利用导数求切线方程PPT课件

合集下载

用导数求切线方程(课堂PPT)

用导数求切线方程(课堂PPT)
3
类型二:已知斜率,求曲线的切线方程
例2 与直线 2xy40平行的抛物线 y x 2
的切线方程是( )
4
类型三:已知过曲线上一点,求切线方程
例3 求过曲线 y x3 2x 上的点 (1, 1) 的切线方程
过曲线上一点的切线,该点未必是切点,故应
先设切点,再求切点,即用待定切点法.
5
设 P(x0,y0)为切点,则切线的斜率为 y|xx0 3x02 2
即 xy20 或 5x4y10
7
类型四:已知过曲线外一点,求切线方程
例4 求过点 ( 2 ,0 ) 且与曲线 y 1
x
相切的直线方程
8
设 P(x0,y0 )为切点,则切线的斜率为
y |x x0
1 x02
切线方程为
1 y y0 x02 (xx0)
y 1 x0
x102(xx0)源自又知切线过点 ( 2 ,0 ) ,把它代入上述方程,得
1 x0
1 x02
(2 x0)
9
解得
x0
1,y0
1 x0
1
故所求切线方程为 xy20
10
Thank You
11
用导数求切线方程
主讲人:甄玉星
1
四种常见的类型
类型一:已知切点,求曲线的切线方程 类型二:已知斜率,求曲线的切线方程 类型三:已知过曲线上一点,求切线方程 类型四:已知过曲线外一点,求切线方程
2
类型一:已知切点,求曲线的切线方程 例1 曲线 yx3 3x2 1 在点 (1, 1) 处的 切线方程为
切线方程为 yy0(3x022)(xx0)
y (x 0 3 2 x 0 ) (3 x 0 2 2 )(x x 0 )

1.1.3导数的几何意义课件共35张PPT

1.1.3导数的几何意义课件共35张PPT

(3)设切点为(a,b),则 y′|x=a=a2=1, ∴a=±1, 当 a=1 时,b=53,切点为1,53, 当 a=-1 时,b=1,切点为(-1,1), ∴切线方程为 3x-3y+2=0 或 x-y+2=0. ………………………………………………………………………………12 分
[反思提升] (1)求“在某点处”的切线:该点必在曲线上且是切点,而求“过某 点”的切线该点不一定在曲线上,且该点不一定是切点. (2)求“过某点”的切线方程的步骤 ①设“过某点”的切线 l 与曲线相切的切点坐标为(x0,y0). ②用“在点(x0,y0)处”的切线求法,写出切线 l 的方程. ③利用切线“过某点”,其坐标满足切线方程,求出 x0 与 y0. ④将(x0,y0)代入②中的切线 l 化简即求出“过某点”的切线方程. (3)求“过某点”的曲线的切线方程中,该点在曲线上时,所求点的切线中一定包 括“在该点”处曲线的切线.
∴曲线 y=1x在点(1,1)处的切线方程为 y-1=-(x-1),即 y=-x+2. 曲线 y=x2 在点(1,1)处的切线斜率为
f′(1)=liΔmx→0 1+ΔΔxx2-12=liΔmx→0 2Δx+ΔxΔx2=liΔmx→0 (2+Δx)=2, ∴曲线 y=x2 在点(1,1)处的切线方程为 y-1=2(x-1),即 y= 2x-1. 两条切线方程 y=-x+2 和 y=2x-1 与 x 轴所围成的图形如图 所示, ∴S=12×1×2-12=34,即三角形的面积为34.
导数几何意义应用问题的解题策略: (1)导数几何意义的应用问题往往涉及解析几何的相关知识,如直线斜率与方 程以及直线间的位置关系等,因此要综合应用所学知识解题. (2)解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可 以求切点,切点的坐标是常设的未知量. (3)一定要区分曲线 y=f(x)在点 P(x0,f(x0))处的切线与过点 P(x0,f(x0))的切线 的不同,前者 P 为切点,后者 P 不一定为切点.

《切线的判定》课件

《切线的判定》课件

切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。

导数的应用-切线放缩证明不等式

导数的应用-切线放缩证明不等式
点P处的切线。
单切线放缩
例1.求证:当x>0时,1+2x<e2x
例1:
单切线放缩
例2:
注:(1)该方法适用于凹函数与凸函数且它们的凹凸性相反
的问题(拆成两个函数); ----数形结合
(2)两函数有斜率相同的切线,这是切线放缩的基础。引入
一个中间量,分别证明两个不等式成立,然后利用不等式的传
递性即可;
明.
小结
1.切线放缩法实质是以直(切线)代曲(原函数);
2.切线放缩法中常用的两个定理必须先证明后使用;
3.证明流程为:求切线—构造差函数—证明差函数恒正
(负)--原不等式成立.
4.对于较为简单的导数试题,往往只涉及到一次切线放缩,
但是有些压轴试题涉及到两次不同的切线放缩.
----以直代曲
(3)难点在合理拆分函数,寻找它们斜率相等的切线隔板.
单切线放缩
例3:
略,
注:含参函数有时需要根据函数特征将原函数进行适当放缩.
单切线放缩
例4:
注:复杂形式的函数需要将函数适当转化后再进行放缩.
双切线放缩
例5:
a>1
注:含有两个零点的f(x)的解析式(可能含有参数, ),
告知方程f(x)=b有两个实根,要证明两个实根之差小于
(或大于)某个表达式.求解策略是画出f(x)的图象,并
求出f(x)在两个零点处(有时候不一定是零点处)的切线
方程(有时候不是找切线,而是找过曲线上某两点的直
线),然后严格证明曲线f(x)在切线(或所找直线)的上
方或下方,进而对, 作出放大或者缩小,从而实现证
导数的应用
--切线放缩法证明不等式
复习引入:曲线在某一点处的切线的定义

求切线方程

求切线方程
k f (a ) 3a 2 切线方程为:y a 3 3a 2 ( x a ) 将(- 2,8)代入得 a 1或a 2 当a 1时,切线: y 2 0 3x 当a 2时, 切线 : 12x y 16 0
评:“过某点”与“在某点处”的不同.故审题应细.
练习、已知曲线C:y=x3-x+2和点A(1,2), 求在点A处的切线方程?
变式:求过点A的切线方程?
求曲线的切线方程
迟玉弟
导数的几何意义
函数y=f(x)在x=x0处的导数f′(x0)就 是曲线y=f(x)在点(x0,f(x0))处的切 线的斜率,即k=f′(x0).
f ( x) x3 例、已知曲线方程
(1)求曲线在(1,1)处的切线方程; (2)求(1)中切线Байду номын сангаас曲线是否有其他公共点; (3)变式过点(-2,-8)的切线方程。
(1)3x-y-2=0 (2)联立方程解得公共点(1,1)(-2,-8)
说明切线与曲线的公共点除了切点还可以有另外的点
分析:由(2)知(-2,-8)不一定为切点,我们可 以设出切点,求出切点处斜率,利用切点和斜率写出 点斜式方程,将点(-2,-8)代入方程得到切点的值, 再求切线。 解:设切点为(a, a 3)

导数的应用切线与法线

导数的应用切线与法线

导数的应用切线与法线导数的应用:切线与法线导数是微积分中非常重要的概念之一。

通过计算导数,我们可以得到函数在某一点的切线斜率,从而揭示函数在该点的变化趋势。

在实际问题中,我们经常需要使用导数的应用来解决与切线和法线相关的问题。

本文将探讨导数在切线和法线问题中的应用。

一、切线的求解切线是曲线在某一点处与曲线相切且仅与曲线有一个公共点的直线。

切线的斜率正是曲线在该点处的导数。

考虑一个函数f(x),我们希望求解函数f(x)在点x=a处的切线方程。

首先,我们需要计算函数f(x)在该点处的导数,即f'(a)。

然后,我们可以使用切线的斜率公式来确定切线的斜率:m = f'(a)。

接下来,我们需要找到过点(x=a, f(a))的直线,且斜率为m。

假设切线方程为y = mx + c,其中c为常数。

由于切线过点(x=a, f(a)),我们可以将这一点的坐标代入切线方程得到f(a) = ma + c,进一步,我们可以得到c = f(a) - ma。

因此,函数f(x)在点x=a处的切线方程为y = f'(a)x + (f(a) - af'(a))。

二、法线的求解法线是曲线在某一点处与切线垂直的直线。

法线的斜率是切线斜率的负倒数。

与切线问题类似,我们考虑函数f(x)在点x=b处的法线方程。

首先,我们计算函数f(x)在该点处的导数,即f'(b)。

然后,我们可以使用切线斜率的负倒数来确定法线的斜率:m' = -1/f'(b)。

我们需要找到过点(x=b, f(b))的直线,且斜率为m'。

假设法线方程为y = m'x + d,其中d为常数。

由于法线过点(x=b, f(b)),我们可以将这一点的坐标代入法线方程得到f(b) = m'b + d。

进一步,我们可以得到d = f(b) - m'b。

因此,函数f(x)在点x=b处的法线方程为y = -1/f'(b)x + (f(b) -b/f'(b))。

考点49 利用导数求切线方程(讲解)(解析版)

考点49 利用导数求切线方程(讲解)(解析版)

考点49:利用导数求切线方程【思维导图】【常见考法】考点一:求切线的斜率或倾斜角1.曲线1x y xe -=在点(1,1)处切线的斜率等于 . 【答案】2【解析】由1x y xe -=,得,故,故切线的斜率为.2.点P在曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围为 . 【答案】2,3ππ⎡⎫⎪⎢⎣⎭【解析】根据题意可知:''1xy e ==+⎝⎭ 则()()()221111'111x xxx e y e e e ⎫+-⎪=-=-⎪+++⎝⎭令()1,0,11x t t e =∈+所以)()2',0,1y t t t =-∈可知)'y ⎡∈⎣ 曲线在点P 处的切线的斜率范围为)⎡⎣,所以)tan α⎡∈⎣故2,3παπ⎡⎫∈⎪⎢⎣⎭3.已知函数()()21,.f x g x xx==若直线l 与曲线()f x ,()g x 都相切,则直线l的斜率为 . 【答案】4-【解析】设直线l 的斜率为k ,则()21'k f x x ==-,解得x =,切点为⎛⎝;且()'2kg x x ==,解得2kx =,切点为2,24k k ⎛⎫⎪⎝⎭; 因为l 与曲线()f x ,()g x 都相切,所以2k k +=,解得4k =-.考法二:在某点处求切线方程1.设曲线3ln(1)y x x =-+ 在点(0,0)处的切线方程_________________. 【答案】20x y -=【解析】由题意,函数3ln(1)y x x =-+的导数为131y x '=-+, 可得曲线3ln(1)y x x =-+在点(0,0)处的切线斜率为312-=,即切线的斜率为2, 则曲线在点(0,0)处的切线方程为02(0)y x -=-,即为2y x =,即20x y -=. 故答案为:20x y -=.2.函数3()2ln 2f x x x =-+的图象在1x =处的切线方程为______________________. 【答案】20x y -+=【解析】由题3(1)12ln123f =-+=,又22'()3f x x x=-,故3()2ln 2f x x x =-+在(1,3)处的斜率为2'(1)311f =-=,故在(1,3)处的切线方程为31(1)20y x x y -=⨯-⇒-+= 故答案为:20x y -+= 3.已知函数()2()1xf x x x e =++,则()f x 在(0, (0))f 处的切线方程为 .【答案】210x y -+=【解析】因为()2()32x f x e x x '=++,所以(0)2f '=,又因为(0)1f =,所以切点为(0)1,, 所以曲线()f x 在(0, (0))f 处的切线方程为210x y -+=.4.已知()()221f x x xf '=+,则曲线()y f x =在点()()00f ,处的切线方程为 .【答案】40x y +=【解析】由题:()()221f x x xf =+',所以()()'221f x x f +'=,()()'1221f f =+',所以()'12f =-,所以()24f x x x =-,()24f x x '=-,()00f =,()04f '=-所以切线方程为40x y +=.5.设a 为实数,函数()()322f x x ax a x =++-的导函数是fx ,且fx 是偶函数,则曲线()y f x =在原点处的切线方程为 . 【答案】2y x =-【解析】由()()322f x x ax a x =++-所以()()2'322f x x ax a =++-,又()f x '是偶函数,所以20a =,即0a =所以()2'32f x x =-则()'02f =-,所以曲线()y f x =在原点处的切线方程为2y x =-考法三:过某点求切线方程1.曲线ln y x =过点(0,1)-的切线方程为_________. 【答案】10x y --= 【解析】由题, 1'y x=,设切点为()00,ln x x ,则在切点处的切线斜率为01x ,又切线过点(0,1)-,故0000ln (1)11x x x x --=⇒=.故切点为()1,0. 故切线方程为()101101x y y x -=---=⇒.故答案为:10x y --= 2.求函数()32f x x x x =-+的图象经过原点的切线方程为 . 【答案】0x y -=【解析】由函数()32f x x x x =-+,则()2321f x x x '=-+,所以()01f '=,所以函数()32f x x x x =-+的图象经过原点的切线方程为()010y x -=-,即0x y -=.3.若过原点的直线l 与曲线2ln y x =+相切,则切点的横坐标为 . 【答案】1e【解析】设切点坐标为()00,2ln x x +,由1y x'=,切线方程为00012ln ()y x x x x --=-, 原点坐标代入切线方程,得02ln 1x +=,解得01ex =.4.已知函数()3f x x x =-,则曲线()y f x =过点()1,0的切线条数为 .【答案】2【解析】设切点坐标 3000(,)P x x x -,由()3f x x x =-,得2()31x f x '=-,∴切线斜率2031k x =-,所以过3000(,)P x x x -的切线方程为320000(31)()y x x x x x -+=--,即2300(31)2y x x x =--,切线过点()1,0,故32002310x x -+=,令()32000231h x x x =-+,则()200066h x x x '=-,由()00h x '=,解得00x =或01x =,当0(,0),(2,)x ∈-∞+∞时,()00h x '>,当0(0,2)x ∈时,()00h x '<,所以()0h x 的极大值极小值分别为 h (0)10=>,(1)0h =, 故其图像与x 轴交点2个,也就是切线条数为2.考法四:已知切线求参数1.已知函数()()e xf x x a =+的图象在1x =和1x =-处的切线相互垂直,则a = .【答案】-1 【解析】因为'()(1)xf x x a e =++ ,所以1'(1)(2)'(1)af a e f aee,-=+-==,由题意有(1)'(1)1f f -=- ,所以1a =-.2.已知在曲线()21ax f x x =+在点()()1,1f 处切线的斜率为1,则实数a 的值为 .【答案】43【解析】当0x >时,()()2221ax axf x x +'=+,()11f '=,即314a=,得43a =.. 3.已知函数()ln f x x x ax =+,过点()1,1P 可作两条直线与()f x 的图象相切,则a 的取值范围是 。

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

用导数求切线方程精品ppt课件

用导数求切线方程精品ppt课件
第一章 导数及其应用
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
1.下列结论正确的个数为
()
①y=ln2,则 y′=1 2
②y=x12,则 y′|x=3=-227
③y=2x,则 y′=2xln2 ④y=lபைடு நூலகம்g2x,则 y′=xl1n2
导数的几何意义:
函 数 f ( x ) 在 x x 0 处 的 导 数 f '( x 0 ) 就 是 :
曲 线 y f ( x ) 在 点 P ( x 0 , f ( x 0 ) ) 处 的 切 线 的 斜 率 。
即k f ' (x0) f( x ) 在 点 P 处 的 切 线 方 程 为
y y 0 f( x 0 ) ( x x 0 )
1.函数 y= 2x2+1的导数为________. 2. 函数 y=ln2x 的导数为________. 3.函数 y=ln(3-2x)的导数为________. 4. y=sin3x 的导数为________.
第一章 导数及其应用
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
⑤y
sin y 6
cos 6
第一章 导数及其应用
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
1.曲线y=xn在x=2处的导数为12,则n等于( )
A.1
B.2
C.3
D.4
第一章 导数及其应用
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

利用导数求切线方程

利用导数求切线方程

3
题型二:求曲线过一点的切线方程 例:已知曲线C:f (x) x3 x 2 ,求经
过点 P(1, 2) 的曲线C的切线方程。
思考(1)判断P点 所处的位置? (2)从图像探究, 过该点有几条切线, 如何印证你的探究
答案:2x-y=0或x+4y-9=0
点P是曲线 y x2 ln x上任意一点,则点P 到直线 y x 2 的最小距离是多少?
T 切线
P
o
x
3.基本初等函数的导数公式
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sinx f(x)=cosx
导函数 f′(x)=__0
f′(x)=___α_x_α_-1
f′(x)=_c_o__s_x f′(x)=__-s_i_n_x_
原函数
导函数
f(x)=ax(a>0,且a≠1) f(x)=ex
答案:
求曲线上的点到直线的最小距离。
• 练习:
1.求y xex 2x 1在(0,0)处的切线
3x y 1 0
2.曲线y x2 ax b在(0,b)处的切线方程是
x y 1 0,求a,b
a 1,b 1
已知切线方程为y ex,曲线为f (x) ex ,
求切点坐意义
函数 y f (x) 在x x0 处的导数就是函数
y f (x) 的图像在点 (x0 , f (x0 )) 处的切线的 斜率,即
k f (x0 )
一.曲线的切线
请看当点Q沿着曲线逐渐向点P接近时,割线PQ
绕着点P逐渐转动的情况.
y
y=f(x)

线 Q
解:f ' (x) 6x2 3 k f '(1) 3 y 1 3(x 1)3x y 4 0

高考复习第二单元曲线的切线求法

高考复习第二单元曲线的切线求法


类型四:已知过曲线外一点,求切线方程 • 例4
1 0) 且与曲线 y 相切的 求过点 (2, x
直线方程.
1 解:设 P( x0,y0 ) 为切点,则切线的斜率为 y |x x0 2 . x0 1 1 1 y y ( x x ) 2 ( x x0 ) . ∴切线方程为 0 0 ,即 y 2
解:设 P( x0,y0 ) 为切点, 则切点的斜率为 y| . 2 x 2 x x0 0 ∴ x0 1 , 1) . 由此得到切点 (1 故切线方程为 y 1 2( x 1) , 即, 2 x y 1 0 故选D.
x0 1
类型三:已知过曲线上一点,求切线方程
则在(1,-1)点处率 k

y 3x 2
,因而选B.
类型二:已知斜率,求曲线的切线方程 • 例2 与直线 2 x y 4 0 平行且与抛物线 2 y x 切线方程是( D ) A. 2 x y 3 0 B. 2x y 3 0 C. 2 x y 1 0 D.2 x y 1 0
A.-e B.-1 C.1 (2)求下列函数的导数:
D. e
e +1 ① y= x ; e -1 1 ③ y= 4; (1-3x)
x
x x ②y=x-sin cos . 2 2 ④y=x 1+x .
2
1 (1)解析 f′(x)=2f′(1)+x, ∴f′(1)=2f′(1)+1,∴f′(1)=-1.
用导数求切线方程的四种类型
• 类型一:已知切点,求曲线的切线方程 3 2 y x 3 x 1 在点 (1, 1) 处的切线 例1 曲线 方程为( B )
A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5

专题一:用导数求切线方程的四种类

专题一:用导数求切线方程的四种类

用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,与斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型与解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 1解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.练习:1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴斜交答案 B 2.已知函数y =f (x )的图像如右图所示,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定 答案 B2.曲线y =-2x 2+1在点(0,1)处的切线的斜率是( )A .-4B .0C .4D .不存在答案 B10.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( )A .2B .4C .6+6·Δx +2·(Δx )2D .6答案 D4.函数y =sin 2x 的图像在⎝ ⎛⎭⎪⎫π6,14处的切线的斜率是( )A. 3B.33C.12D.32答案 D分析 将函数y =sin 2x 看作是由函数y =u 2,u =sin x 复合而成的.解析 ∵y ′=2sin x cos x , ∴y ′|x =π6=2sin π6cos π6=322.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .60°答案 B6.y =x 3的切线倾斜角的围为________. 答案 [0,π2)解析 k =y ′=3x 2≥0.8.设点P 是曲线y =x 3-3x +23上的任意一点,点P 处切线倾斜角为α,则角α的取值围是( )A.⎣⎢⎡⎭⎪⎫23π,π B.⎝ ⎛⎦⎥⎤π2,56π C.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫56π,πD.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π答案 D解析 由y ′=3x 2-3,易知y ′≥-3,即tan α≥- 3. ∴0≤α<π2或23π≤α<π.14.已知曲线C :y =x 3,求在曲线C 上横坐标为1的点处的切线方程.解析 将x =1代入曲线C 的方程得y =1, ∴切点P (1,1).∵y ′=lim Δx →0Δy Δx =lim Δx →0x +Δx 3-x 3Δx=lim Δx →03x 2Δx +3x Δx2+Δx3Δx=lim Δx →0[3x 2+3xΔx +(Δx )2]=3x 2,∴y ′|x =1=3.∴过P 点的切线方程为y -1=3(x -1), 即3x -y -2=0.14.求曲线y =sin x 在点A (π6,12)处的切线方程.解析 ∵y =sin x ,∴y ′=cos x . ∴y ′|x =π6=cos π6=32,k =32.∴切线方程为y -12=32(x -π6).化简得63x -12y +6-3π=0. 6.曲线y =xx -2在点(1,-1)处的切线方程为( )A .y =x -2B .y =-3x +2C .y =2x -3D .y =-2x +1答案 D例3 求曲线y =1x 2-3x 在点(4,12)处的切线方程.[思路分析] 将函数变形为y =(x 2-3x )-12,将其看做是由函数y =u -12、u =x 2-3x 复合而成.[解析] ∵y =1x 2-3x=(x 2-3x )-12, ∴y ′=-12(x 2-3x )-32·(x 2-3x )′=-12(x 2-3x )-32·(2x -3).∴曲线y =1x 2-3x在点(4,12)处的切线斜率为 k =y ′|x =4=-12(42-3×4)-32·(2×4-3)=-516.∴曲线在点(4,12)处的切线方程为y -12=-516(x -4),即5x +16y -28=0. 探究3 此题不要将函数y =1x 2-3x看做是由y =1u ,u =v ,v =x 2-3x 三个函数复合而成的,这样求导就麻烦了.思考题 3 (1)曲线y =3x 2+1在点(1,2)处的切线方程为__________________.[答案] 3x -2y +1=0(2)y =11-x 2的水平切线方程是________.[解析] 令y ′=0,得x =0,∴y =1.12.求曲线y =2x -x 3在点(-1,-1)处的切线的方程与此切线与x 轴、y 轴所围成的平面图形的面积.答案 x +y +2=0;28.曲线y =e 12 x在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2 C .2e 2 D .e 2答案 D解析 ∵y ′=12·e 12 x,∴切线的斜率k =y ′|x =4=12e 2.∴切线方程为y -e 2=12e 2(x -4).∴横纵截距分别为2,-e 2,∴S =e 2,应选D.11.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x+2,则f (1)+f ′(1)=________.答案 3解析 f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3.5.如图是函数f (x )与f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.答案 98解析 由题图知,切线方程为x 4+y4.5=1,f (2)=4.5·(1-24)=94,f ′(2)=-4.54=-98.∴f (2)+f ′(2)=94-98=98.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+= D.210x y --=2 解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,应选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,应选D.练习:3.曲线y =x 3在点P 处的切线斜率为3,则点P 的坐标为( ) A .(-2,-8) B .(1,1),(-1,-1) C .(2,8) D .(-12,-18)答案 B13.若曲线y =2x 3上某点切线的斜率等于6,求此点的坐标. 解析 ∵y ′|x =x 0=lim Δx →02x 0+Δx3-2x 30Δx=6x 20,∴6x 20=6.∴x 0=±1.故(1,2),(-1,-2)为所求. 3.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12答案 A解析 y ′=12x -31x ,由12x -3x =12.得x =3或x =-2.由于x >0,所以x =3.3.已知曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为2x +y +1=0,那么( )A .f ′(x 0)=0B .f ′(x 0)<0C .f ′(x 0)>0D .f ′(x 0)不能确定答案 B5.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在答案 B7.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)答案 D2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0答案 A解析 ∵l 与直线x +4y -8=0垂直, ∴l 的斜率为4.∵y ′=4x 3,∴由切线l 的斜率是4,得4x 3=4,∴x =1. ∴切点坐标为(1,1).∴切线方程为y -1=4(x -1), 即4x -y -3=0.应选A.11.已知P (-1,1),Q (2,4)是曲线y =x 2上的两点,则与直线PQ 平行的曲线y =x 2的切线方程是________.答案 4x -4y -1=0解析 k =4-12--1=1,又y ′=2x ,令2x =1,得x =12,进而y =14,∴切线方程为y -14=1·(x -12),即4x -4y -1=0.13.如果曲线y =x 2+x -3的某一条切线与直线y =3x +4平行,求切点坐标与切线方程.答案 切点坐标为(1,-1),切线方程为3x -y -4=0 13.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为______________.答案 3x -y -11=0解析 y ′=3x 2+6x +6=3(x +1)2+3≥3, 当且仅当x =-1时取等号,当x =-1,时y =-14. ∴切线方程为y +14=3(x +1),即3x -y -11=0.9.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b的值为________.答案 ln2-14.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1答案 A14.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.答案 2解析 由题意得y ′=a e ax ,y ′|x =0=a e a ×0=2,a =2. 10.函数f (x )=a sin ax (a ∈R )的图像过点P (2π,0),并且在点P 处的切线斜率为4,则f (x )的最小正周期为( )A .2πB .π C.π2 D.π4答案 B解析 f ′(x )=a 2cos ax ,∴f ′(2π)=a 2cos2πa . 又a sin2πa =0,∴2πa =k π,k ∈Z . ∴f ′(2π)=a 2cos k π=4,∴a =±2. ∴T =2π|a |=π.6.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( )A. 5 B .2 5 C .3 5 D .0 答案 A解析 y ′=22x -1=2,∴x =1.∴切点坐标为(1,0).由点到直线的距离公式,得d =|2×1-0+3|22+12= 5. 19.曲线y =x (x +1)(2-x )有两条平行于y =x 的切线,则两切线之间的距离为________.答案 16272解析 y =x (x +1)(2-x )=-x 3+x 2+2x ,y ′=-3x 2+2x +2,令-3x 2+2x +2=1,得x 1=1或x 2=-13.∴两个切点分别为(1,2)和(-13,-1427).切线方程为x -y +1=0和x -y -527=0.∴d =|1+527|2=16227.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.6.以下说确的是( )A .曲线的切线和曲线有交点,这点一定是切点B .过曲线上一点作曲线的切线,这点一定是切点C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处无切线D .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)不一定存在答案 D例3 求过曲线32y x x =-上的点(11)-,的切线方程.3解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法. 练习:类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.4解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.5解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.练习:17.已知曲线方程为y =x 2,求过A (3,5)点且与曲线相切的直线方程.解析 解法一 设过A (3,5)与曲线y =x 2相切的直线方程为y -5=k (x -3),即y =kx +5-3k .由⎩⎪⎨⎪⎧y =kx +5-3k y =x 2,得x 2-kx +3k -5=0.Δ=k 2-4(3k -5)=0,整理得(k -2)(k -10)=0. ∴k =2或k =10. 所求的直线方程为2x -y -1=0,10x -y -25=0.解法二设切点P的坐标为(x0,y0),由y=x2,得y′=2x.∴y′|x=x0=2x0.由已知kPA=2x0,即5-y03-x0=2x0.又y0=2x0,代入上式整理,得x0=1或x0=5.18.已知曲线S:y=3x-x3与点P(2,2),则过点P可向S引切线,其切线条数为( )A.0 B.1C.2 D.3答案 D解析显然P不在S上,设切点为(x0,y0),由y′=3-3x2,得y′|x=x0=3-3x20.切线方程为y-(3x0-x30)=(3-3x20)(x-x0).∵P(2,2)在切线上,∴2-(3x0-x30)=(3-3x20)(2-x0),即x30-3x20+2=0.∴(x0-1)(x20-2x0-2)=0.由x0-1=0,得x0=1.由x20-2x0-2=0,得x0=1± 3.∵有三个切点,∴由P向S作切线可以作3条.综合练习:10.已知f(x)=x2+2xf′(1),则f′(0)等于( )A.0 B.-4C.-2 D.2答案 B解析 f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f ′(0)=2f ′(1)=-4.12.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A .4B .-14C .2D .-12答案 A解析 依题意得f ′(x )=g ′(x )+2x ,f ′(1)=g ′(1)+2=4,选A.15.(1)求过曲线y =e x 上点P (1,e)且与曲线在该点处的切线垂直的直线方程;(2)曲线y =15x 5上一点M 处的切线与直线y =-x +3垂直,求此切线方程.解析 (1)∵y ′=e x ,∴曲线在点P (1,e)处的切线斜率是y ′|x =1=e. ∴过点P 且与切线垂直的直线的斜率为k =-1e .∴所求直线方程为y -e =-1e(x -1),(2)∵切线与y =-x +3垂直,∴切线斜率为1. 又y ′=x 4,令x 4=1,∴x =±1.∴切线方程为5x -5y -4=0或5x -5y +4=0.4.y =ax 2+1的图像与直线y =x 相切,则a =( ) A.18 B.14 C.12 D .1答案 B解析 由已知{ y =ax 2+1,y =x 有唯一解,即x =ax 2+1,ax 2-x +1=0有唯一解, ∴Δ=1-4a =0,∴a =14.15.点P 在曲线y =f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.解析 设P (x 0,y 0),则y 0=x 20+1.f ′(x 0)=lim Δx →0x 0+Δx2+1-x 20+1Δx=2x 0.所以过点P 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x +1-x 20.而此直线与曲线y =-2x 2-1相切,所以切线与曲线y =-2x 2-1只有一个公共点. 由{ y =2x 0x +1-x 20,y =-2x 2-1,得即Δ=4x 20-8(2-x 20)=0.解得x 0=±233,y 0=73.所以点P 的坐标为(233,73)或(-233,73).17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值. 解析 设切点坐标为(x 0,y 0),y ′|x =x 0=3x 20-6x 0+2=k .若x 0=0,则k =2.若x 0≠0,由y 0=kx 0,得k =y 0x 0.∴3x 20-6x 0+2=y 0x 0,即3x 20-6x 0+2=x 30-3x 20+2x 0x 0.解之,得x 0=32. ∴k =3×(32)2-6×32+2=-14.综上,k =2或k =-14.16.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图像都过点P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.解析 ∵f (x )=2x 3+ax 的图像过点P (2,0), ∴a =-8.∴f (x )=2x 3-8x .∴f ′(x )=6x 2-8. 对于g (x )=bx 2+c 的图像过点P (2,0),则4b +c =0. 又g ′(x )=2bx ,∴g ′(2)=4b =f ′(2)=16. ∴b =4.∴c =-16. ∴g (x )=4x 2-16. 综上可知,f (x )=2x 3-8x ,g (x )=4x 2-16.1.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1,l 2和x 轴所围成的三角形的面积.分析 (1)求曲线在某点处的切线方程的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再用点斜式写出直线方程;(2)求面积用S =12a ·h 即可完成.解析 (1)因为y ′=2x +1,则直线l 1的斜率k 1=2×1+1=3,则直线l 1的方程为y =3x -3,设直线l 2过曲线y =x 2+x -2上的点B (x0,y0),因为l 1⊥l 2。

导数斜率与切线方程

导数斜率与切线方程

导数与切线斜率密切相关。

函数在某一点的导数值即为该点切线的斜率。

具体地,对于可导函数f(x),其在点x0的导数f′(x0)即为切线斜率。

这意味着,如果知道函数在某点的导数,就可以确定该点的切线斜率。

进一步地,利用点斜式方程y−y1=m(x−x1),其中m是斜率,(x1,y1)是已知的点,我们可以得到该点的切线方程。

具体来说,将斜率m替换为f′(x0),将点(x1,y1)替换为(x0,f(x0)),即可得到切线方程。

因此,导数不仅描述了函数的局部变化率,还揭示了函数图像在该点的切线斜率,从而帮助我们理解函数在特定点的变化趋势。

专题一用导数求切线方程四种类

专题一用导数求切线方程四种类

用导数求切线方程的四种种类求曲线的切线方程是导数的重要应用之一,用导数求切线方程的要点在于求出切点P(x,y)及斜率,其求法为:设P(x,y)是曲线yf(x)上的一点,则以P的切点的切线方程为:yy0f(x)(x x).若曲线f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为xx.下边例析四种常有的种类及解法.种类一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f(x),并代入点斜式方程即可.例1曲线yx33x21在点(1,1)处的切线方程为()A.y3x 4B.y3x 2C.y4x3D.y4x51解:由f(x)3x26x则在点(1,1)处斜率k f(1)3,故所求的切线方程为y(1)3(x1),即y3x2,因此选B.练习:1.设f′(x0)=0,则曲线A.不存在C.与x轴垂直y=f(x)在点(x0,f(x0))处的切线(B.与x轴平行或重合D.与x轴斜交)答案B2.已知函数y=f(x)的图像如右图所示,则f′(xA )与f′(xB)的大小关系是()A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不可以确立答案B2.曲线y=-2x2+1在点(0,1)处的切线的斜率是()A.-4B.0C.4D.不存在答案B10.已知曲线y=2x3上一点A(1,2),则A处的切线斜率等于()A.2B.42D.6C.6+6·Δx+2·(Δx)答案D4.函数y=sin2x的图像在π1处的切线的斜率是() 6,4答案D剖析将函数y=sin2x看作是由函数y=u2,u=sinx复合而成的.分析∵y′=2sinxcosx,πππ3∴y′|x =6=2sincos=2661在点7)处切线的倾斜角为()2.曲线y=x3-2(-1,-33A.30°B.45°C.135°D.60°答案B6.y=x3的切线倾斜角的范围为________.π答案[0,2)分析k=y′=3x2≥0.8.设点P是曲线y=x3- 3x+23上的随意一点,点P处切线倾斜角为α,则角α的取值范围是()∪5π,π26∪π,π3π答案D分析由y′=3x2-3,易知y′≥-3,即tanα≥-3.20≤α<2或3π≤α<π.14.已知曲线C:y=x3,求在曲线C上横坐标为1的点处的切线方程.分析将x=1代入曲线C的方程得y=1,∴切点P(1,1).Δy x+Δx3-x3∵y′=lim=limΔxΔxΔx→0Δx→0πlim3x2Δx+3xΔx2+Δx3ΔxΔx→0lim[3x2+3xΔx+(Δx)2]=3x2,Δx→0y′|x=1=3.∴过P点的切线方程为y-1=3(x-1),即3x-y-2=0.114.求曲线y=sinx在点A(6,2)处的切线方程.分析∵y=sinx,∴y′=cosx.ππ331y′|x=6=cos6=2,k=2.3π∴切线方程为y-2=2(x-6).化简得6 3x-12y+6-3π=0.x6.曲线y=x-2在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1答案D例3求曲线y=1在点(4,1)处的切线方程.x2-3x2【思路剖析】将函数变形为y=(x2-3x)-12,将其看做是由函数y=u-12、u=x2-3x复合而成.【分析】∵y=1=(x2-3x)-1,x2-3x2∴y′=-1(x2-3x)-3·(x2-3x)′22=-1(x2-3x)-3·(2x-3).2211∴曲线y=在点(4,)处的切线斜率为x2-3x21 (4235k=y′|x=4=--3×4)-·(2×4-3)=-.22161∴曲线在点(4,2)处的切线方程为15y-2=-16(x-4),即5x+16y-28=0.研究3本题不要将函数y=1看做是由y=1,u=v,vx2-3xu=x2-3x三个函数复合而成的,这样求导就麻烦了.思虑题3(1)曲线y=3x2+1在点(1,2)处的切线方程为__________________.【答案】3x-2y+1=01的水平切线方程是________.(2)y=1-x2【分析】令y′=0,得x=0,∴y=1.12.求曲线y=2x-x3在点(-1,-1)处的切线的方程及此切线与x轴、y轴所围成的平面图形的面积.答案x+y+2=0;21x8.曲线y=e2在点(4,e2)处的切线与坐标轴所围三角形的面积为()e2B.4e2C.2e2D.e2答案D11x分析∵y′=·e2,2∴切线的斜率k=y′|x=4=12e2.1∴切线方程为y-e2=2e2(x-4).∴横纵截距分别为2,-e2,∴S=e2,应选D.111.已知函数y=f(x)的图像在点M(1,f(1))处的切线方程是y=2x+2,则f(1)+f′(1)=________.答案3分析f′(1)=1,f(1)=1×1+2=5,∴f(1)+f′(1)=3.2225.如图是函数f(x)及f(x)在点P处切线的图像,则f(2)+f′(2)=________.9 答案 28分析由题图知,切线方程为4x +错误!=1,9f(2)=·(1-4)=4,f′(2)=-错误!=-错误!.9 9 9∴f(2)+f′(2)=4-8=8.种类二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2与直线2x y40的平行的抛物线y x 2的切线方程是() A.2xy30B.2xy30C.2xy10D.2xy1 02解:设P(x0,y0)为切点,则切点的斜率为y|xx 0 2x 0 2.∴x 0 1.由此获得切点(11),.故切线方程为y12(x 1),即2x y1 0,应选D. 评注:本题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y2x b,代入y x2,得x22xb0,又因为0,得b1,应选D.练习:3.曲线y=x3在点P处的切线斜率为3,则点P的坐标为() A.(-2,-8)B.(1,1),(-1,-1)C.(2,8)11 D.(-,-)28答案B13.若曲线y=2x3上某点切线的斜率等于6,求此点的坐标.2x0+Δx3-2x30分析∵y′|x=x0=lim=6x 20,Δx→06x20=6.∴x0=±1故.(1,2),(-1,-2)为所求.3.已知曲线y=x2-3lnx的一条切线的斜率为1,则切点的横坐42标为()A.3B.2C.1答案A分析1x-31131 y′=x,由x-=.22x2得x=3或x=-2.因为x>0,因此x=3.3.已知曲线y=f(x)在点P(x0,f(x0))处的切线方程为2x+y+1=0,那么() A.f′(x0)=0B.f′(x0)<0C.f′(x0)>0D.f′(x0)不可以确立答案B5.假如曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么()A.f′(x0)>0B.f′(x0)<0C.f′(x0)=0D.f′(x0)不存在答案B7.在曲线y=x2π上切线的倾斜角为的点是()4A.(0,0)B.(2,4)11)11)C.(,16D.(,424答案D2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0答案A分析∵l与直线x+4y-8=0垂直,∴l的斜率为4.∵y′=4x3,∴由切线l的斜率是4,得4x3=4,∴x=1.∴切点坐标为(1,1).∴切线方程为y-1=4(x-1),即4x-y-3=0.应选A.11.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,则与直线PQ平行的曲线y=x2的切线方程是________.答案4x-4y-1=04-1分析k=2--1=1,又y′=2x,令2x=1,得1x=2,从而1y=4,∴切线方程为y-14=1·(x-12),即4x-4y-1=0.13.假如曲线y=x2+x-3的某一条切线与直线y=3x+4平行,求切点坐标与切线方程.答案切点坐标为(1,-1),切线方程为3x-y-4=013.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为______________.答案3x-y-11=0分析y′=3x2+6x+6=3(x+1)2+3≥3,当且仅当x=-1时取等号,当x=-1,时y=-14.∴切线方程为y+14=3(x+1),即3x -y-11=0.19.设直线y=2x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为________.答案ln2-14.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于()A.11C.-2D.-1答案A14.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=________.答案2分析由题意得y′=ae ax,y′|x ==ae a×0=2,a=2.10.函数f(x)=asinax(a∈R)的图像过点P(2π,0),而且在点P处的切线斜率为4,则f(x)的最小正周期为()A.2πB.π答案B分析22πa. f′(x)=acosax,∴f′(2=π)acos2又asin2πa=0,∴2πa=kπ,k∈Z.f′(2=π)a2coskπ=4,∴a=±2.2π∴T=|a|=π.6.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是() B.25C.3 5D.0答案A2分析y′=2x-1=2,∴x=1.∴切点坐标为(1,0).由点到直线的距离公式,得d=|2×1-0+3|=5.22+1219.曲线y=x(x+1)(2-x)有两条平行于y=x的切线,则两切线之间的距离为________.16答案272分析y=x(x+1)(2-x)=-x3+x2+2x,y′=-3x2+2x+2,令-3x2+2x+2=1,得1x1=1或x2=-3.114∴两个切点分别为(1,2)和(-3,-27).切线方程为x-y+1=0和x-y-275=0.5|1+|2d=2=27.27种类三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.6.以下说法正确的选项是()A.曲线的切线和曲线有交点,这点必定是切点B.过曲线上一点作曲线的切线,这点必定是切点C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线D.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)不必定存在答案D例3求过曲线yx32x上的点(1,1)的切线方程.3解:假想P(x0,y0)为切点,则切线的斜率为y|x x03x022.∴切线方程为yy0(3x22)(x x).y(x32x)(3x22)(xx0).又知切线过点(1,1),把它代入上述方程,得1(x032x)(3x22)(1x).解得1.x1,或x02故所求切线方程为y (12)(32)(x1),或y1132x1,842即xy20,或5x4y10.评注:能够发现直线 5x 4y 10其实不以(1,1)为切点,其实是经过了点(1,1)且以 1 7为切点的直线.这说明过曲线上一点的切线,, 2 8该点未必是切点,解决此类问题可用待定切点法. 练习:种类四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4求过点(2,0)且与曲线y1相切的直线方程. x4解:设P(x0,y0)为切点,则切线的斜率为 y|xx 0 1.x 20 ∴切线方程为yy 0 1(x x 0) ,即 y 1 1(xx 0) .x 0 2 x 0 x0 2又已知切线过点(2,0),把它代入上述方程,得 1 1x0 2(2x 0).x0 解得x 01,y 0 1 1,即xy20.x 0评注:点(2,0)其实是曲线外的一点,但在解答过程中却无需判 断它确实切地点,充足反应出待定切点法的高效性例5 已知函数yx 33x ,过点A(016), 作曲线yf(x)的切线,求此切线方程.5解:曲线方程为yx 33x ,点A(016),不在曲线上.设切点为M(x 0,y 0),则点M 的坐标知足y 0x033x 0.因f(x 0)3(x2 1),故切线的方程为yy 03(x21)(x x0).点A(016),在切线上,则有16(x 0 3 3x 0) 3(x0 2 1)(0x 0).化简得x 038,解得x0 2.因此,切点为M(2,2),切线方程为9x y 160.评注:此类题的解题思路是,先判断点A能否在曲线上,若点A在曲线上,化为种类一或种类三;若点A不在曲线上,应先设出切点并求出切点.练习:17.已知曲线方程为y=x2,求过A(3,5)点且与曲线相切的直线方程.分析解法一设过A(3,5)与曲线y=x2相切的直线方程为y-5k(x-3),即y=kx+5-3k.y=kx+5-3k由y=x2,得x2-kx+3k-5=0.k2-4(3k-5)=0,整理得(k-2)(k-10)=0.k=2或k =10.所求的直线方程为2x-y-1=0,10x-y-25=0.解法二设切点P的坐标为(x0,y0),由y=x2,得y′=2x.y′|x=x0=2x0.5-y0=2x0.又y0=2x0,代入上式整理,得x0=1或x0=由已知kPA=2x0,即3-x05.18.已知曲线S:y=3x-x3及点P(2,2),则过点P可向S引切线,其切线条数为()A.0B.1 C.2D.3答案D分析明显P不在S上,设切点为(x0,y0),由y′=3-3x2,得y′|x=x0=3-3x20.切线方程为y-(3x0-x30)=(3-3x20)(x-x0).P(2,2)在切线上,2-(3x0-x30)=(3-3x20)(2-x0),即x30-3x20+2=0.(x0-1)(x20-2x0-2)=0.由x0-1=0,得x0=1.由x20-2x0-2=0,得x0=1±3.∵有三个切点,∴由P向S作切线能够作3条.综合练习:10.已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.-4C.-2D.2答案B分析f′(x)=2x+2f′(1),令x=1,得f′(1)=2+2f′(1),∴f′(1)=-2.f′(0)=2f′(1)=-4.12.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为()1A.4B.-41C.2D.-2答案A分析依题意得f′(x)=g′(x)+2x,f′(1)=g′(1)+2=4,选A.15.(1)求过曲线y=e x上点P(1,e)且与曲线在该点处的切线垂直的直线方程;(2)曲线y=15x5上一点M处的切线与直线y=-x+3垂直,求此切线方程.分析(1)∵y′=e x,∴曲线在点P(1,e)处的切线斜率是y′|x=1=e.1∴过点P且与切线垂直的直线的斜率为k=-e.1∴所求直线方程为y-e=-e(x-1),即x+ey-e2-1=0.(2)∵切线与y=-x+3垂直,∴切线斜率为 1.又y′=x4,令x4=1,∴x=±1.∴切线方程为5x-5y-4=0或5x-5y+4=0.4.y=ax2+1的图像与直线y=x相切,则a=()D.1答案B分析由已知{y =ax 2+1,y =x 有独一解,即x =ax 2+1,ax 2-x +1=0有独一解,1∴Δ=1-4a =0,∴a =4.15.点P 在曲线y =f(x)=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.分析 设P(x 00 2 +1. 00,y),则y =x0 x 0+Δx 2+1- x 02+1 =2x 0. f′(x)=lim ΔxΔx→0因此过点P 的切线方程为y -y0=2x0(x -x0),即y =2xx +1-x 2.00而此直线与曲线y =-2x 2-1相切,因此切线与曲线y =-2x 2-1只有一个公共点.由{ y =2x 02 2 0 y =-2x -1, 得x +1-x ,2 22x +2x0x +2-x0=0.2 2即=4x 0-8(2-x)=0.±23 7解得x 0= 3 ,y0=.3因此点P 的坐标为(23,7 )或(- 2 3 3,7 ).3 3 3 17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值.分析 设切点坐标为(x 0 0 0 20 0,y),y′|x=x =3x -6x +2=k.若x 0 0 0 0y0 .=0,则k =2.若x ≠0,由y =kx ,得k = x ∴3x 02-6x 0+2=y,x0即3x0203203x-3x+2x000-6x+2=x0.解之,得x=2.3231∴k=3×(-6×+2=-4.2)2综上,k=2或k=-1.416.已知函数f(x)=2x3+ax与g(x)=bx2+c的图像都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.分析∵f(x)=2x3+ax的图像过点P(2,0),a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.关于g(x)=bx2+c的图像过点P(2,0),则4b+c =0.又g′(x)=2bx,∴g′(2)=4b=f′(2)=16.b=4.∴c=-16.∴g(x)=4x2-16.综上可知,f(x)=2x3-8x,g(x)=4x2-16.1.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l1,l2的方程;(2)求由直线l1,l2和x轴所围成的三角形的面积.剖析(1)求曲线在某点处的切线方程的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再用点斜式写出1直线方程;(2)求面积用S=2a·h即可达成.分析(1)因为y′=2x+1,则直线l1的斜率k1=2×1+1=3,则直线l1的方程为y=3x-3,设直线l2过曲线y=x2+x-2上的点B(x0,y0),因为l1⊥l2。

5.1.2 导数的概念及其几何意义课件ppt

5.1.2 导数的概念及其几何意义课件ppt

y
y
,即
x
x
=
f(x 0 +x)-f(x 0 )
x
叫做函数y=f(x)从x0到x0+Δx的平均变化率.
(x0+Δx)-x0
名师点析 (1)Δx是自变量的变化量,它可以为正,也可以为负,但不能等于零,
而Δy是相应函数值的变化量,它可以为正,可以为负,也可以等于零.
(2)函数平均变化率的物理意义:如果物体的运动规律是s=s(t),那么函数s(t)
Δ
所以 =-Δx-2x+3.故函数的导数
Δ
Δ
f'(x)= lim
Δ→0 Δ
= (-Δx-2x+3)=-2x+3.
Δ→0
反思感悟 (1)利用定义求函数 y=f(x)的导数的步骤
①求函数值的变化量 Δy=f(x+Δx)-f(x);
Δ
②求函数的平均变化率
Δ
③取极限,得
=
(+Δ)-()
(2)若函数y=f(x)在某区间[x0,x0+Δx]上的平均变化率为0,能不能说明函数值在区
间[x0,x0+Δx]上的函数值都相等?
提示 不能.因为函数在某区间[x0,x0+Δx]上的平均变化率为0只能说明
f(x0+Δx)=f(x0).
(3)函数y=f(x)在区间[x0,x0+Δx]上的平均变化率的几何意义是什么?
它是一个确定的值,与给定的函数及x(或x0)的位置有关,而与Δx无关;导函
数是对一个区间而言的,它是一个确定的函数,依赖于函数本身,也与Δx无
关.
微练习
求函数 y=f(x)= x的导数.
解 函数的导数为

掌握利用导数求曲线的切线方程的步骤

掌握利用导数求曲线的切线方程的步骤

教师姓名单位名称邹平市黄山中学填写时间2020年7月2日学科数学年级/册高三/选修2-2 教材版本人教A版课题名称第一章导数及其应用 1.1 变化率与导数掌握利用导数求曲线的切线方程的步骤难点名称求过曲线外某定点的切线方程难点分析从知识角度分析为什么难切线定义的演变是从圆的切线、圆锥曲线的切线到应用导数求曲线的切线,由特殊到一般、低级到高级,学生对切线的认识理解存在误区;另外本节课需要学生具有一定的运算能力。

从学生角度分析为什么难学生头脑中固有的切线原型是“圆的切线”,判别切线的标准是“直线与曲线公共点的个数”,应用导数的意识比较薄弱,公式理解和记忆特别是导数的乘法与除法运算法则记错;学生在解题时常忽视对切点的情况进行具体分析,引起错解。

难点教学方法问题探究法、讲授法教学环节教学过程导入回顾导数的几何意义:曲线C是函数)(xfy=的图象,),(yxP是曲线C上的任意一点,),(yyxxQ∆+∆+为P邻近一点,PQ为C的割线,xPM//轴, yQM//轴,β为PQ的倾斜角.则xy∆∆是割线PQ的斜率。

当点Q沿着曲线无限接近点P即0→∆x时,割线PQ趋近于确定的位置PT.我们把直线PT称为曲线在点P处的切线.那么当0→∆x时,割线PQ的斜率就无限趋近于切线PT的斜率。

因此,函数)(xfy=在xx=处的导数就是切线PT的斜率。

即)(xfk'=切线曲线的切线是反映切点处曲线局部特征的重要直线,切线是割线的极限位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①判断已知点是否在曲线上, 若不在曲线上则设切点为(x0,y0); ②利用导数的定义式求切线斜率 ③根据点斜式写出切线方程
.
8
巩固练习
已知曲线
y
1 xБайду номын сангаас
(1) 求曲线在点 ( 1 , 1 ) 处的
切线方程
(2)求曲线过点 (1 , 0 ) 的
切线方程
.
9
探究
求曲线 y x 2上的
点到直线 2xy30 的最大距离
利用导数求切线方程
y=f(x) y
B
△y
A △x o
M x
.
1
.
2
.
3
.
4
利用导数求切线方程
y=f(x) y
B
△y
A △x o
M x
.
5
例一:
求曲线 y x 2
在点 ( 1 , 1 ) 处的 切线方程
.
6
例二:
求曲线 y x 2
过点 ( 3 , 5 ) 的 切线方程
.
7
归纳小结
利用导数的几何意义求曲线的 切线方程的方法步骤:
.
10
.
11
.
12
.
13
.
14
.
15
.
16
.
17
.
18
.
19
下图表示人体血管中药物浓度c=f(t) (t的单位: h, c 的单位: mg/mL)随时 间t变化的函数图象
.
20
相关文档
最新文档