最新《三角函数的图像与性质》说课稿
三角函数的图像与性质说课稿
《三角函数的图像与性质》说课稿各位领导、老师们大家好:今天我说课的内容是北师版数学高中教材必修四第一章第五、六、七节,我将从八个方面(教材、学情、教学模式、教学设计、板书、评价、开发、得失,出示ppt)说我对此课的思考和我的教学。
一、说教材本节课是在学习了任意角和弧度制、任意角的三角函数、三角函数的诱导公式的基础上,对三角函数的进一步探索和研究,是一类与其他函数有很多共性但又有独具特性的一类函数。
本节课的学习对培养学生的观察分析能力、作图读图能力、类比联想能力、归纳概括能力有着重要的作用。
本课的重点:三角函数的图像与性质。
本课的难点:三角函数与三角恒等变换交汇命题。
(ppt知识树)一节课不可能面面俱到,本着对教材和教学大纲的理解,我确定的教学目标是:知识与技能目标是1、掌握三角函数图像的作法;2、理解并掌握五点法做图。
过程与方法目标是先以动手操作的形式激发学生的探究兴趣,再通过分析动态演示三角曲线的形成过程,让学生领会数形结合的数学思想方法。
情感态度与价值观目标是使学生体验探究的乐趣,培养学生善于观察勇于探究的良好习惯和严谨的科学态度,同时也能够促进师生间的教学相长。
二、说学情学生经过学习,尤其是必修1、必修4函数的训练,已经具有理解三角函数的能力,已经能够独立分析问题。
但高三学生水平参差不齐,要以优促差,促进同学之间的互帮互学,加强小组之间的合作。
三、说教学模式在教学过程中,我采用四步导学模式。
四步导学模式,通过导引——学——导——练四个步骤,集中教学内容,突出教学目标,培养自主学习能力,精讲精练,当堂任务当堂完成。
这种模式步骤简洁,易于操作实践。
第一步,板书课题,出示目标。
通过故事展开进入课堂环节,明确目标,师生学习有的放矢。
第二步,自学指导,自主学习。
学生带着问题学习,更有目的性,便于很快抓住重点,突破难点。
第三步,合作互助,共同探究。
分组分板块阅读,能够更深入,学生在思考教师提问时,可以圈点出自己疑难的地方,然后通过小组讨论,全班讨论,得到解决。
三角函数的图象与性质总课时教案
三角函数的图象与性质总课时教案第一章:引言1.1 三角函数的概念引导学生回顾初中阶段学习的三角函数知识,如正弦、余弦和正切函数。
解释三角函数在数学和物理学中的重要性。
1.2 三角函数的定义介绍角度的弧度制。
讲解正弦、余弦和正切函数的定义。
1.3 三角函数的图像利用计算器或软件绘制正弦、余弦和正切函数的图像。
引导学生观察图像的周期性、对称性和奇偶性。
第二章:正弦函数的性质2.1 正弦函数的周期性讲解正弦函数的周期性及其公式。
引导学生通过图像理解周期性。
2.2 正弦函数的振幅解释振幅的概念及其对正弦函数图像的影响。
引导学生通过图像理解振幅的作用。
2.3 正弦函数的相位讲解相位的概念及其对正弦函数图像的影响。
引导学生通过图像理解相位的作用。
第三章:余弦函数的性质3.1 余弦函数的周期性讲解余弦函数的周期性及其公式。
引导学生通过图像理解周期性。
3.2 余弦函数的振幅解释振幅的概念及其对余弦函数图像的影响。
引导学生通过图像理解振幅的作用。
3.3 余弦函数的相位讲解相位的概念及其对余弦函数图像的影响。
引导学生通过图像理解相位的作用。
第四章:正切函数的性质4.1 正切函数的周期性讲解正切函数的周期性及其公式。
引导学生通过图像理解周期性。
4.2 正切函数的振幅解释振幅的概念及其对正切函数图像的影响。
引导学生通过图像理解振幅的作用。
4.3 正切函数的相位讲解相位的概念及其对正切函数图像的影响。
引导学生通过图像理解相位的作用。
第五章:三角函数的图象与性质的综合应用5.1 正弦函数的综合应用通过实际问题引导学生运用正弦函数解决实际问题。
引导学生运用正弦函数的性质解决几何问题。
5.2 余弦函数的综合应用通过实际问题引导学生运用余弦函数解决实际问题。
引导学生运用余弦函数的性质解决几何问题。
5.3 正切函数的综合应用通过实际问题引导学生运用正切函数解决实际问题。
引导学生运用正切函数的性质解决几何问题。
第六章:三角函数的性质总结6.1 三角函数的性质对比总结正弦、余弦和正切函数的周期性、振幅、相位等性质。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图像与性质。
2. 能够运用三角函数的图像与性质解决实际问题。
3. 提高学生的数学思维能力,培养学生的数学审美观念。
二、教学内容:1. 三角函数的定义与基本性质2. 正弦函数的图像与性质3. 余弦函数的图像与性质4. 正切函数的图像与性质5. 三角函数图像与性质的综合应用三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像与性质。
2. 难点:三角函数图像与性质的综合应用。
四、教学方法:1. 采用问题驱动法,引导学生探索三角函数的图像与性质。
2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
3. 结合实际例子,让学生学会运用三角函数的图像与性质解决实际问题。
4. 开展小组讨论,培养学生的合作与交流能力。
五、教学过程:1. 导入:通过复习初中阶段学习的三角函数知识,引导学生进入本节课的学习。
2. 三角函数的定义与基本性质:讲解三角函数的定义,引导学生掌握三角函数的基本性质。
3. 正弦函数的图像与性质:利用多媒体课件展示正弦函数的图像,讲解正弦函数的性质。
4. 余弦函数的图像与性质:利用多媒体课件展示余弦函数的图像,讲解余弦函数的性质。
5. 正切函数的图像与性质:利用多媒体课件展示正切函数的图像,讲解正切函数的性质。
6. 三角函数图像与性质的综合应用:结合实际例子,讲解如何运用三角函数的图像与性质解决实际问题。
7. 课堂小结:对本节课的内容进行总结,强调重点知识点。
8. 课后作业:布置相关练习题,巩固所学知识。
9. 课后反思:教师对本节课的教学进行反思,总结经验教训。
10. 教学评价:对学生的学习情况进行评价,了解学生对三角函数图像与性质的掌握程度。
六、教学策略与资源:1. 教学策略:采用问题引导式教学,鼓励学生主动发现问题、解决问题。
利用数学软件或在线工具,让学生亲自动手绘制三角函数图像,加深对函数性质的理解。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案第一章:正弦函数的图像与性质1.1 教学目标了解正弦函数的定义和基本概念学会绘制正弦函数的图像掌握正弦函数的性质1.2 教学内容正弦函数的定义和基本概念正弦函数的图像特点正弦函数的性质:奇偶性、周期性、对称性、单调性1.3 教学步骤1. 引入正弦函数的概念,引导学生理解正弦函数的定义。
2. 利用数学软件或图形计算器,绘制正弦函数的图像,让学生观察和分析图像的特点。
3. 讲解正弦函数的性质,结合图像进行解释,让学生理解和掌握性质。
1.4 教学评价通过课堂讲解和图像分析,评估学生对正弦函数的定义和图像的理解程度。
通过例题和练习题,评估学生对正弦函数性质的掌握程度。
第二章:余弦函数的图像与性质2.1 教学目标了解余弦函数的定义和基本概念学会绘制余弦函数的图像掌握余弦函数的性质2.2 教学内容余弦函数的定义和基本概念余弦函数的图像特点余弦函数的性质:奇偶性、周期性、对称性、单调性2.3 教学步骤1. 引入余弦函数的概念,引导学生理解余弦函数的定义。
2. 利用数学软件或图形计算器,绘制余弦函数的图像,让学生观察和分析图像的特点。
3. 讲解余弦函数的性质,结合图像进行解释,让学生理解和掌握性质。
2.4 教学评价通过课堂讲解和图像分析,评估学生对余弦函数的定义和图像的理解程度。
通过例题和练习题,评估学生对余弦函数性质的掌握程度。
第三章:正切函数的图像与性质3.1 教学目标了解正切函数的定义和基本概念学会绘制正切函数的图像掌握正切函数的性质3.2 教学内容正切函数的定义和基本概念正切函数的图像特点正切函数的性质:奇偶性、周期性、对称性、单调性1. 引入正切函数的概念,引导学生理解正切函数的定义。
2. 利用数学软件或图形计算器,绘制正切函数的图像,让学生观察和分析图像的特点。
3. 讲解正切函数的性质,结合图像进行解释,让学生理解和掌握性质。
3.4 教学评价通过课堂讲解和图像分析,评估学生对正切函数的定义和图像的理解程度。
《三角函数的图像与性质》说课稿
《三角函数的图像与性质》说课稿一、教材分析(一)内容说明函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。
4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。
数形结合是数学研究中的重要思想方法和解题方法。
通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。
另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排4.8节教材安排为4课时,我计划用5课时(三)教学目标和重、难点1.教学目标教学目标的确定,考虑了以下几点:(1)学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;(2)学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:(1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法(2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2. 重、难点由以上教学目标可知,本节重点是:师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。
2. 学会绘制和分析三角函数的图象。
3. 掌握三角函数的周期性、奇偶性、单调性等性质。
4. 能够应用三角函数的性质解决问题。
二、教学内容1. 三角函数的定义和基本性质。
2. 三角函数的图象绘制方法。
3. 三角函数的周期性性质。
4. 三角函数的奇偶性性质。
5. 三角函数的单调性性质。
三、教学重点与难点1. 三角函数的定义和基本性质的理解。
2. 三角函数图象的绘制和分析。
3. 三角函数周期性、奇偶性、单调性的理解和应用。
四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。
2. 利用数学软件或图形计算器进行图象绘制和分析。
3. 引导学生通过观察、分析和归纳三角函数的性质。
4. 利用例题和练习题巩固所学知识。
五、教学安排1. 第一课时:三角函数的定义和基本性质。
2. 第二课时:三角函数的图象绘制方法。
3. 第三课时:三角函数的周期性性质。
4. 第四课时:三角函数的奇偶性性质。
5. 第五课时:三角函数的单调性性质。
六、教学目标1. 理解正弦函数、余弦函数的周期性。
2. 学会应用周期性解决实际问题。
3. 掌握正弦函数、余弦函数的相位变换。
七、教学内容1. 正弦函数、余弦函数的周期性。
2. 周期性在实际问题中的应用。
3. 正弦函数、余弦函数的相位变换。
八、教学重点与难点1. 周期性的理解和应用。
2. 相位变换的理解和应用。
九、教学方法1. 通过实例讲解周期性在实际问题中的应用。
2. 利用数学软件或图形计算器进行相位变换的演示。
3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。
十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。
2. 第七课时:周期性在实际问题中的应用。
3. 第八课时:正弦函数、余弦函数的相位变换。
十一、教学目标1. 理解正切函数的图象和性质。
2. 学会应用正切函数解决实际问题。
3. 掌握正切函数的周期性和奇偶性。
三角函数的图象与性质(说课课件)
2. 诱导公式 sin( 2k ) sin
诱导公式可以把的图象扩展到究它们的哪些性质?
通过回忆学过的一些函数的定义域、值 域、单调性和奇偶性引导学生总结正弦函数 的主要性质。
(二)新课引入
观察:装满细沙的漏斗在做单摆运动时,沙子落在 与单摆运动方向垂直运动的木板上的轨迹”。
-1
.
“五点法”的一般步骤:列表、描点、连线。
问题二:正弦函数有哪些主要性质?
(1)学生分组讨论交流、相互评价,教师巡视并参与学生的讨论。 (2)提问部分小组,教师进行归纳并板书。
学生通过观察正弦函数图象的特点,分组完成 了正弦函数的主要性质的建构,培养学生合作学习 和交流的能力。
学生只需指出函数的定义域、值域、奇偶性和 单调性即可,函数的单调区间学生可能说不完整, 教师加以补充。
四、 教法分析
2.启发、提问方式教学
通过观察“正弦函数的几何作图法” 课件的演示,让学生分组讨论、交流、总 结,由小组成员代表小组发表意见,说出 正弦函数y=sinx的图象中起着关键作用的 点以及函数的主要性质。
四、 教法分析 3.讲议结合教学
教师耐心引导、分析、讲解和提 问,并及时对学生的意见进行肯定 与评议。
思考:1、该曲线是何曲线? 2、你有办法画出该曲线的图象吗?
让学生观察单摆运动,了解日常生活中 的实际问题转化为数学问题,提高学生对数 学学习的兴趣,从而引入新课,这种曲线就 是正弦函数y=sinx的图象。
(三)讲授新课
1. 课件演示:正弦函数的图象的几何作图法
y
通过课件演示突破弧度制
B
1 (B)
到x轴上点的对应这一难点。培 养学生观察能力、分析能力。
《三角函数的图象与性质》精品说课课件ppt
典例解析 例 2.求下列三角函数的周期: (1) y=3sinx,x∈R; (2)y=cos 2x,x∈R;
x∈R;
【解】(1)" x? R ,有 3sin(x+π)=3sinx,
由周期函数的定义知,y=3sinx 的周期为 2π.
(2)令 z = 2x ,由 xÎ R,得 z Î R ,且 y =cos z 的周期为 2π.即
第五章 三 角 函 数
5.4.2 正弦函数、余弦函数的性质
学习目标
1.掌握 y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性 和最值.
2.会求函数 y=Asin(ωx+φ)及 y=Acos(ωx+φ)的周期,单调区间 及最值.
3.了解周期函数、周期、最小正周期的含义.
提出问题
【解析】 (1)×.举反例,sin(40°+60°)≠sin 40°, 所以 60°不是正弦函数 y=sin x 的一个周期. (2)√.根据周期函数的定义知,该说法正确. (3)×.因为定义域不关于原点对称.
【答案】 (1)× (2)√ (3)×
2.函数 f(x)= 3sin2x-π4,x∈R 的最小正周期为(
(2)判断函数 f(x)=sin34x+32π的奇偶性.
【解析】 (1)∵f(x)的定义域是 R, 且 f(-x)= 2sin 2(-x)=- 2sin 2x=-f(x), ∴函数为奇函数.
【答案】 A (2)∵f(x)=sin34x+32π=-cos 34x, ∴f(-x)=-cos-34x=-cos 34x, ∴函数 f(x)=sin34x+32π为偶函数.
类比以往对函数性质的研究,你认为应研究正弦函数、余弦函数的 哪些性质?观察它们的图象,你能发现它们具有哪些性质?
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制和分析三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学重点:1. 三角函数的定义和图像。
2. 三角函数的性质。
三、教学难点:1. 三角函数图像的绘制和分析。
2. 理解和应用三角函数的性质。
四、教学准备:1. 教学课件或黑板。
2. 三角函数图像的示例。
3. 练习题和解答。
五、教学过程:1. 引入:通过生活中的实例,如温度、声音等,引入三角函数的概念,激发学生的兴趣。
2. 讲解:讲解三角函数的定义和基本概念,引导学生理解三角函数的周期性和奇偶性。
3. 演示:使用课件或黑板,展示三角函数的图像,让学生观察和分析图像的形状和特点。
4. 练习:让学生绘制一些简单的三角函数图像,并分析其性质。
5. 讲解:讲解三角函数的性质,如单调性、奇偶性、周期性等,引导学生理解和应用。
6. 练习:让学生解决一些实际问题,运用三角函数的性质进行计算和分析。
7. 总结:对本节课的内容进行总结,强调三角函数的图像和性质的重要性。
8. 作业:布置一些练习题,让学生巩固所学内容。
六、教学反思:本节课通过实例引入三角函数的概念,激发学生的兴趣。
通过讲解和演示,让学生理解和掌握三角函数的图像和性质。
通过练习和实际问题解决,让学生应用所学知识。
整个教学过程中,注意引导学生主动参与,培养学生的动手能力和思维能力。
作业的布置有助于巩固所学内容。
总体来说,本节课达到了预期的教学目标。
六、教学目标:1. 能够运用三角函数的性质解决简单的三角方程和不等式问题。
2. 理解正弦、余弦和正切函数的图像是如何由基础函数通过平移、伸缩等变换得到的。
3. 能够分析实际问题,选择合适的三角函数模型进行求解。
七、教学重点:1. 三角函数图像的变换规律。
2. 三角方程和不等式的求解方法。
八、教学难点:1. 理解三角函数图像的变换规律及其对函数性质的影响。
2. 解决实际问题中三角函数的应用。
高中数学教案《三角函数的图像与性质》
教学计划:《三角函数的图像与性质》一、教学目标1.知识与技能:学生能够掌握正弦、余弦、正切函数的基本图像及其关键特征(如周期、振幅、相位等);理解并应用三角函数的奇偶性、单调性、最值等性质。
2.过程与方法:通过绘制函数图像、观察分析、归纳总结等过程,培养学生直观感知、逻辑推理和数学抽象能力;学会运用数形结合的方法解决三角函数问题。
3.情感态度与价值观:激发学生对数学的兴趣,培养探索精神和严谨的科学态度;通过团队合作和交流分享,增强学生的集体意识和协作能力。
二、教学重点和难点●教学重点:正弦、余弦、正切函数的基本图像及性质;数形结合思想在三角函数中的应用。
●教学难点:理解并掌握三角函数图像的变换规律(如平移、伸缩、对称等);运用三角函数的性质解决实际问题。
三、教学过程1. 引入新课(约5分钟)●生活实例:通过展示海浪波动、音乐波形等自然现象或人工制品中的周期性变化,引导学生思考这些现象与三角函数的关系,引出三角函数图像的重要性。
●复习旧知:简要回顾三角函数(正弦、余弦、正切)的定义和基础性质,为后续学习做好铺垫。
●提出问题:提出探究性问题,如“正弦函数的图像是什么样的?它有哪些基本性质?”激发学生的好奇心和探索欲。
2. 讲授新知(约15分钟)●图像绘制:利用多媒体演示或指导学生动手绘制正弦、余弦、正切函数的图像,强调图像的连续性、周期性等特点。
●性质讲解:结合图像,详细讲解三角函数的振幅、周期、相位等关键特征,以及奇偶性、单调性、最值等性质。
●对比分析:引导学生对比正弦、余弦、正切函数图像的差异,理解它们各自的特点和相互之间的关系。
3. 图像变换(约10分钟)●理论讲解:介绍三角函数图像的平移、伸缩、对称等变换规律,结合具体例子说明变换后的图像特征。
●实践操作:组织学生分组进行实践操作,尝试通过改变参数来绘制变换后的三角函数图像,并观察分析变化规律。
●总结归纳:引导学生总结归纳三角函数图像变换的一般规律和方法,形成系统的知识体系。
三角函数的图象与性质教案
三角函数的图象与性质教案一、教学目标:1. 让学生理解三角函数的定义和基本概念,掌握正弦函数、余弦函数和正切函数的图象和性质。
2. 培养学生运用数形结合的思想方法研究三角函数的图象与性质。
3. 培养学生的逻辑思维能力和数学审美能力。
二、教学重点与难点:1. 教学重点:三角函数的图象与性质。
2. 教学难点:正弦函数、余弦函数和正切函数的图象与性质的推导和应用。
三、教学方法与手段:1. 教学方法:采用讲练结合、师生互动、分组讨论等教学方法。
2. 教学手段:利用多媒体课件、黑板、粉笔等教学工具。
四、教学过程:1. 导入新课:通过复习三角函数的定义和基本概念,引导学生关注三角函数的图象与性质。
2. 讲解与示范:讲解正弦函数、余弦函数和正切函数的图象与性质,并通过多媒体课件展示图象,让学生直观地感受三角函数的性质。
五、课后作业:1. 绘制正弦函数、余弦函数和正切函数的图象,并分析它们的性质。
2. 练习题:选择适当的函数,分析它们的图象与性质,解决实际问题。
3. 思考题:探讨三角函数图象与性质的内在联系,提出自己的见解。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对三角函数图象与性质的理解和掌握程度。
2. 观察学生在课堂讨论和练习中的表现,评估他们的逻辑思维能力和数学审美能力。
3. 收集学生对思考题的解答,评价他们的思考深度和创新能力。
七、教学反思:1. 反思本节课的教学内容和方法,评估学生对新知识的接受程度。
2. 思考如何改进教学手段,提高课堂教学效果。
3. 探讨如何引导学生将所学知识应用于实际问题,提高学生的应用能力。
八、教学拓展:1. 介绍三角函数在实际生活中的应用,如测量、信号处理等。
2. 引入高级三角函数的概念,如双曲函数、反三角函数等。
3. 探讨三角函数与其他数学领域的联系,如微积分、线性代数等。
九、教学资源:1. 多媒体课件:三角函数图象与性质的动态展示。
2. 练习题库:涵盖各种难度的练习题。
数学《三角函数的图象与性质》说课稿(第二版)
数学《三角函数的图象与性质》说课稿(第二版)《正弦函数的图象与性质》说课稿尊敬的各位评委老师大家好。
我汇报的题目是《正弦函数的图象与性质》,我将从以下四个方面进行介绍。
一、教学分析(一)教材分析本次课的教学内容是马复、王巧玲主编的江苏省职业学校文化课教材《数学》第一册中的第五章第六节,其主要内容是正弦函数的图象与性质。
(二)学情分析本课程的授课对象是高职电工电子专业一年级的学生,他们已经学习了函数和三角函数知识的基础,大部分学生对于函数图象与性质的学习已有了初步认知,对函数定义域、值域、单调性、奇偶性的性质有一定的学习能力,但对于三角函数特有的周期性研究接受能力较弱。
(三)内容分析本次课所讲的正弦函数的图象与性质是贯穿三角函数的重要内容,它是学习三角函数图象与性质的入门课,是后面余弦函数、正弦型函数的基础,是一类与其他函数有很多共性但又独具特性的函数,通过本节课的学习对培养学生的观察分析能力、作图读图能力、归纳概括能力有着重要的作用。
(四)重难点分析本次课的教学重点是正弦函数的作法、主要性质的理解及简单运用,教学难点是周期函数与最小正周期的意义理解。
(五)教学目标基于大纲要求和考纲分析我们确定的三维目标如下:1、知识目标会用五点法画正弦函数并能借助图象理解正弦函数的性质,会利用性质解决一些简单问题。
2、技能目标通过分析动态演示正弦曲线的形成过程,让学生领会数形结合的数学思想方法。
3、素养目标使学生体验探究的乐趣,培养学生善于观察勇于探究的良好习惯和严谨的科学态度,同时体验团队协作的乐趣,感受数学图象的魅力。
二、教学策略(一)教学思路根据教学内容及学生的认知规律我们确定的教学思路是:1、课前微课----变陌生为熟悉,2、动态演示----变抽象为形象3、课堂讲解----变模糊为清晰4、软件辅助----变复杂为简单5、小组讨论----变困难为容易(二)实现手段为实现以上思路采取的手段是:1、网络学习平台2、动态数学软件geogebra 及几何画板3、课堂讲解采用板书与ppt 相结合的方式4、利用蓝墨云班课、QQ 等交流平台。
高中数学说课稿:《三角函数》5篇
高中数学说课稿:《三角函数》高中数学说课稿:《三角函数》精选5篇(一)尊敬的各位老师,大家好!我今天将为大家带来一堂关于高中数学的说课,主题是《三角函数》。
首先,我将介绍本节课的教学目标。
本节课的目标主要分为两个方面。
一方面,通过学习三角函数的定义和性质,学生能够掌握三角函数的概念,能够正确计算各种三角函数的值。
另一方面,通过解决实际问题,培养学生运用三角函数解决实际问题的能力。
接下来,我将介绍教学内容和教学方法。
本节课主要包括以下几个方面的内容:三角函数的定义,正弦、余弦、正切等三角函数的计算、特殊角的三角函数值、利用三角函数解决实际问题等。
在教学过程中,我将采用多种教学方法,如讲解、示例演示和练习等。
通过讲解,我将向学生详细解释三角函数的定义和性质,帮助学生理解概念。
通过示例演示,我将给学生展示一些具体的计算过程,帮助学生掌握计算方法。
通过练习,我将让学生运用所学知识解决一些实际问题,提高他们的实际运用能力。
在教学过程中,我将注重培养学生的思维能力和合作能力。
我将通过一些启发式的问题,引导学生思考,提高他们的问题解决能力和创新能力。
同时,我会鼓励学生之间互相合作,通过小组讨论和合作解决问题,培养他们的团队合作精神。
最后,我将介绍评价方式和教学反思。
在评价方面,我将采用多种方式,如课堂练习、小组合作和个人表现等,综合评价学生的学习情况和能力。
在教学反思方面,我将根据学生的反馈和自己的观察,总结优点和不足,进一步改进教学方法,提高教学效果。
通过本节课的学习,学生能够掌握三角函数的概念和计算方法,能够灵活运用三角函数解决实际问题。
同时,通过课堂互动和合作,学生也能够培养自己的思维能力和合作能力。
谢谢大家!高中数学说课稿:《三角函数》精选5篇(二)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。
希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学内容:1. 三角函数的定义与基本概念正弦函数(sin)余弦函数(cos)正切函数(tan)余切函数(cot)正割函数(sec)余割函数(csc)2. 三角函数的图像正弦函数的图像余弦函数的图像正切函数的图像其他三角函数的图像3. 三角函数的性质周期性奇偶性单调性极值三、教学方法:1. 采用讲解法,讲解三角函数的定义、图像和性质。
2. 利用数形结合法,引导学生通过观察图像来理解函数的性质。
3. 运用实例分析法,让学生通过实际问题来应用三角函数的性质。
四、教学步骤:1. 引入三角函数的概念,讲解三角函数的定义和基本性质。
2. 利用计算机软件或板书,绘制三角函数的图像,让学生观察和理解函数的图像。
3. 通过示例,讲解三角函数的性质,引导学生掌握如何判断函数的周期性、奇偶性、单调性和极值。
4. 布置练习题,让学生巩固所学内容,并能够应用三角函数的性质解决实际问题。
五、教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生对三角函数定义和基本概念的掌握程度。
3. 学生能够正确绘制三角函数的图像。
4. 学生能够运用三角函数的性质解决实际问题。
六、教学拓展:1. 探索三角函数的复合函数图像和性质。
2. 研究三角函数在科学和工程中的应用。
3. 引入三角恒等式,让学生了解三角函数之间的关系。
七、教学活动:1. 组织小组讨论,让学生共同探讨三角函数的性质和图像。
2. 开展数学竞赛,激发学生学习三角函数的兴趣。
3. 安排实地考察,让学生观察和理解三角函数在现实世界中的应用。
八、教学资源:1. 利用计算机软件,如GeoGebra或Matplotlib,绘制三角函数的图像。
2. 提供三角函数的图像和性质的参考资料,供学生自主学习。
3. 利用互联网资源,寻找实际问题,让学生应用三角函数的性质解决。
三角函数图像及性质说课稿【精选】
教学目标
知识与技能目标
1.掌握三角函数的图像及简单性质; 2.掌握两种基本关系式之间的联系; 3.查缺补漏,完善三角函数知识网络,突出重点,让学生掌握解决三角高 考题的策略与方法,力争使学生在高考中将三角题全拿下。
过程与方法目标
通过函数图像培养学生用数形结合思想和整体代换的思想处理数学问 题的能力;通过例题与练习提高学生动手能力和分析解决问题的能力。 规范训练,培养学生归纳整理、创造、刻苦钻研、一丝不苟的精神, 提高学生的应试能力,培养学生个性品质。
2y
2
sin
x
2,
x
6
,
2
3
3已知函数y a b sin 4x b 0的最大值是5,最小值是1.
3
求函数y 2b sin x 5的值域。 3
4求y sin2 x 2sin x 3的值域。
强调:数形结合思想和整体代换思想
周期性:
T
2π ω
单调性: 增区间为: 2kπωx 2kπ,, k Z
对称性: 对称轴x k , k Z 对称中心:横x k , k Z,纵B
2
聪明在于学习,天才在于积累。…… 所谓天才,实际上是依靠学习。 ——华罗庚
对称性
对称轴:x k (k Z )
对称中心:
(k
2
,0)(k Z )
函数y Acosx B, 0的性质
y cosx
1
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标:1. 知识与技能:使学生掌握三角函数的图像与性质,能够运用三角函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索三角函数的图像与性质。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和团队协作能力。
二、教学内容:1. 三角函数的定义与图像2. 三角函数的周期性3. 三角函数的奇偶性4. 三角函数的单调性5. 三角函数的极值三、教学重点与难点:1. 教学重点:三角函数的图像与性质的掌握。
2. 教学难点:三角函数的周期性、奇偶性、单调性和极值的判断。
四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图像与性质。
2. 利用多媒体手段,展示三角函数的图像,增强学生的直观感受。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程:1. 导入新课:通过复习初中阶段学习的三角函数知识,引导学生进入高中阶段的学习。
2. 探究三角函数的图像与性质:引导学生观察三角函数的图像,分析其特点,归纳出性质。
3. 讲解与示范:教师讲解三角函数的周期性、奇偶性、单调性和极值的判断方法,并进行示范。
4. 练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置相关作业,巩固所学知识,提高学生的实际应用能力。
教案编写完毕,仅供参考。
如有需要,请根据实际情况进行调整。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,评价学生的学习态度和团队协作能力。
2. 作业评价:对学生的课后作业进行批改,评价学生对课堂所学知识的掌握程度。
3. 单元测试评价:在单元结束后进行测试,评价学生对三角函数图像与性质的掌握情况。
七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使所有学生都能跟上教学进度。
《三角函数的图像与性质》说课稿
《正弦函数和余弦函数的图像与性质》说课稿一、教材地位和作用本节课的内容是选自高中一年级第二学期中第六章《三角函数》第一节。
三角函数是把已经学习过的三角比的知识和函数知识结合起来,是刻画生活中周期现象问题的典型的函数模型,在高中数学知识体系中占有十分重要的地位。
本节课作为《三角函数》开篇的第一课时,主要解决了正弦、余弦函数的定义和其图像的画法问题,为后面更好地学习三角函数的性质打下牢固的基础。
二、教学目标分析教学目标:1.掌握正弦函数和余弦函数的概念。
0,2π上的图像的方法;并2.学会利用单位圆中的正弦线作出正弦函数在[]0,2π上的大致图像。
正确运用五点法作出正弦函数在[]3.利用诱导公式,通过图像平移作出余弦函数的图像。
4.进一步形成数形结合的思想方法,以及分析问题、解决问题的能力。
教学重点、难点:0,2π上的大致图像;通过图像平移作出余弦重点:五点法作出正弦函数在[]函数的图像。
0,2π上的图像。
难点:利用单位圆中的正弦线作出正弦函数在[]三、教学问题诊断高一学生对函数概念的理解本身就是难点,再加上三角比知识,就要求学生有较高的理解和综合的能力。
关于作图方面,在前面函数的章节中,学生已经学习了画函数图像的一些方法,如幂函数、指数函数、对数函数等可以用列表描点法、图像平移翻折等方法作出其图像。
基于上述情况,预测学生对于本节课的内容,会有以下的一些困难:1.概念的引出,把三角与函数两个概念结合起来,正确理解正弦函数和余弦函数。
0,2π上的图像。
2.利用单位圆的正弦线作出正弦函数在[]3.正确掌握五点法的作图步骤与要求。
4.按照正弦函数的作图方法,学生自己解决画余弦函数图像的一些方法。
四、教学特色1.引例的设计意图学生在物理学中已学习过圆周运动,创设摩天轮情境更能贴近学生实际,在解决这一问题的过程中,学生经历了运用数学模型来刻画周期现象的整个过程,既体会到三角函数的本质又调动了学生学习积极性。
另外,从实际问题中抽象出的单位圆进行研究,起到了承上启下的作用,既复习了三角比的内容,又为正弦函数作图时所用到的正弦线打下伏笔。
三角函数的图象与性质说课课件
复习回顾:
例 1:回顾初中的函数作图方法,试作出二次函数 y x2 2x 3
的图象
例 2:观察二次函数的图象,口答:图象中哪些点或线确定时, 就能作出二次函数的图象。
讲解正课:
例 3:回顾任意角三角函数的内容,作出一个单位圆,完成下
本课的内容是后续教学的基础,只有在本 节目标完成的情况下,后续的教学才能顺利的 进行。
2.教学方 法
计算机辅助教学 借助多媒体教学手段引导学生理解利用单 位圆中的正弦线画出正弦函数的图象;
讨论式教学 让学生分组(四人一组)讨论、交流、总 结;
讲议结合教学 教师耐心引导、分析、讲解和提问;
分层教学 提问分层、评价分层、作业分层
2.教学重点
利用“五点作图法”作出正弦函数一个周期 的图象;
懂得利用周期的定义解决一些简单的问题;
能够利用正弦函数图象归纳正弦函数的性质
3.教学难点
从单位圆中的三角函数线到三角函数图象 的过渡;
周期定义的应用
正弦函数性质的理解
二、目标分析:
1.知识目标
正弦函数的图象与性质
2.能力目标
(1)试分析该函数形式,口答该函数的自变量和函数
值分别是什么?
(2)试根据例 3 中的表格,利用描点法,在坐标系中
作出正弦函数在[0, 2 ] 上的图象;
(3)进一步观察以上作图中所描的点,试删掉其中的
一些点,以最少的描点数作出相同的草图;
(4)根据单位圆中正弦线的变化规律,试作出正弦函
数在[2 , 4 ] 的图象;
上的图象特征;
(2)试归纳函数在区间 [ ,13 ] 、 [ 11 , ] 以及
三角函数的图像和性质(说课案)
三角函数的图像和性质(第一课时说课案) 下面我将从四个方面说明本节课的教学设计。
一、教材分析二、教学方法分析三、教学流程四、教学说明一、教材分析1、地位与作用:本节课是在学生掌握了单位圆中的正弦线和诱导公式的基础上进行的,不仅是对前面所学知识应用的考察,也是后续学习正、余弦函数性质的基础。
对函数图像清晰而准确的掌握也为学生在解题实践中提供了有力的工具。
2、学情分析:(1)知识与技能:学生已掌握了一些初等基本函数的图像和性质,并了解一些函数图像的画法。
(2)心理与生理:高一上学期的学生已经对高中数学体系中函数问题的处理方法和过程有了初步认识,且具有了较强的分析、判断、理解能力和一定层次上的交流沟通能力。
3、教学目标(1)知识与技能目标:通过研究掌握正弦函数图像及其画法;掌握余弦函数图像;深刻理解五点作图法中五点(零点、最高点、最低点)的本质即:图像中走向趋势发生变化的点。
(2)过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使对正弦函数单调、对称、“周而复始”等性质的认知更为深刻。
(3)情感态度与价值观:用联系的观点看待问题,善于类比联想,直观想象,对数形结合有进一步认识,激发学习数学的兴趣,养成良好的数学品质。
4、重、难点分析:(1)重点:用单位圆中的正弦线作正弦函数在]2,0[π的图象、“五点法”作图;(2)难点:如何由正弦函数在]2,0[π上的图象得到正弦函数在R上的图象;如何在正弦函数的图像上找出“五点”。
二、教学方法教学方法:演示法、示范教学法、启发式引导、互动式讨论、反馈式评价。
学习方法:观察发现、合作交流、归纳总结、反馈模仿。
教学手段:运用多媒体网络教学平台,构建学生自主探究的教学环境。
三、教学流程1、复习、引入:复习内容有:描点作函数图像的一般步骤;弧度定义;正、余弦函数定义;正弦线、余弦线;诱导公式。
设置的目的是让学生再次回顾弧度的定义(强调弧度与实数一一对应的关系)与正弦线(实质是函数值),为利用正弦线作出正弦函数的图像做准备。
三角函数的图像与性质说课稿1
正弦函数、余弦函数的图像说课稿尊敬的各位评委老师大家好。
我今天说课的题目是《正弦函数、余弦函数的图像》著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现。
”激发学生的学习兴趣,培养创新思维是新教材所倡导的理念之一。
我设计本节课的关键是让学生参与知识的形成过程,成为学习的主人。
下面我从教材分析、学情分析、教材处理、教法分析、学法指导,以及教学过程五个方面对本节课的设计加以说明。
教材分析本节课是人教版普通高中课程标准实验教科书必修 4 第一章第四节第一课时的内容。
是在学习了任意角和弧度制、任意角的三角函数的基础上,对三角函数的进一步探索和研究,是一类与其他函数有很多共性但又有独具特性的一类函数,并却通过本节课的学习对培养学生的观察分析能力、作图读图能力、类比联想能力、归纳概括能力有着重要的作用。
学情分析在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,在第一册学生已经掌握了函数的有关对应的知识和概念 , 同时已经具备了一定的自学能力 , 这在我们今天学校用“五点法”作图提供了基础,让学生动手作出函数y=sinx 和y=cosx 的图象,学生不会感到困难。
但是现在的学生情况对于是对于“函数”二字表现的有些害怕,一涉及到函数就头疼,因此如何让他们愉快的去主动接受知识就成为最主要的问题。
而且对于普通班来说,学生的基础较差,讲新课之前需要把这节课要用到的旧知识预热充分。
鉴于此,我认为通过本节课的教学过程应达到如下的目标:教学目标知识与技能:掌握正弦、余弦函数图像的作法;理解并掌握五点法做图。
过程与方法:先以动手操作的形式激发学生的探究兴趣,再通过分析动态演示正弦曲线的形成过程,让学生领会数形结合的数学思想方法。
情感态度和价值观:使学生体验探究的乐趣,培养学生善于观察勇于探究的良好习惯和严谨的科学态度根据学生的认知水平及教学目标,我将本节课的重点确定为:正弦、余弦函数图像的画法难点为:正弦、余弦函数图像的画法,正、余弦函数图像间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角函数的图像与性质》说课稿
一、教材分析
(一)内容说明
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。
4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。
数形结合是数学研究中的重要思想方法和解题方法。
通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。
另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排
4.8节教材安排为4课时,我计划用5课时
(三)教学目标和重、难点
1.教学目标
教学目标的确定,考虑了以下几点:
(1)学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;
(2)学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法
(2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2. 重、难点
由以上教学目标可知,本节重点是:师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢? 因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;
其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性
二、教法分析
(一)教法说明教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。
教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二) 教学手段说明:
为完成本课的教学目标,突出重点、克服难点,采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(2)为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
三、学法和能力培养
许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。
为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:授之以渔,与之合作而渔,使学生享受渔之乐趣。
因此 1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
四、教学程序
(一)导入
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分教学过程如下:
第一部分————师生共同研究得出正弦函数的性质 1.定义域、值域 2.周期性 3.单调
性 (重难点内容) 为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍为什么要这样强调呢? 因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
(4).对称性设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。
体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生
设计意图:
(1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作
自我评价;
(2)
(3)通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师
作反馈评价;
(4)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习
者,这也符合建构主义的教学原则。
(三)巩固练习
补充和选作题体现了课堂要求的差异性。
(四)结课
五、板书说明既要体现原则性又要考虑灵活性
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。
即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
(灵活性)
六、效果及评价说明 (一)知识诊断 (二)评价说明
1.针对学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。
2. 根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。
3. 本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。
通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。
希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果。