直角三角形在生活中的应用
《28.2解直角三角形及其应用》教案
一、教学内容
本节课选自八年级下册《28.2解直角三角形及其应用》章节。教学内容主要包括以下两个方面:
1.掌握解直角三角形的方法,包括正弦、余弦和正切的定义及运用。
2.了解解直角三角形在实际问题中的应用,例如测量物体的高度、距离等。
具体内容包括:
(1)回顾锐角三角函数的定义,学习正弦、余弦、正切的概念。
2.加强对难点内容的讲解和练习,帮助学生克服理解上的困难。
3.鼓励学生积极参与课堂讨论,培养他们的团队协作和沟通能力。
4.提高学生的实践操作能力,让他们在动手实践中加深对知识的理解。
在接下来的教学中,我会根据今天的反思,不断调整和优化教学方法,以期提高学生们的学习效果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点三:在解决实际问题时,学生可能不知道如何选择合适的三角函数进行计算。教师应通过典型例题,教授学生分析问题、选择合适三角函数的方法,并强调在实际应用中灵活运用三角函数的重要性。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《28.2解直角三角形及其应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量物体高度或距离的情况?”(如测量旗杆高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
直角三角形的性质与应用
直角三角形的性质与应用直角三角形是一种特殊的三角形,其中一个角为90度。
在数学中,直角三角形有许多独特的性质和应用。
本文将讨论直角三角形的性质以及其在几何学和实际应用中的重要性。
一、直角三角形的基本性质直角三角形有以下几个基本性质:1. 勾股定理:直角三角形的两条腰的平方和等于斜边的平方。
这条定理是由古希腊数学家毕达哥拉斯提出的,被称为毕达哥拉斯定理。
其中,a、b分别表示直角三角形的两条腰,c表示斜边。
勾股定理可表示为:a² + b² = c²。
2. 角度关系:直角三角形的两个锐角之和为90度。
由于直角本身是90度,所以其他两个角的和必然为90度。
这个性质在解决各种三角形问题时非常有用。
3. 知道一个角的大小,就可以确定其他两个角的大小。
例如,如果知道一个锐角的大小,那么直角的角度为90度减去这个锐角的度数,而第三个角则为90度。
二、直角三角形的应用直角三角形的性质和定理广泛应用于实际生活和科学领域,以下是一些应用示例:1. 测量与导航:在地理和导航中,利用直角三角形原理可以计算物体或地点之间的距离。
例如,使用三角测量法可以测量远处不可抵达的高度,或者利用三角定位计算两个位置之间的距离。
2. 建筑与工程:直角三角形的应用在建筑和工程领域非常重要。
工程师和建筑师经常使用勾股定理来计算斜边的长度,以确保结构的稳固性和坚固性。
此外, 直角三角形也经常用于测量墙壁、屋顶、地板的角度以及倾斜地面的坡度。
3. 电子技术:直角三角形的应用还可以在电子技术领域中找到。
例如,电子电路中常用的升压电路中,电容和电感器件的数值选择,利用了直角三角形的原理。
此外,信号处理和图像处理中也使用了直角三角形的概念。
4. 天文学:在天文学中,直角三角形的应用包括计算恒星和行星的位置、测量天体之间的距离以及其他天文学观测参数的计算。
天文学家经常使用三角法来计算天体距离和角度,以了解宇宙的奥秘。
总结:直角三角形作为数学中的一个基本图形,具有许多重要性质和广泛的应用。
直角三角形的性质及应用
直角三角形的性质及应用直角三角形是指其中一个角为直角(即90度)的三角形。
直角三角形具有一些特殊的性质和应用,下面将详细介绍。
一、性质:1. 直角三角形的两条边相互垂直,即若ABC是直角三角形,边AB垂直于边BC,边BC垂直于边CA。
2. 直角三角形的两条直角边的平方和等于斜边的平方,即AB²+ BC²= AC²,这是著名的勾股定理。
3. 直角三角形的两条直角边长度相等的情况下,称为等腰直角三角形,其两个锐角也相等,每个锐角为45度。
4. 直角三角形的两条直角边长度和不等于斜边的长度,较短的直角边与斜边的夹角小于90度。
二、应用:1. 几何测量:直角三角形广泛应用于测量工作中。
例如,利用勾股定理可以测量无法直接测量的距离,这是三角测量的基本原理。
测量人的身高、测量不可直接达到的高度、测量具有高危险性的区域的距离都可以使用直角三角形的性质和勾股定理进行计算。
2. 建筑设计:直角三角形在建筑设计中的应用极为广泛。
例如,在设计房屋的水平垂直方向上,可以利用直角三角形来保证建筑物的垂直性和平行性。
同时,斜塔和塔尖的设计也离不开直角三角形的计算,以确保塔的稳定和结构的安全。
3. 电子技术:在电子技术中,直角三角形也有着重要的应用。
例如,正弦波和余弦波的产生可以通过三角函数以及直角三角形的性质来进行理论上和实际上的计算和实现。
另外,在信号处理中,通过FFT(快速傅里叶变换)可以将时域信号转换为频域信号,从而实现信号的滤波、特征提取等操作。
4. 地理测量:在地理测量中,利用直角三角形可以测量某一地点的纬度和经度,从而确定地理位置。
通过利用天文观测计算直角三角形的角度,结合测量一定距离的方法,可以获得地球的三角形表面,并确定地理坐标。
5. 寻找未知物体的高度:在现实生活中,很多时候我们很难直接测量到某些物体的高度,例如房子的高度、树木的高度等。
利用直角三角形的性质,我们可以通过测量某一点到物体的斜边长度和与水平线的夹角,利用勾股定理计算出物体的高度。
解直角三角形在实际生活中的应用
解直角三角形在实际生活中的应用山东 李浩明在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.下面举例说明,供大家参考.一、航空问题例1.(2008年桂林市)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图1).求A 、B1.414 1.732==)分析:要求A 、B 两个村庄间的距离,由题意知AB =PB ,在Rt △PBC 中,可求得60PBC ∠=︒,又因为PC =450,所以可通过解直角三角形求得PB.解:根据题意得:30A ∠=︒,60PBC ∠=︒,所以6030APB ∠=︒-︒,所以APB A ∠=∠,所以AB =PB .在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB=450sin 60==︒.所以520AB PB ==≈(米) 答:A 、B 两个村庄间的距离为520米. 二、测量问题例2.(2008年湛江市)如图2所示,课外活动中,小明在离旗杆AB 10米的C 处,QB CP A 45060︒30︒图1用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .分析:要求AB 的高,由题意知可知CD=BE ,先在Rt △ADE 中求出AE 的长,再利用AB=BE +AE 求出AB 的长.解:在Rt △ADE 中,tan ∠ADE =DEAE. ∵DE =10,∠ADE =40︒.∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4. ∴AB =AE +EB =AE +DC =8.4 1.59.9+=.答:旗杆AB 的高为9.9米. 三、建桥问题例4.(2008年河南)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80). 分析:要求现在比原来少走多少路程,就需要计算两条路线路程之差,如图构造平行四边形DCBG ,将两条路线路程之差转化为AD DG AG +-,作高线DH ,将△ADG 转化为两个直角三角形,先在在Rt DGH △中求DH 、GH ,再在Rt ADH △中求AD 、AH,此题即可得解.解:如图,过点D 作DH AB ⊥于H ,DG CB ∥交AB 于G .DC AB Q ∥,∴四边形DCBG 为平行四边形.FED CBA45°37°HG图3 ∴DC GB =,11GD BC ==.∴两条路线路程之差为AD DG AG +-. 在Rt DGH △中,sin37110.60 6.60DH DG =⋅≈⨯=o , cos37110.808.80GH DG =⋅⨯o ≈≈.在Rt ADH △中,2 1.41 6.609.31AD DH =⨯≈≈.6.60AH DH =≈.∴(9.3111)(6.608.80) 4.9(km)AD DG AG +-=+-+≈. 即现在从A 地到B 地可比原来少走约4.9km . 四、图案设计问题例4.(2008年上海市)“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图4所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.分析:要求圆O 的半径r 的值,需在直角三角形ODH 中来解决,而已知的条件太少,需要先在直角三角形CEH 中,根据条件5CE =、坡面CE 的坡度1:0.75i =求出EH 、CH ,然后在直角三角形ODH 中利用勾股定理列出方程,从而求出r 的值.解:由已知OC DE ⊥,垂足为点H ,则90CHE ∠=o.图41:0.75i =Q ,43CH EH ∴=. 在Rt HEC △中,222EH CH EC +=.设4CH k =,3(0)EH k k =>, 又5CE =Q ,得222(3)(4)5k k +=,解得1k =.∴3EH =,4CH =. ∴7DH DE EH =+=,7OD OA AD r =+=+,4OH OC CH r =+=+.在Rt ODH △中,222OH DH OD +=,∴222(4)7(7)r r ++=+.解得83r =.航海中的安全问题船只在海上航行,特别要注意安全问题,这就需要运用数学知识进行有关的计算,以确保船只航行的安全性.请看下面两例.例1 (深圳市)如图1,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60o 的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30o 的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.分析:问题的关键是弄清方位角的概念,过点C 作CD ⊥AB 于D ,然后通过解直角三角形求出CD 的长,通过列方程解决几何问题也是一种常用方法.解:由已知,得AB=24×21=12,∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,所以∠C=30°,所以∠C=∠CAB ,所以CB=AB=12.在Rt △CBD 中,sin ∠CBD=CBCD,所以CD=CB ·sin ∠CBD=12×3623=.∵936>所以货船继续向正东方向行驶无触礁危险.例2 如图2,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向上,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?分析:先将实际问题转化为解直角三角形的问题.可有如下两种方法求解. 解法一:如图3,过点B 作BM ⊥AH 于M ,则BM//AF.所以∠ABM=∠BAF=30°. 在Rt △BAM 中,AM=21AB=5,BM=35. 过点C 作CN ⊥AH 于点N ,交BD 于K. 在Rt △BCK 中,∠CBK=90°-60°=30°. 设CK=x ,则BK=3x.在Rt △CAN 中,因为∠CAN=90°-45°=45°,所以AN=NC.所以AM+MN=CK+KN. 又NM=BK ,BM=KN ,所以x+35=5+3x.解得x=5. 因为5>4.8,所以渔船没有进入养殖场的危险.解法二:如图4,过点C 作CE ⊥BD 于E.所以CE//GB//FA. 所以∠BCE=∠GBC=60°,∠BCA=∠FAC=45°. 所以∠BCA=∠BCE-∠ACE=60°-45°=15°. 又∠BAC=∠FAC-∠FAB=45°-30°=15°, 所以∠BCA=∠BAC.所以BC=AB=10.在Rt △BCE 中,CE=BC ·cos ∠BCE=BC ·cos60°=10×21=5. D图2图3图4也5>4.8,所以渔船没有进入养殖场的危险.实际中的仰角和俯角问题在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.计算原理:视线、水平线、物体的高构成直角三角形,已知仰角、俯角和另一边,利用解直角的知识就可以求出物体的高度.梳理总结:⑴仰角和俯角是指视线相对于水平线而言的,不同位置的仰角和俯角是不同的;可巧记为“上仰下俯”.在测量物体的高度时,要善于将实际问题抽象为数学问题.⑵在测量山的高度时,要用“化曲为直”的原则把曲的山坡“化整为零地分成一些小段,把每一小段山坡长近似地看作直的,测出仰角求出每一小段山坡对应的高,再把每部分高加起来,就得到这座山的高度.例1 (成都)如图2,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30︒,测得乙楼底部B 点的俯角β为60︒,求甲乙两栋高楼各有多高?(计算过程和结果都不取近似值.分析:过点C 作CE ⊥AB 于点E, 在Rt △BCE 和Rt △ACE 中, BE 和AE 可用含CE(即为水平距离)的式子表示出来,从而求得两楼的高.解:作CE ⊥AB 于点E,∵CE ∥DB,CD ∥AB,且∠CDB=090,∴四边形BECD 是矩形. ∴CD=BE,CE=BD.在Rt △BCE 中, ∠β=060,CE=BD=90米.∵,tan CEBE=β∴BE=CE 39060tan 90tan 0=⨯=⋅β(米). 视线 视线水平线 俯角仰角 铅垂线图1 E图2AB图3∴CD=BE=390(米).在Rt △ACE 中, ∠α=030,CE=90米. ∵ ,tan CEAE =α ∴AE=CE 330339030tan 90tan 0=⨯=⨯=⋅α(米). ∴AB=AE+BE=3120390330=+(米). 答:甲楼高为390米,乙楼高为3120米.反思:仰角和俯角问题是解直角三角形中的常见题型,作辅助线构造直角三角形(一般同时得到两个直角三角形)并解之是解决这类问题的常用方法.例2 (乐山)如图3,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB .要求:⑴画出测量示意图;⑵写出测量步骤(测量数据用字母表示); ⑶根据(2)中的数据计算AB .分析:要测量底步不能到达的物体的高度,要转化为双直角三角形问题,测量方案如图2,计算的关键是求 AE,可设AE=x,则在Rt △AGF 和 Rt △AEF 中, 利用三角函数可得αtan x HE =,βtan x EF = ,再根据HE-FE=CD=m 建立方程即可. 解:(1)测量图案(示意图)如图4所示(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角AHE α=∠;第二步:沿CB 前进到点D ,用皮尺量出C D ,之间的距离CD m =;第三步:在点D 安装测角仪,测得此时树尖A 的仰角AFE β=∠; 第四步:用皮尺测出测角仪的高h . (3)计算:AE F H CDB图4令AE=x,则,tan HE x =α得αtan x HE =,又,tan EF x =β得βtan x EF =, ∵HE-FE=HF=CD=m, ∴,tan tan m xx =-βα 解得αββαtan tan tan tan -⋅=m x ,∴AB=.tan tan tan tan h m +-⋅αββα反思:在多个直角三角形中一定要认真分析各条线段之间的关系(包括三角函数关系、相等关系),运用方程求解,有时可起到事半功倍之效.快乐套餐:1.(泰安)如图5,一游人由山脚A 沿坡角为30o 的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45o ,则山高CD 等于 (结果用根号表示)2.(安徽)如图6,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(1.73,计算结果保留整数)参考答案:1. (300m +.2. ∵AB =8,BE =15,∴AE =23,在Rt △AED 中,∠DAE =45°,ABCD图5第19题图EDCB A450600图6∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan60°=,∴CD=CE-DE=23≈2.95≈3. 即这块广告牌的高度约为3米.。
浅谈生活中三角函数的应用
浅谈生活中三角函数的应用三角函数是高中数学中的一个重要内容,它的应用范围十分广泛。
在生活中,我们可以通过三角函数解决很多实际问题。
本文将从生活中的实际问题出发,探讨一些三角函数的应用。
一、直角三角形中的应用在我们的日常生活中,我们常常会遇到一些直角三角形的问题,这时候运用三角函数就可以很好地解决这些问题。
例如,在测量一幢建筑物的高度时,我们可以站在建筑物的脚下,用一个角度计算器或手动计算,利用正切函数求出建筑物的高度。
此外,在导航和地图制作中也需要使用三角函数,计算一个地点的方向和距离。
二、正弦函数和余弦函数在单摆和波浪问题中的应用单摆和波浪问题都是涉及周期性运动的问题。
单摆就是一个质量挂在一根不可伸缩细线上的系统(一般为一个球、钩、挂钩、网)的系统。
当摆动时,其振幅和周期都与线的长度和重力有关。
正弦函数和余弦函数可以描述单摆的运动,这些函数可以计算出时间、挥动的幅度、运动的速度、周期和频率等信息。
同样的,波浪问题也涉及到周期性运动。
在物理学、电子工程等领域中都有波浪的应用。
正弦函数和余弦函数可以描述波浪的运动。
例如,我们可以用正弦函数描述海浪的形状、大小、行程和速度等。
三角函数在工程学中有广泛的应用,尤其是在机械工程和电气工程中。
在机械工程中,三角函数可以描述某些运动的曲线。
例如,在一个滑轮系统中,我们可以用正弦函数计算曲线的形状和弧度。
在电气工程中,三角函数可以用于计算交流电压和电流的频率、幅度和相位等信息。
四、三角函数在金融学和计量经济学中的应用金融学和计量经济学中有很多统计分析技术,而其中很多方法都涉及到三角函数的应用。
例如,利用正弦函数和余弦函数可以描述经济周期的波动,用它们可以统计股票和商品价格的变化。
此外,金融学和计量经济学也可以用三角函数来解决一些风险分析问题和预测市场行为的问题。
综上所述,三角函数在生活中的应用是非常广泛的。
它们可以被应用于很多领域,从机械工程到金融学、从物理学到导航、甚至于日常生活中的建筑测量和旅游规划等。
直角三角形的特征与运用
直角三角形的特征与运用直角三角形是几何学中最基本的三角形之一。
本文将介绍直角三角形的特征、性质以及其在实际运用中的一些场景。
一、直角三角形的特征与性质直角三角形的定义是指其中一个角为90度。
根据直角三角形的性质,我们可以得出以下几个重要结论:1. 边长关系:在直角三角形中,直角边的长度称为直角边,另外两条边分别称为腿和斜边。
根据勾股定理,直角三角形的直角边平方和等于斜边平方,即a² + b² = c²,其中a和b为直角边的长度,c为斜边的长度。
2. 角度关系:直角三角形中,除了直角外,还有两个角,分别称为锐角和钝角。
由于直角为90度,所以锐角的度数总是小于90度,而钝角的度数总是大于90度。
3. 特殊比例关系:在直角三角形中,有几组特殊的边比例关系。
例如,在一个45度的直角三角形中,腿和斜边的长度相等,即a = b = c/√2。
二、直角三角形的运用直角三角形在实际生活中有广泛的应用。
下面列举了几个常见的运用场景:1. 测量与导航:直角三角形被广泛应用于测量和导航领域。
例如,在地理测量中,我们常常使用直角三角形的性质来确定两点之间的距离。
通过测量两点之间的直线距离和形成的夹角,可以利用三角函数计算出实际距离。
2. 建筑与工程:直角三角形在建筑和工程领域也得到了广泛的运用。
例如,在设计斜坡、楼梯和屋顶时,需要考虑直角三角形的性质来确保结构的稳定和安全。
3. 物理学与工业:直角三角形的特性在物理学和工业领域也有重要的应用。
例如,在机械设计中,直角三角形的比例关系被用来计算力的分解和合成,从而实现机械系统的优化和效率提升。
4. 角度测量:直角三角形的角度测量是另一个应用领域。
例如,在地理测量中,我们可以使用直角三角形的性质来测量地平线上的夹角,进而得到地球的曲率和高度差。
5. 三角函数的运用:直角三角形与三角函数之间有密切的关系。
三角函数包括正弦、余弦和正切等,它们可以利用直角三角形的边长关系来定义和计算。
鲁教版九年级上册数学第二章 直角三角形的边角关系 解直角三角形在实际中的一般应用
【点拨】∵AB=AC=2m,AD⊥BC,
∴∠ADC=90°,
∴
AD
=
AC·sin50°≈2×0.77≈1.5(m).
5.如图,AB是伸缩式遮阳棚,CD是窗户,要想在夏 至的正午时刻阳光刚好不射入窗户,则AB的长是 ________m.(假设夏至的正午时刻阳光与地平面
的夹3角为60°)
6.如图,已知电线杆 AB 直立于地面上,它的影子恰好落在土 坡的坡面 CD 和地面 BC 上,如果 CD 与地面成 45°角,∠A =60°,CD=4 m,BC=(4 6-2 2) m,则电线杆 AB 的长 为________m.
12.【2019·宿迁】宿迁市政府为了方便市民绿色出 行,推出了共享单车服务,图①是某品牌共享 单车放在水平地面上的实物图,图②是其示意 图,其中AB,CD都与地面l平行,车轮半径为 32cm,∠BCD=64°,BC=60cm,坐垫E与点 B的距离BE为15cm.
(1)求坐垫E到地面的距离;
解:如图①,过点E作EM⊥CD于点M. 由题意知∠BCM=64°,EC=BC+ BE=60+15=75(cm), ∴EM=EC·sin∠BCM=75×sin64°≈67.5(cm). ∵CD与地面l平行,∴CF=32cm. 故坐垫E到地面的距离为EM+CF≈67.5+32=99.5(cm).
参考数据: 2≈1.41, 3≈1.73)
解:如图,过点H作HN⊥BA于点N,并延长交DC 于点M,则DC⊥MN. 由题意可知MN=CA=10m,MC=EF=1.6m,HF =GE=6m. ∵∠BHN=45°,BA⊥MH, ∴BN=NH.
设 BN=NH=x m, ∵HF=6 m,∠BFN=30°,
(2)根据经验,当坐垫E到CD的距离调整为人体腿长的 0.8时,坐骑比较舒适,小明的腿长约为80cm,现 将 坐 垫 E 调 整 至 坐 骑 舒 适 高 度 位 置 E′ , 求 EE′ 的 长.(结果精确到0.1cm,参考数据:sin64°≈0.90, cos64°≈0.44,tan64°≈2.05)
解直角三角形在实际生活中应用
解直角三角形在实际生活中应用直角三角形是一种特殊的三角形,其中一个角为90度,另外两个角则是锐角或钝角。
直角三角形的重要性在于它具有很多实际应用价值。
本文将介绍一些直角三角形在实际生活中的应用。
一、测量高度和距离直角三角形的一条腿可以用作测量高度或距离的工具。
通过测量一个物体的顶部和底部的距离,同时测量观察点到底座的距离,我们可以利用直角三角形的性质计算出物体的高度。
例如,在建筑工地上,工人可以使用测量工具和直角三角形的原理来测量建筑物的高度。
二、解决倾斜和斜率问题直角三角形可以帮助我们解决倾斜和斜率问题。
在地质学和土木工程中,我们经常需要测量地面的倾斜度和斜率。
直角三角形可以帮助我们测量坡度的比例。
通过测量斜坡上某一段的水平距离和相应的垂直距离,我们可以计算出斜坡的斜率。
三、计算不可测量的距离在某些情况下,两个点之间的距离无法直接测量,例如跨越湖泊或河流的距离。
然而,利用直角三角形的性质,我们可以使用三角函数计算出这种不可测量距离。
通过观察两个点之间的角度和某一点到这两个点之间的距离,我们可以使用正切函数计算出这个不可测量的距离。
四、导航和定位直角三角形在导航和定位中也有广泛的应用。
例如,航海员可以使用天文观测和直角三角形的性质来确定船只的位置。
通过测量星体和地平线之间的角度,同时知道船只和地平线之间的距离,我们可以利用正弦和余弦函数计算出船只的位置。
五、解决工程问题在工程领域中,直角三角形常常用于解决一些复杂问题。
例如,自然灾害生态学家可以使用直角三角形的概念来设计保护森林免受火灾侵蚀。
通过构建直角三角形网格,他们可以最大程度地减少火势蔓延的可能性,保护森林资源。
六、解决影子和光线问题在摄影和照明设计领域,直角三角形可以帮助我们解决影子和光线的问题。
通过观察物体和光源之间的角度,并结合直角三角形的性质,我们可以计算出物体产生的影子的长度。
这对于照明设计师来说非常重要,以确保正确照亮目标物体。
全等直角三角形在实际生活中的应用
全等直角三角形在实际生活中的应用全等直角三角形是一种非常常见且有趣的几何形状。
它在实际生活中有许多应用,下面将介绍其中一些。
建筑设计全等直角三角形在建筑设计中经常被用来计算和确定角度、长度和比例关系。
例如,在设计一个房屋的楼顶斜坡时,建筑师可以利用全等直角三角形的性质来确定合适的斜坡角度以及相关的长度关系。
地理测量全等直角三角形被广泛应用于地理测量领域。
它们可以用来测量难以达到的地点的高度或长度。
例如,在测量一个高山的高度时,可以使用全等直角三角形的原理来计算高山的高度与测量地点的距离。
航海导航全等直角三角形在航海导航中也起着重要的作用。
通过使用全等直角三角形的特性来测量方向和角度,船舶的航向和位置可以被准确地确定。
这对于导航和航海安全至关重要。
数学教学全等直角三角形在数学教学中是一个重要的概念,它帮助学生理解几何学基本原理。
通过实际应用,学生可以更容易地理解全等直角三角形的性质,并将其应用到解决实际问题中。
工程设计除了建筑设计之外,全等直角三角形在其他工程设计领域也起着重要的作用。
例如,在电子工程中,全等直角三角形的性质可以帮助工程师计算电路元件的有效阻抗和相位差。
这对于电路的正确设计和性能优化至关重要。
总结全等直角三角形在实际生活中有许多应用。
无论是在建筑设计、地理测量、航海导航还是数学教学和工程设计中,全等直角三角形的性质都发挥着重要的作用。
了解并应用这些性质可以帮助我们更好地理解和解决实际问题。
解直角三角形在实际生活中的应用
解直角三角形在实际生活中的应用山东 李浩明在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.下面举例说明,供大家参考.一、航空问题例1.(2008年桂林市)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图1).求A 、B1.414 1.732==)分析:要求A 、B 两个村庄间的距离,由题意知AB =PB ,在Rt △PBC 中,可求得60PBC ∠=︒,又因为PC =450,所以可通过解直角三角形求得PB.解:根据题意得:30A ∠=︒,60PBC ∠=︒,所以6030APB ∠=︒-︒,所以APB A ∠=∠,所以AB =PB .在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB=450sin 60==︒.所以520AB PB ==≈(米) 答:A 、B 两个村庄间的距离为520米. 二、测量问题例2.(2008年湛江市)如图2所示,课外活动中,小明在离旗杆AB 10米的C 处,QB CP A 45060︒30︒图1用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .分析:要求AB 的高,由题意知可知CD=BE ,先在Rt △ADE 中求出AE 的长,再利用AB=BE +AE 求出AB 的长.解:在Rt △ADE 中,tan ∠ADE =DEAE. ∵DE =10,∠ADE =40︒.∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4. ∴AB =AE +EB =AE +DC =8.4 1.59.9+=.答:旗杆AB 的高为9.9米. 三、建桥问题例4.(2008年河南)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80). 分析:要求现在比原来少走多少路程,就需要计算两条路线路程之差,如图构造平行四边形DCBG ,将两条路线路程之差转化为AD DG AG +-,作高线DH ,将△ADG 转化为两个直角三角形,先在在Rt DGH △中求DH 、GH ,再在Rt ADH △中求AD 、AH,此题即可得解.解:如图,过点D 作DH AB ⊥于H ,DG CB ∥交AB 于G .DC AB ∥,∴四边形DCBG 为平行四边形.FED CBA45°37°HG图3 ∴DC GB =,11GD BC ==.∴两条路线路程之差为AD DG AG +-. 在Rt DGH △中,sin37110.60 6.60DH DG =⋅≈⨯=, cos37110.808.80GH DG =⋅⨯≈≈.在Rt ADH △中,2 1.41 6.609.31AD DH =⨯≈≈.6.60AH DH =≈.∴(9.3111)(6.608.80) 4.9(km)AD DG AG +-=+-+≈. 即现在从A 地到B 地可比原来少走约4.9km . 四、图案设计问题例4.(2008年上海市)“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图4所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.分析:要求圆O 的半径r 的值,需在直角三角形ODH 中来解决,而已知的条件太少,需要先在直角三角形CEH 中,根据条件5CE =、坡面CE 的坡度1:0.75i =求出EH 、CH ,然后在直角三角形ODH 中利用勾股定理列出方程,从而求出r 的值.解:由已知OC DE ⊥,垂足为点H ,则90CHE ∠=.图41:0.75i =,43CH EH ∴=. 在Rt HEC △中,222EH CH EC +=.设4CH k =,3(0)EH k k =>, 又5CE =,得222(3)(4)5k k +=,解得1k =.∴3EH =,4CH =.∴7DH DE EH =+=,7OD OA AD r =+=+,4OH OC CH r =+=+.在Rt ODH △中,222OH DH OD +=,∴222(4)7(7)r r ++=+.解得83r =.航海中的安全问题船只在海上航行,特别要注意安全问题,这就需要运用数学知识进行有关的计算,以确保船只航行的安全性.请看下面两例.例1 (深圳市)如图1,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.分析:问题的关键是弄清方位角的概念,过点C 作CD ⊥AB 于D ,然后通过解直角三角形求出CD 的长,通过列方程解决几何问题也是一种常用方法.解:由已知,得AB=24×21=12,∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,所以∠C=30°,所以∠C=∠CAB ,所以CB=AB=12.在Rt △CBD 中,sin ∠CBD=CBCD,所以CD=CB ·sin ∠CBD=12×3623=.∵936> 所以货船继续向正东方向行驶无触礁危险.例2 如图2,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向上,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?分析:先将实际问题转化为解直角三角形的问题.可有如下两种方法求解. 解法一:如图3,过点B 作BM ⊥AH 于M ,则BM//AF.所以∠ABM=∠BAF=30°. 在Rt △BAM 中,AM=21AB=5,BM=35. 过点C 作CN ⊥AH 于点N ,交BD 于K. 在Rt △BCK 中,∠CBK=90°-60°=30°. 设CK=x ,则BK=3x.在Rt △CAN 中,因为∠CAN=90°-45°=45°,所以AN=NC.所以AM+MN=CK+KN. 又NM=BK ,BM=KN ,所以x+35=5+3x.解得x=5. 因为5>4.8,所以渔船没有进入养殖场的危险.解法二:如图4,过点C 作CE ⊥BD 于E.所以CE//GB//FA. 所以∠BCE=∠GBC=60°,∠BCA=∠FAC=45°. 所以∠BCA=∠BCE-∠ACE=60°-45°=15°. 又∠BAC=∠FAC-∠FAB=45°-30°=15°,D图2图3图4所以∠BCA=∠BAC.所以BC=AB=10.在Rt △BCE 中,CE=BC ·cos ∠BCE=BC ·cos60°=10×21=5. 也5>4.8,所以渔船没有进入养殖场的危险.实际中的仰角和俯角问题在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.计算原理:视线、水平线、物体的高构成直角三角形,已知仰角、俯角和另一边,利用解直角的知识就可以求出物体的高度.梳理总结:⑴仰角和俯角是指视线相对于水平线而言的,不同位置的仰角和俯角是不同的;可巧记为“上仰下俯”.在测量物体的高度时,要善于将实际问题抽象为数学问题.⑵在测量山的高度时,要用“化曲为直”的原则把曲的山坡“化整为零地分成一些小段,把每一小段山坡长近似地看作直的,测出仰角求出每一小段山坡对应的高,再把每部分高加起来,就得到这座山的高度.例1 (成都)如图2,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30︒,测得乙楼底部B 点的俯角β为60︒,求甲乙两栋高楼各有多高?(计算过程和结果都不取近似值.分析:过点C 作CE ⊥AB 于点E, 在Rt △BCE 和Rt △ACE 中, BE 和AE 可用含CE(即为水平距离)的式子表示出来,从而求得两楼的高.解:作CE ⊥AB 于点E,∵CE ∥DB,CD ∥AB,且∠CDB=090,∴四边形BECD 是矩形. ∴CD=BE,CE=BD.视线 视线水平线 俯角仰角 铅垂线图1 E图2在Rt △BCE 中, ∠β=060,CE=BD=90米. ∵,tan CEBE=β∴BE=CE 39060tan 90tan 0=⨯=⋅β(米). ∴CD=BE=390(米).在Rt △ACE 中, ∠α=030,CE=90米. ∵ ,tan CEAE =α ∴AE=CE 330339030tan 90tan 0=⨯=⨯=⋅α(米). ∴AB=AE+BE=3120390330=+(米). 答:甲楼高为390米,乙楼高为3120米.反思:仰角和俯角问题是解直角三角形中的常见题型,作辅助线构造直角三角形(一般同时得到两个直角三角形)并解之是解决这类问题的常用方法.例2 (乐山)如图3,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB .要求:⑴画出测量示意图;⑵写出测量步骤(测量数据用字母表示); ⑶根据(2)中的数据计算AB .分析:要测量底步不能到达的物体的高度,要转化为双直角三角形问题,测量方案如图2,计算的关键是求 AE,可设AE=x,则在Rt △AGF 和 Rt △AEF 中, 利用三角函数可得αtan x HE =,βtan x EF = ,再根据HE-FE=CD=m 建立方程即可. 解:(1)测量图案(示意图)如图4所示(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角AHE α=∠;第二步:沿CB 前进到点D ,用皮尺量出C D ,之间的距离CD m =;AB图3AE F H CDB图4第三步:在点D 安装测角仪,测得此时树尖A 的仰角AFE β=∠; 第四步:用皮尺测出测角仪的高h . (3)计算: 令AE=x,则,tan HE x =α得αtan x HE =,又,tan EF x =β得βtan x EF =, ∵HE-FE=HF=CD=m, ∴,tan tan m xx =-βα 解得αββαtan tan tan tan -⋅=m x ,∴AB=.tan tan tan tan h m +-⋅αββα反思:在多个直角三角形中一定要认真分析各条线段之间的关系(包括三角函数关系、相等关系),运用方程求解,有时可起到事半功倍之效.快乐套餐:1.(泰安)如图5,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)2.(安徽)如图6,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(1.73,计算结果保留整数)ABCD图5第19题图EDCB A450600图6参考答案:.1. (300m2. ∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan60°=,∴CD=CE-DE=23≈2.95≈3.即这块广告牌的高度约为3米.。
解直角三角形在生活中的运用
解直角三角形在生活中的运用一、回顾1、什么叫做解直角三角形?2、解直角三角形的依据有哪些?3、关于坡度和坡角的概念?4、关于仰角和俯角的概念?5、填写右表特殊锐角三角函数的值:二、例题1、沿水库拦水坝的背水坡,将坝顶加宽2米,坡度由原来的1:2改为1:2.5,已知坝高6米,坝长50米,那么要完成这项工程需要多少土方?2、如图,公路MN和公路PQ在点P交汇,且∠QPN = 30°,点A处有一所学校,AP=160米,假设一辆拖拉机以18千米/小时的速度行驶在公路MN上,沿PN方向前进,而且拖拉机周围100米的范围内会受到噪声的影响,请问在A 处的学校会受到影响吗?请说明理由。
如果会请计算出学校受到影响的时间是多少秒?3、某中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图所示,当阳光从正西方向照射过来时,•旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角为α=30°.在同一时刻,测得一根长为1m的直立竹竿的影长恰(可能用到的数据:≈1.414,≈1.732,为4m.•根据这些数据求旗杆AB的高度.结果保留两个有效数字)三、练习1、如图,MN表示襄樊至武汉的一段高速公路设计路线图,•在点M测得点N在它的南偏东30°的方向,测得另一点A在它的南偏东60°的方向;•取MN 上另一点B,在点B测得点A在它的南偏东75°的方向,以点A为圆心,500m•为半径的圆形区域为某居民区,已知MB=400m,通过计算回答:如果不改变方向,•高速公路是否会穿过居民区?2、如图所示,从一块矩形薄板ABCD上裁下一个工件GEHCPD(阴影部分).•图中EF∥BC,GH∥AB,∠AEG=11°18′,∠PCF=33°42′,AG=2cm,FC=6cm,求工件GEHCPD的面积.(参考数据:tan11°18′≈,tan33°42′≈)3、如图是某立式家具的横截面,请你设计一个方案(角书橱高2米,房间高2.6米,所以不必从高度方面考虑方案的设计),按此方案,可使该家具通过图中的长廊搬入房间,在图2中把你设计的方案画成草图,并说明按此方案可把家具搬入房间的理由.(注:搬过程中不准许拆卸家具,不准损坏墙壁)。
中考解直角三角形的实际应用
解直角三角形的实际应用一、知识要点1.仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图(1).2.坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l =,坡面与水平面的夹角记作α,叫做坡角,则tan h i l α==.坡度越大,坡面就越陡.如图(2).3.方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图(3).二、例题讲解例1.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD )是0.7米,看旗杆顶部E 的仰角为45°.两人相距5米且位于旗杆同侧(点B 、D、F 在同一直线上).(1)求小敏到旗杆的距离DF .(结果保留根号) (2)求旗杆EF 的高度.(结果保留整数,参考数据:≈1.4,≈1.7)图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线迁移练习1.数学活动课上老师让学生以小组为单位测量学校旗杆AB的高度,如图所示,“希望小组”在教学楼一楼地面D处测得旗杆顶部仰角为60°,在教学楼三楼地面C处测得旗杆顶部仰角为30°,已知旗杆底部于教学楼一楼地面在同一水平线上,每层楼高为3米,求旗杆AB高度.例2.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)迁移练习2.如图,某数学兴趣小组为了测量学校旗杆AB的高度,他们在旗杆对面的实验楼的顶部C处测得旗杆顶端A的仰角为46°,测得旗杆底端B的俯角为32°,同时测量了旗杆底端与实验楼的地面距离BD长为9.5米.求旗杆AB的高.(结果精确到0.1米).【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62,sin46°=0.72,cos46°=0.69,tan46°=1.04】例3.金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)迁移练习3.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()例4.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)迁移练习4.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,=2.236)例5.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1∶2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76°(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27°.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为(参考数据:tan76°≈4.0,tan27°≈0.5,sin76°≈0.97,sin27°≈0.45)()A. 262B. 212C. 244D. 276迁移练习5.气魄雄伟的大礼堂座落在渝中区学田湾,它是一座仿古民族建筑.“五一”期间,小明和妈妈到重庆大礼堂参观游玩.参观结束后,穿过人民广场到达A处,回望礼堂,更显气势雄伟,金碧辉煌.此时,在A点观察到礼堂顶端的仰角为31,沿着坡度为1:3的斜坡AB 走一段距离到达B点,观察到礼堂顶端的仰角是22,测得点B与地面的高度9BC=米,则大礼堂的高度DE为()米.(精确到1米.参考数据:2tan225≈,3tan315≈)A.56 B.59 C.62 D.65跟踪训练1.一艘货轮以20海里/时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B.货轮继续向北航行1小时后到达C处,发现灯塔B在它北偏东75°方向,那么此时货轮与灯塔B的距离为()海里(结果不取近似值)2.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.253.今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号)4.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)A. 29.1米B. 31.9米C. 45.9米D. 95.9米5.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N 的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i=1∶1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)6.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为30°,求平台DE的长.(结果保留根号).(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M 的仰角为26.5°,他沿坡面DA走到坡脚A处,然后向大楼方向维续行走10米来到P处,测得广告底部N的仰角为53°,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin26.5°≈0.45,cos26.5°=0.89,tan26.5°=0.50,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33°)7.如图,一幢居民楼OC临近山坡AP,山坡AP的坡度为i=1:,小亮在距山坡坡脚A处测得楼顶C的仰角为60°,当从A处沿坡面行走10米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,求该居民楼的高度.(结果保留整数,≈1.73)。
直角三角形中 的角度在生活中的应用
B
D)
1
E
C
20
A
A
北
北
西B
┌
D
西 C东
南
200
南
本节课你有什么收获?
把实际问题转化为解直角三角形问题,关键是找出实际 问题中的合理的直角三角形,这一解答过程的思路是:
收获经验
1.我们学习数学的目的就是解决实际生活中存在 的数学问题,对于生活中存在的解直角三角形的 问题,根据题意,合理地作出垂线,构造出将已 知元素和未知元素包含在内的直角三角形。
B
A
?
45°
60°
C 198 D
B
答:东方明珠的高度是468米
1.(2015.长沙)如图,为测量一颗与地面垂直的树OA的高度, 在距离树的低端30米的B处,测得树顶A的仰角∠ABO为а,则
树OA的高度为( C )
A
?
а
B
30
o
C
北
A
2
?
P
B
南
北
西
东
南
3.如图,为了测量电线杆的高度AB,在离电线杆20米的 C处,用高1米的测角仪CD测得电线杆顶端B的仰角a= 30°则电线杆AB的高.
1.同学之间的视角归类
故事从九(25)班开始……
平视
水平线
仰视
视线
水平线
俯视
水平线
视线
视线
O
仰角 俯角
水平线
视线
1.当视线高于水平线时,视线与水平线 所成的锐角称为仰角.
2.当视线低于水平线时,视线与水平线 所成的锐角称为俯角.
情景导入
2. 刘翔和姚明的视角归类
翔飞人与姚巨人
《解直角三角形在生活中的应用》教学实录
《解直角三角形在生活中的应用》教学实录石狮二中朱文泽一、教学目标:㈠知识与技能目标:1、熟练掌握解直角三角形的基本条件和方法,能运用解直角三角形的方法或构造直角三角形的方法来解决生活实践中的实际问题。
2、通过情境问题的训练,体会数形结合的思想方法,提高学生分析问题的能力,并使学生从中体会到学数学的价值和用数学的乐趣。
㈡过程与方法目标:数学课堂不仅要传授给学生数学知识,更重要的是传授给学生数学思想,数学意识,所以在过程与方法目标上,遵循“观察——猜想——验证——归纳——总结”的主线进行学习,体现在让学生学会将千变万化的实际问题转化为数学问题来解决的能力,要求学生善于将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,培养学生用数学的意识和创新意识。
㈢情感目标:通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践并指导生活实践,从而体会探索,发现科学奥秘的快乐,锻炼学生克服困难的意志品质。
二、教学重点和难点:重点:使学生学会将实际问题转化为解直角三角形的问题,并能选用适当的锐角三角函数关系式解决,提高他们分析和解决实际问题的能力。
难点:利用构造直角三角形的方法将实际问题建模为数学问题。
三、教学方法:情景教学法、合作探究法、启发式教学法、多媒体课件四、教学过程:(师生问好)师:同学们,通过前一阶段的学习,你们积累了哪些有关解直角三角形的知识呢?谁来说说看?(教师板书:画一个直角三角形,用符号板书)。
生1:勾股定理(学生七嘴八舌,互相补充)。
生2:四个锐角三角函数。
生3:解直角三角形有二种类型:已知两边或是已知一边一角。
师:还有吗?生:对了,我们还学了一些概念:如方位角,俯角和仰角,坡度和坡比等。
师:很好,那今天我将带领大家走进生活,用我们所学的解直角三角形有关知识,去探索更广阔的数学空间,去体验数学在生活中的应用价值。
(多媒体课件辅助演示生活情景:放风筝)师:阳春三月,正是放风筝的好时节,同学们放过风筝吗?放风筝的时候,同学们总喜欢比一比,看看谁的风筝飞的高?生:飞得好高啊!师:大家来猜想一下,风筝飞行的高度跟哪些因素有关呢?生1:线长,当然是线越长飞得越高哟。
直角三角形的应用题
直角三角形的应用题直角三角形是数学中一种特殊的三角形,其特点是其中一个角度为90度。
在现实生活中,直角三角形的性质和应用非常广泛,涉及到建筑、测量、航海、天文学等多个领域。
本文将通过几个具体的应用题来展示直角三角形在实际问题中的运用。
1. 建筑应用假设我们要建造一座高塔,需要知道塔的高度,但由于无法直接测量,我们可以利用直角三角形的性质来求解。
首先选择一个水平位置作为测量点,然后用测量仪器测量与塔底的水平距离和与塔顶的仰角。
根据正弦定理,我们可以得到以下关系式:sin(仰角) = 塔高 / 距离通过测量得到仰角和距离后,可以求解出塔的高度。
2. 测量应用假设我们需要测量无法直接测量的物体长度,例如大海中的船只长度。
我们可以利用直角三角形的相似性来进行测量。
首先选择一个观察点,并使用测量仪器测量观察点到物体顶部的仰角和观察点到物体底部的仰角。
根据相似三角形的性质,我们可以得到以下关系式:物体长度 / 观察点到顶部距离 = tan(顶部仰角)物体长度 / 观察点到底部距离 = tan(底部仰角)通过测量得到仰角和观察点距离后,可以求解出物体的长度。
3. 航海应用假设我们在海上航行,需要确定自己的位置和目标位置的距离。
我们可以利用直角三角形的性质来进行位置定位。
首先找到一座标志性的建筑物,测量自己观察该建筑物的仰角。
然后转动航向,观察另一座建筑物的仰角。
根据正切定理,我们可以得到以下关系式:距离 / 两个建筑物之间的角度差 = tan(仰角)通过测量得到仰角和角度差后,可以求解出自己与目标位置之间的距离。
4. 天文学应用假设我们对天文现象进行观察研究,需要确定天体的高度。
我们可以利用直角三角形的性质来计算天体的高度。
首先选择一个观测点,并使用测天仪测量观测点到天体的仰角。
然后以地平线为基准,测量天体与地平线之间的角度。
根据正切定理,我们可以得到以下关系式:天体高度 / 观测点与天体的直线距离 = tan(仰角)通过测量得到仰角和直线距离后,可以求解出天体的高度。
直角边大于斜边的直角三角形
直角边大于斜边的直角三角形直角三角形是初中数学中的重要概念,也是几何学中的基础知识之一。
在直角三角形中,直角边大于斜边这个特殊的情况,也是我们在学习和解题过程中经常会遇到的问题。
本文将从深度和广度两个方面来对这个主题展开探讨,以便读者能够更全面地理解直角三角形中这一特殊情况的相关知识。
一、直角三角形的定义让我们来回顾一下直角三角形的定义。
直角三角形是指其中一角为直角(90°)的三角形。
在直角三角形中,直角边是指与直角相邻的两条边之一,而斜边则是位于直角的对边。
根据勾股定理,直角三角形直角边平方和等于斜边平方,即a² + b² = c²(其中a、b为直角边的长度,c为斜边的长度)。
二、直角边大于斜边的情况在一般情况下,我们常见的直角三角形是直角边小于斜边的情况。
但是,当直角边的长度大于斜边的长度时,会出现什么样的特殊情况呢?这是我们接下来要探讨的重点。
1. 直角边大于斜边的性质我们需要了解的是,直角边大于斜边的情况在直角三角形中是不成立的。
根据勾股定理的定义,直角边平方和不可能大于斜边平方。
从几何性质上来说,直角边大于斜边是不符合直角三角形的定义的。
2. 实际意义和应用在实际生活和工作中,我们经常会用到直角三角形的相关知识。
在建筑学中,测量房屋的斜面长度时就可以利用直角三角形的原理,通过斜边和直角边的关系来计算斜面的长度。
然而,如果直角边大于斜边的情况是不存在的,那么在实际应用中就需要特别注意斜边和直角边的长度关系,以免出现错误的计算结果。
三、个人观点和理解在我看来,直角三角形是数学中非常基础但又非常重要的一个概念。
它不仅可以帮助我们理解数学知识,还可以在实际生活中帮助我们解决问题。
而直角边大于斜边的情况,在几何学的范畴中是不存在的,这也正是直角三角形的严谨性和精确性所在。
总结回顾通过本文的探讨,我们对直角三角形中直角边大于斜边的情况进行了全面的评估。
我们回顾了直角三角形的定义和相关性质,探讨了直角边大于斜边的特殊情况,同时也分享了在实际应用中需要注意的问题。
直角三角形在生活中的应用.doc
直角三角形在生活中的应用教学目标(一)教学知识点1.探索直角三角形在生活中应用,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气.2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教学重点1. 探索直角三角形在生活中应用,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示教学过程Ⅰ.创设问题情境,引入新课[师]直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界.我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解.它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等.下面我们就来看一个问题(多媒体演示).[师]随着人民生活水平的提高,小轿车越来越多,为了交通安全,某市政府要修建10 m 高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m 长的斜道.(如图所示,用多媒体演示)这条斜道的倾斜角是多少?[生]在Rt △ABC 中,BC=10 m ,AC =40 m ,sinA =41 AB BC .我们查表就可求出∠A. [师]我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?Ⅱ.讲授新课下面请大家再来看一个问题(多媒体演示).海中有一个小岛A ,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后,到达该岛的南偏西25°的C 处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.[师]我们注意到题中有很多方位,在平面图形中,方位是如何规定的?[生]应该是“上北下南,左西右东”.[师]请同学们根据题意在练习本上画出示意图,然后说明你是怎样画出来的.[生]首先我们可将小岛A 确定,货轮B 在小岛A 的南偏西55°的B 处,C 在B 的正东方,且在A 南偏东25°处.示意图如下.[师]货轮要向正东方向继续行驶,有没有触礁的危险,由谁来决定?[生]根据题意,小岛四周10海里内有暗礁,那么货轮继续向东航行的方向如果到A 的最短距离大于10海里,则无触礁的危险,如果小于10海里则有触礁的危险.A 到BC 所在直线的最短距离为过A 作AD ⊥BC ,D 为垂足,即AD 的长度.我们需根据题意,计算出AD 的长度,然后与10海里比较.[师]这位同学分析得很好,能将实际问题清晰条理地转化成数学问题.下面我们就来看AD 如何求.根据题意,有哪些已知条件呢?[生]已知BC °=20海里,∠BAD =55°,∠CAD =25°.[师]在示意图中,有两个直角三角形Rt △ABD 和Rt △ACD.你能在哪一个三角形中求出AD 呢?[生]在Rt △ACD 中,只知道∠CAD=25°,不能求AD.[生]在Rt △ABD 中,知道∠BAD=55°,虽然知道BC =20海里,但它不是Rt △ABD 的边,也不能求出AD.[师]那该如何是好?是不是可以将它们结合起来,站在一个更高的角度考虑?[生]我发现这两个三角形有联系,AD 是它们的公共直角边.而且BC 是这两个直角三角形BD 与CD 的差,即BC =BD-CD.BD 、CD 的对角是已知的,BD 、CD 和边AD 都有联系.[师]有何联系呢?[生]在Rt △ABD 中,tan55°=AD BD ,BD=ADtan55°;在Rt △ACD 中,tan25°=ADCD ,CD =ADtan25°.[生]利用BC =BD-CD 就可以列出关于AD 的一元一次方程,即ADtan55°-ADtan25°=20.[师]太棒了!没想到方程在这个地方帮了我们的忙.其实,在解决数学问题时,很多地方都可以用到方程,因此方程思想是我们初中数学中最重要的数学思想之一.下面我们一起完整地将这个题做完.[师生共析]解:过A 作BC 的垂线,交BC 于点D.得到Rt △ABD 和Rt △ACD ,从而BD=AD tan55°,CD =ADtan25°,由BD-CD =BC ,又BC =20海里.得ADtan55°-ADtan25°=20.AD(tan55°-tan25°)=20, AD=︒-︒25tan 55tan 20≈20.79(海里). 这样AD ≈20.79海里>10海里,所以货轮没有触礁的危险.活动与探究如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货.此时.接到气象部门通知,一台风中心正以40 海里/时的速度由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均受到影响.(1)问:B 处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:2≈1.4,3 ≈1.7) [过程]这是一道需借助三角知识解决的应用问题,需抓住问题的本质特征.在转化、抽象成数学问题上下功夫.[结果](1)过点B 作BD ⊥AC.垂足为D.依题意,得∠BAC =30°,在Rt △ABD 中,BD= 21AB=21×20×16=160<200, ∴B 处会受到台风影响.(2)以点B 为圆心,200海里为半径画圆交AC 于E 、F ,由勾股定理可求得DE=120. AD=1603.AE=AD-DE=1603 -120,∴401203160-=3.8(小时). 因此,陔船应在3.8小时内卸完货物.Ⅲ.随堂练习1.一个人从山底爬到山顶,需先爬40°的山坡300 m ,再爬30°的山坡100 m ,求山高.(结果精确到0.01 m)解:如图,根据题意,可知BC=300 m ,BA=100 m ,∠C=40°,∠ABF=30°.在Rt △CBD 中,BD=BCsin40°≈300×0.6428=192.8(m); 在Rt △ABF 中,AF=ABsin30°=100×212.如图,一灯柱AB 被一钢缆CD 固定,CD 与地面成40°夹角,且DB =5 m ,现再在C点上方2m 处加固另一条钢缆ED ,那么钢缆ED 的长度为多少?解:在Rt △CBD 中,∠CDB=40°,DB=5 m ,sin40°= DBBC ,BC=DBsin40°=5sin40°(m). 在Rt △EDB 中,DB=5 m ,BE=BC+EC =2+5sin40°(m).根据勾股定理,得DE=2222)40sin 52(5︒++=+BE DB ≈7.96(m). 所以钢缆ED 的长度为7.96 m.Ⅳ.课堂小结本节课我们运用三角函数解决了与直角三角形有关的实际问题,提高了我们分析和 解决实际问题的能力.其实,我们这一章所学的内容属于“三角学”的范畴.请同学们阅读“读一读”,了解“三角学”的发展,相信你会对“三角学”更感兴趣.V.课后作业1.(2003年江苏盐城)如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力, 现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)2. 如图,某地夏日一天中午,太阳光线与地面成80°角,房屋朝南的窗户高AB=1.8 m ,要在窗户外面上方安装一个水平挡板AC ,使光线恰好不能直射室内,求挡板AC 的宽度.(结果精确到0.01 m)[过程]根据题意,将实际问题转化为数学问题,在窗户外面上方安装一个水平挡板AC ,使光线恰好不能直射室内即光线应沿CB 射入.所以在Rt △ABC 中,AB =1.8 m , ∠ACB =80°.求AC 的长度.[结果]tan80°=671.58.180tan ,≈︒=AB AC AC AB =0.317≈0.32(米). 所以水平挡板AC 的宽度应为0.32米.。
直角三角形的应用
直角三角形的应用直角三角形是一种特殊的三角形,其中一个角为90度。
直角三角形的特殊性使其在实际生活中具有广泛的应用。
本文将重点探讨直角三角形的应用领域,并讨论其在建筑、测量和物理学等方面的重要性。
一、建筑领域在建筑领域,直角三角形经常被应用于测量和设计。
例如,在建造房屋或其他建筑物时,工程师和建筑师通常会使用直角三角形来计算楼梯的尺寸和坡度。
通过应用勾股定理,我们可以确定楼梯的踏步和台阶的尺寸,以确保其安全性和合适的角度。
此外,直角三角形的概念也常用于测量建筑物或土地的高度和角度。
工程师可以利用三角测量法,通过测量已知距离和角度来计算未知的高度或长度。
这在建造高楼大厦或测量地形时尤为重要。
二、测量领域直角三角形在测量领域中起着至关重要的作用。
例如,测量一座山的高度时,我们可以利用直角三角形的原理。
通过选择一个合适的位置,测量山顶和地平线之间的角度,然后在测量点和山顶之间的距离,我们可以利用正切函数计算出山的高度。
此外,直角三角形的原理也可以应用于测量不可达到的物体的高度。
如在森林中测量树木的高度,我们可以利用水平线和树顶之间的角度,以及测量点和树根之间的距离,通过正切函数计算出树木的高度。
这种方法在实际测量中十分常用。
三、物理学应用直角三角形在物理学中有广泛的应用。
例如,当物体沿斜面向上或向下运动时,可以利用直角三角形的原理来计算物体的速度和加速度。
通过测量斜面的角度和物体沿斜面移动的距离,我们可以使用正弦、余弦和正切函数来解决相关问题。
此外,在力学中,直角三角形的概念也被用于计算合力和分力。
当多个力作用于物体时,我们可以使用三角函数来确定每个力的作用效果,并计算合力的方向和大小。
总之,直角三角形作为一种基础几何形状,在建筑、测量和物理学中都有重要的应用。
通过应用勾股定理和三角函数等概念,我们可以解决各种与角度、距离和高度有关的实际问题。
深入理解直角三角形的应用领域,不仅能够帮助我们在实践中解决问题,也能更好地理解几何学的基本原理和物理学的相关概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形在生活中的应用 教学目标 (一)教学知识点
1.探索直角三角形在生活中应用,进一步体会三角函数在解决问题过程中的应用.
2.能够把实际问题转化为数学问题,对结果的意义进行说明.
(二)能力训练要求
发展学生的数学应用意识和解决问题的能力.
(三)情感与价值观要求
1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气.
2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.
教学重点
1. 探索直角三角形在生活中应用,进一步体会三角函数在解决问题过程中的作用.
2.发展学生数学应用意识和解决问题的能力.
教学难点
根据题意,了解有关术语,准确地画出示意图.
教学方法
探索——发现法
教具准备
多媒体演示
教学过程
Ⅰ.创设问题情境,引入新课
[师]直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界.我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解.它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等.
下面我们就来看一个问题(多媒体演示).
[师]随着人民生活水平的提高,小轿车越来越多,为了交通安全,某市政府要修 建10 m 高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m 长的斜道.(如图所示,用多媒体演示)
这条斜道的倾斜角是多少?
[生]在Rt △ABC 中,BC=10 m ,AC =40 m ,
sinA =4
1 AB BC .我们查表就可求出∠A. [师]我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个
锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?
Ⅱ.讲授新课
下面请大家再来看一个问题(多媒体演示).
海中有一个小岛A ,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A 岛南
偏西55°的B 处,往东行驶20海里后,到达该岛的南偏西25°的C 处,之后,货轮继续往
东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.
[师]我们注意到题中有很多方位,在平面图形中,方位是如何规定的?
[生]应该是“上北下南,左西右东”.
[师]请同学们根据题意在练习本上画出示意图,然后说明你是怎样画出来的.
[生]首先我们可将小岛A 确定,货轮B 在小岛A 的南偏西55°的B 处,C 在B 的正东方,
且在A 南偏东25°处.示意图如下.
[师]货轮要向正东方向继续行驶,有没有触礁的危险,由谁来决定?
[生]根据题意,小岛四周10海里内有暗礁,那么货轮继续向东航行的方向如果到A 的
最短距离大于10海里,则无触礁的危险,如果小于10海里则有触礁的危险.A 到BC 所在直
线的最短距离为过A 作AD ⊥BC ,D 为垂足,即AD 的长度.我们需根据题意,计算出AD 的长
度,然后与10海里比较.
[师]这位同学分析得很好,能将实际问题清晰条理地转化成数学问题.下面我们就来看
AD 如何求.根据题意,有哪些已知条件呢?
[生]已知BC °=20海里,∠BAD =55°,∠CAD =25°.
[师]在示意图中,有两个直角三角形Rt △ABD 和Rt △ACD.你能在哪一个三角形中求出
AD 呢?
[生]在Rt △ACD 中,只知道∠CAD=25°,不能求AD.
[生]在Rt △ABD 中,知道∠BAD=55°,虽然知道BC =20海里,但它不是Rt △ABD 的边,也不能求出AD.
[师]那该如何是好?是不是可以将它们结合起来,站在一个更高的角度考虑?
[生]我发现这两个三角形有联系,AD 是它们的公共直角边.而且BC 是这两个直角三角
形BD 与CD 的差,即BC =BD-CD.BD 、CD 的对角是已知的,BD 、CD 和边AD 都有联系.
[师]有何联系呢?
[生]在Rt △ABD 中,tan55°=AD BD ,BD=ADtan55°;在Rt △ACD 中,tan25°=AD
CD ,CD =ADtan25°.
[生]利用BC =BD-CD 就可以列出关于AD 的一元一次方程,即ADtan55°-ADtan25°=
20.
[师]太棒了!没想到方程在这个地方帮了我们的忙.其实,在解决数学问题时,很多地方
都可以用到方程,因此方程思想是我们初中数学中最重要的数学思想之一.
下面我们一起完整地将这个题做完.
[师生共析]解:过A 作BC 的垂线,交BC 于点D.得到Rt △ABD 和Rt △ACD ,从而BD=AD tan55°,CD =ADtan25°,由BD-CD =BC ,又BC =20海里.得
ADtan55°-ADtan25°=20.
AD(tan55°-tan25°)=20, AD=︒-︒25tan 55tan 20≈20.79(海里). 这样AD ≈20.79海里>10海里,所以货轮没有触礁的危险.
活动与探究
如图,某货船以20海里/时的速度将一批重要物资由A
处运往正西方向的B 处,经16小时的航行到达,到达后必
须立即卸货.此时.接到气象部门通知,一台风中心正以40
海里/时的速度由A 向北偏西60°方向移动,距台风中心
200海里的圆形区域(包括边界)均受到影响.
(1)问:B 处是否会受到台风的影响?请说明理由.
(2)为避免受到台风的影响,该船应在多少小时内卸完货物?
(供选用数据:2≈1.4,3 ≈1.7) [过程]这是一道需借助三角知识解决的应用问题,需抓住问题的本质特征.在转化、抽象成数学问题上下功夫.
[结果](1)过点B 作BD ⊥AC.垂足为D.
依题意,得∠BAC =30°,在Rt △ABD 中,BD= 21AB=2
1×20×16=160<200, ∴B 处会受到台风影响.
(2)以点B 为圆心,200海里为半径画圆交AC 于E 、F ,由勾股定理可求得DE=120. AD=1603.
AE=AD-DE=1603 -120,
∴40
1203160-=3.8(小时). 因此,陔船应在3.8小时内卸完货物.
Ⅲ.随堂练习
1.一个人从山底爬到山顶,需先爬40°的山坡300 m ,再爬30°的山坡100 m ,求山高.(结果精确到0.01 m)
解:如图,根据题意,可知
BC=300 m ,BA=100 m ,∠C=40°,∠ABF=30°.
在Rt △CBD 中,BD=BCsin40°
≈300×0.6428
=192.8(m); 在Rt △ABF 中,AF=ABsin30°
=100×
2
1
2.如图,一灯柱AB 被
一钢缆CD 固定,CD 与地面
成40°夹角,且DB =5 m , 现再在C 点上方2m 处加固
另一条钢缆ED ,那么钢缆
ED 的长度为多少?
解:在Rt △CBD 中,∠CDB=40°,DB=5 m ,
sin40°= DB
BC ,BC=DBsin40°=5sin40°(m). 在Rt △EDB 中,DB=5 m ,
BE=BC+EC =2+5sin40°(m).
根据勾股定理,得DE=2222)40sin 52(5︒++=+BE DB ≈7.96(m). 所以钢缆ED 的长度为7.96 m.
Ⅳ.课堂小结
本节课我们运用三角函数解决了与直角三角形有关的实际问题,提高了我们分析和 解决实际问题的能力.
其实,我们这一章所学的内容属于“三角学”的范畴.请同学们阅读“读一读”,了解“三角学”的发展,相信你会对“三角学”更感兴趣.
V.课后作业
1.(2003年江苏盐城)
如图,Rt △ABC 是一防
洪堤背水坡的横截面
图,斜坡AB 的长为
12 m ,它的坡角为45°,为了提高该堤的防洪能力, 现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)
2. 如图,某地夏日一天中午,太阳光线
与地面成80°角,房屋朝南的窗户高
AB=1.8 m ,要在窗户外面上方安装一个水
平挡板AC ,使光线恰好不能直射室内,
求挡板AC 的宽度.(结果精确到0.01 m)
[过程]根据题意,将实际问题转化为数
学问题,在窗户外面上方安装一个水平
挡板AC ,使光线恰好不能直射室内即光线
应沿CB 射入.所以在Rt △ABC 中,AB =1.8 m , ∠ACB =80°.求AC 的长度.
[结果]tan80°=671
.58.180tan ,≈︒=AB AC AC AB =0.317≈0.32(米). 所以水平挡板AC 的宽度应为0.32米.。