血管生成(Angiogenesis)信号通路图

合集下载

p38MAPK及ERK信号通路激活在CD151促进内皮细胞迁移中的作用机制

p38MAPK及ERK信号通路激活在CD151促进内皮细胞迁移中的作用机制

p38MAPK及ERK信号通路激活在CD151促进内皮细胞迁移中的作用机制刘曌宇;曾和松;李鹏程;费宇杰;左后娟【摘要】目的研究p38MAPK信号通路及ERK信号通路激活在CD151促进人脐静脉内皮细胞(HUVECs)迁移中的机制.方法包装携带CD151、antiCD151和GFP 的重组腺相关病毒,转染HUVECs.Western blot检测HUVECs 中CD151、细胞外信号调节激酶(ERK)、p38丝裂原活化蛋白激酶(MAPK)蛋白的表达;利用改良的Boyden趋化小室进行细胞迁移检测;在细胞转染同时分别给予ERK抑制剂(PD98059,20 μmol/L),或p38MAPK抑制剂(SB203580,20μmol/L),然后检测细胞迁移.结果①CD151组较空白对照组及GFP组明显促进细胞迁移的能力,而antiCD151组则显著抑制细胞的迁移,差异具有统计学意义(P<0.05).②CD151高表达促进ERK信号通路激活,而对p38MAPK信号通路无显著作用.③ERK抑制剂(PD98059)显著抑制CD151转染后的促HUVECs迁移的作用(P<0.05),而p38MAPK抑制剂(SB203580)无明显作用.结论 CD151具有促进细胞迁移的作用,CD151通过激活ERK信号通路促进细胞迁移,而p38MAPK信号通路的激活则在CD151促进HUVECs迁移中无显著作用.【期刊名称】《华中科技大学学报(医学版)》【年(卷),期】2015(044)003【总页数】5页(P258-262)【关键词】CD151;人脐静脉内皮细胞;细胞外信号调节激酶;丝裂原活化蛋白激酶;细胞迁移【作者】刘曌宇;曾和松;李鹏程;费宇杰;左后娟【作者单位】华中科技大学同济医学院附属同济医院消化内科,武汉430030;华中科技大学同济医学院附属同济医院心血管内科,武汉430030;华中科技大学同济医学院附属同济医院心血管内科,武汉430030;华中科技大学同济医学院附属同济医院心血管内科,武汉430030;华中科技大学同济医学院附属同济医院心血管内科,武汉430030【正文语种】中文【中图分类】R329.28血管再生性治疗已成为当前冠心病基础和临床研究的热点。

Notch信号通路与血管发育

Notch信号通路与血管发育

Notch信号通路与血管发育【关键词】血管形成; Notch信号; 血管发生血管发育是复杂的血管网络形成的过程,在个体发育、组织再生、肿瘤发生发展中发挥重要作用,因此具有重要的研究价值。

以往研究已经证明,血管发育与细胞因子、组织缺氧、基因调控等多种因素有关。

现就Notch信号通路在血管发育中的作用的研究进展作一综述。

1 Notch信号通路Notch信号通路是进化中高度保守的信号转导通路,其调控细胞增殖、分化和凋亡的功能涉及几乎所有组织和器官[1]。

哺乳动物中有4个notch基因,编码4种Notch受体(Notch1, 2, 3, 4)。

Notch前体蛋白经内质网O�惭以逄腔�转移酶(POFUT1)作用后,在高尔基体中被Furin蛋白酶裂解成两部分,二者通过非共价键相连,形成细胞表面的异二聚体受体。

胞外结构域(NECD)含29~36个EGF样重复序列(EGF��like repeats)和3个富含半胱氨酸的Notch/LIN��12重复序列(Notch/LIN��12 repeats),其中, EGF样重复序列是配体结合所必需的,而Notch/LIN��12重复序列与抑制配体非依赖的Notch信号活化有关。

胞内结构域(NICD)主要由核定位信号序列(NLS), 6个串联的富含天冬酰胺的锚蛋白重复序列(tandem ankyrin repeats)和羧基端的PEST序列组成,其中锚蛋白重复序列介导胞内结构域与下游信号分子结合, PEST序列有助于加速蛋白水解酶对NICD的降解。

目前在哺乳动物发现5种Notch配体,分别为Delta��like1、 3、 4(Dll1、 3、 4)和Jagged1、 2(与果蝇Serrate/Lag��2蛋白同源),亦可被共同称为DSL(Delta/Serrate/Lag��2)。

该配体的胞外部分由氨基端的DSL结构域和下游数目可变的EGF样重复序列构成, DSL结构域主要介导与受体的结合,该结构域的泛素化是Notch配体活化的关键步骤,这一过程需要E3泛素连接酶Mindbomb(Mib)的催化。

VEGF(血管内皮生长因子)信号通路 精美

VEGF(血管内皮生长因子)信号通路  精美
VEGF Pathway
血管内皮生长因子信号通路
--孙鹏飞 江南大学
精品课件
LOGO
目录
01 血管的形成 02 VEGF及其受体 03 VEGF诱发的细胞内信号转导 04 VEGR信号通路的作用 05 作用于VEGF信号通路的血管生成抑制剂
精品课件
01 血管的形成
血管生成:胚胎早期成血管细胞分化形成原始血管。 血管新生:即从已经存在的血管中构建出来新的血管,正
常情况下血管新生仅发生在胚胎发育期,创伤愈合期和女 性的生理周期,病理条件下也会出现异常的血管新生。 复杂血管系统的形成还需要其他信号通路,如:肝配蛋白 、TGF-β(转化生长因子)、PDGF(血小板原生长因子) 等信号通路
精品课件
02 VEGF及其受体
VEGF: VEGFA、 VEGFB 、VEGFC、 VEGFD、PIGF(胎盘生长 因子)、 orf viral VEGF同系物
精品课件
04 VEGF信号通路的作用
VEGF/VEGFR2所介导的信号级联通路可以调控血管内皮细胞 的增殖、迁移、存活,引起血管通透性的改变,控制血管 的新生。(在肿瘤的生长过程中需要新生血管来供应营养 物质和排泄代谢物。)
VEGF能够引起内皮细胞增生,引起其渗透性增强,导致血 管肿瘤、血管渗透,水肿及炎症。
VEGF可诱导P38-MARK活化,P38-MAPK继而活化MAPKAPK-2/3 ,并使丝状肌动蛋白(F-Actin)聚合调节分子和热休克蛋 白27(HSP27)发生磷酸化,引起肌动蛋白骨架的重组,产 生EC移行。
精品课件
PI3K-Akt/PKB途径
VEGF与VEGFR2结合后,PI3K发生磷酸化,活化的PI3K与底 物PIP2结合将其转化为PIP3,PIP3诱导Akt/PKB磷酸化。磷 酸化的Akt既可通过磷酸化BAD和Caspase9(天冬氨酸特异 性半胱氨酸蛋白酶)抑制BAD和Caspase9的活性,诱导EC增 生和移行,也可通过激活eNOS产生NO,控制造血功能和AMI (急性骨髓白血病)细胞的生长。

肿瘤血管生成拟态的相关信号通路

肿瘤血管生成拟态的相关信号通路

-1998-中国老年学杂志2021年5月第41卷肿瘤血管生成拟态的相关信号通路舒遵华1王珊珊2刘扬扬1张海洋2来庆娟2徐晓浩3刘铁军1熊壮1(长春中医药大学1附属医院肝脾胃病科,吉林长春130000;2中西医结合学院;3附属医院研发中心)〔关键词〕血管生成拟态;信号通路;肿瘤〔中图分类号〕R730.2〔文献标识码〕A〔文章编号〕1005-9202(2021)09-1998-03:doi:10.3969/j.issn.1005-9202.2021.09.059血管生成拟态(VM)是一种全新肿瘤微循环模式,不同于目前所普遍接受的内皮依赖性血管生成模式。

VM管道内没有血管内皮细胞衬覆,而是肿瘤细胞模仿机体血管形成的管状类型,由瘤细胞形成的条索组成,可见血液在其中流动,该管道与宿主的血管相通,使肿瘤细胞获得血液供应,满足肿瘤生长、侵袭和转移的需要⑴。

人们曾一度认为血管生成是肿瘤供血的唯一方式〔2,3〕,然而VM的出现对经典肿瘤血管生成提出了挑战。

一系列研究证实VM与肿瘤生长、侵袭、转移及预后密切相关后〔4,5〕,肿瘤的微循环模式并不是只包括内皮细胞依赖的肿瘤血管生成。

VM通常发生于一些高侵袭性的肿瘤中,如原发性和转移性卵巢癌、肝癌、恶性黑色素瘤、神经胶质瘤等〔6〕。

恶性肿瘤的生长需要充足的血供支持,仅靠血管生成不足以满足生长需求,VM作为一种新型血供模式,为肿瘤的增殖、侵袭、转移提供了保障。

目前VM的研究已十分丰富,其中包括缺氧诱导因子(HIF)-la、血管内皮生长因子(VEGF)、Wnt/B-连环蛋白(catenin)、丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇3-激酶/蛋白激酶B (PI3K/Akt)、信号传导及转录激活蛋白(STAT)、Notch等信号通路。

但仍有很多具体的调控机制尚不清晰〔7〕。

本文主要探讨VM与多种信号通路的关系。

1HIF-1琢信号通路缺氧是肿瘤微环境的特征之一。

缺乏供血在快速生长肿瘤细胞中普遍存在,缺氧能促进肿瘤血管的生成,包括VM生成和血管生成,同时也促进肿瘤基金项目:国家自然科学基金资助项目(81804007);吉林省中医药管理局资助项目(2019075)通信作者:熊壮(1984-),男,博士,副主任医师,硕士生导师,主要从事消化病研究。

信号通路15—Angiogenesis

信号通路15—Angiogenesis

信号通路15—Angiogenesis图▲血管生成信号通路图血管生成(Angiogenesis)是指一个新的微血管发展成一个血流供应系统的生理过程。

这与Vasculogenesis(血管发生)不同,Angiogenesis是指由已有的血管(vessels)形成新血管,Vasculogenesis指在先前没有血管生成的情况下形成新血管。

发育胚胎的初始血管通过Vasculogenesis形成,随后Angiogenesis负责发育和疾病中的大部分血管生长。

血管生成在人体生长或发育的过程中扮演重要的角色,如伤口愈合、女性经期、胎儿生长发育。

另外,血管生成是肿瘤恶化过程中的重要步骤,血管生成是肿瘤从休眠期转变成恶性、生长迅速、可能侵袭其它组织的关键。

而相较于癌症的研究,血管生成也在断肢接合、心肌梗塞、脑中风、老人退化性黄斑等病症上占有很重要的地位。

血管生成分为两类:芽生性(Sprouting)血管生成:由内皮细胞形成全新的血管而不是分裂现有的血管。

套叠性(Intussusceptive)血管生成:又称为分裂(splitting)血管生成,毛细血管壁延伸到内腔中将单个血管分成两股而产生新的血管。

血管生成过程由体内化学信号控制。

这些信号可以刺激受损血管的修复和新血管的形成。

有些化学信号称为血管生成抑制剂,干扰血管形成。

通常,这些化学信当一个小的休眠肿瘤启动血管生成(称为“血管生成开关”)时,肿瘤会分泌一些诱导内皮细胞(endothelial cells ,ECs)向肿瘤块出芽和趋化的因子。

在肿瘤块内部的低氧环境中,转录因子HIF-1α(Hypoxia-Inducible-Factor-1α)被稳定并激活促成血管生成过程的多个基因的表达。

HIF-1α诱导的蛋白包括血管内皮生长因子(VEGF)和碱性成纤维细胞生长因子(bFGF),其分别促进血管通透性和ECs的生长。

其它分泌因子如PDGF,促血管生成素1(angiopoietin 1)和促血管生成素2(angiopoietin 2)促进趋化性,而ephrins通过维持细胞-细胞分离引导新形成的血管。

血管内皮生长因子(VEGF)及其受体在胶质瘤血管生成及侵袭中的作用

血管内皮生长因子(VEGF)及其受体在胶质瘤血管生成及侵袭中的作用

血管内皮生长因子(VEGF)及其受体在胶质瘤血管生成及侵袭中的作用血管内皮生长因子是与胶质瘤血管生成过程关系最密切的生长因子,本文就其特异性受体的生物学特点、在血管发生中的作用、与肿瘤生长浸润的关系及针对VEGF及其受体为靶点的抗肿瘤治疗前景进行探讨。

标签:血管内皮生长因子;血管内皮生长因子受体;胶质瘤实体肿瘤的生长和转移依赖持续性的血管生成,当实体肿瘤大于0.4 mm3时,其用于获取营养的弥散方式已不能满足肿瘤的生长,需要依靠自身生成的血管系统提供营养,并加速其生长[1]。

肿瘤的血管生成(angiogenesis)是指肿瘤和(或)其周围出芽生出新的毛细血管过程,是由肿瘤细胞、内皮细胞和巨噬细胞释放的生长因子与抑制因子间失衡引发的。

血管内皮生长因子(vascular endothelial growth factor,VEGF)是目前发现作用最强、特异性最高的促进肿瘤血管生成的生长因子,是一种低氧性诱导的内皮细胞特异的有丝分裂原。

VEGF由正常或肿瘤细胞产生的分子量为34~45 kDa的高度糖基化的碱性蛋白,分子构成为17~22 kDa的同源双聚体[2],通过与内皮细胞上其对应受体相互作用发挥影响。

VEGF在胶质瘤中呈高表达,其表达水平与胶质瘤的恶性程度和分级相关,并且是很多肿瘤因子调节血管生成的共同通路[3]。

1 VEGF及其受体1.1 VEGF的分子结构及特点VEGF是血小板源性生长因子家族的一个成员。

人的VEGF基因位于染色体6p21.3,全长14 Kb,由8个外显子,7个内含子组成,有四种不同的编码框架。

VEGF基因经转录水平的剪切,可产生5种变异体,根据氨基酸的长短命名为:VEGF121,VEGF145,VEGF165,VEGF189,VEGF206。

其中多数组织以VEGF165表达为主[4],三者基因表达调控有明显的差别,这表明尽管VEGF-B和VEGF-C 在体内与VEGF有功能上的重叠,但是在VEGF家族中三者是相互独立存在的[5]。

Angiogenesis Analyzer定量分析方法 image J

Angiogenesis Analyzer定量分析方法 image J

ImageJ插件Angiogenesis Analyzer对血管网络进行定量分析血管形成实验(Tube formation assay)是体外研究血管生成(Angiogenesis)的经典方法,其优点是可快速确定参与血管生成的基因或通路。

血管生成实验在肿瘤医学的研究与治疗中一直是实验热点,肿瘤血管生成是一个极其复杂的过程,包括血管内皮细胞基质降解、内皮细胞移行、增殖、管道化分支形成血管环和形成新的基底膜等步骤。

研究表明无论无论是原发性肿瘤还是继发性肿瘤,一旦生长直径超过1~2 mm,都会有血管生成。

这是由于肿瘤细胞自身可分泌多种生长因子,诱导血管生成。

多数恶性肿瘤的血管生成密集且生长迅速,抑制这一过程将能明显阻止肿瘤组织的发展和扩散转移。

于是体外模拟血管生成的过程对研究血管形成机制、发现促进或抑制血管生成药物十分重要。

今天咱们就来看看已经成功形成了血管的实验结果应该有哪些量化指标与分析步骤吧!我们常用的量化指标有:number of tubes; number of loops/meshes; number of branch sites/nodes; length of tubes。

文献中常用的分析指标是branch points与capillary length。

Angiogenesis下载地址:https:///ij/macros/toolsets/图片来源ImageJ网站1、点击打开需要的插件:复制内容;在image J安装目录下的macros/toolsets文件夹创建一个Angiogenesis Analyzer.txt2、重启ImageJ,然后点击ImageJ工具栏的>>按钮,找到插件位置,单击后在新工具栏中出现Angiogenesis Analyzer分析界面:3、点击扳手形状选择Settings可设置测量参数:点击Network analysis分析界面,Angiogenesis Analyzer插件可以分析小管形成明场图片(Phase Contrast)或荧光图片(Fluo):备注:在进行图像处理前可以使用ps对图片进行一个对比度的调整和锐化处理。

血管生成拟态和血管生成及其意义

血管生成拟态和血管生成及其意义

国外医学肿瘤学分册2003年6月第30卷第3期血管生成拟态和血管生成及其意义张诗武1,高欣1综述孙保存2审校(1天津武警医学院病理教研室,天津3001622.天津市肿瘤医院病理科,天津300060)摘要:血管生成拟态(vascu[ogenk:mimicry)是近雨年来提出的一种全新的肿瘤内血管生成模式。

其特点为:肿瘤细胞通过自身变形和基质重塑产生血管样通道,通道内无内皮细胞衬覆,通道外基底膜PAS染色为阳性。

该血管样通道生成机制、管壁结构等都与传统的肿瘤内血管生成不一样,因此通过血管生成拟态构建的血管样通道有可能成为某些肿瘤新的治畹靶§.jj关键词:血管生成拟态;血管生成;葡萄膜黑色素瘤中圈分类号:R73023文献标识码:A文章编号:1000—8225(2003】030180031999年美国Iowa7s大学的Maniotis等”。

研究人的眼葡萄膜黑色素瘤微循环而发现了一种与经舆的肿瘤血管生成(angiogenesis)途径完全不同的、不依赖内皮细胞的全新的肿瘤血管生成模式。

Maniotis等认为在葡萄膜黑色素瘤中,黑色素瘤细胞通过自身变形并与细胞外基质相互作用模仿血管壁结构形成可输送血液的管道系统,从而重建肿瘤的微循环,并在某个环节与宿主血管相连使肿瘤获得血液供应,并将这个过程命名为血管生成拟态(vasculogenicmimicry)。

Mani—otis和Folberg等|“认为可以通过…些无创伤的检蠢和诊断于段对眼葡萄膜黑色素瘤进行确诊,以避免对肿瘤组织的刺激而造成肿瘤的扩散。

同时因葡萄膜黑色素瘤有其独特的微循环发生机制,用一些抑制血管生成拟态的药物进行治疗也可以收到较好的临床疗效.,1葡萄膜黑色素瘤微循环PAS阳性图案及其临床意义FHberg等”1采用UEA一1荧光标记及共聚焦激光扫描显微镜来检测葡萄膜黑色素瘤中特殊的微血管,发现各种各样的血管图案都可以看见,包括长的、直的、环形、平行聚集的和十字交叉的血管样图案等。

抑制血供,阻断生长:肿瘤新血管形成的治疗策略

抑制血供,阻断生长:肿瘤新血管形成的治疗策略

抑制血供,阻断生长:肿瘤新血管形成的治疗策略一、引言肿瘤是一种严重威胁人类健康的疾病,其异常的生长和扩散过程一直备受关注。

在肿瘤的生长过程中,新血管的形成扮演着至关重要的角色。

这种新血管形成,被称为肿瘤血管生成,为肿瘤提供了所需的氧气和营养物质,也为癌细胞的迅速增殖和扩散提供了途径。

因此,干预肿瘤新血管的形成,阻断其血供,已经成为了重要的治疗策略之一。

本文将探讨肿瘤新血管形成的机制,以及目前在临床应用中采用的治疗方法。

二、肿瘤新血管形成的机制肿瘤新血管形成,也被称为肿瘤血管生成或血管新生(angiogenesis),是肿瘤生长和扩散过程中的重要环节。

它在维持肿瘤的营养供应、氧气供应以及代谢产物的排泄中扮演着至关重要的角色。

肿瘤新血管形成涉及复杂的细胞和分子机制,以下将介绍其基本机制及相关因素。

2.1 血管生成的基本过程2.1.1 血管内皮细胞的激活和迁移肿瘤细胞释放血管生成因子,如血管内皮生长因子(VEGF)和基本纤维芽细胞生长因子(bFGF),刺激周围的内皮细胞激活、迁移和分化。

这些内皮细胞逐渐聚集在肿瘤周围,为新血管的形成做准备。

2.1.2 基质降解和侵袭肿瘤细胞通过产生酶类,如金属蛋白酶,降解周围的细胞外基质,为新血管的扩张和侵袭创造条件。

这一过程称为细胞外基质降解,使内皮细胞可以穿越组织障碍,迁移到肿瘤周围。

2.1.3 新血管管腔的形成内皮细胞在肿瘤周围聚集,逐渐连接在一起,形成管腔结构,即新的血管。

这个过程涉及多种黏附分子和信号通路,确保内皮细胞能够形成有序的管道,使血液得以流动。

2.2 血管生成与肿瘤肿瘤细胞通过释放血管生成因子激活周围组织的内皮细胞,引导新血管的形成。

这不仅为肿瘤提供所需的氧气和营养物质,还为肿瘤细胞的转移提供了通道。

2.2.1 血管生成因子血管生成过程的核心是血管生成因子,其中VEGF是最为重要的因子之一。

VEGF促使内皮细胞分化、迁移和增殖,从而形成新的血管。

肿瘤细胞释放大量的VEGF,通过促使血管生成,满足其快速增殖的营养需求。

肿瘤的血管生成ppt课件

肿瘤的血管生成ppt课件
2、VEGF的mRNA经过不同的剪接可形成5种VEGF 异构体,即VEGF121、VEGF145、VEGF165、 VEGF189、VEGF206。
肿瘤的血管生成
20

VEGF的受体(VEGFR)家族
VEGF和特异性受体结合后才能发挥生物学功能,迄今为 止人类已发现5种VEGF-R:VEGFR-1(Flt-1)、VEGFR2(Flk-1)、VEGFR-3(Flt-4)、Neuropilin-1、 Neuropilin-2,其中,VEGFR-2(Flk-1)是介导相应生 物学功能的主要受体,主要分布在血管内皮细胞,少量分 布在造血干细胞、巨噬细胞等。
肿瘤的血管生成
11
⑶ 血管异常生长
肿瘤不同区域的血管有不同的形态,反映了肿瘤生长不 同时间内微血管变化状态与癌细胞生长、增殖不均匀有关。 新生的Cap网直接进入肿瘤中央,呈树状向外分支,随肿瘤 长大血管不断地向外延伸,并与外围Cap网相连。
肿瘤的血管生成
12
⑷ 肿瘤中血供与血流速度不同
肿瘤中有细胞丰富区、边缘区、半坏死区和坏死区,各 区血供不尽相同,半坏死区与坏死区血流明显减少减慢,非 坏死区血流速度可以快于正常组织。大肿瘤血流速度的均值 低于小肿瘤,在大肿瘤内血管内皮细胞的营养供给少,肿瘤 中实际增加的效应血管管径小,血流慢。
肿瘤的血管生成
13
⑸ 癌细胞更新速度快于内皮细胞发生乏氧性坏死 在肿瘤周围内皮细胞增生指数为2.2%,肿瘤细胞增
生指数为7.3%。同样小鼠瘤细胞22小时更新一代,血管 内皮细胞的增殖是50小时更新一代。
瘤细胞无氧酵解产生大量H+,使肿瘤中存在着不同程 度的低营养、低PH值、低氧的三低细胞群。
肿瘤微循环较肿瘤生长表现出低效和相对不足,肿瘤 组织特别是中心部位常常因为缺血、缺氧而坏死。

肿瘤治疗的新思路抗血管生成与肿瘤血管正常化课件PPT示范课件

肿瘤治疗的新思路抗血管生成与肿瘤血管正常化课件PPT示范课件
• 肿瘤微环境趋向正常化后,肿瘤间质压力下降, 驱使肿瘤细胞淋巴转移的动力因素解除
肿瘤血管结构正常化
----------Winkler F ,Cancer Cell [J].2004;6: 553-563.
肿瘤血管结构正常化
血管周细胞覆盖率增加(α-SMA)
Cancer Cell 19, 31–44, January 18, 2011
康莱特注射液+健择组)撤回知情同意,没有进行治疗。
Avastin 联合靶向 EGFR 重组人血管内皮抑素(恩度)获SFDA批准(2005)
KLT可以通过多种不同机制抑制体内及体外肿瘤生长。
的单克隆抗体西妥昔单抗(
Cetuximab )可以安全有效地治疗化疗失败的晚期转移性 恩度血管结构和基底膜正常化
Huang G, C结hen L直. 肠癌患者,明显延长患者生存期 (2004,美国FDA
恩度治疗后能产生一个特定的“时间窗”,这时肿瘤血管出现短暂的正常化,与放化疗联合治疗能产生协同作用。
) 2010年6月30日为止所入组能进行分析的35位患者的详细情况:35位患者中有2人在随机后(患者0006-1014和患者0011-1033,均分入
肿瘤血管正常化
• 肿瘤的血管分布存在异质性,肿瘤细胞的供血必 然不均匀,部分肿瘤细胞处于缺氧状态,对化疗 药物敏感性下降,这一特点限制了抗肿瘤化疗药 物的疗效
• 最有效的抗肿瘤化疗要使得每一个肿瘤细胞都能 充分接触细胞毒性药物并且产生最大的细胞毒效 应。
• 肿瘤血管正常化,可以改善肿瘤血管壁的结构及 其外周细胞的功能,有能力抵御肿瘤细胞的侵袭
抗恩血度管 血治流 疗和促血抗进管血表V管面E正通G常透F化性的机实理验人源化抗体(IgG1)
跨血管NO梯度的产生?

细胞常见信号通路图片合集

细胞常见信号通路图片合集

•·NGF信号通路(2004-8-16)•·TGF beta 信号转导(2004-8-16)•·细胞凋亡信号(2004-8-16)•·线粒体输入信号(2004-8-16)•·ROS信号(2004-8-16)•·Toll-Like 受体家族(2004-8-16)•·Toll-Like 受体(2004-8-16)•·actin肌丝(2004-8-16)•·Wnt/LRP6 信号(2004-8-16)•·WNT信号转导(2004-8-16)•·West Nile 西尼罗河病毒(2004-8-16)•·Vitamin C 维生素C在大脑中的作用(2004-8-16)•·视觉信号转导(2004-8-16)•·VEGF,低氧(2004-8-16)•·TSP-1诱导细胞凋亡(2004-8-16)•·Trka信号转导(2004-8-16)•·dbpb调节mRNA (2004-8-16)•·CARM1甲基化(2004-8-16)•·CREB转录因子(2004-8-16)•·TPO信号通路(2004-8-16)•·Toll-Like 受体(2004-8-16)•·TNFR2 信号通路(2004-8-16)•·TNFR1信号通路(2004-8-16)•·TNF/Stress相关信号(2004-8-16)•·IGF-1受体(2004-8-16)•·共刺激信号(2004-8-16)•·Th1/Th2 细胞分化(2004-8-16)•·TGF beta 信号转导(2004-8-16)•·端粒、端粒酶与衰老(2004-8-16)•·TACI和BCMA调节B细胞免疫(2004-8-16)•·T辅助细胞的表面受体(2004-8-16)•·T细胞受体信号通路(2004-8-16)•·T细胞受体和CD3复合物(2004-8-16)•·Cardiolipin的合成(2004-8-16)•·Synaptic突触连接中的蛋白(2004-8-16)•·HSP在应激中的调节的作用(2004-8-16)•·Stat3 信号通路(2004-8-16)•·SREBP控制脂质合成(2004-8-16)•·酪氨酸激酶的调节(2004-8-16)•·Sonic Hedgehog (SHH)受体ptc1调节细胞周期(2004-8-16)•·Sonic Hedgehog (Shh) 信号(2004-8-16)•·SODD/TNFR1信号(2004-8-16)•·AKT/mTOR在骨骼肌肥大中的作用(2004-8-16)•·G蛋白信号转导(2004-8-16)•·肝细胞生长因子受体信号(2004-8-16)•·IL1受体信号转导(2004-8-16)•·acetyl从线粒体到胞浆过程(2004-8-16)•·趋化因子chemokine在T细胞极化中的选择性表(2004-8-16)•·SARS冠状病毒蛋白酶(2004-8-16)•·Parkin在泛素-蛋白酶体中的作用(2004-8-16)•·nicotinic acetylcholine受体在凋亡中的作用(2004-8-16)•·线粒体在细胞凋亡中的作用(2004-8-16)•·MEF2D在T细胞凋亡中的作用(2004-8-16)•·Erk5和神经元生存(2004-8-16)•·ERBB2信号转导(2004-8-16)•·GPCRs调节EGF受体(2004-8-16)•·BRCA1调节肿瘤敏感性(2004-8-16)•·Rho细胞运动的信号(2004-8-16)•·Leptin能逆转胰岛素抵抗(2004-8-16)•·转录因子DREAM调节疼敏感(2004-8-16)•·PML调节转录(2004-8-16)•·p27调节细胞周期(2004-8-16)•·MAPK信号调节(2004-8-16)•·细胞因子调节造血细胞分化(2004-8-16)•·eIF4e和p70 S6激酶调节(2004-8-16)•·eIF2调节(2004-8-16)•·谷氨酸受体调节ck1/cdk5 (2004-8-16)•·plk3在细胞周期中的作用(2004-8-1)•·BAD磷酸化调节(2004-8-1)•·Reelin信号通路(2004-8-1)•·RB肿瘤抑制和DNA破坏(2004-8-1)•·NK细胞介导的细胞毒作用(2004-8-1)•·Ras信号通路(2004-8-1)•·Rac 1细胞运动信号(2004-8-1)•·PTEN依赖的细胞生长抑制和细胞凋亡(2004-8-1)•·notch信号通路(2004-8-1)•·蛋白激酶A(PKA)在中心粒中的作用(2004-8-1)•·蛋白酶体Proteasome复合物(2004-8-1)•·Prion朊病毒的信号通路(2004-8-1)•·早老素Presenilin在notch和wnt信号中的作用(2004-8-1)•·mRNA的poly(A)形成(2004-8-1)•·淀粉样蛋白前体信号(2004-8-1)•·PKC抑制myosin磷酸化(2004-8-1)•·磷脂酶C(PLC)信号(2004-8-1)•·巨噬细胞Pertussis toxin不敏感的CCR5信号通(2004-8-1)•·Pelp1调节雌激素受体的活性(2004-8-1)•·PDGF信号通路(2004-8-1)•·p53信号通路(2004-8-1)•·p38MAPK信号通路(2004-8-1)•·Nrf2是氧化应激基本表达的关键基因(2004-8-1)•·OX40信号通路(2004-8-1)•·hTerc转录调节活性图(2004-8-1)•·hTert转录因子的调节作用(2004-8-1)•·AIF在细胞凋亡中的作用(2004-8-1)•·Omega氧化通路(2004-8-1)•·核受体在脂质代谢和毒性中的作用(2004-8-1)•·NK细胞中NO2依赖的IL-12信号通路(2004-8-1)•·TOR信号通路(2004-8-1)•·NO信号通路(2004-8-1)•·NF-kB信号转导通路(2004-8-1)•·NFAT与心肌肥厚的示意图(2004-8-1)•·神经营养素及其表面分子(2004-8-1)•·神经肽VIP和PACAP防止活化T细胞凋亡图(2004-8-1)•·神经生长因子信号图(2004-8-1)•·线虫和哺乳动物的MAPK信号比较(2004-7-17)•·细胞内信号总论(2004-7-17)•·细胞凋亡信号通路(2004-7-17)•·MAPK级联通路(2004-7-17)•·MAPK信号通路图(2004-7-17)•·BCR信号通路(2004-7-17)•·蛋白质乙酰化示意图(2004-7-17)•·wnt信号通路(2004-7-17)•·胰岛素受体信号通路(2004-7-17)•·细胞周期在G2/M期的调控机理图(2004-7-17)•·细胞周期G1/S检查点调控机理图(2004-7-17)•·Jak-STAT关系总表(2004-7-17)•·Jak/STAT 信号(2004-7-17)•·TGFbeta信号(2004-7-17)•·NFkappaB信号(2004-7-17)•·p38 MAPK信号通路(2004-7-17)•·SAPK/JNK 信号级联通路(2004-7-17)•·从G蛋白偶联受体到MAPK (2004-7-17)•·MAPK级联信号图(2004-7-17)•·eIF-4E和p70 S6激酶调控蛋白质翻译(2004-7-17)•·eif2蛋白质翻译(2004-7-17)•·蛋白质翻译示意图(2004-7-17)•·线粒体凋亡通路(2004-7-17)•·死亡受体信号通路(2004-7-17)•·凋亡抑制通路(2004-7-17)•·细胞凋亡综合示意图(2004-7-17)•·Akt/Pkb信号通路(2004-7-17)•·MAPK/ERK信号通路(2004-7-17)•·哺乳动物MAPK信号通路(2004-7-17)•·Pitx2多步调节基因转录(2004-7-17)•·IGF-1R导致BAD磷酸化的多个凋亡路径(2004-7-17)•·多重耐药因子(2004-7-17)•·mTOR信号通路(2004-7-17)•·Msp/Ron受体信号通路(2004-7-17)•·单核细胞和其表面分子(2004-7-17)•·线粒体的肉毒碱转移酶(CPT)系统(2004-7-17)•·METS影响巨噬细胞的分化(2004-7-17)•·Anandamide,内源性大麻醇的代谢(2004-7-17)•·黑色素细胞(Melanocyte)发育和信号(2004-7-17)•·DNA甲基化导致转录抑制的机理图(2004-7-17)•·蛋白质的核输入信号图(2004-7-17)•·PPARa调节过氧化物酶体的增殖(2004-7-17)•·对乙氨基酚(Acetaminophen)的活性和毒性机(2004-7-17)•·mCalpain在细胞运动中的作用(2004-7-17)•·MAPK信号图(2004-7-17)•·MAPK抑制SMRT活化(2004-7-17)•·苹果酸和天门冬酸间的转化(2004-7-17)•·低密度脂蛋白(LDL)在动脉粥样硬化中的作用(2004-7-17)•·LIS1基因在神经细胞的发育和迁移中的作用图(2004-7-17)•·Pyk2与Mapk相连的信号通路(2004-7-17)•·galactose代谢通路(2004-7-17)•·Lectin诱导补体的通路(2004-7-17)•·Lck和Fyn在TCR活化中的作用(2004-7-17)•·乳酸合成图(2004-7-17)•·Keratinocyte分化图(2004-7-17)•·离子通道在心血管内皮细胞中的作用(2004-7-17)•·离子通道和佛波脂(Phorbal Esters)信号(2004-7-17)•·内源性Prothrombin激活通路(2004-7-17)•·Ribosome内化通路(2004-7-17)•·整合素(Integrin)信号通路(2004-7-17)•·胰岛素(Insulin)信号通路(2004-7-17)•·Matrix Metalloproteinases (2004-7-17)•·组氨酸去乙酰化抑制剂抑制Huntington病(2004-7-17)•·Gleevec诱导细胞增殖(2004-7-17)•·Ras和Rho在细胞周期的G1/S转换中的作用(2004-7-17)•·DR3,4,5受体诱导细胞凋亡(2004-7-17)•·AKT调控Gsk3图(2004-7-17)•·IL-7信号转导(2004-7-17)•·IL22可溶性受体信号转导图(2004-7-17)•·IL-2活化T细胞图(2004-7-17)•·IL12和Stat4依赖的TH1细胞发育信号通路(2004-7-17)•·IL-10信号通路(2004-7-17)•·IL 6信号通路(2004-7-17)•·IL 5信号通路(2004-7-17)•·IL 4信号通路(2004-7-17)•·IL 3信号通路(2004-7-17)•·IL 2 信号通路(2004-7-17)•·IL 18信号通路(2004-7-17)•·IL 17信号通路(2004-7-17)•·IGF-1信号通路(2004-7-17)•·IFN gamma信号通路(2004-7-17)•·INF信号通路(2004-7-17)•·低氧诱导因子(HIF)在心血管中的作用(2004-7-17)•·低氧和P53在心血管系统中的作用(2004-7-17)•·人类巨细胞病毒和MAP信号通路(2004-7-17)•·孕酮如何促进卵细胞成熟?(2004-7-17)•·How does salmonella hijack a cell (2004-7-17)•·Hop通路在心脏发育中的作用(2004-7-17)•·HIV-I Nef:负性调节fas和TNF (2004-7-17)•·HIV-1防止宿主细胞耐受的机理(2004-7-17)•·HIV诱导T细胞凋亡图(2004-7-17)•·血红素的伴侣分子(2004-7-17)•·g-Secretase介导ErbB4信号通路(2004-7-17)•·生物激素信号(2004-7-17)•·Granzyme A介导的凋亡信号通路(2004-7-17)•·G蛋白偶联信号需要Tubby支持(2004-7-17)•·糖酵解通路(2004-7-17)•·Ghrelin:食物吸收和能量平衡的调控者(2004-7-17)•·PS1能产生beta淀粉样蛋白导致老年性痴呆(2004-7-17)•·GATA3部分参与TH2细胞因子基因的表达(2004-7-17)•·GABA受体的代谢图(2004-7-17)•·FXR和LXR调节胆固醇代谢(2004-7-17)•·SLRP在骨骼中的作用(2004-7-17)•·自由基诱导细胞凋亡信号(2004-7-17)•·FOSB与药物成瘾(2004-7-17)•·fMLP诱导趋化因子基因表达(2004-7-17)•·Fibrinolysis通路(2004-7-17)•·糖酵解通路(2004-7-17)•·Fc Epsilon Receptor I信号(2004-7-17)•·FAS信号通路(2004-7-17)•·外源性Prothrombin激活通路(2004-7-17)•·真核细胞蛋白质翻译示意图(2004-7-17)•·雌激素反应蛋白EFP控制乳腺癌细胞的细胞周期(2004-7-17)•·EPO介导神经保护作用与NF-kB相关(2004-7-17)•·Erythrocyte分化通路(2004-7-17)•·Erk1/Erk2 Mapk 信号通路(2004-7-17)•·Erk和PI-3K在细胞外间质中的作用(2004-7-17)•·内质网相关的蛋白质降解通路示意图(2004-7-17)•·EPO售转导机制图(2004-7-17)•·血小板凝聚示意图(2004-7-17)•·NDK动力学(2004-7-17)•·线粒体的电子传递链示意图(2004-7-17)•·Eicosanoid代谢(2004-7-17)•·EGF信号通路(2004-7-17)•·calcineurin对Keratinocyte分化的影响(2004-7-17)•·E2F1信号通路(2004-7-17)•·MTA-3在雌激素不敏感性乳腺癌中下调(2004-7-17)•·双链RNA诱导基因表达示意图(2004-7-17)•·Dicer信号通路(RNAi机理)(2004-7-17)•·CDK5在老年性痴呆中的调节作用(2004-7-17)•·树突状细胞调节TH1和TH2发育示意图(2004-7-17)•·RAR和RXR被蛋白酶体降解通路(2004-7-17)•·D4-GDI信号通路示意图(2004-7-17)•·细胞因子和炎症反应示意图(2004-7-9)•·细胞因子网络调控图(2004-7-9)•·CFTR和beta 2肾上腺素受体通路(2004-7-9)•·Cyclin和细胞周期调控图(2004-7-9)•·Ran核质循环转运图(2004-7-9)•·Cyclin E降解通路图(2004-7-9)•·CXCR4信号通路图(2004-7-9)•·CTL介导的免疫反应图(2004-7-9)•·CTCF:第一个多价核因子(2004-7-9)•·皮质激素和心脏保护(2004-7-9)•·骨骼肌的成肌信号图(2004-7-9)•·VitD调控基因表达信号图(2004-7-9)•·补体信号通路(2004-7-9)•·线粒体和过氧化物酶体中β氧化的比较图(2004-7-9)•·经典的补体信号通路图(2004-7-9)•·心律失常的分子机制图(2004-7-9)•·hSWI/SNF ATP依赖的染色体重塑(2004-7-9)•·碳水化合物和cAMP调节ChREBP图(2004-7-9)•·分子伴侣调节干扰素信号图(2004-7-9)•·Ceramide信号图(2004-7-9)•·局部急性感染的细胞与分子信号(2004-7-9)•·细胞与细胞粘附信号(2004-7-9)•·细胞周期G2/M调控点信号调节(2004-7-9)•·细胞周期 G1/S调控点信号图(2004-7-9)•·CDK调节DNA复制(2004-7-9)•·cdc25和chk1在DNA破坏中的作用图(2004-7-9)•·CD40L信号通路图(2004-7-9)•·CCR3信号图(2004-7-9)•·CBL下调EGF受体的信号转导图(2004-7-9)•·一些氨基酸的代谢通路图 3 (2004-7-9)•·一些氨基酸的代谢通路图 2 (2004-7-9)•·一些氨基酸的代谢通路图(2004-7-9)•·Catabolic pathway for asparagine and asp (2004-7-9)•·Caspase 信号级联通路在细胞凋亡中的作用(2004-7-9)•·CARM1和雌激素的信号转导调控(2004-7-9)•·抗氧自由基的心脏保护作用信号转导图(2004-7-9)•·乙肝病毒中的钙信号调控(2004-7-9)•·镉诱导巨噬细胞的DNA合成和增殖(2004-7-9)•·Ca2+/CaM依赖的激活(2004-7-9)•·B细胞活化机理图(2004-6-9)•·BTG家族蛋白和细胞周期的调节(2004-6-9)•·BRCA1作用机理(2004-6-9)•·骨重塑示意图(2004-6-9)•·Botulinum Toxin阻断神经递质释放示意图(2004-6-9)•·缬氨酸的生物合成图(2004-6-9)•·Tryptophan在植物和细菌内的生物合成(2004-6-9)•·苏氨酸和蛋氨酸的体内合成示意图(2004-6-9)•·sphingolipids生物合成(2004-6-9)•·spermidine和spermine生物合成(2004-6-9)•·细菌体内合成脯氨酸的示意图(2004-6-9)•·苯丙氨酸和酪氨酸的生物合成(2004-6-9)•·神经递质的合成示意图(2004-6-9)•·赖氨酸生物合成图(2004-6-9)•·亮氨酸的体内生物合成图(2004-6-9)•·异亮氨酸的生物合成图(2004-6-9)•·甘氨酸和色氨酸的生物合成(2004-6-9)•·Cysteine在哺乳动物中的合成图(2004-6-9)•·Cysteine在细菌和植物内生物合成图(2004-6-9)•·Chorismate在细菌和植物内的生物合成(2004-6-9)•·Arginine在细菌内的生物合成(2004-6-9)•·生物活性肽诱导的通路(2004-6-9)•·脂肪酸的β氧化通路(2004-6-9)•·BCR信号通路示意图(2004-6-9)•·SUMOylation基本机理(2004-6-9)•·PPAR影响基因表达的基本信号机制图(2004-6-9)•·B淋巴细胞表面分子示意图(2004-6-9)•·B细胞生存信号通路(2004-6-5)•·B细胞信号通路的复杂性(2004-6-5)•·GPCR信号的衰减的机理(2004-6-4)•·ATM信号通路(2004-6-4)•·阿斯匹林的抗凝机理(2004-6-4)•·细胞凋亡信号调节DNA片段化(2004-6-4)•·细胞凋亡DNA片段化与组织稳态的机理(2004-6-4)•·反义核酸的作用机理---RNA polymerase III (2004-6-4)•·抗原递呈与处理信号图(2004-6-4)•·Antigen依赖的B细胞激活(2004-6-4)•·Anthrax Toxin Mechanism of Action (2004-6-4)•·血管紧张素转换酶2调节心脏功能(2004-6-4)•·Angiotensin II 介导JNK信号通路的激活(2004-6-4)•·Alternative Complement Pathway (2004-6-4)•·Alpha-synuclein和Parkin在怕金森病中的作用(2004-6-4)•·ALK在心肌细胞中的功能图(2004-6-4)•·AKT信号通路(2004-6-4)•·AKAP95在有丝分裂中的作用图(2004-6-4)•·Ahr信号转导图(2004-6-4)•·Agrin突触后的功能图(2004-6-4)•·ADP-Ribosylation 因子(2004-6-4)•·淋巴细胞粘附分子信号图(2004-6-4)•·Adhesion and Diapedesis of Lymphocytes (2004-6-4)•·Adhesion and Diapedesis of Granulocytes (2004-6-4)•·急性心肌梗死信号转导图(2004-6-4)•·src蛋白质激活图(2004-6-4)•·PKC与G蛋白耦联受体的关系(2004-6-4)•·cAMP依赖的CSK抑制T细胞功能示意图(2004-6-4)•·PKA功能示意图(2004-6-4)•·一氧化氮(NO)在心脏中的功能示意图(2004-6-4)•·RelA 在细胞核内乙酰化和去乙酰化(2004-6-4)actin肌丝Mammalian cell motility requires actin polymerization in the direction of movement to change membrane shape and extend cytoplasm into lamellipodia. The polymerization of actin to drive cell movement also involves branching of actin filaments into a network oriented with the growing ends of the fibers near the cell membrane. Manipulation of this process helps bacteria like Salmonella gain entry into cells they infect. Two of the proteins involved in the formation of Y branches and in cell motility are Arp2 and Arp3, both members of a large multiprotein complex containing several other polypeptides as well. The Arp2/3 complex is localized at the Y branch junction and induces actin polymerization. Activity of this complex is regulated by multiple different cell surface receptor signaling systems, activating WASP, and Arp2/3 in turn to cause changes in cell shape and cell motility. Wasp and its cousin Wave-1 interact with the Arp2/3 complex through the p21 component of the complex. The crystal structure of the Arp2/3 complex has revealed further insights into the nature of how the complex works.Activation by Wave-1, another member of the WASP family, also induces actin alterations in response to Rac1 signals upstream. Wave-1 is held in an inactive complex in the cytosol that is activated to allow Wave-1 to associate with Arp2/3. While WASP is activated by interaction with Cdc42, Wave-1, is activated by interaction with Rac1 and Nck. Wave-1 activation by Rac1 and Nck releases Wave-1 with Hspc300 to activate actin Y branching and polymerization by Arp2/3. Different members of this gene family may produce different actin cytoskeletal architectures. The immunological defects associated with mutation of the WASP gene, theWiskott-Aldrich syndrome for which WASP was named, indicates the importance of this system for normal cellular function.Cory GO, Ridley AJ. Cell motility: braking WAVEs. Nature. 2002 Aug 15;418(6899):732-3. No abstract available.Eden, S., et al. (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418(6899), 790-3Falet H, Hoffmeister KM, Neujahr R, Hartwig JH. Normal Arp2/3 complex activation in platelets lacking WASp. Blood. 2002 Sep 15;100(6):2113-22.Kreishman-Deitrick M, Rosen MK, Kreishman-Deltrick M. Ignition of a cellular machine. Nat Cell Biol. 2002 Feb;4(2):E31-3. No abstract available.Machesky, L.M., Insall, R.H. (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8(25), 1347-56Robinson, R.C. et al. (2001) Crystal structure of Arp2/3 complex. Science 294(5547), 1679-84Weeds A, Yeoh S. Structure. Action at the Y-branch. Science. 2001 Nov 23;294(5547):1660-1. No abstract available.Wnt/LRP6 信号Wnt glycoproteins play a role in diverse processes during embryonic patterning in metazoa through interaction with frizzled-type seven-transmembrane-domain receptors (Frz) to stabilize b-catenin. LDL-receptor-related protein 6 (LRP6), a Wnt co-receptor, is required for this interaction. Dikkopf (dkk) proteins are both positive and negative modulators of this signalingWNT信号转导West Nile 西尼罗河病毒West Nile virus (WNV) is a member of the Flaviviridae, a plus-stranded virus family that includes St. Louis encephalitis virus, Kunjin virus, yellow fever virus, Dengue virus, and Japanese encephalitis virus. WNV was initially isolated in 1937 in the West Nile region of Uganda and has become prevalent in Africa, Asia, and Europe. WNV has rapidly spread across the United States through its insect host and causes neurological symptoms and encephalitis, which can result in paralysis or death. Since 1999 about 3700 cases of West Nile virus (WNV) infection and 200 deaths have been recorded in United States. The viral capsid protein likely contributes to the WNV-associated deadly inflammation via apoptosis induced through the mitochondrial pathway.WNV particles (50 nm in diameter) consist of a dense core (viral protein C encapsidated virus RNA genome)surrounded by a membrane envelope (viral E and M proteins embedded in a lipid bilayer). The virus binds to a specific cell surface protein (not yet identified), an interaction thought to involve E protein with highly sulfated neperan sulfate (HSHS) residues that are present on the surfaces of many cells and enters the cell by a process similar to that of endocytosis. Once inside the cell, the genome RNA is released into the cytoplasm via endosomal release, a fusion process involving acidic pH induced conformation change in the E protein. The RNA genome serves as mRNA and is translated by ribosomes into ten mature viral proteins are produced via proteolytic cleavage, which include three structural components and seven different nonstructural components of the virus. These proteins assemble and transcribe complimentary minus strand RNAs from the genomic RNA. The complimentary minus strand RNA in turns serves as template for the synthesis of positive-stranded genomic RNAs. Once viral E, preM and C proteins have accumulated to sufficient level, they assemble with the genomic RNA to form progeny virions, which migrate to the cell surface where they are surrounded with lipid envelop and released.Vitamin C 维生素C在大脑中的作用Vitamin C (ascorbic acid) was first identified by virtue of the essential role it plays in collagen modification, preventing the nutritional deficiency scurvy. Vitamin C acts as a cofactor for hydroxylase enzymes thatpost-translationally modify collagen to increase the strength and elasticity of tissues. Vitamin C reduces the metal ion prosthetic groups of many enzymes, maintaining activity of enzymes, also acts as an anti-oxidant. Although the prevention of scurvy through modification of collagen may be the most obvious role for vitamin C, it is not necessarily the only role of vitamin C. Svct1 and Svct2 are ascorbate transporters for vitamin C import into tissues and into cells. Both of these transporters specifically transport reduced L-ascorbic acid against a concentration gradient using the intracellular sodium gradient to drive ascorbate transport. Svct1 is expressed in epithelial cells in the intestine, upregulated in cellular models for intestinal epithelium and appears to be responsible for the import of dietary vitamin C from the intestinal lumen. The vitamin C imported from the intestine is present in plasma at approximately 50 uM, almost exclusively in the reduced form, and is transported to tissues to play a variety of roles. Svct2 imports reduced ascorbate from the plasma into veryactive tissues like the brain. Deletion in mice of the gene for Svct2 revealed that ascorbate is required for normal development of the lungs and brain during pregnancy. A high concentration of vitamin C in neurons of the developing brain may help protect the developing brain from free radical damage. The oxidized form of ascorbate, dehydroascorbic acid, is transported into a variety of cells by the glucose transporter Glut-1. Glut-1, Glut-3 and Glut-4 can transport dehydroascorbate, but may not transport significant quantities of ascorbic acid in vivo.视觉信号转导信息来源:本站原创生物谷网站The signal transduction cascade responsible for sensing light in vertebrates is one of the best studied signal transduction processes, and is initiated by rhodopsin in rod cells, a member of the G-protein coupled receptor gene family. Rhodopsin remains the only GPCR whose structure has been resolved at high resolution. Rhodopsinin the discs of rod cells contains a bound 11-cis retinal chromophore, a small molecule derived from Vitamin A that acts as the light sensitive portion of the receptor molecule, absorbing light to initiate the signal transduction cascade. When light strikes 11-cis retinal and is absorbed, it isomerizes to all-trans retinal, changing the shape of the molecule and the receptor it is bound to. This change in rhodopsin抯shape alters its interaction with transducin, the member of the G-protein gene family that is specific in its role in visual signal transduction. Activation of transducin causes its alpha subunit to dissociate from the trimer and exchange bound GDP for GTP, activating in turn a membrane-bound cyclic-GMP specific phosphodiesterase that hydrolyzes cGMP. In the resting rod cell, high levels of cGMP associate with a cyclic-GMP gated sodium channel in the plasma membrane, keeping the channels open and the membrane of the resting rod cells depolarized. This is distinct from synaptic generation of action potentials, in which stimulation induces opening of sodium channels and depolarization. When cGMP gated channels in rod cells open, both sodium and calcium ions enter the cell, hyperpolarizing the membrane and initiating the electrochemical impulse responsible for conveying the signal from the sensory neuron to the CNS. The rod cell in the resting state releases high levels of the inhibitory neurotransmitter glutamate, while the release of glutamate is repressed by the hyperpolarization in the presence of light to trigger a downstream action potential by ganglion cells that convey signals to the brain. The calcium which enters the cell also activates GCAP, which activates guanylate cyclase (GC-1 and GC-2) to rapidly produce more cGMP, ending the hyperpolarization and returning the cell to its resting depolarized state. A protein called recoverin helps mediate the inactivation of the signal transduction cascade, returning rhodopsin to its preactivated state, along with the rhodopsin kinase Grk1. Phosphorylation of rhodopsin by Grkl causes arrestin to bind, helping to terminate the receptor activation signal. Dissociation and reassociation of retinal, dephosphorylation of rhodopsin and release of arrestin all return rhodopsin to its ready state, prepared once again to respond to light.VEGF,低氧信息来源:本站原创生物谷网站Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. The increase in secreted biologically active VEGF protein from cells exposed to hypoxia is partly because of an increased transcription rate, mediated by binding of hypoxia-inducible factor-1 (HIF1) to a hypoxia responsive element in the 5'-flanking region of the VEGF gene. bHLH-PAS transcription factor that interacts with the Ah receptor nuclear translocator (Arnt), and its predicted amino acid sequence exhibits significant similarity to the hypoxia-inducible factor 1alpha (HIF1a) product. HLF mRNA expression is closely correlated with that of VEGF mRNA.. The high expression level of HLF mRNA in the O2 delivery system of developing embryos and adult organs suggests that in a normoxic state, HLF regulates gene expression of VEGF, various glycolytic enzymes, and others driven by the HRE sequence, and may be involved in development of blood vessels and the tubularsystem of lung. VEGF expression is dramatically induced by hypoxia due in large part to an increase in the stability of its mRNA. HuR binds with high affinity and specificity to the VRS element that regulates VEGF mRNA stability by hypoxia. In addition, an internal ribosome entry site (IRES) ensures efficient translation of VEGF mRNA even under hypoxia. The VHL tumor suppressor (von Hippel-Lindau) regulates also VEGF expression at a post-transcriptional level. The secreted VEGF is a major angiogenic factor that regulates multiple endothelial cell functions, including mitogenesis. Cellular and circulating levels of VEGF are elevated in hematologic malignancies and are adversely associated with prognosis. Angiogenesis is a very complex, tightly regulated, multistep process, the targeting of which may well prove useful in the creation of novel therapeutic agents. Current approaches being investigated include the inhibition of angiogenesis stimulants (e.g., VEGF), or their receptors, blockade of endothelial cell activation, inhibition of matrix metalloproteinases, and inhibition of tumor vasculature. Preclinical, phase I, and phase II studies of both monoclonal antibodies to VEGF and blockers of the VEGF receptor tyrosine kinase pathway indicate that these agents are safe and offer potential clinical utility in patients with hematologic malignancies.TSP-1诱导细胞凋亡信息来源:本站原创生物谷网站As tissues grow they require angiogenesis to occur if they are to be supplied with blood vessels and survive. Factors that inhibit angiogenesis might act as cancer therapeutics by blocking vessel formation in tumors and starving cancer cells. Thrombospondin-1 (TSP-1) is a protein that inhibits angiogenesis and slows tumor growth, apparently by inducing apoptosis of microvascular endothelial cells that line blood vessels. TSP-1 appears to produce this response by activating a signaling pathway that begins with its receptor CD36 at the cell surface of the microvascular endothelial cell. The non-receptor tyrosine kinase fyn is activated by TSP-1 through CD36, activating the apoptosis inducing proteases like caspase-3 and p38 protein kinases. p38 is a mitogen-activated kinase that also induces apoptosis in some conditions, perhaps through AP-1 activation and the activation of genes that lead to apoptosis.Trka信号转导信息来源:本站原创生物谷网站Nerve growth factor (NGF) is a neurotrophic factor that stimulates neuronal survival and growth through TrkA, a member of the trk family of tyrosine kinase receptors that also includes TrkB and TrkC. Some NGF responses are also mediated or modified by p75LNTR, a low affinity neurotrophin receptor. Binding of NGF to TrkA stimulates neuronal survival, and also proliferation. Pathways coupled to these responses are linked to TrkAthrough association of signaling factors with specific amino acids in the TrkA cytoplasmic domain. Cell survival through inhibition of apoptosis is signaled through activation of PI3-kinase and AKT. Ras-mediated signaling and phospholipase C both activate the MAP kinase pathway to stimulate proliferation.dbpb调节mRNA信息来源:本站原创生物谷网站Endothelial cells respond to treatment with the protease thrombin with increased secretion of the PDGF B-chain. This activation occurs at the transcriptional level and a thrombin response element was identified in the promoter of the PDGF B-chain gene. A transcription factor called the DNA-binding protein B (dbpB) mediates the activation of PDGF B-chain transcription in response to thrombin treatment. DbpB is a member of the Y box family of transcription factors and binds to both RNA and DNA. In the absence of thrombin, endothelial cells contain a 50 kD form of dbpB that binds RNA in the cytoplasm and may play a role as a chaperone for mRNA. The 50 kD version of dbpB also binds DNA to regulate genes containing Y box elements in their promoters. Thrombin activation results in the cleavage of dbpB to a 30 kD form. The proteolytic cleavage releases dbpB from RNA in the nucleus, allowing it to enter the nucleus and binds to a regulatory element distinct from the site recognized by the full length 50 kD dbpB. The genes activated by cleaved dbpB include the PDGF B chain. Dephosphorylation of dbpB also regulates nuclear entry and transcriptional activation.RNA digestion in vitro can release dbpB in its active form, suggesting that the protease responsible for dbpB may be closely associated in a complex. Identification of the protease that cleaves dbpB, the mechanisms of phosphorylation and dephosphorylation, and elucidation of the signaling path by which thrombin induces dbpB will provide greater understanding of this novel signaling pathway.CARM1甲基化信息来源:本站原创生物谷网站Several forms of post-translational modification regulate protein activities. Recently, protein methylation by CARM1 (coactivator-associated arginine methyltransferase 1) has been observed to play a key role in transcriptional regulation. CARM1 associates with the p160 class of transcriptional coactivators involved in gene activation by steroid hormone family receptors. CARM1 also interacts with CBP/p300 transcriptional coactivators involved in gene activation by a large variety of transcription factors, including steroid hormone receptors and CEBP. One target of CARM1 is the core histones H3 and H4, which are also targets of the histone acetylase activity of CBP/p300 coactivators. Recruitment of CARM1 to the promoter region by binding to coactivators increases histone methylation and makes promoter regions more accessible for transcription. Another target of CARM1 methylation is a coactivator it interacts with, CBP. Methylation of CBP by CARM1 blocks。

血管生成(Angiogenesis)信号通路图

血管生成(Angiogenesis)信号通路图

本实验技术来源于SciMall科学在线
血管生成(Angiogenesis)信号通路图
血管生成是通过人体中存在的诸多互补和复杂的信号途径调节的.血管内皮生长因子(VEGF)-血管内皮生长因子受体(VEGFR)、血管生成素(Ang)-Tie2轴和Dll4-Notch这3个复杂的、相辅相成的信号传导通路可在调节血管生成中发挥重要作用.
VEGF与内皮细胞上的两种受体KDR和Flt-1高亲和力结合后,直接刺激血管内皮细胞增殖,并诱导其迁移和形成官腔样结构;同时还可增加微血管通透性,引起血浆蛋白(主要是纤维蛋白原)外渗,并通过诱导间质产生而促进体内新生血管生成。

VEGF在血管发生和形成过程中起着中枢性的调控作用,是关键的血管形成刺激因子。

碱性成纤维细胞生长因子(bFGF)。

TNF-α是一类具有血管活性的细胞因子,可诱导异位子宫内膜炎性细胞因子MCP-1,IL-6和IL-8等的释放,促进异位内膜及基质细胞增殖及炎性细胞浸润,新生血管形成,组织粘连,从而形成异位病灶。

(来源:Scimall科学在线)
本信号转导涉及的信号分子主要包括:
HIF1α,PHDs,HIF1β,PI3K,Akt,mTOR,S6K,4E-BP1,eIF4E1,elF4E1,Ras,MEK1,MEK2,Erk1,Erk2,MNK,CBP,P300,TCEB1,TCEB2,Rbx1,Cul2,VHL,MMP,Cox2,PAI-1,VEGF,PDGFR-β,VEGFR2,Tie2,FGFR,IGFR,TGFα-R,SLIT,ROBO,Src,FAK,p38,MAPK,Smad2,Smad3,PLCγ,NOS等。

点击图中信号分子,自动寻找相关试剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本实验技术来源于SciMall科学在线
血管生成(Angiogenesis)信号通路图
血管生成是通过人体中存在的诸多互补和复杂的信号途径调节的.血管内皮生长因子(VEGF)-血管内皮生长因子受体(VEGFR)、血管生成素(Ang)-Tie2轴和Dll4-Notch这3个复杂的、相辅相成的信号传导通路可在调节血管生成中发挥重要作用.
VEGF与内皮细胞上的两种受体KDR和Flt-1高亲和力结合后,直接刺激血管内皮细胞增殖,并诱导其迁移和形成官腔样结构;同时还可增加微血管通透性,引起血浆蛋白(主要是纤维蛋白原)外渗,并通过诱导间质产生而促进体内新生血管生成。

VEGF在血管发生和形成过程中起着中枢性的调控作用,是关键的血管形成刺激因子。

碱性成纤维细胞生长因子(bFGF)。

TNF-α是一类具有血管活性的细胞因子,可诱导异位子宫内膜炎性细胞因子MCP-1,IL-6和IL-8等的释放,促进异位内膜及基质细胞增殖及炎性细胞浸润,新生血管形成,组织粘连,从而形成异位病灶。

(来源:Scimall科学在线)
本信号转导涉及的信号分子主要包括:
HIF1α,PHDs,HIF1β,PI3K,Akt,mTOR,S6K,4E-BP1,eIF4E1,elF4E1,Ras,MEK1,MEK2,Erk1,Erk2,MNK,CBP,P300,TCEB1,TCEB2,Rbx1,Cul2,VHL,MMP,Cox2,PAI-1,VEGF,PDGFR-β,VEGFR2,Tie2,FGFR,IGFR,TGFα-R,SLIT,ROBO,Src,FAK,p38,MAPK,Smad2,Smad3,PLCγ,NOS等。

点击图中信号分子,自动寻找相关试剂。

相关文档
最新文档