北师大版初二(上)数学:全等三角形(学生版)
北师版数学八年级上册精品课件2 一定是直角三角形吗
A
即AB2+BC2=AC2∴△ABC是Rt△
答:船转弯后,是沿正西方向航行的。
2.如图,哪些是直角三角形,哪些不是,说说你的理由?
①②
③
④ ⑥
⑤
答案: ④⑤是直角三角形 ①②③⑥不是直角三角形
小结: 1、如果三角形的三边长a,b,c满足 a2 +b2=c2,那么这个三角形是直角三角形。 2. 勾股数:满足a2 +b2=c2的三个正整数,
几个直角三角形,你是如何判断的?与你的同伴交流。 易知:△ABE,△DEF,△FCB
A 2 E 2 D 均为直角三角形
1
F
由勾股定理知
4
BE2=22+42=20,EF2=22+12=5,
3 BF2=32+42=25
B
4
C ∴BE2+EF2=BF2 ∴ △BEF是直角三角形
2.一艘在海上朝正北方向航行的轮船,在航行240海里时方位
称为勾股数.
实验结果: ① 5,12,13满足a2+b2=c2,可以构成直角三角形; ② 7,24,25满足a2+b2=c2,可以构成直角三角形; ③ 8,15,17满足a2+b2=c2 ,可以构成直角三角形.
90
120
60
150
12 13
30
180
0
5
90 120
150
24
60
25
30
提问1 同学们还能找出哪些勾股数呢? 提问2 今天的结论与前面学习的勾股定理
有哪些异同呢? 提问3 到今天为止,你能用哪些方法判断一个
三角形是直角三角形呢?
例.一个零件的形状如图(a)所示,按规定这个零件中∠A和
第1章 考点01 等腰三角形与直角三角形(学生版) 新版初中北师大版数学常考考点各个击破讲义
考点1、等腰三角形与直角三角形知识框架⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩︒︒3045等腰三角形的判定及性质等边三角形的判定及性质直角三角形的判定及性质全等三角形的判定和性质等腰三角形的性质等腰三角形的判定等边三角形的性质与判定等腰三角形的分类讨论(边、角、高)直角三角形的性质与判定应用直角三角形全等的判定直角三角形中的特殊角()的应用三角形中的动态问题基础知识点重难点题型, 基础知识点知识点1.1等腰三角形的判定及性质1)等腰三角形的有关概念有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
2)等腰三角形的性质①等腰三角形的两个底角相等。
(简写成“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)3)等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简写成“等角对等边”)等腰三角形是以底边的垂直平分线为对称轴的轴对称图形1.(2020·宁波市海曙区储能学校初二期末)若ABC 中刚好有2B C ∠=∠ ,则称此三角形为“可爱三角形”,并且A ∠ 称作“可爱角”.现有 一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( ).A .45︒或 36︒B .72或 36C .45︒或72︒D .36︒或72︒或45︒2.(2020·哈尔滨市第三十九中学初二月考)在ABC 中,AD 是BAC ∠的平分线,且AB AC CD =+,若81BAC ∠=︒,则ABC ∠的大小为______.第2题 第3题3.(2020·内蒙古凉城·初二期末)如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .4.(2020·湖南永定·期中)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE ,点D ,E 可在槽中滑动,若∠BDE=78°,则∠AOB 等于__________度.5.(2020·河北初三其他)已知等腰三角形ABC ,AB AC =,D 为射线BC 上一点,以AD 为一边作等腰三角形,且AD AE =,连接DE ,BAC DAE ∠=∠,2CD =,3BC =.(1)如图1,当点D 在线段BC 上时,线段CE 的长为______________.(2)如图2,当点D 在BC 延长线上时,若140∠=︒,则2∠=__________.6.(2020·广东揭阳·初一期末)如图,ABC 中,AB AC =,D 是BC 中点,下列结论中不正确的是( ). A .B C ∠=∠ B .AD BC ⊥C .AD 平分BAC ∠ D .2AB BD =7.(2020·江阴市长寿中学初二月考)如图,△ABC中,AB=8,AC=6,∠ABC和∠ACB的平分线交于点O,过O点作MN∥BC,分别交AB、AC于M、N点,则△AMN的周长为___________.知识点1.2等边三角形的判定及性质1)等边三角形的有关概念等腰三角形中,有一种特殊的等腰三角形:三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
北师大版八年级数学上册知识点梳理
第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。
命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。
正确的命题叫真命题,不正确的命题叫假命题。
基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。
定理:用逻辑的方法判断为正确并作为推理的根据的真命题。
注意:基本事实和定理一定是真命题。
[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。
[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角 钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形三内角和等于180°。
三角形的一个外角等于与它不相邻的的两个内角之和。
[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。
思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。
还有其它推出来的性质:全等三角形的周长相等、面积相等。
全等三角形的对应边上的对应中线、角平分线、高线分别相等。
[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。
北师大版八年级上册初二数学全册课件(精心整理汇编)
知1-讲
导引:可以以边长为c的正方形为基础,一在形外补拼(不 重叠)成新的正方形;二在形内叠合成新的正方形.
即S:A两+S条B直=S角C边上
的正方形面积之和等于 斜边上的正方形的面积.
观察所得到的各组数据,你有什么发现? 知1-导
A
a
Bb c
C
SA+SB=SC
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
知1-讲
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和等于 斜边的平方.
弦c 股b
知1-讲
议一议 观察下图,判断图中三角形的三边长是否满足a2+b2=c2.
知1-讲
例1 如图是用硬纸板做成的四个两直角边长分别是a, b,斜边长为c的全等的直角三角形和一个边长为 c的正方形,请你将它们拼成一个能说明勾股定 理正确性的图形. (1)画出拼成的这个图形的示意图; (2)说明勾股定理的正确性.
新北师大版八年级上册数学
全册课件
交网本 流络课 使只件 用供来
免源 费于
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
1 课堂讲解 勾股定理
勾股定理与图形的面积
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
2
2π,
所以c2=25,a2=16.
根据勾股定理,得
b2=c2-a2=9.
所以
S3
1 2
八年级数学上册 第十一章 全等三角形测试题一(无答案)北师大版
第十一章全等三角形测试题(A )一、选择题(每小题4分,共40分)1、下列说法正确的是()A :全等三角形是指形状相同的两个三角形 C :全等三角形的周长和面积分别相等 C :全等三角形是指面积相等的两个三角形 D :所有的等边三角形都是全等三角形2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为()F A A :2 B :3 C :5 D :2.5(第2题)BE3、如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=D C A ∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有() A :1个 B :2个 C :3个 D :4个A E C (第4题) 4、如图:AB=AD ,AE 平分∠BAD ,则图中有()对全等三角形。
B A B C D (第3题)A :2B :3C :4D :55、如图:在△ABC 中,AD 平分∠BAC 交BC 于D ,AE ⊥BC 于E ,∠B=40°,∠BAC=82°,则∠DAE=() A :7° B :8° C :9° D :10°6、如图:在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AC 于E ,DF ⊥AB 于F ,且FB=CE ,则下列结论::①DE=DF ,②AE=AF ,B ③BD=CD ,④AD ⊥BC 。
其中正确的个数有() A :1个 B :2个 C :3个 D :4个A B(第5题)D E C A F D (第6题)E ECCB(第7题)F D 7、如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要() A :AB=CD B :EC=BF C :∠A=∠D D :AB=BC 8、如图:在不等边△ABC 中,PM ⊥AB ,垂足为M ,PN ⊥AC ,垂足为N ,且PM=PN ,Q 在AC 上,PQ=QA ,下列结论:①AN=AM ,②QP ∥AM ,a B AM QN(第8题)C ③△BMP ≌△QNP ,其中正确的是()A :①②③B :①②C :②③D :①b(第9题)c 9、如图:直线a ,b ,c 表示三条相互交叉环湖而建的公路,现在建立一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A :1个B :2个C :3个D :4个10、如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6C ㎝,则△DEB的周长是()DA:6㎝ B:4㎝ C:10㎝ D:以上都不对A 二、填空题(每小题4分,共40分)11、如图:AB=AC,BD=CD,若∠B=28°则∠C=;12、如图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,(第10题)EABDB(第11题)CO③点P在∠AOB的平分线上。
北师大版数学《全等三角形》说课稿
《全等三角形》说课稿尊敬的各位评委、老师,大家好!我说课的内容是《全等三角形》。
下面我主要从教材分析、教法与学法和教学过程三个方面,与大家进行交流。
(一)教材分析。
针对教材,我对以下几方面进行了分析:一、教材的地位和作用《全等三角形》是新课标北师大版七年级数学(下)册第五章的内容,本节内容是在学生学习了线段、角、相交线、平行线以及三角形的有关概念之后引入的,它先介绍了一般图形的全等,再从一般到特殊介绍全等三角形的概念。
全等是用于证明线段相等、角相等的重要方法,是今后证明几何问题的重要工具,而且在学习过程中,通过学生动手操作,渗透全等变换的思想。
本节内容也是后面探究三角形全等条件的基础,它对知识的联系起到承上启下的作用。
二、教学目标1、在知识与技能方面:(1)了解全等三角形的相关概念,掌握寻找全等三角形对应元素的基本方法。
(2)掌握全等三角形的性质,会运用这些性质进行简单计算并能解决简单的实际问题。
2、在过程与方法方面:(1)让学生联系实际生活,通过观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应边与对应角的方法。
(2)在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉。
3、在情感、态度与价值观方面:学生通过观察、发现生活中的全等图形,感受生活中的数学美,增强审美意识;在探究和运用全等三角形性质的过程中敢于阐述自己的观点,增强自信,感受成功的乐趣。
三、教学重点与难点(1)本节课的教学重点是:[探究全等三角形的性质]][掌握两个全等三角形的对应边、对应角的相规律,并且能准确地指出两个全等三角形的对应元素]对于全等三角形呈现出的各种不同的位置关系,还不能准确熟练地找出对应顶点、对应边、对应角,所以探究全等三角形对应元素的寻找方法,是一个难点。
]我采用合作探究式的教学方法,以多媒体为教学平察讨论、动手操作,引导学生发现寻找全等三角形对应元素的方法,掌握全等三角形的性质,给学生创设自主探索、合作交流、独立获取知识的时间和空间,让他们经历知识形成过程,让不同的学生在数学上得到不同的发展,使他们都能获得学习数学的兴趣和热情。
北师大版八年级数学上学期压轴题攻略专题02 勾股定理与全等三角形综合的三种考法全梳理(原卷版)
专题02勾股定理与全等三角形综合的三种考法全梳理目录【方法归纳】 (1)【考法一、勾股定理与倍长中线全等模型】 (2)【考法二、勾股定理与手拉手全等模型】 (5)【考法三、勾股定理与一线三直角全等模型】 (7)【课后练习】 (10)【方法归纳】模型1.倍长中线模型模型2.手拉手模型,如下图:模型3.三垂直全等模型,如图:【考法一、勾股定理与倍长中线全等模型】例.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若12AB =,8AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使AD DE =,连接BE .请根据小明的方法思考:(1)由已知和作图能得到ADC EDB V V ≌,依据是___________.A .SSSB .ASAC .AASD .SAS(2)由“三角形的三边关系”可求得AD 的取值范围是___________.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【初步运用】(3)如图2,AD 是ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE EF =.若3EF =,2EC AE =,求线段BF 的长.【灵活运用】(4)如图3,在ABC 中,90A ∠=︒,D 为BC 中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,试猜想线段BE ,CF ,EF 三者之间的等量关系,并证明你的结论.变式1.【证明体验】(1)如图1,在ABC 中,AD 为BC 边上的中线,延长AD 至E ,使DE AD =,连接BE .求证:ACD EBD △≌△.【迁移应用】(2)如图2,在ABC 中,5AC =,13BC =,D 为AB 的中点,DC AC ⊥.求ABC 面积.【拓展延伸】(3)如图3,在ABC 中,90ABC ∠=︒,D 是BC 延长线上一点,BC CD =,F 是AB 上一点,连接FD 交AC 于点E ,若2AF EF ==,6BD =,求ED 的长.变式2.[方法储备]如图1,在ABC 中,CM 为ABC 的中线,若2AC =,4BC =,求CM 的取值范围.中线倍长法:如图2,延长CM 至点D ,使得MD CM =,连结BD ,可证明,由全等得到2BD AC ==,从而在BCD △中,根据三角形三边关系可以确定CD 的范围,进一步即可求得CM 的范围.在上述过程中,证明ACM BDM △≌△的依据是______,CM 的范围为______;[思考探究]如图3,在ABC 中,90ACB ∠=︒,M 为AB 中点,D 、E 分别为AC 、BC 上的点,连结MD 、ME 、DE ,90DME ∠=︒,若1BE =,2AD =,求DE 的长;[拓展延伸]如图4,C 为线段AB 上一点,AC BC >,分别以AC 、BC 为斜边向上作等腰Rt ACD △和等腰Rt CBE △,M 为AB 中点,连结DM ,EM ,DE .①求证:DME 为等腰直角三角形;②若将图4中的等腰Rt CBE △绕点C 转至图5的位置(A ,B ,C 不在同一条直线上),连结AB ,M 为AB 中点,且D ,E 在AB 同侧,连结DM ,EM .若5AD =,3EB =,求DAM △和EBM △的面积之差.变式3.【问题背景】(1)如图1,点P 是线段AB ,CD 的中点,求证:AC BD ∥;【变式迁移】(2)如图2,在等腰ABC 中,,AB BC BD =是底边AC 上的高线,点E 为ABD △内一点,连接ED ,延长ED 到点F ,使ED FD =,连接AF ,若BE AF ⊥,请判断AF 、BE 、BC 三边数量关系并说明理由;【拓展应用】(3)如图3,在等腰ABC 中,90,ACB AC BC ∠=︒=,点D 为AB 中点,点E 在线段BD 上(点E 不与点B ,点D 重合),连接CE ,过点A 作AF CE ⊥,连接FD ,若10,4AF CF ==,求FD 的长.【考法二、勾股定理与手拉手全等模型】例.如图,在ABC 中,以AC 为边向外作等边ACD ,以AB 为边向外作等边ABE ,连接CE 、BD .求证:BAD EAC ≌.【知识应用】如图,四边形ABCD 中,AC 、BD 是对角线,ACB △是等腰直角三角形,=45°ADC ∠,2AD =,4CD =,求BD 的长.【拓展提升】如图,四边形ABCD 中,AB AC =,90ABC ADC ∠+∠=︒,BD =,则BAC BDC ∠-∠=________.变式1.在Rt ABC 中,90BAC ∠=︒,AB AC =,P 是直线AC 上的一点,连接BP ,过点C 作CD BP ⊥,交直线BP 于点D .(1)当点P 在线段AC 上时,如图①,求证:BD CD -=;(2)当点P 在直线AC 上移动时,位置如图②、图③所示,线段CD ,BD 与AD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.变式2.如图1,在Rt ABC 中,90AC BC ACB =∠=︒,,E 为AC 上一点,D 为BC 延长线上一点,且CE CD =,连接AD BE ,,并延长BE 交AD 于F .(1)求证:BF AD ⊥.(2)若点N 与C 关于直线AD 对称,连接CN ,连接AN .①如图2,作ACB ∠的角平分线CM 交BE 于点M ,连接AM .判断DAN ∠与DAM ∠的数量关系,并证明你的结论.②如图3,若14AF CN ==,,求AB 的长.变式3.如图所示,等腰直角ABC 中,90ACB ∠=︒.(1)如图1,若D 是ABC 内一点,将线段CD 绕点C 顺时针旋转90︒得到CE ,连,AD BE ,求证:AD BE =;(2)若D 是ABC 外一点,将线段CD 绕点C 顺时针旋转90︒得到CE ,且AE AB =,连结BD ,猜想:线段CD 和BD 满足什么数量关系?请在图2中画出符合要求的图形(一种即可),并在你所画图形的基础上完成证明;(3)如图,若O 是斜边AB 的中点,M 为BC 下方一点,且2OM =,7CM =,45BMC ∠=︒,则BM =___________.变式4.【探索研究】已知:ABC 和CDE 都是等边三角形.(1)如图1,若点A 、C 、E 在一条直线上时,我们可以得到结论:线段AD 与BE 的数量关系为:,线段AD 与BE 所成的锐角度数为︒;(2)如图2,当点A 、C 、E 不在一条直线上时,()1中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;【灵活运用】(3)如图3,某广场是一个四边形区域ABCD ,现测得:45m AB =,60m BC =,且30ABC ∠=︒,60DAC DCA ∠=∠=︒,试求圆形水池两旁B 、D 两点之间的距离.【考法三、勾股定理与一线三直角全等模型】例.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC =__________,BC AE =.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)如图,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;【深入探究】(3)如图,已知四边形ABCD 和DEGF 为正方形,AFD ∆的面积为1S ,DCE ∆的面积为2S ,则有1S __________2S (填“>、=、<”)(4)如图,点A 、B 、C 、D 、E 都在同一条直线上,四边形ABAH 、KCMG 、DENM 都是正方形,若该图形总面积是16,正方形KCMG 的面积是4,则HKG D 的面积是__________.变式1.(1)在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .当直线MN 绕点C 旋转到图1的位置时,请直接写出AD 、DE 、BE 之间的数量关系:______.(2)在(1)的条件下,当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.(3)类比以上解题思路,完成下面的题:如图3,已知ABC 中,90ABC ∠=︒,AB BC =,三角形的顶点在相互平行的三条直线1l ,2l ,3l 上,且1l ,2l 之间的距离为1,2l ,3l 之间的距离为3,求AC 的长.变式2.如图,用一副三角板摆放三种不同图形.在ABC 中,90ABC ∠=︒,AB CB =;DEF中,90DEF ∠=︒,30EDF ∠=︒.(1)如图1,当顶点B 摆放在线段DF 上时,过点A 作AM DF ⊥,垂足为点M ,过点C 作CN DF ⊥,垂足为点N ,请在图1中找出一对全等三角形,并说明理由;(2)如图2,当顶点B 在线段DE 上且顶点A 在线段EF 上时,过点C 作CP DE ⊥,垂足为点P ,猜想线段AE 、PE 、CP 的数量关系,并说明理由;(3)如图3,当顶点A 在线段DE 上且顶点B 在线段EF 上时,若5AE =,1BE =,连接CE ,则AEC △的面积为.【课后练习】1.阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图①,ABC 和ADE V 都是等边三角形,点D 在BC 上.求证:以DE 、CD 、BD 为边的三角形是钝角三角形.【探究发现】小明通过探究发现:连接CE ,根据已知条件,可以证明BD CE =,120DCE ︒∠=,从而得出DCE △为钝角三角形,故以DE 、CD 、BD 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.【拓展迁移】如图②,四边形ABCD 和四边形AEGF 都是正方形,点E 在BD 上.①猜想:以DE 、EF 、BE 为边的三角形的形状是________;②当2223BE ED +=时,直接写出正方形AEGF 的面积.2.如图,ABC 中,120BAC ∠=︒,AB AC =,点D 是BC 中点,MDN ∠的两边DM ,DN 分别与直线AB ,AC 交于点E ,F ,且DE DF =,连接EF(1)如图1,当点E ,F 分别在AB ,AC 上时,猜想DEF 形状是______三角形;线段AE 、AF 、AB 的数量关系是______(2)如图2,当点E ,F 分别在AB ,CA 延长线上时,上述两个结论成立吗?若成立,请完成证明;若不成立,请说明理由.(3)在(2)的条件下,6AB =①连接AD ,直接写出AED AFD S S -=△△______②当EB BD =时,求AF 的长3.已知:在Rt ABC △中,90ACB ∠=︒,BC AC =.(1)如图1,若点D 在线段AB 上,连接CD ,在CD 的右侧作CE CD ⊥,CD CE =.①线段BE 和线段AD 存在何种数量关系?请说明理由.②请直接写出线段AD 、BD 、DE 之间满足的数量关系_________.(2)如图2,若点D 在线段AB 延长线上,连接CD ,在CD 的右侧作CE CD ⊥,CD CE =,则线段AD 、BD 、CD 之间满足的数量关系是_________.(3)如图3,若点D 在直线AB 上,连接CD ,在CD 的左侧作CE CD ⊥,当3AD =,9AB =时,CDE 的面积为_________.4.在ABC 中,AB BC =,90ABC ∠︒,点E 是直线AB 上一点,作BF CE ⊥于点F ,AH BF ⊥于点H .(1)如图1,点E 在线段AB 上,BH 交AC 于点M ,若F 为MB 的中点,1BE =,则AB =______;(2)如图2,取AC 中点D ,连接DH .①若点E 在线段AB 上,求证:HF =②若点E 在直线AB 上,60CEB ∠=︒,2DH =,求AB 的长.5.【证明体验】如图1,向ABC 外作等边三角形ABD △和等边三角形ACE △,连接BE DC ,,求证:BE DC =;【思考探究】如图2,已知ABC ,以BC 为边作等边BCD △,连接AD .若60CAD ∠=︒,4=AD ,3AC =,求AB 的长;【拓展延伸】如图3,在ABC 中,8BC =,以AB 为边作等腰ABD △,AB AD =,连接CD .若10CD =,2DAB ACB ∠=∠,直接写出ABC 的面积.6.如图1,在四边形ABCD 中,,120,90AB AD BAD B ADC =∠=︒∠=∠=︒,E F 、分别是,BC CD 上的点,且60EAF ∠=︒,探究图中线段,,BE EF FD 之间的数量关系.(1)提示:探究此问题的方法是延长FD 到点G ,使DG BE =,连接AG ,先证明ABE ADG △≌△,再证明AEF AGF ≌.请根据提示按照提示的方法完成探究求解过程.(2)探索延伸:如图2,若在四边形ABCD 中,,180AB AD B D =∠+∠=︒,E ,F 分别是,BC CD 上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立?请说明理由.(3)能力提高:如图,等腰直角三角形ABC 中,90,BAC AB AC ∠=︒=,点M ,N 在边BC 上,45MAN ∠=︒,若10,26BM MN ==,则CN 的长为.6【问题呈现】“一直线三等角”,是几何证明的常见模型.(1)如图1,ABC 和ADE V 均为等边三角形,点D 为BC 边上一个动点,4BC =,点O 为AC 边中点,连接CE ,写出图中全等的三角形______.线段OE 的最小值______.【问题探索】(2)ACB △是等腰直角三角形,90ACB CA CB ∠=︒=,,点E 是AB 上一点,45CED ∠=︒,交BC 于D .①如图①试探究AE BE EC 、、的数量关系,并给予证明;②如图②,若26AE BE ==,,点F 是BE 的中点,求CF 的长.【灵活运用】(3)如图3,四边形ABCD 中,对角线AC BD 、相交于点E ,AB AD =,150308BAD ACD ACB AC ∠+∠=︒∠=︒=,,,求四边形ABCD 的面积.7.问题探究:如图1,小明遇到这样一个问题:如图,在ABC 中,8,6,AB AC AD ==是中线,求AD 的取值范围.他的做法是:延长AD 到E ,使DE AD =,连接BE ,证明BDE CDA △≌△,经过推理和计算使问题得到解决.请回答:(1)小明证明BDE CDA △≌△的判定理由是______;(填写“ASA ”或“SAS ”)(2)AD 的取值范围是______;方法运用:(3)如图2,AD 是ABC 的中线,在AD 上取一点E ,连接BE ,使得BE AC =,延长BE 交AC 于点F .求证:AF EF =;(4)如图3,在ABC 中,90,BAC D ∠=︒为BC 的中点,90EDF ∠=︒.求证:222BE CF EF +=.8.(1)问题发现:如图1,ABC 和DCE 均为等边三角形,当DCA 应转至点A ,D ,E 在同一直线上,连接BE ,易证BCE ACD ≌,则①BEC ∠=;②线段AD ,BE 之间的数量关系;(2)拓展研究:如图2,ACB 和DCE 均为等腰三角形,且90ACB DCE ∠∠==︒,点A ,D ,E 在同一直线上,若12AE =,7DE =,求AB 的长度;(3)如图3,P 为等边三角形ABC 内一点,且150APC ∠=︒,30APD ∠=︒,4AP =,3CP =,7DP =,求BD 的长.。
北师大版8年级上册数学知识点归纳
北师大版八年级上册数学知识点归纳一、实数1.实数的分类:有理数和无理数。
其中,无理数包括无限不循环小数,如π和e等。
2.实数的性质:实数与数轴上的点一一对应;实数可以进行加、减、乘、除等运算,且满足结合律、交换律和分配律。
3.平方根:如果一个数的平方等于另一个数,那么这个数就是另一个数的平方根。
正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4.立方根:如果一个数的立方等于另一个数,那么这个数就是另一个数的立方根。
任何实数都有且只有一个立方根。
5.估算:通过估算比较大小,判断结果的合理性。
二、一次函数1.函数及其相关概念:在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2.函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3.函数的三种表示法及其优缺点:解析法、列表法、图像法。
— 1 —4.一次函数:形如y=kx+b(k≠0)的函数叫做一次函数。
其中k是比例系数,b是常数项。
5.一次函数的图象是一条直线,这条直线叫做一次函数的图象。
其中k表示斜率,b表示截距。
6.一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
7.一次函数的应用:解决实际问题时,首先要审题弄清题意,然后建立数学模型(一次函数关系式),最后利用一次函数的性质解决问题。
三、全等三角形1.全等三角形的定义:两个三角形如果它们的三边分别相等,那么这两个三角形全等;两个三角形如果它们的两边及其夹角分别相等,那么这两个三角形全等;两个三角形如果它们的两角及其夹边分别相等,那么这两个三角形全等。
2.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
3.全等三角形的判定方法:SSS、SAS、ASA、AAS、HL。
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
专题4.4 全等三角形的判定【八大题型】(举一反三)(北师大版)(解析版)
【变式 2-2】(2023·福建泉州·七年级期中)如图,在△ �퐵 中,C,D 是边퐵 上的两点,有下面四个关 系式:(1)�퐵 = � ,(2)퐵퐶 = ,(3)�퐶 = � ,(4)∠퐵�퐶 = ∠ � 请用其中两个作 为已知条件,余下两个作为求证的结论,写出你的已知和求证(请写具体内容,不要写序号)并证明.
轮次 行动者
添加条件
�퐵 = �′퐵′
1
甲
= 2cm
∠� = ∠�′
2
乙
= 35°
3
甲
…
上表记录了两人游戏的部分过程,则下列说法正确的是___________.(填写所有正确结论的序号) ①若第 3 轮甲添加∠퐶 = ∠퐶′ = 45°,则甲获胜; ②若第 3 轮甲添加퐵퐶 = 퐵′퐶′ = 3cm,则甲必胜; ③若第 2 轮乙添加条件修改为∠� = ∠�′ = 90°,则乙必胜; ④若第 2 轮乙添加条件修改为퐵퐶 = 퐵′퐶′ = 3cm,则此游戏最多 4 轮必分胜负. 【答案】②③④ 【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:①若第 3 轮甲添加∠퐶 = ∠퐶′ = 45°,可根据角角边判定△ �퐵퐶与△ �′퐵′퐶′全等,则乙
【知识点 全等三角形的判定】 判定方法
解释
边边边 (SSS) 边角边 (SAS)
三条边对应相等的两个三角形全等 两边和它们的夹角对应相等的两个 三角形全等
角边角 两角和它们的夹边对应相等的两个
图形
第1页 共 53页
(ASA)
三角形全等
角角边 (AAS)
《第1课时 利用“边边边”判定三角形全等》教案 (公开课)2022年北师大版数学
4.3 探索三角形全等的条件第1课时 利用“边边边〞判定三角形全等1.了解三角形的稳定性,会应用“边边边〞判定两个三角形全等;(重点)2.经历探索“边边边〞判定三角形全等的过程,体会利用操作、归纳获得数学结论的过程;(重点)3.在复杂的图形中进行三角形全等条件的分析和探索.(难点)一、情境导入一块三角形的玻璃损坏后,只剩下如图①所示的残片,你对图中的残片做哪些测量,就可以割取符合规格的三角形玻璃?与同伴交流.二、合作探究探究点一:全等三角形判定定理“SSS 〞【类型一】 利用“SSS 〞判定两个三角形全等如图,AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .试说明:△ABC ≌△DEF .解析:△ABC 与△DEF 两边相等,通过BE =CF 可得BC =EF ,即可根据“SSS 〞判定△ABC ≌△DEF .解:∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧BC =EF ,AB =DE ,AC =DF ,∴△ABC ≌△DEF (SSS).方法总结:先根据条件或求证的结论确定哪两个三角形全等,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【类型二】 “SSS 〞与全等三角形的性质综合进行证明如以下图,△ABC 是一个风筝架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.试说明:AD ⊥BC .解析:要使AD ⊥BC ,根据垂直的定义,需使∠1=∠2,而∠1=∠2可由△ABD ≌△ACD 求得.解:∵D 是BC 的中点,∴BD =CD .在△ABD 和△ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD (SSS),∴∠1=∠2(全等三角形的对应角相等).∵∠1+∠2=180°,∴∠1=∠2=90°,∴AD ⊥BC (垂直定义).方法总结:将垂直关系转化为证两角相等,利用全等三角形证明两角相等是全等三角形的间接应用.【类型三】 利用“SSS 〞解决探究性问题如图,AD =CB ,E 、F 是AC 上两动点,且有DE =BF .(1)假设E 、F 运动至图①所示的位置,且有AF =CE .试说明:△ADE ≌△CBF .(2)假设E 、F 运动至图②所示的位置,仍有AF =CE ,那么△ADE ≌△CBF 还成立吗?为什么?(3)假设E 、F 不重合,AD 和CB 平行吗?说明理由.解析:(1)由AF =CE ,可推出AE =CF .再利用“SSS 〞来证明三角形全等;(2)同样利用“SSS 〞来说明三角形全等;(3)由三角形全等,故对应角相等,可推出AD ∥CB .解:(1)∵AF =CE ,∴AF +EF =CE +EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF (SSS);(2)成立.∵AF =CE ,∴AF -EF =CE -EF ,∴AE =CF .在△ADE 和△CBF 中,∵⎩⎪⎨⎪⎧AD =CB ,DE =BF ,AE =CF ,∴△ADE ≌△CBF (SSS);(3)平行.理由如下:∵△ADE ≌△CBF ,∴∠A =∠C ,∴AD ∥BC .方法总结:解决此题要明确无论E 、F 如何运动,总有两个三角形全等.探究点二:三角形的稳定性要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定……那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边〞或“SSS 〞.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边〞掌握较好,到达了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强稳固和训练第2课时 三角形的三边关系1.掌握三角形按边分类方法,能够判定三角形是否为特殊的三角形;2.探索并掌握三角形三边之间的关系,能够运用三角形的三边关系解决问题.(难点)一、情境导入数学来源于生活,生活中处处有数学.观察下面的图片,你发现了什么?问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形按边分类以下关于三角形按边分类的集合中,正确的选项是( )解析:三角形根据边分类⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧只有两边相等的三角形三边相等的三角形〔等边三角形〕 应选D.方法总结:三角形按边分类,分成不等边三角形与等腰三角形,知道等边三角形是特殊的等腰三角形是解此题的关键.探究点二:三角形中三边之间的关系【类型一】 判定三条线段能否组成三角形以以下各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cmB .5cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.应选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是()A.3<x<11 B.4<x<7C.-3<x<11 D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.【类型三】三角形三边关系与绝对值的综合假设a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形〞引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系〞.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力。
北师大版八年级上册数学 全等三角形单元检测(提高,Word版 含解析)
一、八年级数学全等三角形解答题压轴题(难)1.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s 【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP与△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC与线段PQ垂直.(2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912t t xt =-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.2.已知:平面直角坐标系中,点A (a ,b )的坐标满足|a ﹣b|+b 2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.3.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【答案】(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH ⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99 AF KF CP CF PK CP CP CP ==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.4.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.5.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD ∴∠=∠=︒120AFB ADC ∴∠=∠=︒在ABF ∆和ACD ∆中AFB ADC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD ∴∆∆≌BF DC ∴=②如图2,过点A 做AG ∥EF 交BC 于点G ,∵∠ADB =60° DE =DF∴△DEF 为等边三角形∵AG ∥EF∴∠DAG =∠DEF =60°,∠AGD =∠EFD =60°∴∠DAG =∠AGD∴DA =DG∴DA -DE =DG -DF ,即AE =GF由①易证△AGB ≌△ADC∴BG =CD∴BF =BG +GF =CD +AE(2)如图3,和(1)中②相同,过点A 做AG ∥EF 交BC 于点G ,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.6.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点,且AE CD =,BD 与EC 交于点F ,则BFE ∠的度数是___________度;②如图②,D ,E 分别是边AC ,BA 延长线上的点,且AE CD =,BD 与EC 的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】 (1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα180∴∠=∠︒=-,EAC DCBα=,AE CDAC BC=,∴∆≅∆,AEC CDB∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.7.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC =12∠ADB ,∠AEC =12∠AEB , ∴∠ADC+∠AEC =1(ADB AEB)2∠+∠=45°, ∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.8.如图,ABC ∆是等腰直角三角形,090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .(1)如图①,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;(2)如图②,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;(3)如图③,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE ⊥,CE BC CD =+,理由见解析;(3),BC CE CD BC CE ⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC ,∠BAC=90°,AD=AE ,∠DAE=90°,判定△ABD ≌△ACE (SAS ),利用两角的和即可得出BC CE ⊥;利用线段的和差即可得出BC CE CD =+;(2)同(1)的方法根据SAS 证明△ABD ≌△ACE ,得出BD=CE ,∠ACE=∠ABD ,从而得出结论;(3)先根据SAS 证明△ABD ≌△ACE ,得出ADB AEC ∠=∠,BD CE =,从而得出结论.【详解】(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB=AC ,AE =AD ,在△△ABD 和△ACE 中90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE ,BD=CE,又∵△ABC 是等腰直角三角形,∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥,∵BC=BD+CD, BD=CE ,∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆,∴ADB AEC ∠=∠,BD CE =,∵CD BD BC =+,∴CD CE BC =+,∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=∴090AEC CDE AED ∠+∠+∠=,∴090DCE ∠=,即BC CE ⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.9.如图1,已知CF 是△ABC 的外角∠ACE 的角平分线,D 为CF 上一点,且DA =DB .(1)求证:∠ACB =∠ADB ;(2)求证:AC +BC <2BD ;(3)如图2,若∠ECF =60°,证明:AC =BC +CD .【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,证明Rt △DAM ≌Rt △DBN ,得出∠DAM=∠DBN ,则结论得证;(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN =⎧⎨=⎩, ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DC DM DN=⎧⎨=⎩ , ∴Rt △DMC ≌Rt △DNC (HL ),∴CM =CN ,∴AC +BC =AM +CM +BC =AM +CN +BC =AM +BN ,又∵AM =BN ,∴AC +BC =2BN ,∵BN <BD ,∴AC +BC <2BD .(3)由(1)知∠CAD =∠CBD ,在AC 上取一点P ,使CP =CD ,连接DP ,∵∠ECF =60°,∠ACF =60°,∴△CDP 为等边三角形,∴DP =DC ,∠DPC =60°,∴∠APD=120°,∵∠ECF=60°,∴∠BCD=120°,在△ADP和△BDC中,APD BCDPAD CBDDA DB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP≌△BDC(AAS),∴AP=BC,∵AC=AP+CP,∴AC=BC+CP,∴AC=BC+CD.【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.10.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC∆、111A B C∆均为锐角三角形,且11AB A B=,11BC B C=,1C C∠=∠.求证:111ABC A B C∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS推出△ABC≌△A1B1C1即可.(2)当这两个三角形都是直角三角形时,直接利用HL即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.。
北师大版八年级上册数学 全等三角形单元测试卷(含答案解析)
一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】 ()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.(1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.【答案】(1)42m n =-⎧⎨=⎩(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【解析】【分析】(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证;(3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论.【详解】解:(1)由题意()()218122m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩; (2)如图2中,由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),∴AD =OA =4,OB =2,∴由勾股定理可得:AB =BD =5∵AC =OC =2,∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA ,∴△DAC ≌△AOB (SAS ),∴∠ADC =∠BAO ,∵∠ADC +∠ACD =90°,∴∠EAC +∠ACE =90°,∴∠AEC =90°,∵AF ⊥BD ,DE ⊥AB ,∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD ,∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG ,∴∠GAB =∠GBA ,∵G 为射线AD 上的一点,∴AG ∥y 轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB =2∴NB ﹣FB =2×2=4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【点睛】 本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.3.如图1,等腰△ABC 中,AC =BC =42∠ACB=45˚,AO 是BC 边上的高,D 为线段AO 上一动点,以CD 为一边在CD 下方作等腰△CDE ,使CD =CE 且∠DCE=45˚,连结BE .(1) 求证:△ACD ≌△BCE ;(2) 如图2,在图1的基础上,延长BE 至Q , P 为BQ 上一点,连结CP 、CQ,若CP =CQ =5,求PQ 的长.(3) 连接OE ,直接写出线段OE 的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C 作CH ⊥BQ 于H ,∵△ABC 是等腰三角形,∠ACB=45˚,AO 是BC 边上的高,45DAC ∴∠=,ACD BCE ≌,45PBC DAC ∴∠=∠=,∴在Rt BHC 中,2242422CH BC =⨯=⨯=, 54PC CQ CH ===,,3PH QH ∴==,6.PQ ∴=()3OE BQ ⊥时,OE 取得最小值.最小值为:42 2.OE =-4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF 到G ,使得FG=FB ,证得△CGA ≌△CDA 是解题的关键.5.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF⊥BD;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,在△ACF 和△AED 中,∵AC=AE ,∠CAF=∠EAD ,AD=AF ,∴△ACF ≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF ⊥BD .【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.6.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【解析】【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.【详解】(1)解:∵∠ACB =90°,∠B =60°,∴∠BAC =90°﹣60°=30°,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴∠FAC =15°,∠FCA =45°,∴∠AFC=180°﹣(∠FAC+∠ACF)=120°(2)解:FE与FD之间的数量关系为:DF=EF.理由:如图2,在AC上截取CG=CD,∵CE是∠BCA的平分线,∴∠DCF=∠GCF,在△CFG和△CFD中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.7.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【答案】(1)∠AFE=60°;(2)见解析;(3)7 5【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF =AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC , 在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°,∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.8.如图,Rt △ABC ≌Rt △CED (∠ACB =∠CDE =90°),点D 在BC 上,AB 与CE 相交于点F(1) 如图1,直接写出AB 与CE 的位置关系(2) 如图2,连接AD 交CE 于点G ,在BC 的延长线上截取CH =DB ,射线HG 交AB 于K ,求证:HK =BK【答案】(1)AB ⊥CE ;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A ,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB ⊥CE. (2)延长HK 于DE 交于H ,易得△ACD 为等腰直角三角形,∠ADC=45°,易得DH=DE ,然后证明△DGH ≌△DGE ,所以∠H=∠E ,则∠H=∠B ,可得HK=BK.【详解】解:(1)∵Rt △ABC ≌Rt △CED ,∴∠ECD=∠A ,∠B=∠E ,BC=DE ,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB ⊥CE(2)在Rt △ACD 中,AC=CD ,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH =DB ,∴CH+CD=DB+CD ,即HD=BC ,∴DH=DE ,在△DGH 和△DGE 中,DH=DE HDG=EDG=45DG=DG ⎧⎪∠∠⎨⎪⎩∴△DGH ≌△DGE (SAS )∴∠H=∠E又∵∠B=∠E∴∠H=∠B ,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.9.如图(1),在ABC 中,90A ∠=︒,AB AC =,点D 是斜边BC 的中点,点E ,F 分别在线段AB ,AC 上, 且90EDF ∠=︒.(1)求证:DEF为等腰直角三角形;(2)若ABC的面积为7,求四边形AEDF的面积;(3)如图(2),如果点E运动到AB的延长线上时,点F在射线CA上且保持∠=︒,DEF还是等腰直角三角形吗.请说明理由.90EDF【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.【解析】【分析】(1)由题意连接AD,并利用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形;(2)由题意分析可得S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,以此进行分析计算求出四边形AEDF的面积即可;(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形.【详解】解:(1)证明:如图①,连接AD.∵∠BAC=90˚,AB=AC,点D是斜边BC的中点,∴AD⊥BC,AD=BD,∴∠1=∠B=45°,∵∠EDF=90°,∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴ΔDEF为等腰直角三角形.(2)由(1)可知DE=DF,∠C=∠6=45°,又∵∠2+∠3=90°,∠2+∠5=90°,∴∠3=∠5,∴△ADE ≌△CDF ,∴S 四边形AEDF =S ∆ADF +S ∆ADE =S ∆BDE +S ∆CDF ,∴ S ∆ABC =2 S 四边形AEDF ,∴S 四边形AEDF =3.5 .(3)是.如图②,连接AD.∵∠BAC=90°,AB=AC ,D 是斜边BC 的中点,∴AD ⊥BC,AD=BD ,∴∠1=45°,∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,∴∠DAF=∠DBE ,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE 和△ADF 中,∠DAF=∠DBE ,AD=BD,∠2=∠4,∴△BDE ≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF 为等腰直角三角形.【点睛】本题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.10.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD = ,且AE BE = .(1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠= ∵BE 是高,∴90AEB BEC ∠=∠=∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAO EBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<.②当点Q 在射线DC 上时,42QD t =-,∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
北师大版八年级上册数学第一单元知识点(6篇)
北师大版八年级上册数学第一单元知识点(6篇)1.北师大版八年级上册数学第一单元知识点篇一因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。
2、因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。
3、公因式的确定:系数的公约数,相同因式的最低次幂。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4、因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5、因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式。
6、因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项。
2.北师大版八年级上册数学第一单元知识点篇二分式1、分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式。
2、有理式:整式与分式统称有理式;3、对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。
4、分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单。
知识汇总丨八年级数学上册知识点总结(人教版+北师大版)
知识汇总丨八年级数学上册知识点总结(人教版+北师大版)第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章整式的乘除与分解因式一、知识框架:第十五章分式一、知识框架:北师大版:八年级数学上册重要知识点第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
北师大初二数学上册教案
北师大初二数学上册教案全等三角形的性质:全等三角形对应边相等、对应角相等。
全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。
角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).人教版八年级数学全等三角形知识点讲解就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3)将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
八年级数学上册知识点北师大版(汇集4篇)
八年级数学上册知识点北师大版(汇集4篇)八年级数学上册知识点北师大版(1)全等三角形一、知识框架:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.八年级数学上册知识点北师大版(2)三角形一、知识框架二、知识概念:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的内角:多边形相邻两边组成的角叫做它的内角.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.八年级数学上册知识点北师大版(3)三角形一、知识框架二、知识概念:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的内角:多边形相邻两边组成的角叫做它的内角.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.八年级数学上册知识点北师大版(4)全等三角形一、知识框架:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.。
北师大版初二上册数学知识点归纳
北师大版初二上册数学知识点归纳初二上册数学主要包括代数、几何、函数和统计四个部分,下面将分别归纳这四个部分的主要知识点。
一、代数1.整式的加减法和乘法:整数的加减法和乘法;代数式的加减法和乘法法则。
2.配方法:完全平方式、因式分解法。
3.整式的除法:根据整式除法算法进行计算;整式除法的应用。
4.分式:分式的概念和性质;分式的加减法、乘除法。
5.一元一次方程:一元一次方程的定义和解的概念;解一元一次方程的基本方法。
6.二元一次方程组:二元一次方程组的解的概念;解二元一次方程组的基本方法。
7.二次根式:二次根式的概念和性质;对二次根式的四则运算。
8.一元二次方程:一元二次方程的定义和解的概念;解一元二次方程的基本方法。
二、几何1.线段和角:线段的概念;线段的比较;角的概念;角的比较。
2.平行线与平行四边形:平行线的概念和性质;平行四边形的概念和性质。
3.全等三角形:全等三角形的定义和性质;利用全等条件判断三角形的全等性。
4.比例与相似:比例的概念;比例的性质;相似的概念;相似三角形的性质。
5.直角三角形:直角三角形的定义和性质;利用勾股定理解题。
6.图形的平移、旋转和翻折:图形的平移、旋转和翻折的概念;利用图形的平移、旋转和翻折性质解题。
7.三角形的面积:三角形面积的概念和计算。
8.多边形的面积:正多边形面积的计算公式;利用公式计算多边形的面积。
三、函数1.函数的概念:函数的定义和表示;自变量和因变量的关系。
2.函数的图像:函数图像的概念;函数图像的平移、反射和伸缩。
3.一次函数:一次函数的概念和性质;一次函数的图像特征;利用一次函数解决实际问题。
4.二次函数:二次函数的概念和性质;二次函数的图像特征;利用二次函数解决实际问题。
5.反比例函数:反比例函数的概念和性质;反比例函数的图像特征;利用反比例函数解决实际问题。
四、统计1.统计图表分析:条形图、折线图、饼图的绘制与分析。
2.统计量:均值、中位数、众数、范围的计算和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形概念和性质1.全等形(1)定义:能够________的两个图形叫做全等形。
理解要点:图形的全等与他们的位置无关,只要满足能够完全重合即可;而完全重合包含两层意思:图形的________、________;全等形的周长、面积分别相等,但周长或面积相等的两个图形不一定全等。
(2)几种常用全等变换的方式:平移、翻折、旋转。
2. 全等三角形及相关的概念(1)全等三角形的定义:能够________的两个三角形叫做全等三角形。
(2)全等三角形对应元素:把两个全等的三角形重合到一起,①对应顶点:重合的顶点;②对应边:重合的边;③对应角:重合的角。
(3)全等三角形的表示方法:两个三角形全等用符号“≌”来表示,如图所示△ABC≌△DEF。
符号“≌”的含义:“∽”表示_______,“=”表示________,合起来就是形状相同,大小也相等,这就是全等。
(4)全等三角形的书写:①字母顺序确定法:根据书写规范,按照对应顶点确定对应边,对应角,如△CAB≌FDE,则AB与__、AC与__、BC与__是对应边,∠A和∠D、∠B和∠E、∠C和∠F时对应角;②图形位置确定法:公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;③图形大小确定法:两个全等三角形的最大的边(角)是________,最小的边(角)是对应边(角)。
(5)对应边(角)与对边(角)的区别:对应边、对应角是对两个三角形而言的,指两条边,两个角的关系;而对边、对角是指一个三角形的边和角的________。
对边是与对角相对的边,对角是与边相对的角。
易错提示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,字母顺序不能随意书写。
3.全等三角形的性质性质:全等三角形的对应边相等,对应角相等。
还具备:全等三角形的对应边上的中线相等,对应边上的高相等,对应角平分线相等;全等三角形的_________、_________。
易错提示:周长相等的两个三角形不一定全等,面积相等的两个三角形也不一定全等。
1.全等三角形对应角相等,对应角相等【例1】如图是“人”字形屋梁,AB=AC.现在要在水平横梁BC上立一根垂直的支柱支撑屋梁,工人师傅取BC的中点D,然后在A,D之间竖支柱AD.那么这根AD符合“垂直”的要求吗?为什么?练1.如图所示,已知:A,C,F,D四点在同一直线上,AB=DE,BC=EF,AF=DC,求证:AB∥DE.练2.已知:如图所示,在四边形ABCD中,AB=CB,AD=CD,求证:∠C=∠A.练3.如图,在四边形ABCD中,AB=CD,AD=CB,求证:∠A+∠D=180°.【例2】如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°练4. 如图,若△ABC≌△AEF,则对于结论:(1)AC=AF;(2)∠FAB=∠EAB;(3)EF=BC;(4)∠EAB=∠FAC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【例3】.如果△ABC≌△ADC,AB=AD,∠B=70°,BC=3cm,那么∠D=______,DC=________.练5.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC=____cm.练6.(2014秋•涞水县期末)如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A.50° B.30° C.80° D.100°【例4】如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数。
练7.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.【例5】(2015凉山州一中月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A、55B、45C、30D、25 练8.(2015鹰潭一中月考)如图,△ABC≌△ADE,且∠EAB=120°,∠B=30°,∠CAD=10°,∠CFD=______°【例6】(2014湖北新县大王镇中学期中)如图,△ABD≌△CBD,若∠A=80°,∠ABC=30°,则∠ADC的度数为()160° B.110° C.140° D.120°练9.如图:△ABC≌△DEF,请根据图中提供的信息,写出x=___________.练10.(2015镇江枫叶国际学校月考)如图,已知△ABC≌△DEF,∠A=55°,∠E=50°,BC=10,CE=7,则∠D= ;∠2= ;CF= .1.(2014-2015北京七中第一学期期中)如图,已知△ABC的六个元素,则甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙2.(2014-2015北京市第三十一中第一学期期中考试)如图所示,a,b,c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()a丙50°72°a乙50°c甲50°a c72°58°50°B3.(2014-2015北京市第四十四中学第一学期期中)如图,△ABC≌△CDA,∠BAC=85°,∠B=65°, 则∠CAD 度数为( )A. 30°B. 65°C. 40°D. 85° 4.如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是_______,图中相等的线段有___________.5.如图,在平面直角坐标系中,△OAB 的顶点坐标分别是A (-3,0),B (0,2),△OA ′B ′≌△OAB ,A ′在x 轴上,则点B ′的坐标是__________.6.已知△ABC ≌△DEF ,BC=EF=6cm ,△ABC 的面积为18cm2,则EF 边上的高的长是____cm .7.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和ACB 全等,写出所有满足条件的E 点的坐标___________.8.如图,△ABC ≌△DCB ,AC 与BD 相交于点E ,若∠A=∠D=80°,∠ABC=60°,则∠BEC 等于___________.______________________________________________________________________________________________________________________________________________________________D CA B一、选择题1.(2015太原一中月考)如图1,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°2.(2014铜仁地区五中期末)如图2,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A.5B.4C.3D.23.(2014•黑龙江齐齐哈尔一中)如图3,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15° B.20° C.25° D.30°图1 图2 图34.(2014-2015北京市第四十一中学第一学期期中)已知:如图,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD图4 图55.已知:如图,ΔABD ≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD 二、填空题6.(2014-2015北京市第四十一中学第一学期期中)如图6,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°图67.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.8.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图99.如图9所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1010.如图10,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.11.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形12.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.113.如图13,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5 C.4 D.无法确定图13 图14 图1514.如图14,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC 15.如图15,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°二、填空题16.如图16,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.17.已知:如图17所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图17 图16 图1818.已知:如图18,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.课程顾问签字: 教学主管签字:。