极限的基本概念28页PPT

合集下载

极限的概念

极限的概念

高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
x x0的左右极限定义
定义1· 5
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
左极限与右极限的关系
定理1· 2
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
1
lim cosx 不存在 [B](4)limarc cotx 不存在(5) x x
2,x 0 f(x) f(x) [C] (6)设 ,则 xlim 2,x 0
不存在
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
(2)定义中考虑的是xx0时函数f(x)的变化趋势,并不 考虑在x0处f(x)的情况 .
( 3 ) 由极限的定义1.9容易得到以下两个结论:
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当 例1
x x0 时,函数 f ( x)的极限
考察下列函数,写出当x 2时函数的极限并作图验证 (1)y = c (c为常数) (2)y = x
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
x0 3, 3、 f(x) x 3, x 0
x 0
limf(x) 3 limf(x) lim (x 3) 3
x 0 x 0 x 0
x 0
因为 lim f(x) lim f(x) 3
x 时,函数 f ( x)的极限
例3
解: 作y
1 图象 x

《函数的极限与连续》课件

《函数的极限与连续》课件

示例
考虑函数$f(x) = x^2$,在区间 $[0, 1]$上连续且单调增加。如果 $f(0) < c < f(1)$,则可以证明$c < frac{f(0) + f(1)}{2}$。
利用连续性求函数的零点
要点一
总结词
利用函数的连续性可以找到函数的零 点。
要点二
详细描述
如果函数在某区间上连续,且在该区 间上从正变负或从负变正,则可以利 用函数的连续性找到函数的零点。这 是因为函数在这一点上从增加变为减 少或从减少变为增加,的定义
函数在某点连续的定义
如果函数在某点的左右极限相等且等于该点的函数值,则函数在该点连续。
函数在区间上连续的定义
如果函数在区间内的每一点都连续,则函数在该区间上连续。
连续性的性质
连续函数的和、差、积、商(分母不为零)仍为连续函数。
复合函数在复合点连续的定义:如果一个复合函数在某点的极限等于该点的函数值,则复合函数在该点 连续。
与其他数学知识的联系
探讨函数极限与连续性与中学数学、微积分等其他 数学知识的联系,理解其在数学体系中的地位。
理论严谨性
深入思考函数极限与连续性理论的严谨性和 完备性,理解数学严密性的重要性。
对后续学习的展望
导数与微分
预告后续将学习函数的导数与微分概念,了解它们与 极限和连续性的关系。
级数与积分
简要介绍级数和积分的基本概念,理解其在数学中的 重要性和应用。
01
和差运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)pm g(x)]=Apm B$。
02
03
乘积运算性质
幂运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)cdot g(x)]=Acdot B$。

极限的概念

极限的概念

x0
x x0
x0
x x0
而 lim f (x) lim f (x),所以 lim f (x) 不存在。
x0
x0
x0
例5 考察函数
f
(x)
2x 2, 3 x,
x x
1,当 1
x 1
时的极限。
解 由图1-8可知
lim f (x) lim(2x 2) 4,
x 1
x 1
lim f (x) lim(3 x) 2
x
定义2中 x 是指 x 的绝对值无限增大,它既可以沿正方 向无限增大( x ),也可以沿负方向无限增大( x ), 相应的函数值都会无限地趋近于常数A。
1
如图1-3所示,
lim
x
x
0
,既有 lim 1 x x
0
也有
1 lim x x
0

图1-3
但有时 x 的变化趋向只沿其中一种方向( x 或 x )
性质1
(唯一性)若
lim
x x0
f
(x)
A
,则极限
A
唯一。
性质2 (局部有界性)若
lim
x x0
f (x)
A
,则存在常数 M
0及
δ 0,当 0 x x0 时,有 f (x) M 。
性质3 (保号性)若 lim f (x) A 且 A 0(或 A 0),则存在 x x0
常数 δ 0 ,当 0 x x0 δ 时,有 f (x) 0(或 f (x) 0)。

设灯高为H,人高为h,人与灯正下方一点的距离为x,人 影的长度为y。
如图1-7所示,当人向灯下不断地移动时,即 x 0 ,人影的

《极限的运算》课件

《极限的运算》课件
极限运算的基本性质
极限具有一些基本的运算法则,可用于简化计算和分析。
极限的运算
基本极限运算法则
极限的加减法则、乘法法则和取反法则等基本 运算法则。
极限的代数运算法则
多项式的极限、有理式的极限以及指函数和 对数函数的极限。
极限的计算
1 初等函数极限的计算方法
分式函数的极限计算、幂函数的极限计算和三角函数的极限计算。
2 Taylor公式和L'Hospital法则
Taylor公式的定义和L'Hospital法则的应用等高级计算方法。
极限的应用
1
极限在微积分中的应用
导数和微分的概念、极值和拐点的判定等微积分中常用的应用场景。
2
极限在物理学中的应用
运动学中的极限、动力学中的极限等物理学中常见的应用领域。
3
极限在其他学科中的应用
金融学中的极限、计算机科学中的极限等其他学科中的具体应用案例。
《极限的运算》PPT课件
欢迎来到《极限的运算》PPT课件。本课程将深入探讨极限的定义、运算法 则、计算方法、应用领域等内容,帮助您更好地理解和应用极限概念。让我 们一起开始吧!
什么是极限
极限的定义和概念
极限是描述函数趋近于某一特定值的概念,常用于分析函数在某一点的趋势。
极限存在性的证明
通过严格的证明,确保函数在某一点的极限存在。

极限的概念与性质课件

极限的概念与性质课件
无穷大常被表示为lim(x→x0),称为x 趋于x0时的极限。
无穷小的定义
无穷小是指一个函数在某个自变量变化过程中,其函数值无 限趋近于0,无论自变量取何值,函数值都小于某个正数,则 称该函数为无穷小。
无穷小常被表示为lim(x→x0),称为x趋于x0时的极限。
无穷大与无穷小的关系
在求极限时,无穷大与无穷小具有倒数关系,即 lim(x→x0) f(x)/g(x) = 1/lim(x→x0) g(x)/f(x)。
相同的符号。
迫敛性
迫敛性是指如果一个函数在某一点有极限,且存在一个正数M,使得在这个点的某个邻域内 ,这个函数的项都落在以原点为圆心、以M为半径的圆内,那么这个函数的极限存在。
对于数列来说,如果一个数列收敛于a,且存在一个正数M,使得在这个数列的某个后项都 落在以原点为圆心、以M为半径的圆内,那么这个数列的极限a存在。
极限的概念与性质课件
• 极限的定义 • 极限的性质 • 极限的四则运算 • 重要极限与极限存在准则 • 无穷大与无穷小的关系 • 极限的应用
01
极限的定义
极限的数列定义
定义极限的数列
对于数列`{an}`,若存在常数`A` ,对于任意正数`ε`,都存在正整 数`N`,使得当`n>N`时,恒有 `|an-A|<ε`,则称数列`{an}`收敛 于`A`。
04
重要极限与极限存在准则
重要极限
极限lim
x->2
x^2+3x-10/x-2 的
值为:当x趋近于2时
,该极限的值为4。
重要极限lim x->∞ (1+1/x)^x 的值为: 当x趋近于无穷大时 ,该极限的值为e。
重要极限lim x->0 (1+x)^(1/x) 的值为 :当x趋近于0时,该 极限的值为e。

考研高数总复习函数的极限(讲义)PPT课件

考研高数总复习函数的极限(讲义)PPT课件
无穷小是函数极限的必要条件,即如果函数在某点的极限存在,那么函数在该点的值必定是无穷小。
无穷小与函数极限的关系是相互依存的,无穷小是函数极限的一种表现形式,而函数极限又是无穷小的 一种表现形式。
无穷小在求极限中的应用
利用无穷小的性质,可以将复杂的函数极限转化为简单的无穷小量,从而 简化计算过程。
在求函数极限时,可以利用等价无穷小替换,将复杂的函数表达式替换为 简单的无穷小量,从而得到更易处理的极限表达式。
利用极限的四则运算法则,消去零因子,化 简函数形式,再求极限。
利用两个重要极限求解
利用重要极限$lim_{x to 0} frac{sin x}{x} = 1$求解:当函数 形式为$frac{sin x}{x}$时,可以利用此重要极限求解。
利用重要极限$lim_{x to infty} frac{1}{x} = 0$求解:当函数 形式为$frac{1}{x}$时,可以利用此重要极限求解。
考研高数总复习函数的极限(讲义 )ppt课件
contents
目录
• 函数极限的基本概念 • 函数极限的求解方法 • 函数极限的应用 • 函数极限的深入理解 • 总结与展望
01 函数极限的基本概念
函数极限的定义
1 2
函数极限的定义
当自变量趋近某一特定值时,函数值的变化趋势。
函数极限的表示方法
lim f(x) = A,表示当x趋近于某个值时,f(x)趋 近于A。
THANKS FOR WATCHING
感谢您的观看
在物理学中,函数极限被用来描述物体运动的速度、加速度等概念;在 工程中,函数极限被用来描述信号的变化趋势;在经济中,函数极限被
用来描述市场的变化趋势。
通过对函数极限的学习,我们可以更好地理解和应用这些概念,为未来 的学习和工作打下坚实的基础。

函数的极限.ppt

函数的极限.ppt

例2.1.8.lim n
1 n2
0
例2.1.9.lim 2 n
1 n2
2
§2. 2
2.2 无穷小量与无穷大量
函数(包括数列)的变化趋势,有两种重要情况,一是趋于0,趋 于0 的量叫无穷小量;一是趋于,趋于 的量叫无穷大量。对无 穷小量和无穷大量的分析,将给极限的计算带来方便。
2.2.1 无穷小量
解: lim f (x) lim 2x2 2 10
x2
x2
例2.1.2. f (x) sin x , 求 lim f (x)。 x0
解:lim f (x) lim sin x 0
x0
x0
§2. 1
例2.1.2.f (x) c , 求 lim f (x) 。 x2
解: lim f (x) lim c c ,见图2.1-2。
=0
证毕
§2. 3
在使用极限的四则运算法则时,应注意其使用的条件,那就是
lim f (x) , lim g(x) 都存在,以及商的极限中,lim g(x) 0 。忽视
无穷小量的倒数,是无穷大量。
定理 2.2.3:
lim f (x) A lim f (x) A 0
xx0
xx0
符号“”读作“当且仅当”。
于是,若 lim f (x) A, 则
x x0
f (x) = A +
其中, = f (x) –A(当x x0时)为无穷小量。
利用这一性质分析极限,有些情况下是很方便的。
定义 2.1.3 若随着 | x | 无限变大,f (x)无限趋 于常数A,见图2.1-6。 则称当时,f (x)的极限是A,记为
当,f (x)A 或 lim f (x) A

§1-2极限的概念数列的极限

§1-2极限的概念数列的极限

f (0 0) lim f ( x ) lim ( x 1) 1
x 0 x 0
由定理1.2.3
f (0 0) f (0 0)
,所以
1 A e
.
4. x→∞时,函数 f (x) 的极限
定义1.2.6 设函数f(x)在 |x|>a 时有定义(a为某个正
实数),如果当自变量的绝对值 |x| 无限增大时,相应
( 0) ,称为
x0
的去心邻域.
定义1.2.3
设函数y =f (x)在x0的某一去心邻域
ˆ 0 , ) N(x
内有定义,当自变量x(x≠x0)无限接近于 x0 时,相应的 函数值无限接近于常数A,则称x→x0时, A为函数f(x)的
的极限. 记作
x x0
lim f ( x ) A

un un1
则称数列{un}为单调递增数列; 类似地, 如果从第二项起,每一项比前一项小,即
un un1
则称数列{un}为单调递减数列;
单调增加的数列和单调减少的数列,统称为单调数列。
有界数列
如果存在一个正常数
M,使数列
{un }
的每一项 un ,都有
un M
则称数列{un}为有界数列.否则称为无界数列。 如果数列含有无穷多项,则成为无穷数列。 如果数列含有有限项则称为有穷数列。 下面将讨论无穷数列的极限
2. 数列的极限
例12 当 n→∞时,观察下列数列的变化趋势: 1)对于数列
un n 3 n , , ,..., ,... 2 3 4 n 1
un
当n →∞时,显然数列的一般项无限接近常数1。 1 1 1 1 1 u (2)对于数列 n , 2 , 3 ,..., n ,... ,即 2n 2 2 2 2 当n →∞时,显然数列的一般项un。无限接近常数0。

《极限定理教学》课件

《极限定理教学》课件

02
无穷小和无穷大在极限理论中有 着重要的应用,如极限的定义、 性质和计算等。
06
极限定理的深化理解
极限定理的几何解释
极限定理的几何解释
通过几何图形和图形的变化趋势,深入 理解极限的概念和性质。例如,通过观 察函数图像的变化趋势,理解函数在某 点的极限值。
VS
动态演示
利用动画或动态图演示函数的变化趋势, 帮助学生直观地理解极限的概念。
注意事项
强调在求幂函数的极限时需要注意 的要点,例如n不能为负数且分母不 能为零等。
指数函数的极限
指数函数的形式
指数函数的一般形式为a^x( a>0且a≠1),其极限值取决于a
的值。
举例说明
通过具体例子演示如何求指数函 数的极限,例如求lim(x->∞) a^x的极限值,其中a>1和 0<a<1的情况。
在微积分中,极限的应用可以帮助我们更好地理解微积分 的本质和思想,解决微积分中的问题,如求解函数的极值 、求解定积分等。
04
极限的运算
极限的四则运算
极限的四则运算法则
注意事项
极限的四则运算法则是极限运算的基 础,包括加法、减法、乘法和除法的 极限运算规则。
强调在运用极限的四则运算法则时需 要注意的要点,例如分母不能为零等 。
左极限与右极限
根据函数在某点处的左右两侧的变化 趋势,可以将极限分为左极限和右极 限。
单侧极限与双侧极限
根据函数在某点处是否只有一个方向 上的变化趋势,可以将极限分为单侧 极限和双侧极限总结词
单调有界定理是极限理论中的基本定理之一,它表明如果一 个数列单调递增且有上界或单调递减且有下界,则该数列收 敛。
无穷大的定义与性质

极限的概念ppt课件

极限的概念ppt课件
x 时,y ex 0 为无穷小量
由函数图形可知
x 0时,y e x 1 x 时,y e x 0
为无穷小量
x 时,y e x
x
为无穷大量
例2:指出当 x 趋于何值时, y是无穷小量?
(1) y x 1 (2) y ln x (3) y ex 1
y
y
y x1
y ln x
(1)
lim
2x2
2x
1
lim
2
2 x
1 x2
200 2
(2)
x
lim
x
x2 5x 4 x2 4 lim x 2 x
x 1 5
1
4 x2
x
1 x
2 x2
4 x2
100
x2
(3)
lim
x
x2
4
lim x
1 x
2 x2
1
4 x2
0
从而可以总结出下列规律:
设P( x)、Q( x)分别是n次和m次多项式,则
-1
-0.5
sin x lim x x
y ex
0.5
1
(1) lim( x2 2x 3) 11 x2
(2) lim ex 1 x0
2.4
ln10
2.3
2.2
2.1
y ln( x 9)
-2
-1
1
2
3
0.8 0.6 0.4 0.2
-0.2
y sin x x
2
3
4
5
(3) limln( x 9) ln10 x1
lim f ( x) A
x
lim f ( x) B

极限与配合标准的基本规定教学课件

极限与配合标准的基本规定教学课件
极限与配合标准的基本规 定教学课件PPT
本课程将介绍极限和配合标准的基本规定,掌握相关计算方法和实际应用。
极的基本概念
什么是极限
极限是一种数学概念,表示自变 量接近某一值时,函数的取值趋 于的确定的值。
极限的定义
用数学符号描述函数在特定点的 极限,是函数接近该点时处于一 个无限小邻域内的取值。
极限存在的条件
夹逼定理的应用
通过夹逼定理,求证特定的极限。
无穷小量的应用ቤተ መጻሕፍቲ ባይዱ
对无穷小量的应用和定义有深刻的理解,掌握 常用的无穷小量计算方法。
配合标准的基本规定
1
什么是配合标准
配合标准是指零部件在使用时需要符合的尺寸和形位要求,这些要求叫做配合标 准。
2
配合标准的重要性和应用
配合标准在现代制造业中扮演着重要角色,确保零部件之间的良好匹配和高效工 作。
需要函数趋于极限时存在,并且 从右边和左边两个方向同时趋于 同一个值。
极限的意义和应用
在科学和工程领域,极限具有重 要作用,包括计算、预测和分析。
极限的计算方法
基本极限的计算方法
掌握极限计算的基本方法,包括有理函数、幂 函数、指数函数等。
常见函数极限的计算方法
练习计算三角函数、对数函数、反三角函数等 的函数极限。
配合标准的局限性及改进 措施
分析配合标准存在的问题和局限 性,并提出相应的改进和优化措 施。
总结
1 简述极限和配合标准 2 总结计算方法和实际 3 强调重要性和注意事
的基本规定
应用

对极限和配合标准的基本 规定进行一个概览,以便 学生能够更全面的理解。
总结各个部分中学习到的 知识和技能,以实际案例 加深学生的理解和印象。

人教版高中数学课件:高二数学课件-数列的极限

人教版高中数学课件:高二数学课件-数列的极限
在研究数列的极限时,需要特别关注 初始项的选择,以确保数列的收敛性 和收敛速度。
收敛数列的性质
收敛数列具有唯一性,即收敛 数列只能收敛到一个唯一的极 限值。
收敛数列具有有界性,即收敛 数列的项值必须在一定范围内 波动,不会无限增大或减小。
收敛数列具有保序性,即如果 一个数列收敛到极限a,那么对 于任何正整数n,都有 an≥an+1。
03
数列极限的应用
利用极限求数列的通项公式
总结词
通过数列的极限,我们可以推导出数列的通项公式。
详细描述
在数列的极限中,如果一个数列的极限值存在,那么这个极限值就是数列的通项 公式。例如,对于等差数列,其通项公式可以通过求差分比值的极限得到。
利用极限证明数列的单调性
总结词
通过比较相邻项的极限,可以证明数 列的单调性。
极限的唯一性
极限的唯一性是数列极限的一个 重要性质,即一个数列只能有一
个极限值。
如果一个数列有两个不同的极限 值,那么这个数列就不会收敛。
极限的唯一性对于研究数列的性 质和函数的变化规律非常重要, 是数学分析中的一个基本原则。
THANK YOU
数列极限的存在性
01
02
03
单调有界定理
如果数列单调递增且有上 界或单调递减且有下界, 则该数列存在极限。
闭区间套定理
如果数列满足闭区间套的 条件,则该数列存在极限 。
柯西收敛准则
如果对于任意给定的正数 $varepsilon$,存在正整 数N,使得当$n, m > N$ 时,有$|a_n - a_m| < varepsilon$,则该数列 存在极限。
04
数列极限的求解方法
直接代入法

数学分析课件之第二章数列极限

数学分析课件之第二章数列极限

02
数列极限的运算性质
数列极限的四则运算性质
01
02
03
04
加法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n + y_n) =
a + b$。
减法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n - y_n) =
a - b$。
数列极限的性质
总结词
数列极限具有一些重要的性质,如唯一性、收敛性、保序性等。
详细描述
数列极限具有一些重要的性质。首先,极限具有唯一性,即一个数列只有一个极限值。其次,极限具有收敛性, 即当项数趋于无穷时,数列的项逐渐接近极限值。此外,极限还具有保序性,即如果一个数列的项小于另一个数 列的项,那么它们的极限也满足这个关系。
指数性质
若$lim x_n = a$且$0 < |a| < 1$ ,则$lim a^{x_n} = 1$。
幂运算性质
若$lim x_n = a$,则$lim x_n^k = a^k$(其中$k$为正整数)。
数列极限的运算性质在数学中的应用
解决极限问题
利用数列极限的运算性质,可以 推导和证明一系列数学定理和公 式,如泰勒级数、洛必达法则等
无穷小量是指在某个变化过程中,其 值无限趋近于0的变量。
性质
无穷小量具有可加性、可减性、可乘 性和可除性,但不可约性。
无穷大量的定义与性质
定义
无穷大量是指在某个变化过程中,其值无限增大的变量。
性质
无穷大量具有可加性、可减性、可乘性和可除性,但不可约性。
无穷小量与无穷大量的关系
1 2
无穷量是无穷大量的极限状态

函数极限ppt课件

函数极限ppt课件
在常数A 对于任意给定的正数e 总存在正数d 使得当x
满足不等式0<|x-x0|d 时 对应的函数值f(x)都满足不等式 |f(x)-A|e
那么常数A就叫做函数f(x)当xx0时的极限 记为
lim
x x0
f(x)A

f(x) A(当
x
x0
)
•定义的简记形式
lim
x x0
f(x)A或fe(x>)0 Ad(x>0x当0)。0<|x-x0|<d
但f(g(x))在x0时无极 . 限
取 x n 2 n 1,x n 0 ,而 y n f( g ( x n ) )f( 0 ) 0 .
取 x n 2 n1 +,x n 0 ,而 y n f(g (x n ) )f(2 n+ 2 ) 1 . 2
取 xnn22(n1,2, )n , +, xn +, 且s有 inxnsin n)(0 0.
取xn(2n+2)2(n1,2, ),n+ ,xn+ ,
且有 sinxn
sin2n(+)11.
2
首页
上页
返回
下页
结束

❖收敛函数的运算法则 •定理5(四则运算法则)
自变量的同一变化过程中,若lim f(x)A lim g(x)B 那么
返回
下页
结束

例例33
求 lim
x3
x-3 x2 -9
解解 lim x - 3 lim x - 3 lim 1 x 3 x 2 - 9 x 3 (x - 3)(x + 3) x 3 x + 3
lim 1
x3
1

数学的基本概念极限

数学的基本概念极限

利用定积分的定义求极限
总结词
利用定积分的定义将极限转化为定积分,从而简化极限 的计算。
详细描述
利用定积分的定义将极限转化为定积分,可以将极限的计 算转化为求定积分的过程,从而简化计算。例如,求 lim(n->∞) 1/(n^2+1)时,可以利用定积分的定义将其转 化为∫(0->∞) 1/(x^2+1) dx,从而简化计算。
应用场景
求解不定式极限问题,特别是0/0型和 ∞/∞型的不定式极限问题。
泰勒级数展开
泰勒级数展开
将一个函数表示为无穷级数的形式,其中每一项都是该函数 在某点的导数和自变量的乘积。
应用场景
求解复杂函数的近似值、研究函数的性质和证明一些数学定 理。
04
极限存在的条件
极限存在的充分必要条件
充分必要条件
定理内容
如果一个数列单调递增且有上界(或 单调递减且有下界),则该数列收敛。
证明
由于数列单调递增且有上界,对于任意 小的正数$varepsilon$,存在一个正整 数$N$,使得当$n > N$时,有$a_n < a_N + varepsilon$。同理,对于单调递 减且有下界的数列也有类似结论。
柯西收敛准则
准则内容
一个数列收敛,当且仅当对于任意给定的正 数$varepsilon$,存在一个正整数$N$,使 得当$n, m > N$时,有$|a_n - a_m| < varepsilon$。
与Cauchy收敛准则的关 系
柯西收敛准则实际上是Cauchy收敛准则的 另一种表述形式,两者等价。
05
极限的运算技巧
THANKS
感谢观看
分子分母同除以同一个无穷大量

数学课件-极限的概念与性质

数学课件-极限的概念与性质

比β高阶无穷小);
3.如果
β
lim xx0 α
C
0,
则称β与α是同阶无穷小。
特别地,当C = 1时,则称β与α是等价无穷小,记作 β=
~α。
由定义知,在 x→0 时,x 与2x是同阶无穷小;
x²是比2x高阶无穷小; 2x是比x²低阶无穷小。
极限的运算
极限的四则运算法则
下面以 x x0 为例,其他情形也有同样的结论。
lim x 1
(x
1)( x x 1
1)
2
5、当
x
x
0
时,
函数f(x)的极限
6、当
x
x
0
时,
定义
设函数
f (x) 在
x0
的某一 右半邻域(x0 左半邻域(x0
, x0
,
)
x0 )
内有定义,
右 当 x 从 x0 左侧无限接近于x0 时,函数f (x) 无限地接近于某常数A ,

则称
A
为函数
f(x)在
4、无穷大 定义 当x→x。时,(自变量x 的变化过程可以是 其他情形),如果∣f (x)∣无限增大,则称 f (x)为这一变化 过程中的无穷大量,简称无穷大,记作
lim f (x) 或 f (x) (x x0 ) x x0
当 x → x。时,如果 f(x)无限增大(减少),则称 f (x)为一变化过程中的正(负)无穷大,记作
x1
x1
于是
lim f (x) lim (x 2) 3
x1
x1
lim f (x) lim f (x) 3
x1
x1
lim f (x) 3 x1
x 1

函数的极限(左右极限)ppt课件

函数的极限(左右极限)ppt课件

记作: lim f (x) a x
◆定义(2):
一般地,当自变量x取负值并且绝对值无限增大时, 函数f(x)的值无限趋近于一个常数a,就说当x趋 向于负无穷大时,函数f(x)的极限是a,
记作: lim f (x) a
x
3
◆定义(3)
如果 lim f (x) a且 lim f (x) a
限是4.记作:limx 2 4 x 2 强调:x→2,包括分别从左、右两侧趋近于2.
即: “x→2”是指以任何方式无限趋近于2,(分别从
左、右两侧或左、右两侧交替地无限趋近于2).7
2. 考察函数 y x 2 1 (x≠1),当x无限趋近于1(但 x 1
不等于1)时,函数的变化趋势
(1)图象 y=x+1 (x∈R,x≠1)
y 4 1.75 0.39 0.04 0.004 0.0004 0.00004 ……
x
2.5 2.1 2.01 2.001 2.0001 2.00001 ……
y=x2 6.25 4.41 4.04 4.004 4.0004 4.00004 ……
y 4 2.25 0.41 0.04 0.004 0.0004 0.00004 ……
函数在一点处的极限与左、右极限的定义 10
函数在一点处的极限与左、右极限
1.当自变量x无限趋近于常数x0(但x不等于x0)时,如
果函数f(x)无限趋近于一个常数a,就说当x趋近于x0时,
函 数 f(x) 的 极 限 是 a , 记 作 f(x)→a。
lim f( x) a 或 当 x→x0 时
x x 0
(2)lim f(x) 是x从x0的两侧无限趋近于x0,是双侧极限,
xx0

小学数学极限的基本概念与运算课件

小学数学极限的基本概念与运算课件
添加副标题
小学数学极限的基本概念与 运算课件
汇报人:XX
目录
CONTENTS
01 添加目录标题
02 极限的基本概念
03 极限的运算
04 极限的应用
05 极限的几何解释
添加章节标题
极限的基本概念
极限的定义
极限可以用符号表示,表示 变量趋近于某个值的趋势。
极限的运算包括求极限、判断 极限的存在性等,是数学分析
连续函数的几何解释
极限的几何意义:在数轴上表示函数值无限接近某一点 连续函数的定义:在定义域内,函数值始终保持连续变化 极限的运算性质:极限的四则运算性质,包括加、减、乘、除等 连续函数的性质:在定义域内,函数值始终保持连续变化,没有间断点
极限思想在几何中的应用
极限在几何图形中的应用:通过极限思想, 可以更好地理解几何图形的形状和变化,例 如直线的定义、圆的形成等。
极限的复合运算
极限的加法运算:将两个函数的极限值相加得到新的函数的极限值。 极限的减法运算:将两个函数的极限值相减得到新的函数的极限值。 极限的乘法运算:将两个函数的极限值相乘得到新的函数的极限值。 极限的除法运算:将一个函数的极限值除以另一个函数的极限值得到新的函数的极限值。
极限的等价变换
等价变换的概念:极限的等价变换是指在进行极限运算时,可以将复杂的表达式 通过等价变换化为简单的形式,从而更容易求得极限。
等价变换的规则:等价变换需要遵循一定的规则,如加减乘除、指数、对数等运 算的等价变换规则。
等价变换的例子:例如,在求极限时,可以将分母或分子的多项式进行因式分解、 化简根式等操作,从而简化计算过程。
等价变换的意义:等价变换是极限运算中的一种重要技巧,它可以帮助我们快速 准确地求得极限值,提高解题效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档