电子科技大学《电磁场数学方法》数学物理方法总结2

合集下载

电磁场数值计算方法_工程电磁场讲义

电磁场数值计算方法_工程电磁场讲义

其他的分析软件
除了ANSYS以外,还有许多通用或电 磁分析专业软件,例如: ANSOFT 公司 的Maxwell 2D&3D、HFSS、飞箭公司的 FEPG、COMSOL公司的FEMLAB等等, 它们各有特点。
3.Applications
3.1 应用实例1——准静电场
2 0
架空线路分裂导线表面电场
FEM相比其它数值方法的优点在于: ——理论基础成熟; ——计算格式规范统一,利于编程; ——适应性高,适合各种复杂形状的区域; ——求解精度高;
由于这些优异的特性,在短短几十年时间里, FEM成为了绝大多数物理和工程问题中(机械、 航空、汽车、船舶、土木、海洋工程、电气电 子、压力容器等)应用最广泛的一种计算机辅助 分析方法。 在电磁分析领域,除了FEM以外,也有其 它有效的数值方法,例如:矩量法(MOM)、边 界元法(BEM)、时域有限差分法(FDTD)等等。
七、边界条件
1、狄利克莱边界条件
满足狄利克莱边界条件非常简单,只需要令狄利克莱 边界上的各节点电势为给定的值即可。图1中,若节点1 1 0, 4 1 , 和节点4上分别有狄利克莱边界条件:
则加入边界条件后的矩阵方程为:
K K 0 0
1 11 1 21
K 1 2 K 22 K 22 2 K32 0
1 K 1 11 K K1 21 1 f 1 1 f f 1 2
1 K12 1 K 22
2 K 2 22 K K 2 32 2 f 2 2 f f 2 3
Ni i i x
由形函数的性质可知:
1 Ni 0 x xi x xi 1

电磁场数值分析方法及其应用

电磁场数值分析方法及其应用

电磁场数值分析方法及其应用电磁场是无处不在的,它在我们的日常生活中也发挥着极其重要的作用,比如说电视、手机、电脑和家用电器等等。

由于电磁现象的特殊性质,使得电磁场的理论计算非常困难,因此需要引入数值计算方法,对电磁场进行模拟分析,这就是电磁场数值分析方法的基本概念。

一、电磁场数值分析方法简介1. 经典电磁场理论在介绍电磁场数值分析方法之前,我们需要先了解一下经典电磁场理论,也即麦克斯韦方程组。

麦克斯韦方程组描述了电磁场的本质规律,包括电场E、磁场B、电荷密度ρ和电流密度J等四个基本物理量。

这些物理量之间的关系是非常复杂的,因此对于麦克斯韦方程组的求解,需要引入数值计算方法。

2. 电磁场数值计算方法电磁场数值计算方法是指采用离散化方法,将复杂的连续介质分割成有限的、简单的小单元,通过在每个小单元内求解基本电磁场变量的数值解,再通过数值方法进行拼合,最终得到求解区域内的电磁场分布特征。

3. 数值计算方法分类目前常用的电磁场数值计算方法主要包括有限元法、时域有限差分法、频域有限差分法、矩量法等等。

这些方法各有特点,适用于不同的电磁问题求解。

二、电磁场数值分析方法应用1. 微波器件设计微波器件中电磁场的分布特征是十分重要的,它决定了微波器件的性能。

采用电磁场数值分析方法可以清晰地描述微波场的分布特征,从而进行优化和改进设计,提高微波器件的性能。

2. 汽车电磁兼容性分析汽车中各类电子设备的数量越来越多,它们之间的干扰和互相影响也越来越严重。

采用电磁场数值分析方法可以对汽车中的电磁问题进行深入分析,确定干扰成因,从而提出解决方案。

3. 太阳能电池板设计太阳能电池板在光电转化过程中,需要考虑光的反射、折射和吸收等问题。

而这些问题都涉及到电磁场的分布特征。

因此,采用电磁场数值分析方法可以对太阳能电池板的设计进行优化,并提高其能量转换效率。

三、结论电磁场数值分析方法是一种强大的工具,它可以帮助我们深入了解电磁场的本质规律,并对各类电磁问题进行分析和优化设计。

电磁场数学方法-数学物理方程

电磁场数学方法-数学物理方程
l
mn mn mn mn
电子科技大学电磁场数学方法课程组
电磁场数学方法
第二篇 数学物理方程
知识复习 三、函数的傅里叶级数展开
n x 1、 ( x) cn sin l n 1

2 l n x cn (x )sin dx 0 l l 2 l n x cn (x ) cos dx 0 l l
电子科技大学电磁场数学方法课程组
u |t 0 ( x) ut |t 0 ( x)
utt a2uxx
u T (t ) X ( x)
u |x0 u |xl 0
X (0) X (l ) 0
分 离 变 量 法 流 程 图
T /(a2T ) X / X
§4.1 齐次方程的分离变数法
(一)有界弦的自由振动的定解问题(一维波动方程)
分离变量法求解步骤: 1)分离变量 u( x, t ) X ( x)T (t )
2
X X 0
T a 2T 0
n x n n / l l n a n a T C cos t D sin t 3)求另一个函数 n n n l l X n ( x) Bn sin
1 l c0 ( x)dx l 0
5.1.9
n x 2、 ( x) cn cos l n 0

5.1.11
电子科技大学电磁场数学方法课程组
电磁场数学方法
第二篇 数学物理方程
§4.1 齐次方程的分离变数法
(一)有界弦的自由振动的定解问题(一维波动方程)
无界/半无界波动方程可由达朗贝尔公式求解。 有界弦自由振动定界问题为:
or f ( x) Ae

电磁场数学方法总复习

电磁场数学方法总复习

电磁场数学方法第一章 场论1 方向导数定义:方向导数是在一个点M 处沿方向l 的函数()u M 当0ul∂>∂时,函数u 沿l r 方向增加。

当0ul∂<∂时,函数u 沿l r 方向减少。

定理1. 函数(,,)u u x y z =在点0000(,,)M x y z 处可微;cos α,cos βcos γ为l 方向的方向余弦,则函数u 在点0M 处沿l 且由如下公式给出:cos cos cos u u u ul x y zαβγ∂∂∂∂=++∂∂∂∂ 其中,,u u ux y z∂∂∂∂∂∂是在点0M 处的偏导数。

2 梯度方向导数解决了函数()u M 在给定点处沿某个方向的变化率问题。

梯度则解决了函数()u M 在给定点处沿哪个方向的变化率最大的问题。

考察方向导数公式:cos cos cos ||cos(,)u u u uG l G G l l x y zαβγ∂∂∂∂=++=⋅=∂∂∂∂r r r r r 式中u u u G i j k x y z∂∂∂=++∂∂∂r r r r ,cos cos cos l i j k αβγ=++r r r r。

梯度的定义:若在数量场()u M 中的一点M 处,存在这样一个矢量G r,其方向为函数()u M 在M 点处变化率最大的方向,其模也正好是这个最大变化率的数值,则称矢量G ϖ为函数()u M 在点M 处的梯度,记作grad u ,即:()u u u grad u G i j k x y z∂∂∂==++∂∂∂rr r r3 矢量场的通量及散度 通量通量的定义:设有矢量场()A M r ,沿有向曲面S 某一侧的曲面积分n ssA ds A dsΦ==⋅⎰⎰⎰⎰r r称为该矢量穿过曲面S 的通量。

散度的定义:lim lim s M M A dsdivA V v∆∆Ω->∆Ω->⋅∆Φ==∆∆⎰⎰r r r Ò。

数学物理方程2 电子科技大学 李明奇

数学物理方程2 电子科技大学 李明奇
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
一、均匀细弦微小横振动问题
一根均匀柔软的细弦线,一端固定在坐标原点,另一端沿x轴 拉紧固定在x轴上的L处,受到扰动,开始沿x轴(平衡位置) 上下作微小横振动(细弦线上各点运动方向垂直于x轴)。试 建立细弦线的振动规律。 确定研究对象: 细弦线上任意点位移函数u(x,t)
通过曲面进入导热体的总热量:
Q1
t2
t1
u ds ]dt [ k n S
14
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
u Q1 [ k ds ]dt n s .t2 .t1 [ k u n0 ds ]dt
定解问题
泛定 方程 定解条件
初始条件 边界条件
19
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
y u xx u yy 0, 0 x , y 1 1 u(0, y ) u( x ,0) u( x ,1) 0 u(1, y ) sin y
v
u .t2 u .t2 c .t1 dt dv .t1 [ c dv]dt t v v t
ut a 2 u a 2 (u xx u yy u zz )
16
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
7
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1

数学物理方法归纳总结

数学物理方法归纳总结

数学物理方法归纳总结在数学和物理领域,人们经常使用各种数学方法来解决复杂的问题。

这些数学方法不仅能够帮助我们理解自然界的规律,还可以应用于各种实际情况中。

本文将对数学物理方法进行归纳总结,帮助读者更好地理解和应用这些方法。

1.微积分方法微积分是数学中的一门重要学科,它包括微分和积分两个方面。

微积分方法在物理学中的应用非常广泛。

例如,在研究物体的运动过程中,我们可以使用微积分方法求解物体的速度、加速度等相关问题。

微积分方法还可以用于求解曲线的斜率、曲率等问题,进一步帮助我们理解物理现象。

2.矢量分析方法矢量分析方法主要应用于描述和分析空间中的物理量。

在物理问题中,许多物理量都是有方向和大小的,通过使用矢量分析方法,我们可以更好地理解其性质和变化规律。

例如,通过计算力的合成与分解,可以求解力的平衡问题;利用矢量叉乘可以得到磁场强度的方向等。

3.微分方程方法微分方程是数学中的一种重要方程形式,它描述了变量之间的关系随时间、空间或其他独立变量的变化情况。

微分方程方法在物理学中应用广泛,常用于描述动力学、电磁场、波动等问题。

通过建立适当的微分方程模型,我们可以求解各种物理现象的演化过程。

4.矩阵方法矩阵方法是一种通过线性代数的理论和技巧来处理物理问题的数学方法。

在量子力学中,矩阵方法广泛应用于描述和计算粒子的能量、波函数、自旋等性质。

矩阵方法可以简化复杂的计算过程,帮助人们更好地理解量子力学中的各种现象。

5.概率统计方法概率统计方法是数学中研究随机事件规律和数据分析的一种数学方法。

在物理学中,概率统计方法可以用于解释微观粒子运动的不确定性、描述热力学系统的行为等。

概率统计方法可以帮助我们预测和分析物理现象中的随机因素,并进行相应的量化处理。

6.变分法变分法是一种用于求解最值问题的数学方法。

在物理学中,变分法常用于描述系统的最小作用量原理以及拉格朗日力学中的运动方程。

通过对物理量的变分求解,我们可以得到系统的稳定状态、系统的能量变化等重要信息。

数学物理方法总结

数学物理方法总结

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y ∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有 2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而()x C ϕ=.故 v=2xy+C.222()(2)f z x y i xy C z iC =-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2l f z f dz i z απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限1101l i m l i m 1k k k k k k kk a z z a R a a z z +++→∞→∞->=-,即说明200102000()()()......()k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1lim1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑.双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim {[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--.推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xzz z π-====-=-+++++⎰⎰⎰,Z的单极点为1,2422z -+==- 则221Re(22241z s i z z z π→--=+-=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()i m xG x m x d x G x eπ∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰,k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i ll k l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1.()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()pt f p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()(c f t c f t c f pc f++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a. (5) 位移定理 ()()tef t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()(f t f t f p f p, 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为u x∂∂,xx u 意为22ux ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)uf M t n ∑∂=∂ 第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sin n n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+.初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(cos )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(cos )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l l r r l u A r P x P x P x θθ∞======+∑,则22200121(,)(cos )(cos )33l l l l u r A r P r P r θθθ∞===+∑.。

电磁场数学方法-数学物理方程4

电磁场数学方法-数学物理方程4
0
( ) A cos m B sin m (m 0,1, 2,3 ) m 2
d 2Z 2 0 Z z C Dz 0 dz 情形1: 2 d 2 R dR 2 m 0 2 R d R d
第二篇 数学物理方程
坐标系下拉普拉斯方程的分离变量
2 2 1 u 1 u u 2 u u 2 2 2 0 z
令 u( , ,z )=R( ) ( )Z (z ) ,代入方程得
Z d dR RZ d 2 d 2Z 2 R 2 0 2 d d d dz
电磁场数学方法
第二篇 数学物理方程
§7.1 贝塞尔函数
柱坐标系下拉普拉斯方程的分离变量

2 d 2 R dR 1 d 2 2 d 2 Z 0 2 2 2 R d R d d Z dz
u
① 0 2 R R 1 d 2 R 1 dR 1 d 2Z 2 Z 2 2 R R Z R d R d Z dz 2
2
贝塞尔方程变为:
2 d R dR x2 2 x ( x 2 m2 ) R 0 dx dx
( x= u )
写成标准形式得:
2 d y dy x 2 2 x ( x 2 m2 ) y 0 dx dx
m阶贝塞尔方程 的标准形式
电子科技大学电磁场数学方法课程组
电磁场数学方法
特征值和特征函数是什么?
电子科技大学电磁场数学方法课程组
电磁场数学方法
第二篇 数学物理方程
§7.1 贝塞尔函数 (二)第一、二类贝塞尔函数 1、m阶贝塞尔方程

电磁场公式总结

电磁场公式总结
S
电场的无旋性
磁场的无源性
∫ 电位差(电压):单位正电荷的电位能差.即:U AB
=
WAB q
=
AAB q
=
B �� � Ed l .
A
磁介质:在磁场中影响原磁场的物质称为磁介质.
名称
电通量
电通量就是垂直通过某一面积的电力线的条数,
定义 用 Φe表示.即: Φe = ∫∫ EidS = ∫∫ EdScosθ
均匀磁化:
� M
=

� pm
+

� ∆pm
∆V
不均匀磁化:
� M
=
lim

∑ Pm

+ ∑ ∆pm
∆V →0
∆V
��
� ��
L = IS(n × B)
电力线
磁力线
静电场的等势面
就是一簇假想的曲线,其曲线上任一点 就是一簇假想的曲线,其曲线上 就是电势相等的点集 定
的切线方向都与该点处的 E 方向一致. 任一点的切线方向与该点 B 的方 合而成的曲面. 义
ss名称静电感应磁化定义电场对电场中的物质的作用磁场对磁场中的物质的作用利用电介质时电场的高斯定理求电场感应利用磁介质中的安培环路定理求磁场感应强度强度原理通过电介质中任一闭合曲面的电位移通量等于该面包围的自由电荷的代数和
电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的 一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的.
��
��
高斯面,求出电位移矢量 D .
环路,求出磁场强度 H .
解题 步骤
��
��
��
��

电磁场计算方法及其应用分析

电磁场计算方法及其应用分析

电磁场计算方法及其应用分析在现代科技发展中,电磁场理论是非常重要的一部分。

从电信号传输到电气化系统,电磁场的应用涵盖了许多领域。

因此,电磁场计算方法的研究也显得格外重要。

本文将会分析和总结电磁场计算方法及其应用。

一、电磁场计算方法电磁场计算方法是用电场和磁场公式计算电磁场中所有点的电量和磁量,以预测电磁场在特定区域的分布和行为。

常用电磁场计算方法包括有限元法、有限差分法、边界元法等。

有限元法是一种能够处理非线性和非均匀介质的数值分析方法。

它把复杂的问题分解成许多小区域并求解基本方程,然后再用普通微分方程或多项式插值法将各小区域的解合并成整个问题的解。

有限元方法有很强的可靠性和通用性,可以应用于多维问题的计算中。

有限差分法是一种基于隐式差分格式的计算方法,通过对电磁场的微分方程进行离散化后,逐步求解梯度和散度等一系列差分方程。

有限差分法相对于有限元法来说,更加直接并且易于实现,因此在电磁场计算中有时被采用。

而边界元法则是一种基于格林公式的方法。

将求解区域的边界分解为离散的面元,并在每个面元上建立基函数,在求解过程中需要考虑面元之间边界条件的转化。

边界元法处理边界问题时非常有效。

以上三种方法都有着广泛的应用场景。

不同的计算方法都有着不同的优缺点,在实际应用中需要灵活选择。

二、电磁场计算应用分析1. 无线电通信场景在通信场景中,电磁场计算方法可以用于模拟无线信号的传输,来寻找最佳的信道码型。

比如,在手机通信中,不同地点的信号强度是不同的,我们可以通过电磁场计算方法,合理地安排网络基站,并加强信号覆盖,减少无线信号干扰等。

2. 电子电缆设计电缆结构中布线排列的合理性可以影响电磁场的分布以及对电缆本身的影响,甚至会对通讯信号传输产生噪声干扰等。

电磁场计算方法可以模拟电缆布线的情况,从而对电缆结构进行最优化设计,提高电缆的性能指标。

3. 电动车辆电磁兼容性分析电磁兼容性分析是电动车辆应用中的一个重要环节。

电动车辆中存在大量的电子设备、电气传输系统以及功率电子器件等,会产生相当大的电磁辐射干扰,导致出现各种问题。

掌握电磁场的计算方法

掌握电磁场的计算方法

掌握电磁场的计算方法电磁场是物理学中一个重要的概念,它描述了电荷和电流在空间中产生的电场和磁场的相互作用。

电磁场的计算方法是物理学研究中的重要内容之一。

电磁场的计算方法主要涉及两个方面:电场计算和磁场计算。

接下来将详细介绍这两个方面的计算方法。

首先是电场的计算方法。

电场是由电荷产生的,计算电场的关键是确定电荷分布和电场强度的关系。

根据库仑定律,电场强度与电荷之间的关系可以表示为E=k*q/r^2,其中E是电场强度,k是库仑常数,q 是电荷量,r是与电荷之间的距离。

通过这个公式,可以计算出电场强度在不同位置的数值。

当电荷分布不均匀时,可以将电荷分布看作是离散的点电荷,然后将每个点电荷的电场强度进行叠加计算,得到总的电场强度。

接下来是磁场的计算方法。

磁场是由电流产生的,计算磁场的关键是确定电流分布和磁场强度的关系。

根据安培定律,磁场强度与电流之间的关系可以表示为B=k*I/(2*pi*r),其中B是磁场强度,k是磁导率,I是电流强度,r是与电流之间的距离。

通过这个公式,可以计算出磁场强度在不同位置的数值。

当电流分布不均匀时,可以将电流分布看作是离散的线电流,然后将每个线电流的磁场强度进行叠加计算,得到总的磁场强度。

除了这两种基本的电磁场计算方法,还有其他方法可以用来求解特定情况下的电磁场问题。

例如,在均匀电场中的带电粒子运动轨迹的计算可以借助拉格朗日力学中的运动方程进行分析。

在变化磁场中的电场感应问题中,可以使用法拉第电磁感应定律进行计算。

在电磁波传播的问题中,可以使用麦克斯韦方程组进行求解。

电磁场的计算方法在工程学和科学研究中具有广泛的应用。

例如,在电子技术中,需要对电路中的电磁场进行计算,以评估电磁干扰和防止电磁辐射的问题。

在天体物理学中,需要计算恒星和行星的电磁场,以研究宇宙中的电磁现象。

在材料科学中,需要计算材料中的电磁场,以研究材料的电磁性质。

总之,电磁场的计算方法是物理学研究中的重要内容,它涉及到电场和磁场的计算。

数学物理方法总结

数学物理方法总结

数学物理方法总结数学物理方法在物理学领域中扮演着非常重要的角色,它不仅仅是物理学家的工具,更是一种思维方式和解决问题的方法。

数学物理方法的应用涉及到了许多领域,包括经典力学、电磁学、热力学、量子力学等。

本文将对数学物理方法进行总结,以便对这些方法有一个全面的了解。

首先,我们来谈谈在经典力学中的数学物理方法。

在经典力学中,微积分和微分方程是非常重要的工具。

微积分通过对函数的积分和导数运算,可以描述物体的运动和力学系统的行为。

而微分方程则可以用来描述物体的运动规律,比如牛顿第二定律就可以用微分方程来描述。

此外,拉格朗日力学和哈密顿力学也是经典力学中重要的数学物理方法,它们可以通过变分原理和哈密顿原理来描述物体的运动。

其次,我们来看看在电磁学中的数学物理方法。

在电磁学中,矢量分析和电磁场方程是非常重要的数学工具。

矢量分析可以用来描述电场和磁场的分布和性质,而电磁场方程则可以用来描述电磁场的行为,比如麦克斯韦方程组可以描述电磁波的传播。

此外,复数和调和函数也是电磁学中常用的数学工具,它们可以简化电磁场的计算过程。

再者,我们来讨论一下在热力学中的数学物理方法。

在热力学中,统计物理和热力学定律是非常重要的数学物理方法。

统计物理可以用来描述大量粒子系统的性质,比如玻尔兹曼分布和费米-狄拉克分布可以用来描述气体中粒子的分布。

而热力学定律则可以用来描述热量和功的转化,比如热力学第一定律可以用来描述热力学系统的能量守恒。

最后,我们来看看在量子力学中的数学物理方法。

在量子力学中,线性代数和波动方程是非常重要的数学工具。

线性代数可以用来描述量子态的性质,比如态矢量和算符可以用来描述量子系统的性质。

而波动方程则可以用来描述波函数的行为,比如薛定谔方程可以用来描述量子系统的演化。

综上所述,数学物理方法在物理学中扮演着非常重要的角色,它们不仅仅是工具,更是一种思维方式和解决问题的方法。

通过对数学物理方法的总结,我们可以更好地理解物理学中的各种现象和规律,为我们的科研工作提供更加丰富的思路和方法。

电磁场数学方法场论资料

电磁场数学方法场论资料

为 l 方向的方向余弦,则函数u 在点 M0处沿l方向的方向导数必存在,且由如
下公式给出: u u cos u cos u cos
l x
y
z
例、求函数 u x2 y2 z2 在点 M (1,0,1) 处沿 l i 2 j 2k 方向的方向导数?
第三章、分离变量(傅立叶级数)法
3.1、齐次方程的分离变量法 3.2、非齐次泛定方程 3.3、齐次泛定方程和非齐次边界条件的处理
电磁场数学方法
第四章、二阶常微分方程级数解法-本征值问题
4.1、特殊函数常微分方程 4.2、常点邻域上的级数解法 4.3、正则奇点邻域上的级数解法 4.4、斯特姆-刘维本征值问题
南京邮电大学电子科学与工程学院
第五章、球函数
5.1、基本概念 5.2、轴对称球函数 5.3、连带勒让德函数 5.4、一般的球函数
电磁场数学方法
第六章、柱函数
6.1、柱函数 6.2、贝塞尔方程 6.3、虚宗量贝塞尔方程 6.4、球贝塞尔函数
南京邮电大学电子科学与工程学院
第七章、格林函数-解的积分公式
(又有大小,又有方向。力场,速度场) 稳定场:若场中的物理量在各点处的对应值不随时间而变化,则称该场为
稳定场U (x, y, z)。(静电场)
非恒稳场:场中的物理量在各点处的对应值随时间而变化,则称该场为
非恒稳场 U (x, y, z,t)。(天线、谐振电路)
南京邮电大学电子科学与工程学院
一、数量场的描述 取定坐标系
南京邮电大学电子科学与工程学院
电磁场数学方法
第一章 场论
1.1 场 1.2 数量场的方向导数和梯度 1.3 矢量场的通量及散度 1.4 矢量场的环量及旋度 1.5 几种重要的矢量场 1.6 哈密顿算子

电磁场的计算方法总结

电磁场的计算方法总结

电磁场的计算方法总结电磁场是电荷和电流在空间中产生的一种物理现象。

在科学研究和工程设计中,准确计算和描述电磁场对于解决问题和优化系统至关重要。

本文将对电磁场的计算方法进行总结,并介绍常用的计算技术和工具。

1. 静电场的计算方法静电场是指电荷静止或运动缓慢时产生的电磁场。

计算静电场常用的方法包括:- 库伦定律:用于计算离散点电荷之间的电场强度和势能。

根据库伦定律,两个电荷之间的作用力正比于它们的电荷量,反比于它们之间的距离的平方。

- 超级位置法:将连续分布的电荷视为无数个点电荷的叠加,通过积分计算得到电场强度和势能。

2. 磁场的计算方法磁场是由电流或磁化物质产生的一种物理现象。

计算磁场常用的方法包括:- 安培定律:用于计算电流在空间中产生的磁场强度和磁感应强度。

安培定律表明,一段电流元产生的磁场强度正比于电流元的大小,反比于它们之间的距离和它们之间夹角的正弦值。

- 超级电流法:将连续分布的电流视为无数个电流元的叠加,通过积分计算得到磁场强度和磁感应强度。

3. 电场与磁场的相互作用电场和磁场是密切相关的,它们之间存在相互作用。

计算电场与磁场相互作用的方法包括:- 洛伦兹力公式:描述电荷在电场和磁场中受到的作用力。

洛伦兹力公式表明,电荷在电场中受到的力等于电场强度与电荷量的乘积,而在磁场中受到的力等于磁感应强度、电荷量和电荷的速度之间的叉积的大小。

- 麦克斯韦方程组:描述电磁场的运动规律。

麦克斯韦方程组由四个偏微分方程组成,分别描述了电场和磁场的变化规律。

4. 电磁场的数值计算电磁场的数值计算方法是利用计算机模拟和数值计算技术来求解电磁场的分布和性质。

常用的数值计算方法包括:- 有限元法:将问题的区域划分为有限数量的小单元,利用有限元法的基本原理和方程来求解电磁场的分布和性质。

有限元法适用于复杂几何形状和材料分布的问题。

- 有限差分法:将问题的空间区域划分为网格,并利用有限差分方法来近似求解微分方程,从而得到电磁场的分布和性质。

电磁场数学物理基础知识

电磁场数学物理基础知识

(5)A自身的点积,即 =0°,A•A=A2
2019/11/28 14
例如, 直角坐标系中的单位矢量有下列关系式: ex·ey=ey·ez= ex·ez=0 ex·ex=ey·ey=ez·ez=1
直角坐标系中的点积运算 A B (ex Ax ey Ay ez Az ) (ex Bx ey By ez Bz )
均匀场——不随空间变化的场 φ(t) , A(t )
具有大小和方向特征的量。如电场强度矢量。磁场 强度矢量、作用力矢量、速度矢量等。
2019/11/28 4
1.1.1 矢量及其表示方法
矢量的定义与表示:
几何表示:有向线段 代数表示:基于坐标系的参数表示
矢量的代数运算(四则运算):
几何方法及其意义 代数方法及其运算规则(与坐标系相关)
A、B相平行( = 0或180˚)时,AB=0,反之亦然;
A自身的叉积为零,AA=0。
2019/11/28 17
直角坐标系中的单位矢量有下列关系式: ex×ey=ez ey×ez=ex, ez×ex=ey ex×ex=ey×ey=ez×ez= 0
在直角坐标系中,矢量的叉积还可以表示为
A B Ax e x Aye y Az e z Bx e x Bye y Bz e z
2019/11/28 21
关于混合积的说明:
(1)矢量混合积的几何意义:
向量的混合积
(abc)

(a

b)

c
是这样
a

b
c
的示一以个向数量,a 、它b的、绝c 对为值棱表的
a
b
平行六面体的体积. (a b) c a b c cos (a b,c)

电子科技大学2C电磁场与电磁波第二章电磁场的基本规律

电子科技大学2C电磁场与电磁波第二章电磁场的基本规律

qi Ri3
Ri
问题:连续分布电荷产生的电场该怎么求解呢?
14:44
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第2章 电磁场的基本规律
19
连续分布的电荷系统产生的电场
连续分布于体积V中的电荷在空间任意点r产生的电场
处理思路: 1) 无限细分区域 2)考查每个区域
z
V i V
M
r (r) r
电 流 密 度 : JdIn ˆv
dS
(A
/
m2

vdt
通过体积内任意截面积S的电流
ISJd SSJn d S
其中:nˆ 为曲面S的法向单位矢量
14:44
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第2章 电磁场的基本规律
10
面电流密度
电流在厚度趋于零的薄层中流动时,形成表面电流或面电流。
从体电流出发推导面电流密度定义。
9
体电流密度 带电粒子密度为N,粒子电量q,运动速度v,选取如图柱体。
dt 时间内,柱体中所有带电粒子经dS 流出,即dt时间内通过 dS
的电荷量为
dS v
d Q N q v d t d S v d S d t P
通 过 d S 的 电 流 强 度 为 : d I d Q vd S
d t
11
关于面电流密度的说明
体电流与面电流是两种不同类型电流分布,并不是有体电流就 有面电流。
Js
limhJ h0
0
J
线电流密度
沿横截面可以忽略的曲线流动的电流,称为线电流。
长度元dl上的电流Idl称为电流元。
14:44
电子科技大学电磁场与电磁波课程组

电磁场理论知识点总结

电磁场理论知识点总结

电磁场与电磁波总结第1章 场论初步一、矢量代数A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) =B ∙(C ⨯A ) = C ∙(A ⨯B ) A ⨯ (B ⨯C ) = B (A ∙C ) – C ∙(A ∙B ) 二、三种正交坐标系 1. 直角坐标系矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dxdydz单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y 2. 圆柱形坐标系矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ 体积元dV = ρd ρd ϕd z 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元d l = e r d r + e θ r d θ+e ϕ r sin θd ϕ 矢量面元d S = e r r 2sin θd θd ϕ 体积元dv = r 2sin θd r d θd ϕ 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθcos sin 0sin cos 0 001x r y z z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ϕϕϕϕϕ sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦θϕθϕθϕθθϕθϕθϕϕ sin 0cos cos 0sin 010r r z A A A A A A ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦θϕϕθθθθ 三、矢量场的散度和旋度1.通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxnrot =lim∆→⋅∆⎰A l A e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()∂∂∂∇=++∂∂∂⋅A zA A A zϕρρρρρϕ 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕx y z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A ∂∂∂∇⨯=∂∂∂e e e A z z z A A A ρϕρϕρρϕρsin sin ∂∂∂∇⨯=∂∂∂e e e A r r zr r r A r A r A ρϕθθθϕθ 4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγ cos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y z u u u u u n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e x y z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u =∇F u六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z zu u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V ’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第2章 电磁学基本规律一、麦克斯韦方程组 1. 静电场基本规律真空中方程: 0d ⋅=⎰SE S qε d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E 场位关系:3''()(')'4'-=-⎰r r E r r r r V q dV ρπε=-∇E φ 01()()d 4π''='-⎰r r |r r |V V ρφε介质中方程: d ⋅=⎰D S S qd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε极化电荷:==⋅P e PS n n P ρ=-∇⋅P P ρ 2. 恒定电场基本规律电荷守恒定律:0∂∇⋅+=∂J tρ 传导电流:=J E σ与运流电流:ρ=J v 恒定电场方程: d 0⋅=⎰J S Sd 0l ⋅=⎰E l 0∇⋅=J 0∇⨯E =3. 恒定磁场基本规律真空中方程:0 d ⋅=⎰B l lIμ d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场位关系:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中方程:d ⋅=⎰H l l Id 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμ 磁化电流:m =∇⨯J M ms n =⨯J M e4. 电磁感应定律d d ⋅=-⋅⎰⎰SE l B S lddt ∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt ∂∇⨯=+∂DH J t位移电流:d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B Sl S lS S V S l t l t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m e m e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H D B H J E J D B D B t t&t t ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件 1. 一般形式12121212()0()()()0⨯-=⨯-=⋅-=⋅-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第3章静态场分析一、静电场分析1. 位函数方程与边界条件位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解方法:2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E l E lS Sd d q C U d d ε 3. 静电场的能量N 个导体:112==∑ne i i i W q φ连续分布:12=⎰e V W dV φρ电场能量密度:12D E ω=⋅e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式:=J E σ焦耳定律的微分形式:=⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E l E l J S E S SSU R G I d d σ(L R =σS)4.静电比拟法:C ——G ,ε——σ2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E l E lS Sd d q C U d d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G U σ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ0=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =⋅⎰V W V 磁场能量密度:m 12H B ω=⋅ 第4章 静电场边值问题的解一、边值问题的类型● 狄利克利问题:给定整个场域边界上的位函数值()=f s φ ● 纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ● 混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ ● 自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

电磁场数学方法-数学物理方程52

电磁场数学方法-数学物理方程52

电子科技大学电磁场数学方法课程组
电磁场数学方法
第二篇 数学物理方程
§8.2 泊松方程的积分解
(三)利用格林函数法求解泊松方程
2、第二类边值问题的泊松方程解 引入推广的格林函数
1 2 G(r ,r0 ) (r r0 ) VT G(r ,r0 ) =0
n
S
推广的第二类边值 问题格林函数
Q (r ') lim Q ( r ')dV ' V ' 0 V ' V'
V '
r'
若为点电荷:
(r r ') Q (r ' V ) (r ') Q (r ')dV V 0 (r r ') 0 (r ' V )
(1)
(4) r x y z
(可分离变量性)
电子科技大学电磁场数学方法课程组
电磁场数学方法
第二篇 数学物理方程
§8.1 点源的表示
(一)狄拉克函数
狄拉克函数相关公式: 直角坐标系下: (r r ') ( x x ') ( y y ') (z z ') 柱面坐标系下: (r r ') 球面坐标系下: (r r ')
1
'
( ') ( ') (z z ')
1 (r r ') ( ') ( ') r 'sin '
2 一维展开式: ( x x ') sin m x sin m x ' ( x [0, a]) a m1 a a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档