上海东昌东校数学圆 几何综合单元测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海东昌东校数学圆 几何综合单元测试卷(含答案解析)
一、初三数学 圆易错题压轴题(难)
1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线;
(2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;
(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.
【答案】解:(1)证明:连接CM ,
∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴
.
又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,.
∴545(x )x 5)12152-
=--(,∴,解得10
OD 3
=
. 又∵D 为OB 中点,∴
1552
4
+∴D 点坐标为(0,154).
连接AD ,设直线AD 的解析式为y=kx+b ,则有
解得.
∴直线AD 为
.
∵二次函数的图象过M (5
6
,0)、A(5,0), ∴抛物线对称轴x=
154
. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=15
4
交于点P , ∴PD+PM 为最小.
又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=15
4
的交点. 当x=
15
4时,45y (x )x 5)152
=
--(. ∴P 点的坐标为(15
4,56
). (3)存在. ∵
,5
y a(x )x 5)2
=--(
又由(2)知D (0,154),P (15
4,56
), ∴由
,得
,解得y Q =±
103
.
∵二次函数的图像过M(0,5
6
)、A(5,0), ∴设二次函数解析式为,
又∵该图象过点D (0,15
4
),∴,解得a=
512
. ∴二次函数解析式为
.
又∵Q 点在抛物线上,且y Q =±103
. ∴当y Q =103
时,,解得x=
1552-或x=1552
+;
当y Q =5
12
-
时,,解得x=
15
4
.
∴点Q 的坐标为(15524
-,103),或(15524+,10
3),或(154,512-).
【解析】
试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.
(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OB
tan OAC AC OA
∠=
=,从而求出OB 的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ∆∆∆=-,求出Q 的纵坐标,求出二次函数解析
式即可求得横坐标.
2.在直角坐标系中,A (0,4),B (4
,0).点C 从点B 出发沿BA 方向以每秒2个单
位的速度向点A 匀速运动,同时点D 从点A 出发沿AO 方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C 、D 运动的时间是t 秒(t>0).过点C 作CE ⊥BO 于点E ,连结CD 、DE . ⑴ 当t 为何值时,线段CD 的长为4;
⑵ 当线段DE 与以点O 为圆心,半径为的⊙O 有两个公共交点时,求t 的取值范围; ⑶ 当t 为何值时,以C 为圆心、CB 为半径的⊙C 与⑵中的⊙O 相切?
【答案】(1); (2) 4-<t≤; (3)或
.
【解析】
试题分析:(1)过点C 作CF ⊥AD 于点F ,则CF ,DF 即可利用t 表示出来,在Rt △CFD 中利用勾股定理即可得到一个关于t 的方程,从而求得t 的值;
(2)易证四边形ADEC 是平行四边形,过点O 作OG ⊥DE 于点G ,当线段DE 与⊙O 相切时,则OG=,在直角△OEG 中,OE 可以利用t 表示,则OG 也可以利用t 表示出来,当
OG<时,直线与圆相交,据此即可求得t的范围;
(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.
(1)过点C作CF⊥AD于点F,
在Rt△AOB中,OA=4,OB=4,
∴∠ABO=30°,
由题意得:BC=2t,AD=t,
∵CE⊥BO,
∴在Rt△CEB中,CE=t,EB=t,
∵CF⊥AD,AO⊥BO,
∴四边形CFOE是矩形,
∴OF=CE=t,OE=CF=4-t,
在Rt△CFD中,DF2+CF2=CD2,
∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,
解得:t=,t=4,
∵0<t<4,
∴当t=时,线段CD的长是4;
(2)过点O作OG⊥DE于点G(如图2),
∵AD∥CE,AD=CE=t
∴四边形ADEC是平行四边形,
∴DE∥AB
∴∠GEO=30°,