云南昆明市西山区2017年中考数学模拟试卷有答案

合集下载

西山区中考模拟数学试卷

西山区中考模拟数学试卷

一、选择题(每题3分,共30分)1. 已知等差数列{an}中,a1=2,公差d=3,则a10的值为:A. 27B. 30C. 33D. 362. 在△ABC中,∠A=60°,∠B=45°,则sinC的值为:A. $$ \frac {1}{2}$$B. $$ \frac { \sqrt {2}}{2}$$C. $$ \frac{ \sqrt {3}}{2}$$ D. $$ \frac { \sqrt {6}}{3}$$3. 若函数f(x) = 2x + 1在区间[1, 3]上是增函数,则f(x)在区间[-1, 0]上的单调性为:A. 增函数B. 减函数C. 既有增又有减D. 无法确定4. 已知a、b是实数,且a+b=0,则a^2+b^2的值为:A. 0B. 1C. -1D. 无法确定5. 若方程x^2 - 4x + 3 = 0的两根为x1、x2,则x1 + x2的值为:A. 1B. 2C. 3D. 46. 已知函数y = -x^2 + 4x + 3的图像与x轴的交点为A、B,则AB的长为:A. 2B. 3C. 4D. 57. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为Q,则Q的坐标为:A. (3,2)B. (2,3)C. (1,4)D. (4,1)8. 若等比数列{an}的公比q=2,且a1=3,则S6的值为:A. 63B. 96C. 192D. 3849. 在△ABC中,∠A=30°,∠B=75°,则cosC的值为:A. $$ \frac { \sqrt {6}+ \sqrt {2}}{4}$$B. $$ \frac { \sqrt {6}-\sqrt {2}}{4}$$ C. $$ \frac { \sqrt {3}}{2}$$ D. $$ \frac { \sqrt {2}}{2}$$10. 若函数f(x) = 3x^2 - 2x + 1在区间[-1, 1]上的最大值为4,则f(x)在区间[1, 3]上的最小值为:A. 4B. 3C. 2D. 1二、填空题(每题5分,共20分)11. 若函数y = 2x - 1在区间[-2, 2]上是减函数,则其对称轴方程为______。

云南省2017年中考数学试卷(样卷)(含解析)

云南省2017年中考数学试卷(样卷)(含解析)

2017年云南省中考数学试卷(样卷)一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)1.﹣的倒数的绝对值是.2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C= °.3.分解因式:3x2﹣12= .4.小明用S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2]计算一组数据的方差,那么x1+x2+x3+…+x10= .5.若方程3x2﹣5x﹣2=0有一根是a,则6a2﹣10a= .6.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=100m,则河宽AB为m(结果保留根号).二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a88.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A.312×104B.0.312×107C.3.12×106D.3.12×1079.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是()A.B.C.D.10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.11.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>112.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°13.下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3D.同圆中的两条平行弦所夹的弧相等14.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30三、解答题(共9小题,70分)15.计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.16.先化简,再求值:(1﹣)÷,其中a=﹣1.17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?18.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?22.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=,BE=,求PF的长.23.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2017年云南省中考数学试卷(样卷)参考答案与试题解析一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)1.﹣的倒数的绝对值是.【考点】15:绝对值;17:倒数.【分析】由倒数的定义得,﹣的倒数是﹣,再由绝对值的性质得出其值.【解答】解:∵﹣的倒数是﹣,﹣的绝对值是,∴﹣的倒数的绝对值是.2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C= 30 °.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠1=∠B,∠2=∠C,再根据AD是∠EAC的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD∥BC,∴∠1=∠B,∠2=∠C,又∵AD平分∠EAC,∴∠1=∠2,∴∠C=∠B=30°,故答案为:30°3.分解因式:3x2﹣12= 3(x﹣2)(x+2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).4.小明用S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2]计算一组数据的方差,那么x1+x2+x3+…+x10= 20 .【考点】W7:方差.【分析】根据方差计算公式确定这组数据的平均数,计算即可.【解答】解:∵S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2],∴这组数据的平均数是2,∴x1+x2+x3+…+x10=2×10=20,故答案为:20.5.若方程3x2﹣5x﹣2=0有一根是a,则6a2﹣10a= 4 .【考点】A3:一元二次方程的解.【分析】将a代入方程3x2﹣5x﹣2=0,得到3a2﹣5a=2,等式的两边都扩大为原来的2倍,问题可求.【解答】解:由题意,把是a的根代入3x2﹣5x﹣2=0,得:3a2﹣5a=2,∴2×(3a2﹣5a)=2×2,∴6a2﹣10a=4.6.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=100m,则河宽AB为50m(结果保留根号).【考点】T8:解直角三角形的应用.【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=100m,在Rt△ABD中,AB=AD•sin∠ADB=100×=50(m).故答案是:50.二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a8【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】A、原式合并得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式合并得到结果,即可做出判断;D、原式利用单项式乘单项式运算法则计算得到结果,即可做出判断.【解答】解:A、4a2﹣4a2=0,故选项错误;B、(﹣a3b)2=a6b2,故选项正确;C、a+a=2a,故选项错误;D、a2•4a4=4a6,故选项错误.故选:B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A.312×104B.0.312×107C.3.12×106D.3.12×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3120000=3.12×106,故选C.9.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形四个圆柱体的位置关系,结合四个选项选出答案.【解答】解:由图可知,左视图有二行,最下一层2个小正方体,上面左侧有一个小正方体,故选:D.10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【考点】H2:二次函数的图象;F3:一次函数的图象;G2:反比例函数的图象.【分析】本题需要根据抛物线的位置,反馈数据的信息,即a+b+c,b,b2﹣4ac的符号,从而确定反比例函数、一次函数的图象位置.【解答】解:由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选:D.11.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>1【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【解答】解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:A.12.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°【考点】MP:圆锥的计算.【分析】根据底面圆的半径与母线长的比设出二者,然后利用底面圆的周长等于弧长列式计算即可.【解答】解:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则2π×4x=,解得:n=288,故选A.13.下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3D.同圆中的两条平行弦所夹的弧相等【考点】O1:命题与定理.【分析】根据关于x轴的对称点的特征,一次函数的性质,众数是,中位数的定义,圆的性质矩形判断即可.【解答】解:A、点(1,3)关于x轴的对称点是(1,﹣3),故错误;B、函数 y=﹣2x+3中,y随x的增大而减小,故错误;C、若一组数据3,x,4,5,6的众数是3,则中位数是4.5,故错误;D、同圆中的两条平行弦所夹的弧相等,正确,故选:D.14.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30【考点】38:规律型:图形的变化类.【分析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.【解答】解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.三、解答题(共9小题,70分)15.计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及零指数幂的性质以及负整数指数幂的性质化简求出即可.【解答】解:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|=2×++1﹣2=.16.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】6D:分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【考点】KD:全等三角形的判定与性质.【分析】(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.18.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【考点】G7:待定系数法求反比例函数解析式;G6:反比例函数图象上点的坐标特征;H7:二次函数的最值.【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.【解答】解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+,在边AB上,不与A,B重合,即0<<2,解得0<k<6,∴当k=3时,S有最大值.S最大值=.19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;X8:利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】KD:全等三角形的判定与性质;KP:直角三角形斜边上的中线;L9:菱形的判定.【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.21.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得, =,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.22.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=,BE=,求PF的长.【考点】MC:切线的性质;S9:相似三角形的判定与性质.【分析】(1)连接OC,根据切线的性质可得OC⊥CD,则AD∥OC,根据等边对等角,以及平行线的性质即可证得;(2)根据圆周角定理以及三角形的外角的性质定理证明∠PFC=∠PCF,根据等角对等边即可证得;(3)证明△PCB∽△PAC,根据相似三角形的性质求得PB与PC的比值,在直角△POC中利用勾股定理即可列方程求解.【解答】解:(1)连接OC.∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)PC=PF.证明:∵AB是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.(3)连接AE.∵∠ACE=∠BCE,∴=,∴AE=BE.又∵AB是直径,∴∠AEB=90°.AB=,∴OB=OC=5.∵∠PCB=∠PAC,∠P=∠P,∴△PCB∽△PAC.∴.∵tan∠PCB=tan∠CAB=.∴=.设PB=3x,则PC=4x,在Rt△POC中,(3x+5)2=(4x)2+52,解得x1=0,.∵x>0,∴,∴PF=PC=.23.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由三角函数的定义可求得OB,再结合旋转可得到A、B、C的坐标,利用待定系数法可求得抛物线解析式;(2)①△COD为直角三角形,可知当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,当PE⊥CE时,则可得抛物线的顶点满足条件,当PE⊥CD时,过P作PG⊥x轴于点G,可证△PGE∽△COD,利用相似三角形的性质可得到关于t的方程,可求得P点坐标;②可求得直线CD的解析式,过P作PN⊥x轴于点N,交CD于点M,可用t表示出PM的长,当PM取最大值时,则△PCD的面积最大,可求得其最大值.【解答】解:(1)∵OA=1.tan∠BAO=3,∴=3,解得OB=3,又由旋转可得OB=OC=3,∴A(1,0),B(0,3),C(﹣3,0),设抛物线解析式为y=ax2+bx+c,把A、B、C三点的坐标代入可得,解得,∴抛物线解析式为y=﹣x2﹣2x+3,(2)①由(1)可知抛物线对称轴为x=﹣1,顶点坐标为(﹣1,4),∵△COD为直角三角形,∴当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,若∠FEC=90°,则PE⊥CE,∵对称轴与x轴垂直,∴此时抛物线的顶点即为满足条件的P点,此时P点坐标为(﹣1,4);若∠EFC=90°,则PE⊥CD,如图,过P作PG⊥x轴于点G,则∠GPE+∠PEG=∠DCO+∠PEG,∴∠GPE=∠OCD,且∠PGE=∠COD=90°,∴△PGE∽△COD,∴=,∵E(﹣1,0),G(t,0),且P点横坐标为t,∴GE=﹣1﹣t,PG=﹣t2﹣2t+3,∴=,解得t=﹣2或t=3,∵P点在第二象限,∴t<0,即t=﹣2,此时P点坐标为(﹣2,3),综上可知满足条件的P点坐标为(﹣1,4)或(﹣2,3);②设直线CD解析式为y=kx+m,把C、D两点坐标代入可得,解得,∴直线CD解析式为y=x+1,如图2,过P作PN⊥x轴,交x轴于点N,交直线CD于点M,∵P点横坐标为t,∴PN=﹣t2﹣2t+3,MN=t+1,∵P点在第二象限,∴P点在M点上方,∴PM=PN﹣MN=﹣t2﹣2t+3﹣(t+1)=﹣t2﹣t+2=﹣(t+)2+,∴当t=﹣时,PM有最大值,最大值为,∵S△PCD=S△PCM+S△PDM=PM•CN+PM•NO=PM•OC=PM,∴当PM有最大值时,△PCD的面积有最大值,∴(S △PCD )max =×=,综上可知存在点P 使△PCD 的面积最大,△PCD 的面积有最大值为.。

云南昆明市西山区第三中学 2017年 九年级数学 中考模拟试题(含答案)

云南昆明市西山区第三中学 2017年 九年级数学 中考模拟试题(含答案)

2017年九年级数学中考模拟试题一、填空题:1.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了+1,则点A所表示的数是2.如图,AD∥BC,BD平分∠ABC,∠A:∠ABC=2:1,则∠ADB= 度.3.分解因式:a3b﹣2a2b2+ab3= .4.已知一个多边形的内角和是1080°,这个多边形的边数是.5.方程(m+1)x2+2x﹣1=0有两个不相等的实数根,则m的范围.6.如图,在Rt△ABC中,ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以的长为半径作圆,将Rt△ABC截取两个扇形,则剩余(阴影)部分的面积为 cm2.(结果保留)二、选择题:7.据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10B.11C.12D. 138.下列选项中,使根式有意义的a的取值范围为a<1的是()A. B. C. D.9.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.10.计算|2﹣|+|4﹣|的值是()A.﹣2B.2C.2﹣6D.6﹣211.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数关系式为( )12.已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为()A.0.1;B.0.2;C.0.3;D.0.4;13.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中及时轴对称图形又是中心对称图形的是()A. B. C. D.14.如图,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()三、解答题:15.解不等式组:的解集为1<x<6,求a,b的值.16.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)17.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20m,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?18.如图1,在矩形ABCD中,动点P从点A出发,沿A→D→C→B的路径运动.设点P运动的路程为x,△PAB的面积为y.图2反映的是点P在A→D→C运动过程中,y与x的函数关系.请根据图象回答以下问题:(1)矩形ABCD的边AD= ,AB= ;(2)写出点P在C→B运动过程中y与x的函数关系式,并在图2中补全函数图象.19.随着智能手机的普及,QQ、微博、微信等新型社交平台的兴起,在公共场所的“低头族”越来越多,针对“您如何人看待低头族”的问题,晨光数学小组在全校范围内进行了随机调查,发放了调查问卷,并将调查结果绘制(1)本次接受调查的总人数是人;(2)通过计算,将条形统计图补充完整;(3)扇形统计图中,观点“D”的百分比是,“B”所对应的圆心角的度数是;(4)估算在全校3000名学生中,对“低头族”表示不赞同的人数.20.如图①②③,正三角形ABC、正方形ABCD、正五边形A BCDE分别是⊙O的内接三角形、内接四边形、内接五边形,点M,N分别从点B,C开始,以相同的速度在⊙O上逆时针运动.(1)在图①中,求∠APB的度数;(2)在图②中,∠APB的度数是;在图③中,∠APB的度数是.(3)根据前面的探索,你能否将本题推广到一般的正n边形的情况?若能,写出推广问题和结论;若不能,请说明理由.21.“校园安全”受到全社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并根据学生的成绩划分为A(熟悉)、B(基本了解)、C(略有知晓)、D(知之甚少)四个等次,绘制成如图所示的两幅统计图.请根据以上信息回答下列问题:(1)分别求出统计图中m,n的值;(2)估计该校2350名学生中为A(熟悉)和B(基本了解)档次的学生共有多少人;(3)从被调查的“熟悉”档次的学生中随机抽取2人,参加市举办的校园安全知识竞赛,请用列表或画树状图的方法求获A等级的小明参加比赛的概率.22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=0.25(x-60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?23.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.参考答案1.答案为:-6,+82.答案为:∠ADB=30°.3.答案为:ab(a﹣b)2.4.答案为:8.5.答案为:m>﹣2且m≠﹣1.6.答案为:7.B8.D9.C10.B11.C12.D13.D14.A15.解:原不等式组可化为因为它的解集为所以解得16.解:∵△ABF≌△DCE∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;∴AF∥ED,AC=BD,BF∥CE.17.解:(1)设A型商品x件,B型商品y件.由题意可得.解之得.答:A型商品5件,B型商品8件.(2)①若按车收费:10.5÷3.5=3(辆),但车辆的容积6×3=18<20,所以3辆汽车不够,需要4辆车.4×600=2400(元).②若按吨收费:200×10.5=2100(元).③先用3辆车运送18m3,剩余1件B型产品,付费3×600=1800(元).再运送1件B型产品,付费200×1=200(元).共需付1800+200=2000(元).∵2400>2100>2000∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.18.解:(1)根据题意得:矩形ABCD的边AD=2,AB=4;故答案为:2;4;(2)当点P在C→B运动过程中,PB=8﹣x,∴y=S△APB=×4×(8﹣x),即y=﹣2x+16(6≤x≤8),正确作出图象,如图所示:19.解:(1)本次接受调查的总人数为58÷29%=200(人),故答案为:200.(2)持“C”意见的人数为:200×12%=24(人),补全条形图如下:;(3)观点“D”的百分比为:×100%=24%,“B”所对应的圆心角的度数是:×360°=126°,故答案为:24%,126°;(4)3000×(12%+24%)=1080(人),20.(1)∵点M,N分别从点B,C开始,以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN.∴∠APN=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°,∴∠APB=120°.(2)同理(1)可得,图②中,∠APB=90°;图③中,∠APB=72°.[(3)能.问题:如解图,正n边形ABCDE…是⊙O的内接正n边形,点M,N分别从点B,C开始,以相同的速度在⊙O上逆时针运动,求∠APB的度数.结论:∠APB.证明:∵点M,N分别从点B,C开始,以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN.∴∠APN=∠BAM+∠ABN=∠CBN+∠ABN=∠ABC=180°.∴∠APB=180°-∠APN=360°/n.21.解:(1)∵D有12人,占30%,∴共有:12÷30%=40(人),∴n%=0.4×100%=40%,∴m%=1﹣20%﹣40%﹣30%=10%,∴m=10,n=40;(2)2350×(10%+20%)=705(人);(3)分别用A,B,C表示另外三人,画树状图得:∵共有12种等可能的结果,获A等级的小明参加比赛的有6种情况,∴获A等级的小明参加比赛的概率为:0.5.22.解:(1)由题意可得出:y B=0.25(x-60)2+m经过(0,1000),则1000=0.25(0-60)2+m,解得:m=100,∴y B=0.25(x-60)2+100,当x=40时,y B=0.25×(40-60)2+100,解得:y B=200,y A=kx+b,经过(0,1000),(40,200),则b=1000,40k+b=200,解得:k=-20,b=1000,∴y A=-20x+1000;(2)当A组材料的温度降至120 ℃时,120=-20x+1000,解得:x=44,当x=44,y B=0.25(44-60)2+100=164,∴B组材料的温度是164 ℃;(3)当0<x<40时,y A-y B=-20x+1000-0.25(x-60)2-100=-0.25x2+10x=-0.25(x-20)2+100,∴当x=20时,两组材料温差最大为100 ℃.23.解答:解:(1)由已知得解.所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC=5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣x+3,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,∴△MQB∽△COB,∴,即,解得b=,代入y=﹣x+3得,=﹣a+3,解得a=,∴M(,);②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ,设CM=MQ=m,∴BM=5﹣m,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,∴△BMQ∽△BOC,∴,解得m=,作MN∥OB,∴,∴MN=,CN=,∴ON=OC﹣CN=3﹣=,∴M(,),综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为(,)或(,).。

2017年中考数学一模试卷及答案

2017年中考数学一模试卷及答案

2017年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

2017中考数学模拟试题含答案(精选5套)

2017中考数学模拟试题含答案(精选5套)

2017年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2017年云南省中考数学真题试卷、答案

2017年云南省中考数学真题试卷、答案

云南省2017年中考数学真题试卷及答案一、填空题(本大题共6个小题,每题3分,共18分)1.2的相反数是.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD+DE+AEAB+BC+AC=.4.使9−x有意义的x的取值范围为.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1088.(4分)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6 10已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.sin60°的值为()A.3B.32C.22D.1212.下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖13.正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9 3π,则这个圆锥的高等于( )A .5 3πB .5 3C .3 3πD .3 314.如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A 、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数解析式(也称关系式),请直接写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线;(2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d +f 的取值范围.答案一、填空题(本大题共6个小题,每题3分,共18分)1.﹣2.2.﹣7.3.13.4.x≤9.5.解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=GC2+CF2=22则阴影部分面积=12S⊙O+S△HGF=12•π•22+12×22×22=2π+4,6.解:∵点A(a,b)在双曲线y=5x 上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得m+n=0n=5,解得m=−5n=5,∴y=﹣5x+5;②当a=5,b=1时,由题意,得5m+n=0n=1,解得m=−15n=1,∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1.二、选择题7.B.8.C.9.D10.解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.11.B.12.解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.13.解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180πR180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=3r,∵圆锥的体积等于93π∴93π=13πr2h,∴r=3,∴h=3314.解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=180°−40°2=70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°. 故选:A .三、解答题15.解:∵BE=CF ,∴BE +EC=CF +EC ,∴BC=EF ,在△ABC 与△DEF 中,AB =DE BC =EF AC =DF∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF16.解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4; (2)第n 个等式是:(n +1)2−n 2−12=n , 证明:∵(n +1)2−n 2−12 =[(n +1)+n ][(n +1)−n ]−12 =2n +1−12=2n 2=n ,∴第n 个等式是:(n +1)2−n 2−12=n . 17.解:(1)由题意总人数=20÷40%=50人, 八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人, 答:该校九年级大约有120名志愿者18.解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克, (1000x+2)×2x=2400 整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x +20×0.5x ≥1000+2400+950整理,可得:290x ≥4350解得x ≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.19.解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=13. 20.(解:(1)∵AD ⊥BC ,点E 、F 分别是AB 、AC 的中点,∴Rt △ABD 中,DE=12AB=AE , Rt △ACD 中,DF=12AC=AF , 又∵AB=AC ,点E 、F 分别是AB 、AC 的中点,∴AE=AF ,∴AE=AF=DE=DF ,∴四边形AEDF 是菱形;(2)如图,∵菱形AEDF 的周长为12,∴AE=3,设EF=x ,AD=y ,则x +y=7,∴x 2+2xy +y 2=49,①∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y )2+(12x )2=32, 即x 2+y 2=36,②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF 的面积S=12xy=134.21.解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x ﹣3)2+8=﹣2x 2+12x ﹣10, ∴b=12,c=﹣10,∴b +2c +8=12﹣20+8=0,∴不等式b +2c +8≥0成立.(2)设M (m ,n ),由题意12•3•|n |=9,∴n=±6,①当n=6时,6=﹣2m 2+12m ﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m 2+12m ﹣10,解得m=3± 7,∴满足条件的点M 的坐标为(2,6)或(4,6)或(3+ 7,﹣6)或(3﹣ 7,﹣6).22.解:(1)由题意:y=380x +280(62﹣x )=100x +17360. ∵30x +20(62﹣x )≥1441,∴x ≥20.1,∴21≤x ≤62.(2)由题意100x +17360≤21940,∴x ≤45.8,∴21≤x ≤45,∴共有25种租车方案,x=21时,y 有最小值=175700元.23.解:(1)连接OC ,∵OA=OC ,∴∠A=∠OCA ,∵AC ∥OP ,∴∠A=∠BOP ,∠ACO=∠COP , ∴∠COP=∠BOP ,∵PB 是⊙O 的切线,AB 是⊙O 的直径, ∴∠OBP=90°,在△POC 与△POB 中, OC =OB ∠COP =∠BOP OP =OP,∴△COP ≌△BOP ,∴∠OCP=∠OBP=90°,∴PC 是⊙O 的切线;(2)过O 作OD ⊥AC 于D ,∴∠ODC=∠OCP=90°,CD=12AC , ∵∠DCO=∠COP ,∴△ODC ∽△PCO ,∴CD OC =OC PO, ∴CD•OP=OC 2,∵OP=32AC , ∴AC=23OP , ∴CD=13OP , ∴13OP•OP=OC 2 ()()∴OC OP = 33, ∴sin ∠CPO=OC OP = 33; (3)连接BC , ∵AB 是⊙O 的直径,∴AC ⊥BC ,∵AC=9,AB=15,∴BC= AB 2−AC =12,当M与A重合时,d=0,f=BC=12,∴d+f=12,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值范围是:9≤d+f≤12.2017年12月23日。

2017年云南省中考数学真题及答案 精品

2017年云南省中考数学真题及答案 精品

2017年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2017年云南省)|﹣|=()A.﹣B.C.﹣7 D.7考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017年云南省)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.(3分)(2017年云南省)不等式组的解集是()A.x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(3分)(2017年云南省)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3分)(2017年云南省)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.(3分)(2017年云南省)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A. 1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.B.2πC.3πD.12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.(3分)(2017年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数.分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2017年云南省)计算:﹣= .考点:二次根式的加减法.分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=2﹣=.故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.(3分)(2017年云南省)如图,直线a∥b,直线a,b被直线c 所截,∠1=37°,则∠2= 143°.考点:平行线的性质.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=37°(对顶角相等),∵a∥b,∴∠2=180°﹣∠3=180°﹣37°=143°.故答案为:143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3分)(2017年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y 随x的增大而减小.12.(3分)(2017•天津)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.13.(3分)(2017年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD= 18°.考点:等腰三角形的性质.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.点评: 本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.(3分)(2017年云南省)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=; …(1﹣)(1﹣)(1﹣)(1﹣) (1))=.(用含n 的代数式表示,n 是正整数,且n ≥2)考点: 规律型:数字的变化类.分析: 由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果. 解答: 解:(1﹣)(1﹣)(1﹣)(1﹣) (1))=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9个小题,满分60分)15.(5分)(2017年云南省)化简求值:•(),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=x+1,当x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(5分)(2017年云南省)如图,在△ABC和△ABD中,AC与BD 相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.(6分)(2017年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k 的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.(9分)(2017年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:(1)根据题意列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.(6分)(2017年云南省)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.(6分)(2017年云南省)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(7分)(2017年云南省)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质.专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.(9分)(2017年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC “之间的区别.。

2017年云南省中考数学试卷(含答案解析版)

2017年云南省中考数学试卷(含答案解析版)

2017年云南省中考数学试卷(含答案解析版)2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x+a+5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AD AB =13,则AD+DE+AE AB+BC+AC= .4.(3分)使√9−x 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5x上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 .二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×1088.(4分)下面长方体的主视图(主视图也称正视图)是( )A .B .C .D .9.(4分)下列计算正确的是( )A .2a ×3a=5aB .(﹣2a )3=﹣6a 3C .6a ÷2a=3aD .(﹣a 3)2=a 610.(4分)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形11.(4分)sin60°的值为( ) A .√3 B .√32 C .√22 D .1212.(4分)下列说法正确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖13.(4分)正如我们小学学过的圆锥体积公式V=13πr 2h (π表示圆周率,r 表示圆锥的地面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于( ) A .5√3πB .5√3C .3√3πD .3√314.(4分)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM 上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017•云南)2的相反数是﹣2 .【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017•云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7 .【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD+DE+AEAB+BC+AC=13.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE ∽△ABC ,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =AD+DE+AE AB+BC+AC =13.故答案为:13.【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017•云南)使√9−x 有意义的x 的取值范围为 x ≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x ≥0. 【解答】解:依题意得:9﹣x ≥0. 解得x ≤9. 故答案是:x ≤9.【点评】考查了二次根式的意义和性质.概念:式子√a (a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•云南)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 2π+4 .【考点】MC :切线的性质;LE :正方形的性质;MO :扇形面积的计算.【分析】连接HO ,延长HO 交CD 于点P ,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH 、四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=12S ⊙O +S △HGF 可得答案.【解答】解:如图,连接HO ,延长HO 交CD 于点P ,∵正方形ABCD 外切于⊙O ,∴∠A=∠D=∠AHP=90°,∴四边形AHPD 为矩形, ∴∠OPD=90°, 又∠OFD=90°, ∴点P 于点F 重合, 则HF 为⊙O 的直径, 同理EG 为⊙O 的直径,由∠B=∠OGB=∠OHB=90°且OH=OG 知,四边形BGOH 为正方形,同理四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√GC 2+CF 2=2√2 则阴影部分面积=12S ⊙O+S △HGF=12•π•22+12×2√2×2√2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017•云南)已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣15x+1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A(a,b)在双曲线y=5x 上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得{m+n=0n=5,解得{m=−5n=5,∴y=﹣5x+5;②当a=5,b=1时,由题意,得{5m+n=0n=1,解得{m=−15n=1,∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1.故答案为y=﹣5x+5或y=﹣15x+1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017•云南)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017•云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017•云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017•云南)sin60°的值为( )A .√3 B .√32 C .√22 D .12【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√32.故选B .【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•云南)下列说法正确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A 、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B 、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C 、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017•云南)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3πB.5√3C.3√3πD.3√3【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180πR180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r ,∴由勾股定理可知:h=√3r ,∵圆锥的体积等于9√3π∴9√3π=13πr 2h , ∴r=3,∴h=3√3 故选(D )【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017•云南)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°【考点】M5:圆周角定理;KG :线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD ,然后结合等腰三角形的性质来求∠ABD 、∠ABC 的度数,从而得到∠DBC .【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC ,∴∠ABC=∠ACB=180°−40°2=70°.又EF 是线段AB 的垂直平分线, ∴AD=BD ,∴∠A=∠ABD=40°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°.故选:A .【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017•云南)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .【考点】KD :全等三角形的判定与性质.【分析】先证明△ABC ≌△DEF ,然后利用全等三角形的性质即可求出∠ABC=∠DEF .【解答】解:∵BE=CF , ∴BE+EC=CF+EC , ∴BC=EF ,在△ABC 与△DEF 中,{AB =DEBC =EF AC =DF∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017•云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4;(2)第n 个等式是:(n+1)2−n 2−12=n ,证明:∵(n+1)2−n 2−12=[(n+1)+n][(n+1)−n]−12=2n+1−12=2n 2=n ,∴第n 个等式是:(n+1)2−n 2−12=n .【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017•云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x ≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,(1000x+2)×2x=2400整理,可得:2000+4x=2400 解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017•云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=1 3.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•云南)如图,△ABC是以BC为底的等腰三角形,AD是边BC 上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=132,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=12AB=AE,Rt△ACD中,DF=12AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=13 2,∴菱形AEDF的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017•云南)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O 是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c 即可解决问题.(2)设M(m,n),由题意12•3•|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意12•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±√7,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017•云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017•云南)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;。

2017年云南省初中学业水平数学模拟考试卷(一)

2017年云南省初中学业水平数学模拟考试卷(一)

2017年云南省初中学业水平数学模拟考试卷(一)一、填空题(本大题共6个小题,每小题3分,满分18分)分式方程xx 532=-的解是 . 5. 如图2,在⊙O 中,弦AB 的长为8cm ,圆心0到AB 的距离为3cm ,则⊙O 的半径是 .6. 图3中的图形都是由同样大小的棋子按一定的规律组成的,其中第①个图形有4颗棋子,第②个图形有12颗棋子,第③个图形有24颗棋子, …… ,则第⑩个图形 中的棋子数有 颗.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)8. 下列运算正确的是 ( )A. x x =2B. 10=πC. 422-=-D. 22=--9.函数1y +=x 中自变量的取值范围是( )12. 下列说法中错误的是( )的图象大致为(三、解答题(本大题共9个小题,满分70分)15.(6分)先化简,再求值:x x x x x x x x 12122122-÷⎪⎭⎫ ⎝⎛+----+,其中12+=x .16.(6分)如图,AC 是∠BAD 的角平分线,AB=AD. 求证:∠B=∠D .17.(8分)某县为进一步做好“精准扶贫”,自2014年以来,加大了异地安置投入,2014年该县投入异地安置经费6000万元.2016年投入异地安置经费8640万元.假设该县这两年投入异地安置经费的年平均增长率相同. (1)求这两年该县投入的异地安置经费的年平均增长率;(2)若该县异地安置经费的投入还将保持相同的年平均增长率,请你预测2017年该县投入异地安置经费多少万元?18.(8分)老王、老张两家和敬老院在同一条街上,老王家到敬老院必须经过老张家门口,两家相距10米,两人约好分别从自己家同时出发到敬老院下棋.图7中l 1 ,l 2分别表示老王、老张步行的路程y (m )与时间x(s)之间的函数关系,其中的关系式为y 1=8x,问老王多长时间能追上老张?19.(7分)如图8 ,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,AC是线段DE的垂直平分线.(1)求证:四边形ADCE是菱形(2).若BC=4 ,CD=5 ,求菱形ADCE的面积.20.(8分)如图9 ,某市为了了解市民“业余阅读的主要途径”,开展了一次抽样调查,根据调查结果绘制了如下不完整的统计图.根据以上信息解答下列问题:(1)请补全条形统计图;(2)在扇形统计图中,“电脑上网”所对应的圆心角的度数是;(3)若该市约有120万人,请你估计其中将“书籍”作为“业余阅读的最主要的途径”的总人数. 21.(8分)如图10 ,有一个可以自由转动的质地均匀的转盘被平均分成4个扇形,分别标有1 ,2 ,3 ,4四个数字,小王和小李个转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游可能出现的所有结果.(2)求每次游戏结束得到的一组数恰好是方程0232=+-xx的两个解的概率.22.(9分)如图11 ,AB是⊙O的直径,C是⊙O上的一点,AD和过点C的直线互相垂直,垂足为D,E是AD与⊙O的交点,延长AB交直线CD与点F. (1)求证:AC平分∠DAB;(2)若AD=7.5 ,∠AFD=30 °,求图中阴影部分的面积.23.(12分)如图12 ,在平面直角坐标系中,二次函数c-+=2的图象与x轴bxxy+于点A(-4 ,0),与y轴交于点A(-4 ,0),与y轴交于点B(0 ,4).点D为线段AB 上的一动点,过点D作CD⊥x轴于点C,交抛物线于点E.⑴求抛物线的解析式;⑵当线段DE最长时,求点D的坐标;⑶连接BE ,是否若在点D ,使得△DBE和△DAC相似?若存在,请求出点D的坐标,若不存在,请说明理由.。

2017年云南中考数学模拟卷

2017年云南中考数学模拟卷

2017年云南省初中学业水平考试模拟卷数学试题卷(一)(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卡一并交回.一、填空题(本大题共6个小题,每小题3分,共18分)1. -6的相反数是________.2. 因式分解:a3-9a=________.3. 函数y=3x-2中自变量x的取值范围是________.4. 如图,BD⊥AB,BD⊥CD,∠2=50°,则∠1的度数是________.第4题图5. 已知一个圆锥底面直径为6,母线长为12,则其侧面展开图的圆心角为________度.6. 观察图①至图⑤中小黑点的摆放规律,并按照这样的规律继续摆放,则第n个图中小黑点的个数为________.第6题图二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 政府报告大会中,2017工作重点任务中提到大力促进就业创业.完善就业政策,加大就业培训力度,加强对灵活就业、新就业形态的支持.今年高校毕业生7950000人,再创历史新高,要实施好就业促进、创业引领、基层成长等计划,促进多渠道就业创业.7950000用科学记数法表示为()A.7.95×106B. 79.5×104C.7.95×107D. 0.795×1068. 不等式3x-2>1的解集是()A. x<1B. x>-1 3C. x>1D. x<-1 39. 下列运算正确的是()A. a2·a4=a8B. a2+a3=a5C. (a-2)2=a2-4D. (a2)3=a610. 在二次函数y=x2-2x-3的图象中,若y随x的增大而增大,则x的取值范围是()A. x<1B. x<-1C. x>1D. x>-111. 如图所示是一个几何体的三视图,则这个几何体是()A. 圆柱B. 三棱锥C. 球D. 圆锥第11题图12. 关于x的一元二次方程x2-2x-(4-k)=0有实数根,则k的取值范围是()A. k≥3B. k≤3C. k≥5D. k≤513. 如图,点A、B、C在⊙O上,CO的延长线交AB 于点D,BD=BO,∠A=50°,则∠B的度数为()A. 15°B. 20°C. 25°D. 30°第13题图14. 云南省云县首届“龙胆草王”评选大赛,总共139位龙胆草种植户报名参加此次大赛.最终的比赛结果将根据龙胆草的长度、重量及外观长势三方面综合考量得出.下表是参赛龙胆草的重量统计结果:在上表统计的数据中,中位数和众数分别是( )A. 230,232B. 231,232C. 232,232D. 232,233三、解答题(本大题共9个小题,共70分)15. (本小题满分6分)化简求值:x 2+2x +1x 2-1·(1-x x +1),其中x =5+1.16. (本小题满分6分)如图,B、C、D三点在同一直线上,∠B=∠D,∠BCE =∠DCA,CA=CE,求证:AB=ED.第16题图17. (本小题满分6分)近年来玉溪市积极开展“六城同创”工作大力提升城市形象及群众幸福感,在城市建设中不断纳入海绵城市理念.某工程队接到了修建3000米海绵型道路的施工任务,修到一半的时候,由于采用新的施工工艺,修建效率提高为原来的1.5倍,结果提前5天完成了施工任务,问原来每天修建多少米海绵型道路?18. (本小题满分7分)近年来电子竞技在许多国家高速发展.某教学网站开设了有关电子竞技的课程,网上学习的月收费方式为:月使用费8元(包时上网时间40小时),超时费0.5元/小时.设小明每月上网学习电子竞技课程的时间为x小时,收费金额为y元.(1)求出y与x之间的函数关系式;(2)若小明5月份上该网站学习的时间为60小时,则他上网学习电子竞技课程的费用为多少元?19. (本小题满分8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.(1)求证:DE∥BF;(2)若DB平分∠EDF,求证:四边形DEBF是菱形.第19题图20. (本小题满分8分)小赵和小刘准备在国庆期间一起去昆明周边游玩,小赵想去西山森林公园,小刘想去金殿名胜区,为此他们想通过一个游戏决定去哪里游玩,谁赢了听谁的,现有一个圆形转盘,被5等分,上面的数字分别为-2、-1、0、1、2,每人转一次,若两个人所转的数字之和为正数则小赵胜;若两个人所转的数字之和为负数则小刘胜;若两数之和为0则重新转,直至分出胜负为止.(1)用画树状图或列表的方法(任选其一)列举出两人各转一次后所有可能出现的结果;(2)请计算出他们两人各转一次转盘一起去西山森林公园的概率.第20题图21. (本小题满分8分)如今共享单车可以说是火遍大江南北,在全国各大城市都可以看到各种颜色的共享单车,一时间如雨后春笋般冒出来,在方便大家出行的同时,也有很多不文明行为产生,主要表现为以下四个方面:A.用户私藏;B.不规范停车;C.上私锁;D.恶意损坏,某市文明办对于“共享单车时如何共享文明?”做了调研,并将调研结果绘制成如下不完整的统计图.请你结合图中信息解答下列问题:(1)此次参与调研的总人数是多少人?(2)请把条形统计图补充完整;(3)若该市使用共享单车存在不文明行为的有1200人,请根据样本估计全市“B.不规范停车”的人数是多少?第21题图22. (本小题满分9分)如图,AB是⊙O的直径,点C在AB的延长线上,∠BDC=∠A,CE⊥AD,交AD的延长线于点E.(1)求证:CD与⊙O相切;(2)若CE=6,tan∠DCE=12,求AD的长.第22题图23. (本小题满分12分)如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,与x轴相交于A、B两点,与y轴相交于点C,已知B点的坐标为B(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.第23题图2017年云南省初中学业水平考试模拟卷数学 试题卷(二)(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卡一并交回.一、填空题(本大题共6个小题,每小题3分,共18分)1. -14的倒数是________.2. 云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八,394000用科学记数法表示为____________.3. 不等式组⎩⎪⎨⎪⎧x -2<03x +5>0的解集是______________. 4. 如图,直线a ∥b ,直线c 与直线a 、b 分别交于A 、B 两点,AC ⊥b 于点C ,若∠1=43°,则∠2=________.第4题图5. 若(x-1)2=2,则代数式2x2-4x+5的值为________.6. 如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=________.第6题图二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列实数中最小的数是()A. -2B. - 5C. 13 D. -138. 下列计算正确的是()A. 3-1=-3B. 5-2= 3C. a6÷a2=a4D. (-12)0=09. 下面四个立体图形中,主视图与左视图不同的是()10. 某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A. 众数是110B. 方差是16C. 平均数是109.5D. 中位数是10911. 关于x 的一元二次方程x 2-2x -4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定12. 一个扇形的圆心角为60°,它所对的弧长为2π cm ,则这个扇形的半径为( ) A. 2 3 cm B. 3 cmC. 6 cmD. 3 cm13. 如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =k x 的图象上,OA =5,OC =1,则△ODE 的面积为( )A. 2.5B. 5C. 7.5D. 10第13题图14. 如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,再顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2,…,以此类推,则第六个正方形A6B6C6D6的周长是()A. 12 B.13 C.14 D. 1第14题图三、解答题(本大题共9个小题,共70分) 15. (本小题满分6分)化简求值:(x 2x -3+93-x )·xx 2+6x +9,其中x =-2.16. (本小题满分6分)如图,E 、F 是线段BD 上的两点,且DF =BE ,AE =CF ,AE ∥CF ,求证:AD ∥BC .第16题图17. (本小题满分7分)某水果批发市场香蕉和苹果某天的批发价与市面零售价如下表所示:水果经营户老王用了470元从水果批发市场批发,当天他卖完这些香蕉和苹果共赚了340元,这天他批发的香蕉和苹果分别是多少千克?18. (本小题满分7分)甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6,先从甲袋中随机取一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x,y分别作为A点的横坐标、纵坐标.(1)用适当的方法(列表或画树状图)写出点A(x,y)的所有情况;(2)求点A在第二象限的概率.19. (本小题满分7分)如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40 m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)第19题图20. (本小题满分8分)为迎接云南国际英语大赛暨国际文化交流大使选拔赛,某校举行了“英语单词听写”竞赛,每位学生听写单词99个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.第20题图根据以上信息解决下列问题:(1)本次共随机抽查了________名学生,并补全频数分布直方图;(2)若把每组听写正确的个数用这组数据的组中值代替,则被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于60个定为不合格,请你估计这所学校本次竞赛听写不合格的学生人数.21. (本小题满分8分)某果园苹果丰收,首批采摘46吨,计划租用A、B 两种型号的汽车共10辆,一次性运往外地销售.A、B两种型号的汽车的满载量和租车费用如下:设租A型汽车x辆,总租车费用为y元.(1)求y与x之间的函数关系式;(2)总租车费用最少是多少元?并说明此时的租车方案.22. (本小题满分9分)如图,在▱ABCD中,AE平分∠BAD交DC于点E,AD=5 cm,AB=8 cm.(1)求EC的长;(2)作∠BCD的平分线交AB于点F,求证:四边形AECF为平行四边形.第22题图23. (本小题满分12分)如图,直线y =-23x +2与x 轴、y 轴分别相交于点A 、B ,经过A 、B 的抛物线与x 轴的另一个交点为C (1,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使△PBC 周长最小?若存在,求出点P 的坐标;若不存在,请说明理由;(3)在线段AB 上是否存在点Q ,使△ACQ 与△AOB相似?若存在,求出点Q的坐标;若不存在,请说明理由.第23题图。

西山区中考一模数学试卷

西山区中考一模数学试卷

一、选择题(每小题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.101001…D. 22. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a和b互为相反数B. a和b相等C. a和b互为倒数D. a和b互为倒数或相等3. 下列函数中,一次函数是()A. y=x^2-3x+2B. y=2x+1C. y=3/xD. y=√x4. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)5. 下列等式中,正确的是()A. a^2+b^2=c^2(c为直角三角形的斜边)B. (a+b)^2=a^2+2ab+b^2C. a^3+b^3=(a+b)(a^2-ab+b^2)D. a^2-b^2=(a+b)(a-b)6. 若|a|<|b|,则下列不等式中正确的是()A. a<bB. -a<bC. a<-bD. -a<-b7. 已知等腰三角形ABC中,AB=AC,AD是BC的中线,则∠BAD的度数是()A. 30°B. 45°C. 60°D. 90°8. 在平面直角坐标系中,点P(2,3)关于原点的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)9. 下列命题中,真命题是()A. 两个平行四边形一定是矩形B. 两个等腰三角形一定是等边三角形C. 两个相似的三角形一定全等D. 两个全等的三角形一定相似10. 下列函数中,是奇函数的是()A. y=x^2B. y=x^3C. y=x^4D. y=x二、填空题(每小题3分,共30分)11. 若x-2=3,则x=________。

12. 已知a,b是方程2x^2+5x+2=0的两根,则a+b=________。

13. 若|a|≥|b|,则|a-|b||的值是________。

14. 在△ABC中,若∠A=45°,∠B=60°,则∠C=________。

云南昆明市西山区实验中学 2017年 九年级数学中考模拟试卷(含答案)

云南昆明市西山区实验中学 2017年 九年级数学中考模拟试卷(含答案)

2017年九年级数学中考模拟试卷一、填空题:1.小刚位于A点,在学校正北方向5 km处,记作+5;小敏位于B点,在学校正南方向3 km处,记作-3.小刚和小敏沿AB所在直线同时行进2 km,他俩相距________km.2.如图,一个小区大门的栏杆,BA垂直地面AB于A,CD平行于地面AE,则∠ABC+∠BCD= 度.3.因式分解:m(x﹣y)+n(x﹣y)= .4.如果一个多边形的每一个外角都等于45°,那么这个多边形的边数是.5.若x,x2是方程x2+2x﹣3=0的两根,则x1+x2= .16.如图,正六边形ABCDEF的边长为2,则该正六边形的外接圆与内切圆所形成的圆环面积为.二、选择题:7.已知数349028用四舍五入法保留两个有效数字约是3.5×105,则所得近似数精确到()A.十位B.千位C.万位D.百位8.函数的自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤39.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是()A.文 B.明 C.城 D.市10.下列运算正确的是()A.a2+a3=a5 B.(﹣2a2)3÷()2=﹣16a4C.3a﹣1= D.(2a2﹣a)2÷3a2=4a2﹣4a+111.下列函数中,满足y的值随x的值增大而增大的是()A.y=﹣2x B.y=3x﹣1 C.y= D.y=x212.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7B.7,7C.9,9D.9,713.由图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S1+S2的大小变化情况是()A.一直不变B.一直减小C.一直增大D.先减小后增大三、解答题:15.解不等式组,并把其解集在数轴上表示出来:16.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?17.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?18.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=4,AD=7,求tan∠ADP的值.19.某校为了了解本校九年级女生体育项目跳绳的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟跳绳测试,同时统计每个人跳的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥180),良好(150≤x≤179),及格(135≤x≤149)和不及格(x≤134),并将统计结果绘制成如下两幅不完整的统计图。

2017中考数学模拟考试题含答案解析[精选5套]

2017中考数学模拟考试题含答案解析[精选5套]

2017年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2+ 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为()A. 3B. 23C.23D. 1圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x -1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( ) A 、4 B 、3 C 、-4 D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2017年云南省中考数学试题及答案(清晰版)

2017年云南省中考数学试题及答案(清晰版)

10.云南省2017年中考数学试题及答案一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是.2.(3分)已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.(3分)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB =13,则AD+DE+AEAB+BC+AC= .4.(3分)使9-x有意义的x的取值范围为.5.(3分)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(3分)已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1088.(4分)下面长方体的主视图(主视图也称正视图)是()9.(4分)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6 10.(4分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.(4分)sin60°的值为()A.3B.32C.22D.1212.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62。

2017年云南省昆明三中、滇池中学中考数学模拟试卷(解析版)

2017年云南省昆明三中、滇池中学中考数学模拟试卷(解析版)

2017年云南省昆明三中、滇池中学中考数学模拟试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)﹣的相反数是.2.(3分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是.3.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为.4.(3分)观察下列各数1,,,,…,按你发现的规律计算这列数的第n 个数为.5.(3分)如果圆柱的侧面展开图是相邻两边长分别为8,20π的长方形,那么这个圆柱的体积等于.6.(3分)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕点D 顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=122.5°;④BC+FG=其中正确的结论是(填写所有正确结论的序号)二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列四个立体图形中,它们各自的三视图有两个相同,而另一个不同的是()A.①②B.②③C.②④D.③④8.(4分)下列各数表示正确的是()A.5700000=57×106B.0.0158(用四舍五入法精确到0.001)≈0.015C.0.0000275=2.75×10﹣6D.1.967(用四舍五入法精确到十分位)≈2.09.(4分)下列计算正确的是()A.(3x3)3=9x6B.2a6•3a4=6a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x210.(4分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.4011.(4分)先化简,再求值:(﹣)+,其中a=﹣2,b=﹣3,则值为()A.B.1 C.D.312.(4分)若x1,x2是一元二次方程2x2﹣3x﹣4=0的两个根,则x1x2﹣x1﹣x2的值是()A.B.﹣ C.D.﹣13.(4分)某校随机抽查了10名参加2017年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A.这10名同学的体育成绩的平均数为48B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的众数为5014.(4分)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B. C.D.三、解答题(本大题共9小题,共70分)15.(6分)解不等式组,并把它们的解集在数轴上表示出来.16.(6分)如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF,求证:(1)AE=CF;(2)AB∥CD.17.(8分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点,AB⊥x轴于B,且S=,求:△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积;(3)当x为何值时?一次函数的值大于反比例函数的值.18.(7分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=8,AB=10,求菱形ADCF的面积.19.(8分)某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:选项方式百分比A唱歌35%B舞蹈aC朗诵25%D器乐30%请结合统计图表,回答下列问题:(1)本次调查的学生共人,a=,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.20.(6分)如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)21.(8分)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?22.(9分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)23.(12分)如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.2017年云南省昆明三中、滇池中学中考数学模拟试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)﹣的相反数是.【解答】解:﹣的相反数是.故答案为:.2.(3分)如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是70°.【解答】解:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故答案为:70°.3.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm4.(3分)观察下列各数1,,,,…,按你发现的规律计算这列数的第n 个数为.【解答】解:第一个数:1=,第二个数:=,第三个数:=,…第n个数:.故答案为.5.(3分)如果圆柱的侧面展开图是相邻两边长分别为8,20π的长方形,那么这个圆柱的体积等于320或800π.【解答】解:①底面周长为8高为20π,π×()2×20π=π××20π=320;②底面周长为20π高为8,π×()2×8=π×100×8=800π.答:这个圆柱的体积可以是320或800π.故答案为:320或800π.6.(3分)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕点D 顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=122.5°;④BC+FG=其中正确的结论是①②④(填写所有正确结论的序号)【解答】解:∵正方形ABCD的边长为1,∴∠BCD=∠BAD=90°,∠CBD=45°,BD=,AD=CD=1.由旋转的性质可知:∠HGD=BCD=90°,∠H=∠CBD=45°,BD=HD,GD=CD,∴HA=BG=﹣1,∠H=∠EBG=45°,∠HAE=∠BGE=90°,∴△HAE和△BGE均为直角边为﹣1的等腰直角三角形,∴AE=GE.在△AED和△GED中,,∴△AED≌△GED(SSS)(②正确),∴∠AED=∠GED=(180°﹣∠BEG)=67.5°,∴∠AFE=180°﹣∠EAF﹣∠AEF=180°﹣45°﹣67.5°=67.5°=∠AEF,∴AE=AF.∵AE=GE,AF⊥BD,EG⊥BD,∴AF=GE且AF∥GE,∴四边形AEGF为平行四边形.∵AE=GE,∴平行四边形AEGF是菱形(①正确).∵四边形AEGF是菱形,∴∠EFG=∠GEF=67.5°,FG=EG=﹣1,∴∠DFG=180°﹣∠DFG=112.5°(③不正确),BC+FG=1+﹣1=(④正确).综上所述:正确的结论有①②④.故答案为:①②④.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列四个立体图形中,它们各自的三视图有两个相同,而另一个不同的是()A.①②B.②③C.②④D.③④【解答】解:球的三视图都是圆,①不正确;正方体的三视图都是正方形,②不正确;圆柱的主视图和左视图是矩形,俯视图是圆,③正确;圆锥的主视图和左视图是三角形,俯视图是圆,④正确,故选:D.8.(4分)下列各数表示正确的是()A.5700000=57×106B.0.0158(用四舍五入法精确到0.001)≈0.015C.0.0000275=2.75×10﹣6D.1.967(用四舍五入法精确到十分位)≈2.0【解答】A、5700000=5.7×106,故此选项错误;B、0.0158(用四舍五入法精确到0.001)≈0.016,故此选项错误;C、0.0000275=2.75×10﹣5,故此选项错误;D、1.967(用四舍五入法精确到十分位)≈2.0,正确.故选:D.9.(4分)下列计算正确的是()A.(3x3)3=9x6B.2a6•3a4=6a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x2【解答】解:(A)原式=27x9,故A错误;(B)原式=6a10,故B错误;(D)原式=x3,故D错误;故选(C)10.(4分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6,OB=OA=10.∵四边形OACB是菱形,点F在边BC上,∴S△AOF =S菱形OBCA=OB•AM=40.故选D.11.(4分)先化简,再求值:(﹣)+,其中a=﹣2,b=﹣3,则值为()A.B.1 C.D.3【解答】解:原式=•+=+=,当a=﹣2,b=﹣3时,原式==.故选A.12.(4分)若x1,x2是一元二次方程2x2﹣3x﹣4=0的两个根,则x1x2﹣x1﹣x2的值是()A.B.﹣ C.D.﹣【解答】解:∵x1,x2是一元二次方程2x2﹣3x﹣4=0的两个根,∴x1+x2=,x1•x2=﹣2,∴x1•x2﹣x1﹣x2=x1•x2﹣(x1+x2)=﹣2﹣=﹣.故选B.13.(4分)某校随机抽查了10名参加2017年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A.这10名同学的体育成绩的平均数为48B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的众数为50【解答】解:A、这10名同学的体育成绩的平均数为=48.6,故本选项错误;B、这10名同学的体育成绩的中,第5和第6名同学的成绩的平均值为中位数,中位数为:=49,故本选项错误;C、方差=[(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50,故本选项错误;D、10名学生的体育成绩中50分出现的次数最多,众数为50,故本选项正确;故选D.14.(4分)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B. C.D.【解答】解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.三、解答题(本大题共9小题,共70分)15.(6分)解不等式组,并把它们的解集在数轴上表示出来.【解答】解:解不等式x+1≥,得:x≤3,解不等式﹣2(x﹣1)<,得:x>﹣,∴不等式组的解集为﹣<x≤3,表示在数轴上如下:16.(6分)如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF,求证:(1)AE=CF;(2)AB∥CD.【解答】解:(1)∵DE⊥AC,BF⊥,∴∠CED=∠AFB=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴AF=CE,∴AF+EF=CE+EF,即AE=CF;(2)∵Rt△ABF≌Rt△CDE,∴∠A=∠C,∴AB∥CD.17.(8分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点,AB⊥x轴于B,且S=,求:△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积;(3)当x为何值时?一次函数的值大于反比例函数的值.=,【解答】解:(1)∵AB⊥x轴于B,且S△ABO∴|k|=,解得:k=±3.∵反比例函数图象在第二、四象限,∴k<0,∴k=﹣3,∴反比例函数的解析式为y=﹣,一次函数的解析式为y=﹣x+2.(2)联立两函数解析式成方程组,,解得:,,∴点A的坐标为(﹣1,3),点C的坐标为(3,﹣1).设直线AC与x轴交于点D,如图所示.当y=﹣x+2=0时,x=2,∴点D的坐标为(2,0),∴S=OD•(y A﹣y C)=×2×[3﹣(﹣1)]=4.△AOC(3)观察函数图象可知:当x<﹣1或0<x<3时,一次函数图象在反比例函数图象上方,∴当x<﹣1或0<x<3时,一次函数的值大于反比例函数的值.18.(7分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=8,AB=10,求菱形ADCF的面积.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BC=CD,∠BAC=90°,∴S菱形ADCF =CD•h=BC•h=S△ABC=AB•AC=40.19.(8分)某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:选项方式百分比A唱歌35%B舞蹈aC朗诵25%D器乐30%请结合统计图表,回答下列问题:(1)本次调查的学生共300人,a=10%,并将条形统计图补充完整;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.【解答】解:(1)∵A类人数105,占35%,∴本次调查的学生共:105÷35%=300(人);a=1﹣35%﹣25%﹣30%=10%;故答案为:(1)300,10%.B的人数:300×10%=30(人),补全条形图如图:(2)2000×35%=700(人),答:估计该校喜欢“唱歌”这种宣传形式的学生约有700人;(3)列表如下:A B C DA AB AC ADB AB BC BDC AC BC CDD AD BD CD由表格可知,在A、B、C、D四种宣传形式中,随机抽取两种进行展示共有12种等可能结果,其中恰好是“唱歌”和“舞蹈”的有2种,∴某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率为=.20.(6分)如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)【解答】解:由题意可得,CD=16米,∵AB=CB•tan30°,AB=BD•tan45°,∴CB•tan30°=BD•tan45°,∴(CD+DB)×=BD×1,解得BD=8,∴AB=BD•tan45°=()米,即旗杆AB的高度是()米.21.(8分)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?【解答】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+=,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.22.(9分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)【解答】解:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.(2)设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.(3)在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴.∵∠B=30°,OD⊥BC,∴OB=2OD,∴AB=3OD,∵AB=2AC=6,∴OD=2,BD=2S△BOD=×OD•BD=2,∴所求图形面积为.23.(12分)如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3,(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3,BE=2,CE=,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD=,∴,,,∴,∴△BCE∽△BDO,(3)存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3,PB=,PC=,∵△PBC是等腰三角形,①当PB=PC时,∴=,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3=,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3=,∴m=﹣3±,∴P(1,﹣3+)或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣)。

(完整版)2017年云南省中考数学试卷(含答案解析版),推荐文档

(完整版)2017年云南省中考数学试卷(含答案解析版),推荐文档

2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x +a +5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AD AB =13,则AD+DE+AE AB+BC+AC= .4.(3分)使√9−x 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5x上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 .二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×108 8.(4分)下面长方体的主视图(主视图也称正视图)是( )A .B .C .D .9.(4分)下列计算正确的是( )A .2a ×3a=5aB .(﹣2a )3=﹣6a 3C .6a ÷2a=3aD .(﹣a 3)2=a 610.(4分)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形11.(4分)sin60°的值为( )A .√3B .√32 C .√22 D .1212.(4分)下列说法正确的是( ) A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 13.(4分)正如我们小学学过的圆锥体积公式V=13πr 2h (π表示圆周率,r 表示圆锥的地面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习. 下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于( )A .5√3πB .5√3C .3√3πD .3√314.(4分)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A 、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数解析式(也称关系式),请直接写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线;(2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d +f 的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017•云南)2的相反数是﹣2.【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017•云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7.【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD+DE+AEAB+BC+AC=13.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =AD+DE+AE AB+BC+AC =13. 故答案为:13. 【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017•云南)使√9−x 有意义的x 的取值范围为 x ≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x ≥0.【解答】解:依题意得:9﹣x ≥0.解得x ≤9.故答案是:x ≤9.【点评】考查了二次根式的意义和性质.概念:式子√a (a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•云南)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 2π+4 .【考点】MC :切线的性质;LE :正方形的性质;MO :扇形面积的计算.【分析】连接HO ,延长HO 交CD 于点P ,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH 、四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=12S⊙O+S△HGF可得答案.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√GC2+CF2=2√2则阴影部分面积=12S⊙O+S△HGF=12•π•22+12×2√2×2√2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017•云南)已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x +5或y=﹣15x +1 . 【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a 、b 都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A (a ,b )在双曲线y=5x上, ∴ab=5,∵a 、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B (a ,0)、C (0,b )两点的一次函数的解析式为y=mx +n .①当a=1,b=5时,由题意,得{m +n =0n =5,解得{m =−5n =5, ∴y=﹣5x +5;②当a=5,b=1时,由题意,得{5m +n =0n =1,解得{m =−15n =1, ∴y=﹣15x +1. 则所求解析式为y=﹣5x +5或y=﹣15x +1. 故答案为y=﹣5x +5或y=﹣15x +1. 【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a 、b 的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017•云南)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×108【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017•云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017•云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A )原式=6a 2,故A 错误;(B )原式=﹣8a 3,故B 错误;(C )原式=3,故C 错误;故选(D )【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017•云南)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n 边形,内角和是(n ﹣2)•180°,这样就得到一个关于n 的方程组,从而求出边数n 的值.【解答】解:设这个多边形是n 边形,则(n ﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C .【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017•云南)sin60°的值为( )A .√3B .√32C .√22D .12【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√32. 故选B .【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•云南)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017•云南)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3πB.5√3 C.3√3πD.3√3【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180πR180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=√3r,∵圆锥的体积等于9√3π∴9√3π=13πr2h,∴r=3,∴h=3√3故选(D)【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017•云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A 交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=180°−40°2=70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017•云南)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF .【考点】KD :全等三角形的判定与性质.【分析】先证明△ABC ≌△DEF ,然后利用全等三角形的性质即可求出∠ABC=∠DEF .【解答】解:∵BE=CF ,∴BE +EC=CF +EC ,∴BC=EF ,在△ABC 与△DEF 中,{AB =DE BC =EF AC =DF∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017•云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4; (2)第n 个等式是:(n+1)2−n 2−12=n ,证明:∵(n+1)2−n2−12=[(n+1)+n][(n+1)−n]−12=2n+1−12=2n 2=n,∴第n个等式是:(n+1)2−n2−12=n.【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017•云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x +20×0.5x ≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克, (1000x+2)×2x=2400 整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x +20×0.5x ≥1000+2400+950整理,可得:290x ≥4350解得x ≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017•云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P .【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=13. 【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•云南)如图,△ABC 是以BC 为底的等腰三角形,AD 是边BC 上的高,点E 、F 分别是AB 、AC 的中点.(1)求证:四边形AEDF 是菱形;(2)如果四边形AEDF 的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S .【考点】LA :菱形的判定与性质;KH :等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE ,DF=12AC=AF ,再根据AB=AC ,点E 、F 分别是AB 、AC 的中点,即可得到AE=AF=DE=DF ,进而判定四边形AEDF 是菱形;(2)设EF=x ,AD=y ,则x +y=7,进而得到x 2+2xy +y 2=49,再根据Rt △AOE 中,AO 2+EO 2=AE 2,得到x 2+y 2=36,据此可得xy=132,进而得到菱形AEDF 的面积S . 【解答】解:(1)∵AD ⊥BC ,点E 、F 分别是AB 、AC 的中点,∴Rt △ABD 中,DE=12AB=AE , Rt △ACD 中,DF=12AC=AF , 又∵AB=AC ,点E 、F 分别是AB 、AC 的中点,∴AE=AF ,∴AE=AF=DE=DF ,∴四边形AEDF 是菱形;(2)如图,∵菱形AEDF 的周长为12,∴AE=3,设EF=x ,AD=y ,则x +y=7,∴x 2+2xy +y 2=49,①∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y )2+(12x )2=32, 即x 2+y 2=36,②把②代入①,可得2xy=13,∴xy=132, ∴菱形AEDF 的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017•云南)已知二次函数y=﹣2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.【考点】HA :抛物线与x 轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x ﹣3)2+8,由此求出b 、c 即可解决问题.(2)设M (m ,n ),由题意12•3•|n |=9,可得n=±6,分两种情形列出方程求出m 的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x ﹣3)2+8=﹣2x 2+12x ﹣10,∴b=12,c=﹣10,∴b +2c +8=12﹣20+8=0,∴不等式b +2c +8≥0成立.(2)设M (m ,n ),由题意12•3•|n |=9, ∴n=±6,①当n=6时,6=﹣2m 2+12m ﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m 2+12m ﹣10,解得m=3±√7,∴满足条件的点M 的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x 轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017•云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017•云南)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线;(2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d +f 的取值范围.【考点】MR :圆的综合题.【分析】(1)连接OC ,根据等腰三角形的性质得到∠A=∠OCA ,由平行线的性质得到∠A=∠BOP ,∠ACO=∠COP ,等量代换得到∠COP=∠BOP ,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O 作OD ⊥AC 于D ,根据相似三角形的性质得到CD•OP=OC 2,根据已知条件得到OC OP =√33,由三角函数的定义即可得到结论; (3)连接BC ,根据勾股定理得到BC=√AB 2−AC =12,当M 与A 重合时,得到d +f=12,当M 与B 重合时,得到d +f=9,于是得到结论.【解答】解:(1)连接OC ,∵OA=OC ,∴∠A=∠OCA ,∵AC ∥OP ,∴∠A=∠BOP ,∠ACO=∠COP ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年九年级数学中考模拟试卷
一、填空题:
1.在数轴上,到-2所对应的点的距离为5个单位的点所对应的数是.
2.如图,已知AB∥CD,∠C=75°,∠A=25°,则∠E的度数为______度.
3.将x n+3-x n+1因式分解,结果是
4.正八边形的一个内角的度数是度.
5.设x
,x2是方程x2-4x+m=0的两个根,且x1+x2-x1x2=1,则x1+x2= ,m= .
1
6.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是 cm.
二、选择题:
7.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为38万公里,将数38万用科学计数法表示,其结果()
A.3.8×104
B.38×104
C.3.8×105
D.3.8×106
8.当实数 x 的取值使得有意义时,函数 y=x+1 中 y 的取值范围是()
A.y≥﹣3
B.y≥﹣1
C.y>﹣1
D.y≤﹣3
9.如图是一个正方体,则它的表面展开图可以是()
A. B. C. D.
10.计算的结果是()
A. +
B.
C.
D.﹣
11.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )
A.两条直角边成正比例 B.两条直角边成反比例
C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例
12.“提笔忘字”正成为一个令人忧心的文化现象,为了提高中学生的汉字听写能力,我市某中学组织50名
A.93分,94分 B.90分,94分 C.93分,93分 D.94分,93分
13.下列图形中,既是轴对称图形又是中心对称图形的是()
14.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC等于( )
A.1:4
B.1:3
C.2:3
D.1:2
三、解答题:
15.解不等式组:
16.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.
17.阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换’的解法.
请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组:
(2)已知x ,y 满足方程组:
18.将一矩形纸片OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=8,如图在OC 边上取一点D ,将△BCD 沿BD 折叠,使点C 恰好落在OA 边上,记作E 点; (1)求点E 的坐标及折痕DB 的长;
(2)在x 轴上取两点M 、N (点M 在点N 的左侧),且MN=4.5,求使四边形BDMN 的周长最短的点M 、点N 的坐标。

19.知识改变命运,科技繁荣祖国”.我国中小学每年都要举办一届科技比赛.下图为我市某校2010年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:
(1)该校参加机器人、建模比赛的人数分别是 人和 人
(2)该校参加科技比赛的总人数是 人,电子百拼所在扇形的圆心角的度数是 _____°,并把条形统计图补充完整;
(3)从全市中小学参加科技比赛选手中随机抽取80人,其中有32人获奖. 今年我市中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?
电子百拼
建模
机器人 航模 25%
25%
某校2010年航模比赛 参赛人数扇形统计图
20.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.
(1)求证:CF与⊙O相切;
(2)若AD=2,F为AE的中点,求AB的长.
21.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同
种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.
(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;
(2)抽查C厂家的合格零件为件,并将图1补充完整;
(3)通过计算说明合格率排在前两名的是哪两个厂家;
(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.
22.用总长为60cm的篱笆围成矩形场地.
(Ⅰ)根据题意,填写下表:
(Ⅱ)设矩形一边长为lm S最大?并求出矩形场地的最大面积;
(Ⅱ)当矩形的长为 m,宽为 m时,矩形场地的面积为216m2.
23.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c
经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
参考答案
1.答案为:-7,3;
2.答案为: 50 度.
3.答案为:x n-1(x+1)(x-1);
4.答案为:135.
5.答案为:4 3
6.答案为:.
7.C
8.B
9.B
10.B
11.B
12.A
13.B
14.D
15.答案为:-2<x≤2
16.证明:(1)∵BE⊥CD,BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.
∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.17.
18.答案为:(1)E(4,0);;(2)M(1.5,0);N(6,0);
19.答案为:(1)4 6 (2)24 120 ;(3)2485×
32=994
80
20.
21.解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,
D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;
(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,
如图:
(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,
C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;
(4)根据题意画树形图如下:
共有12种情况,选中C、D的有2种,则P(选中C、D)==.
22.解:(1)若矩形一边长为10m,则另一边长为﹣10=20(m),此时矩形面积为:10×20=200(m2),若矩形一边长为15m,则另一边长为﹣15=15(m),此时矩形面积为:15×15=225(m2),
若矩形一边长为20m,则另一边长为﹣20=10(m),此时矩形面积为:10×20=200(m2),
(2)矩形场地的周长为60m,一边长为lm,则另一边长为(﹣l)m,
∴矩形场地的面积S=l(30﹣l)=﹣l2+30l=﹣(l﹣15)2+225,
当l=15时,S取得最大值,最大值为225m2,
答:当l是15m时,矩形场地的面积S最大,最大面积为225m2;
(3)根据题意,得:﹣l2+30l=216,解得:l=12或l=18,
∴当矩形的长为 18m,宽为12m时,矩形场地的面积为216m2,
故答案为:18,12.
23.。

相关文档
最新文档