最新导数公式、微分公式和积分公式
导数微积分公式大全
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
微分必背48个公式
微分必背48个公式微分是数学中的一个重要概念,也是高等数学中的基础知识之一。
在微分学中,有许多重要的公式需要掌握和灵活运用。
今天我们就来介绍一些微分公式,帮助大家深入理解微分的概念和运算方法。
1. 基本导数公式:(1) `(c)' = 0`,其中c为常数;(2) `(x^n)' = nx^(n-1)`,其中n为实数;(3) `(e^x)' = e^x`,即指数函数的导数是自身;(4) `(a^x)' = a^x ln(a)`,其中a为大于0且不等于1的实数;(5) `(ln(x))' = 1/x`,即自然对数函数的导数是1除以自身。
2. 四则运算法则:(1) `(f(x) + g(x))' = f'(x) + g'(x)`,即两个函数的和的导数等于它们的导数之和;(2) `(f(x) - g(x))' = f'(x) - g'(x)`,即两个函数的差的导数等于它们的导数之差;(3) `(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)`,即两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数;(4) `(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/(g(x))^2`,即两个函数的商的导数等于第一个函数的导数乘以第二个函数减去第一个函数乘以第二个函数的导数,再除以第二个函数的平方;(5) `(c*f(x))' = c*f'(x)`,即常数与一个函数的乘积的导数等于常数与该函数的导数的乘积。
3. 反函数求导公式:若有函数y = f(x),且f'(x) ≠ 0,设其反函数为x = g(y),则有:`(g(y))' = 1/f'(g(y))`,即反函数的导数等于1除以原函数导数在反函数点的取值。
导数微积分公式大全
导数微积分公式大全导数是微积分中非常重要的概念,它表示函数在其中一点的变化率。
为了计算导数,我们需要使用一系列的微积分公式。
下面是一份包含最常用的导数公式的清单:1.基本导数公式:-常数函数:如果f(x)=c,则f'(x)=0,其中c是一个常数。
- 幂函数:如果f(x) = x^n,则f'(x) = nx^(n-1),其中n是一个实数。
-指数函数:如果f(x)=e^x,则f'(x)=e^x。
- 对数函数:如果f(x) = ln(x),则f'(x) = 1/x。
- 正弦函数:如果f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数:如果f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数:如果f(x) = tan(x),则f'(x) = sec^2(x)。
2.基本运算规则:- 常数乘法规则:如果f(x)和g(x)都是可导函数,且c是常数,则(cf(x))' = c(f'(x))。
-加法规则:如果f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)。
-乘法规则:如果f(x)和g(x)都是可导函数,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
-除法规则:如果f(x)和g(x)都是可导函数,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^23.链式法则:-如果h(x)=f(g(x)),其中f和g都是可导函数,则h'(x)=f'(g(x))g'(x)。
4.反函数法则:- 如果y = f(x)是可导函数,且在x处有非零的导数,则它的反函数x = f^(-1)(y)的导数为(dx/dy) = 1/(dy/dx)。
5.高阶导数:-如果f(x)的导数f'(x)存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x),依此类推。
16个微积分公式
16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。
在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。
下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。
2.基本导数公式:a.(k)'=0,其中k是常数。
b. (x^n)' = nx^(n-1),其中n是实数。
c. (sin x)' = cos x。
d. (cos x)' = -sin x。
e.(e^x)'=e^x。
f. (ln x)' = 1/x。
3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。
b.(f(x)-g(x))'=f'(x)-g'(x)。
c.(k*f(x))'=k*f'(x),其中k是常数。
d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。
4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。
5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。
6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。
导数微积分公式大全
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
导数微分不定积分公式
导数微分不定积分公式一、导数1.定义导数是函数在其中一点的变化率,表示函数在该点的切线斜率。
对于函数$f(x)$,在点$x=a$处的导数表示为$f'(a)$或$\frac{{df}}{{dx}}\bigg,_{x=a}$。
导数的几何意义是函数图像在该点处的切线斜率。
2.基本导数公式常见函数的导数公式如下:常值函数的导数为零:$\frac{{d}}{{dx}}(C) = 0$,其中$C$为常数。
幂函数的导数:$\frac{{d}}{{dx}}(x^n) = nx^{n-1}$,其中$n$是实数。
指数函数的导数:$\frac{{d}}{{dx}}(a^x) = a^x \ln{a}$,其中$a>0$。
对数函数的导数:$\frac{{d}}{{dx}}(\log_a{x}) = \frac{{1}}{{x \ln{a}}}$,其中$a>0$且$a\neq 1$。
三角函数的导数:$\frac{{d}}{{dx}}(\sin{x}) = \cos{x}$$\frac{{d}}{{dx}}(\cos{x}) = -\sin{x}$$\frac{{d}}{{dx}}(\tan{x}) = \sec^2{x}$$\frac{{d}}{{dx}}(\cot{x}) = -\csc^2{x}$$\frac{{d}}{{dx}}(\sec{x}) = \sec{x}\tan{x}$$\frac{{d}}{{dx}}(\csc{x}) = -\csc{x}\cot{x}$二、微分1.定义微分表示函数在其中一点附近的变化情况,主要有全微分和偏微分两种。
全微分:对于函数$z=f(x,y)$,在点$(x_0,y_0)$处全微分表示为$dz=\frac{{\partial z}}{{\partial x}}dx+\frac{{\partialz}}{{\partial y}}dy$,其中$\frac{{\partial z}}{{\partial x}}$和$\frac{{\partial z}}{{\partial y}}$分别表示对于$x$和$y$的偏微分。
微分积分公式大全总汇
微分积分公式大全总汇一、微分公式1.导数的定义:若函数f(x)在点x0处可导,那么导数f’(x)在点x0处的定义是f’(x0)=lim(h→0)[f(x0+h)-f(x0)]/h可以用导数定义计算一些特殊函数的导数。
2.基本导数法则:(1)常数导数法则:d(c)/dx=0,其中c为常数。
(2)幂函数导数法则:d(x^n)/dx=nx^(n-1),其中n为实数。
(3)指数函数导数法则:d(e^x)/dx=e^x。
(4)对数函数导数法则:d(lnx)/dx=1/x。
3.四则运算法则:(1)和差法则:[f(x)+g(x)]’=f’(x)+g’(x),[f(x)-g(x)]’=f’(x)-g’(x)。
(2)乘积法则:[f(x)g(x)]’=f’(x)g(x)+f(x)g’(x)。
(3)商法则:[f(x)/g(x)]’=[f’(x)g(x)-f(x)g’(x)]/g(x)^2 4.链式法则:如果想对复合函数y=f[g(x)]求导数,可以使用链式法则来计算。
dy/dx=dy/du * du/dx,其中u=g(x)。
5.高阶导数:若函数f(x)的n阶导数f^(n)(x)存在,则(f^(n)(x))’=f^(n+1)(x)。
高阶导数可以用来描述曲线的曲率和弯曲程度。
二、积分公式1.不定积分的定义:若函数F’(x)=f(x),那么F(x)称为函数f(x)的一个原函数,记作F(x)=∫f(x)dx。
在求不定积分时,需要注意加上积分常数C。
2.基本积分法则:(1)幂函数积分法则:∫x^n dx=x^(n+1)/(n+1)+C,其中n≠-1(2)指数函数积分法则:∫e^x dx=e^x+C。
(3)对数函数积分法则:∫1/x dx=ln,x,+C。
(4)三角函数积分法则:∫sinx dx=-cosx+C,∫cosx dx=sinx+C。
3.分部积分法:若u=u(x),v=v(x)是可导函数,那么(uv)’=u’v+uv’对上述等式两边进行不定积分,可以得到分部积分公式:∫u d(v)=uv - ∫v d(u)4.替换积分法(换元积分法):设u=g(x)是可导的,可逆函数,如果f(g(x))g’(x)能积出表达式,也就是∫f(g(x))g’(x)dx能由∫f(u)du表示,那么可进行替换积分,即∫f(g(x))g’(x)dx=∫f(u)d u。
导数微分不定积分公式
一、导数的概念及其计算1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim→∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.常见函数的导出公式.(1)0)(='C (C 为常数) (2)1)(-⋅='n nxn x(3)x x cos )(sin =' (4)x x sin )(cos -='4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
微分公式基本公式表
微分公式基本公式表微分公式是微积分中的基础内容,它们用于求导数,是解决微分方程和最值问题的关键工具。
下面是一些常见的微分公式,包括基本导数、复合函数、乘积法则、商法则和链式法则。
1.基本导数公式(1)常数函数的导数:f(x)=c,则f'(x)=0,其中c为常数。
(2)幂函数的导数:f(x) = x^n,则f'(x) = nx^(n-1),其中n为常数。
(3)指数函数的导数:f(x) = a^x,则f'(x) = a^x * ln(a),其中a为常数。
(4)对数函数的导数:f(x) = log_a(x),则f'(x) = 1 / (x *ln(a)),其中a为常数。
(5)三角函数的导数:- 正弦函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),则f'(x) = 1 + tan^2(x) = sec^2(x)。
- 反正弦函数的导数:f(x) = arcsin(x),则f'(x) = 1 / sqrt(1 - x^2)。
- 反余弦函数的导数:f(x) = arccos(x),则f'(x) = -1 / sqrt(1 - x^2)。
- 反正切函数的导数:f(x) = arctan(x),则f'(x) = 1 / (1 +x^2)。
2.复合函数的导数(1)复合函数的链式法则:设函数u = g(x)可导,函数y = f(u)可导,则复合函数y = f(g(x))的导数为dy/dx = f'(u) * g'(x)。
(2)高次复合函数的导数:当函数y=f(g(u))含有多个复合函数时,可以根据链式法则逐层求导。
3.乘积法则(产品法则)(1)乘积的导数:若f(x)=u(x)*v(x),则f'(x)=u'(x)*v(x)+u(x)*v'(x)。
微积分的公式大全
微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。
在微积分中,有许多重要的公式在各个方面被广泛应用。
下面给出了微积分的一些重要公式。
1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。
导数微分不定积分公式
导数微分不定积分公式一、导数导数是微积分中的重要概念,表示函数在特定点上的变化率。
假设函数y=f(x),其中x是自变量,y是因变量,那么函数在其中一点x=a处的导数表示为f'(a)或$\frac{dy}{dx}$。
导数的定义可以通过极限来表示:$$f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,h是一个无穷小的增量。
导数有以下几个基本规则:1. 常数规则:如果f(x)是一个常数,那么它的导数等于零,即$\frac{d}{dx}(c) = 0$。
2. 幂函数规则:对于幂函数f(x) = $x^n$,其中n是任意实数,它的导数是f'(x) = $nx^{(n-1)}$。
3. 指数函数规则:对于指数函数f(x) = $a^x$,其中a是常数且大于零,它的导数是f'(x) = $a^x\ln(a)$。
4. 对数函数规则:对于对数函数f(x) = $\log_a{x}$,其中a是常数且大于零且不等于1,它的导数是f'(x) = $\frac{1}{x\ln(a)}$。
5.和差规则:设f(x)和g(x)是可导函数,那么它们的和(差)f(x)±g(x)的导数是f'(x)±g'(x)。
6. 积法则:设f(x)和g(x)是可导函数,那么它们的积fg的导数是f'(x)g(x)+f(x)g'(x)。
7. 商法则:设f(x)和g(x)是可导函数,且g(x)不等于零,那么它们的商$\frac{f(x)}{g(x)}$的导数是$\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。
此外,还有复合函数的导数、隐函数的导数等规则,它们的求导公式可以根据基本规则和链式法则来推导。
二、微分微分是导数的一个重要应用,它描述了函数局部变化的情况。
微分有两种方式表示,一种是微分形式,另一种是微分方程形式。
微积分公式与运算法则
微积分公式与运算法则 Jenny was compiled in January 2021微积分公式与运算法则1.基本公式(1)导数公式(2)微分公式(xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx(a x)ˊ=a x lnad(a x)=a x lnadx(loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx(sinx)ˊ=cosxd(sinx)=cosxdx(conx)ˊ=-sinxd(conx)=-sinxdx(tanx)ˊ=sec2xd(tanx)=sec2xdx(cotx)ˊ=-csc2xd(cotx)=-csc2xdx(secx)ˊ=secx·tanxd(secx)=secx·tanxdx(cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx(arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx(arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx(arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx(arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx(sinhx)ˊ=coshxd(sinhx)=coshxdx(coshx)ˊ=sinhxd(coshx)=sinhxdx2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则(αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2(2)函数和差积商的微分法则d(αμ+βυ)=αdμ+βdυd(μυ)=υdμ+μdυd(μ/υ)=(υdμ-μdυ)/υ23.复合函数的微分法则设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为dy/dx=fˊ[ψ(x)]·ψˊ(x)所以复合函数的微分为dy=fˊ[ψ(x)]·ψˊ(x)dx由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。
微积分公式大全范文
微积分公式大全范文微积分是高等数学的一个分支,是研究函数的变化规律的数学工具。
在微积分中有许多重要的公式,下面就给大家介绍一些常见的微积分公式。
一、导数公式1.三角函数的导数公式:- sin(x)' = cos(x)- cos(x)' = -sin(x)- tan(x)' = sec^2(x)- cot(x)' = -csc^2(x)- sec(x)' = sec(x)tan(x)- csc(x)' = -csc(x)cot(x)2.指数函数的导数公式:- (a^x)' = ln(a) * a^x (其中a是常数且a>0)3.对数函数的导数公式:- (ln(x))' = 1/x- (loga(x))' = 1/(xln(a)) (其中a是底数且a>0)4.幂函数的导数公式:- (x^n)' = nx^(n-1) (n为常数)5.乘法法则和除法法则:- (uv)' = u'v + uv' (乘法法则)- (u/v)' = (u'v - uv')/v^2 (除法法则)6.链式法则:-若y=f(u)和u=g(x)都是可微的函数,则y=f(g(x))可微,并且有:- dy/dx = (dy/du) * (du/dx)二、积分公式1.基本积分公式:- ∫x^n dx = (1/(n+1)) * x^(n+1) (其中n不等于-1)- ∫1/x dx = ln,x, + C- ∫e^x dx = e^x + C- ∫a^x dx = (1/ln(a)) * a^x + C (其中a>0且a≠1)2.三角函数的积分公式:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C- ∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C- ∫csc(x)cot(x) dx = -csc(x) + C3.分部积分法:- ∫u dv = uv - ∫v du4.替换积分法:- 若y=f(u)和u=g(x)都是连续函数,则∫f(g(x))g'(x) dx = ∫f(u) du5.常用代换:- 倒代换:令x=1/t,dx=-1/t^2 dt- 根式代换:令u=f(x),du=f'(x) dx- 三角代换:令x=sin(t)或x=cos(t),dx=cos(t) dt或-dt此外,微积分还有一些重要的定理和公式,如牛顿-莱布尼茨公式、泰勒展开公式、拉格朗日中值定理、柯西中值定理等。
微分公式大全
微分公式大全一、基本微分公式1.导数的定义公式:若函数y=f(x)在点x处可导,则其导数f′(x)定义为:$$f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x+\\Delta x)-f(x)}{\\Delta x}$$2.基本微分法则:(1)常数微分法则:$$\\frac{d}{dx}(C) = 0$$(2)变量相乘法则:$$\\frac{d}{dx}(uv) = u'\\cdot v + u \\cdot v'$$(3)常数倍法则:$$\\frac{d}{dx}(Cu) = C\\cdot u'$$(4)反函数微分法则:若y=f(x)的反函数为x=g(y),则有 $\\frac{dx}{dy} =\\frac{1}{\\frac{dy}{dx}}$(5)除法法则:若 $y = \\frac{u}{v}$,则有 $\\frac{dy}{dx} = \\frac{u'v - uv'}{v^2}$3.幂函数微分法则:若y=ax n,其中a为常数,n为整数,则有 $\\frac{dy}{dx} = anx^{n-1}$二、常见函数的微分公式1.三角函数微分:(1)正弦函数微分:$$\\frac{d}{dx}(\\sin x) = \\cos x$$(2)余弦函数微分:$$\\frac{d}{dx}(\\cos x) = -\\sin x$$(3)正切函数微分:$$\\frac{d}{dx}(\\tan x) = \\sec^2 x$$(4)余切函数微分:$$\\frac{d}{dx}(\\cot x) = -\\csc^2 x$$2.指数函数与对数函数微分:(1)指数函数微分:$$\\frac{d}{dx}(e^x) = e^x$$(2)对数函数微分:$$\\frac{d}{dx}(\\ln x) = \\frac{1}{x}$$3.反三角函数微分:(1)反正弦函数微分:$$\\frac{d}{dx}(\\arcsin x) = \\frac{1}{\\sqrt{1-x^2}}$$(2)反余弦函数微分:$$\\frac{d}{dx}(\\arccos x) = -\\frac{1}{\\sqrt{1-x^2}}$$(3)反正切函数微分:$$\\frac{d}{dx}(\\arctan x) = \\frac{1}{1+x^2}$$三、链式法则链式法则用于计算复合函数的导数。
积分与求导公式大全
积分与求导公式大全一、常用的求导公式1. 常数法则:d/dx(c) = 0,其中c为常数。
2. 幂函数法则:若f(x) = x^n,其中n为常数,则d/dx(f(x)) =nx^(n-1)。
3. 乘法法则:若f(x) = u(x) * v(x),则d/dx(f(x)) = u'(x)v(x) + u(x)v'(x),其中u'(x)表示对u(x)求导。
4. 除法法则:若f(x) = u(x) / v(x),则d/dx(f(x)) = (u'(x)v(x) - u(x)v'(x)) / v(x)^2,其中u'(x)表示对u(x)求导。
5. 指数函数法则:若f(x) = a^x,其中a为常数且a > 0,则d/dx(f(x)) = ln(a) * a^x。
6. 对数函数法则:若f(x) = log_a(x),其中a为常数且a > 0且a≠1,则d/dx(f(x)) = (1 / (x * ln(a)))。
7. 三角函数法则:若f(x) = sin(x),则d/dx(f(x)) = cos(x);若f(x) = cos(x),则d/dx(f(x)) = -sin(x)。
8. 反三角函数法则:若f(x) = arcsin(x),则d/dx(f(x)) = 1 / sqrt(1 - x^2);若f(x) = arccos(x),则d/dx(f(x)) = -1 / sqrt(1 - x^2)。
9. 导数的链式法则:若f(x) = g(h(x)),则d/dx(f(x)) = g'(h(x)) * h'(x),其中g'表示对g求导。
10. 高阶导数法则:若f(x)的n阶导数存在,则d^n/dx^n(f(x)) =d^(n-1)/dx^(n-1)(f'(x))。
二、常用的积分公式1. 常数积分:∫c dx = cx + C,其中c为常数,C为常数表示积分常数。
导数公式微分公式和积分公式
导数公式微分公式和积分公式一、导数公式1.基本导数公式:(1)常数函数的导数为0:(c)'=0(2) 幂函数的导数:(x^n)'=nx^(n-1)(3) 指数函数的导数:(a^x)'=a^xlna (其中a>0,a≠1)(4) 对数函数的导数:(log_ax)'=1/(xlna) (其中a>0,a≠1)(5) 正弦函数和余弦函数的导数:(sinx)'=cosx,(cosx)'=-sinx(6) 正切函数的导数:(tanx)'=sec^2x(7) 反正弦函数、反余弦函数和反正切函数的导数:(arcsinx)'=1/√(1-x^2),(arccosx)'=-1/√(1-x^2),(arctanx)'=1/(1+x^2)2.导数的四则运算:(1)和差的导数:(f+g)'=f'+g',(f-g)'=f'-g'(2) 函数与常数的乘积的导数:(cf)'=cf'(3) 积的导数:(fg)'=f'g+fg'(4) 商的导数:(f/g)'=(f'g-fg')/g^2 (其中g≠0)(5)复合函数的导数:(f(g(x)))'=f'(g(x))g'(x)二、微分公式微分可以看作函数在其中一点上对自变量的微小变化与函数值的微小变化之间的比率。
微分公式是导数概念的一个应用,常用于近似计算。
1.一阶微分公式:(1) 一个变量的微分:df=f'(x)dx(2) 两个变量的微分:df=f_xdx+f_ydy (其中f_x和f_y分别是函数f关于x和y的偏导数)2.高阶微分公式:(1) 一个变量的n阶微分:d^n f/dx^n(2) 两个变量的混合n阶微分:d^n f/dx^mdy^n-m (其中m+n为n阶)三、积分公式积分是微分的逆运算,可将一个函数的导数还原为原函数,同时也可以用于计算曲线下的面积、体积等。
导数微积分公式大全
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本公式
导数公式微分公式
积分公式
反三角函数公式
导数公式微分公式
积分公式
基本三角函数公式
导数公式微分公式
积分公式
其他积分公式
C
a
x
x
a
x
x
C
a
x
a
x
a
x
dx
x
a
+
±
+
=
±
+
+
-
=
-
⎰
⎰
2
2
2
2
2
2
2
2
2
ln
d
arctan
2
2
()
C
x
x
e
x
x
e
C
x
x
e
x
x
e
C
a
x
x
a
x
x
x
a
x
x
x
x
x
+
+
=
+
-
=
+
±
+
+
±
=
±
⎰
⎰
⎰
)
cos
(sin
2
1
d
cos
cos
sin
2
1
d
sin
ln
2
d2
2
2
2
2
2
青岛市高三统一质量检测
数学(理科)
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,复数
i
i
+12的实部为 A .2 B .2- C .1 D .1-
2. 设全集R U =,集合{}
2|lg(1)M x y x ==-,{}|02N x x =<<,则()U N
M =
A .{}|21x x -≤<
B .{}|01x x <≤
C .{}|11x x -≤≤
D .{}|1x x < 3. 下列函数中周期为π且为偶函数的是 A .)22sin(π
-
=x y B. )2
2cos(π-=x y C. )2sin(π+=x y D .)2cos(π
+=x y
4. 设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S = A .90 B .54
C .54-
D .72-
5. 已知m 、n 为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是 A .若l m ⊥,l n ⊥,且,m n α⊂,则l α⊥
B .若平面α内有不共线的三点到平面β的距离相等,则βα//
C .若n m m ⊥⊥,α,则α//n
D .若α⊥n n m ,//,则α⊥m
6. 一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是
A .16π
B .14π
C .12π
D .8π 7. 已知抛物线x y 42
=的焦点为F ,准线为l ,点P 为抛物
线上一点,且在第一象限,l PA ⊥,垂足为A ,4PF =,则直线AF 的倾斜角等于
正视图 俯视图
左视图。