几何特性系指泥沙颗粒的形状和大小, 或者说泥沙颗粒的形状与粒径
泥沙的粒径
泥沙的粒径是泥沙颗粒大小的量度
所谓等容粒径,就是体积与泥沙颗粒相等的球体的 直径。设某一颗沙的体积为v,则其等容粒径为, 单位mm
因产生的原因不同,具有不同的轴向
高等课件
9
河道水流的流速分布
高等课件
10
高等课件
11
河道水流中环流结构
因产生原因的不同,环流可以分为因离心 力产生的弯道环流、因柯里奥里 (G.Criorid)力而产生的环流、因水流与 固体周界分离而产生的环流等等。
水流在弯道内作曲线运动的时候,必然产 生指向凹岸的离心力。水流为了平衡这个 力。通过调整,使得凹岸的水面升高,凸 岸方向的水面降低,从而形成横比降
衡量,称为侵蚀模数,也称输沙量模数。
下图为我国输沙量模数分布情况
高等课件
21
高等课件
22
泥沙随水流汇集到河流之中,加上河床上 泥沙被水流冲刷起来,使得河道水流中含 有一定数量的泥沙,常以每单位体积河水 中的泥沙重量表示河流的含沙量。一般来 说,我国北方,特别是黄河中游的一些干 支流,年平均含沙量有些高达300 kg/m3 以上;而在南方一些省份,年平均含沙量 不足1kg/m3,这样的分布状况,是与我 国各地区的水土流失程度紧密相关的。下 表是我国及国外一些主要河流水沙特征值 的统计资料。附表
d
( 6V
1
)3
高等课件
28
等容粒径:与泥沙颗粒容积相当的球体直径
D
6V
1/
3
几何平均粒径:相当于椭球体的等容粒径
D abc1/3 (椭球体的体积abc / 6 =球体的体积D3 / 6)
算术平均粒径:长、中、短轴的算术平均值
D a b c 3
筛分粒径:通过筛分法获得的粒径近似值
高等课件
高等课件
24
河流泥沙的分类
矿物分、运动方式分类以及粒径分类
我国泥沙分类的分界数字为:200—20—2—1/20— 1/200(即200—20—2—0.5—0.005)
高等课件
25
泥沙的粒径大小与泥沙的水力学特性与物理化 学特性有着密切的关系
不同粒径级的颗粒所形成的土壤具有不同的力学性 质
高等课件
8
河道水流的主流与副流
副流与主流不同是由于纵比降以外的其它因素所促成 的
副流实际是在水流内部产生的一种大规模的水流旋转 运动。它可以因重力作用而引起,也可在其它的力(内 力或外力)作用下产生。
在副流中,有的具有复归性,或者基本上与主流脱离, 在一个区域内呈循环式的封闭流动;或者与主流或其 它副流结合在一起。呈螺旋式的非封闭的复归性流动。 具有复归性的次生流,我们称之为环流
高等课件
15
高等课件16ຫໍສະໝຸດ 等课件17高等课件
18
高等课件
19
高等课件
20
从流域地表侵蚀下来的泥沙,经过河流的 搬运作用,大部分汇流大海,但也有不少 沉积在低洼湖泊地带
我国几条大河的河口地区和洞庭湖、都阳湖 等大湖泊,都属于这样的堆积区
从流域地表冲蚀而来的泥沙数量,通常是 用每平方公里地面每年冲蚀若干吨泥沙来
流域地表的侵蚀与气候、土壤、地形地貌及人类活动等因 素有关
黄河中游的黄游地区,7~8月份降雨最多,且多为暴雨,其它条件 也较差,所以地表侵蚀最为严重;而在我国南部省份.虽然也有 暴雨,但土壤结构密实,植被覆被较好,所以其输沙量模数多在 1000t/(km2/a)以下
地形对流域的侵蚀,也起着重要的作用。坡度大则地面径流下渗 量小、汇流速度大,侵蚀作用也随之增大,侵蚀量也随坡长的增 大而增加