第八章热力学答案 (2014、04)
物理学教程(第二版)上册课后答案8
物理学教程(第二版)上册课后答案8-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章热力学基础8-1如图,一定量的理想气体经历acb过程时吸热700 J,则经历acbda过程时,吸热为 ()(A) – 700 J (B) 500 J(C)- 500 J (D) -1 200 J分析与解理想气体系统的内能是状态量,因此对图示循环过程acbda,内能增量ΔE=0,由热力学第一定律Q=ΔE+W,得Q acbda=W= W acb+ W bd+W da,其中bd过程为等体过程,不作功,即W bd=0;da为等压过程,由pV图可知,W da= - 1 200 J. 这里关键是要求出W acb,而对acb过程,由图可知a、b两点温度相同,即系统内能相同.由热力学第一定律得W acb=Q acb-ΔE=Q acb=700 J,由此可知Q acbda= W acb +W bd+W da=- 500 J. 故选(C)题 8-1 图8-2如图,一定量的理想气体,由平衡态A 变到平衡态B,且它们的压强相等,即p A=p B,请问在状态A和状态B之间,气体无论经过的是什么过程,气体必然()(A) 对外作正功(B) 内能增加(C) 从外界吸热(D) 向外界放热题 8-2 图分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( ) (A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R iM m E Δ2Δ'=,可知欲使氢气和氦气升高相同温度,须传递的热量⎪⎪⎭⎫ ⎝⎛'⎪⎪⎭⎫ ⎝⎛'=eee222e2H H H H H H HH /:i M m i M m Q Q .再由理想气体物态方程pV =M m 'RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).8-4 一定量理想气体分别经过等压,等温和绝热过程从体积1V 膨胀到体积2V ,如图所示,则下述正确的是 ( )(A ) C A →吸热最多,内能增加 (B ) D A →内能增加,作功最少 (C ) B A →吸热最多,内能不变 (D ) C A →对外作功,内能不变分析与解 由绝热过程方程=γpV 常量,以及等温过程方程pV =常量可知在同一 p-V 图中当绝热线与等温线相交时,绝热线比等温线要陡,因此图中B A →为等压过程,C A →为等温过程,D A →为绝热过程.又由理想气体的物态方程RT pV ν=可知,p-V 图上的pV 积越大,则该点温度越高.因此图中B C A D T T T T <=<.对一定量理想气体内能,RT iE 2ν=,由此知0>∆AB E ,0=∆AC E ,.0<∆AD E 而由理想气体作功表达式⎰=V p W d 知道功的数值就等于p-V 图中过程曲线下所对应的面积,则由图可知AD AC AB W W W >>. 又由热力学第一定律Q =W +ΔE 可知0=>>AD AC AB Q Q Q .因此答案A 、B 、C 均不对.只有(D )正确.题 8-4 图8-5 一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J分析与解 热机循环效率η=W /Q 吸,对卡诺机,其循环效率又可表为:η=1-12T T ,则由W /Q 吸=1 -12T T可求答案.正确答案为(B). 8 -6 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979 m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得. 解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15 K8-7 如图所示,1 mol 氦气,由状态),(11V p A 沿直线变到状态),(22V p B ,求这过程中内能的变化、对外作的功、吸收的热量.分析 由题 8-4 分析可知功的数值就等于p-V 图中B A →过程曲线下所对应的面积,又对一定量的理想气体其内能RT iE 2ν=,而氦气为单原子分子,自由度i =3,则 1 mol 氦气内能的变化T R E ∆=∆23,其中温度的增量T ∆可由理想气体物态方程RT pV ν=求出.求出了B A →过程内能变化和做功值,则吸收的热量可根据热力学第一定律E W Q ∆+=求出. 解 由分析可知,过程中对外作的功为))((211212p p V V W +-=内能的变化为)(23231122V p V p T R E -=∆=∆ 吸收的热量)(21)(212211122V p V p V p V p E W Q -+-=∆+=题 8-7 图8-8 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功它的内能改变了多少分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值. 解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102 J其内能的改变为ΔE =Q -W =1.21 ×103 J8 -9 如图所示,在绝热壁的汽缸内盛有1 mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02 m 2 .从汽缸底部加热,使活塞缓慢上升了0.5 m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12 J·mol -1·K -1,摩尔定容热容C V ,m =20.80 J·mol -1·K -1 )题 8-9 图分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q p Δm p,v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12 J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2-p 1 V 1 )/R =p(V 2-V 1 )/R =p· S· Δl/R则 J 105.293m p,p ⨯=∆=RlpS C Q8-10 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量当体积不变时,需要多少热量(2) 在等压或等体过程中各作了多少功分析 (1) 由量热学知热量的计算公式为T C Q ∆=m ν.按热力学第一定律,在等体过程中,T C E Q V V ∆=∆=m ,ν;在等压过程中,⎰∆=∆+=.d m ,T C E V p Q p P ν (2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.42111-⨯==RT V p v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=.(1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V,V =-==T T C E Q v(2) 按分析中的两种方法求作功值① 利用公式()V V p W d ⎰=求解.在等压过程中,T R MmV p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R MmW W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C MmE Q 由于在(1)中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W 0ΔV V =-=E Q W8-11 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326 J 的热量传递给系统,同时系统对外作功126 J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52 J ,则此过程中系统是吸热还是放热传递热量是多少题 8-11 图分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE CA ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE CA ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326 J , W ABC =126 J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200 J由此可得从C 到A ,系统内能的增量为ΔE CA =-200 J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热. 8-12 如图所示,使1 mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.题 8-12 图分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT MmW 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J(2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =C p (V B -V C )=2.0×103JQ ACB =W ACB =2.0×103 J8-13 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4 kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=. (2) 炮弹的出口速度(忽略摩擦). 分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m, D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2. (1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W(2) 根据分析2122121v v m m W -=,则1-21s m 563⋅=+=v m2Wv 8-14 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.题 8-14 图分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln /ln 32121212121⨯=-'='+'=+=V V T T R Mm V V RT M m V V RT M m W W W CD AB )(由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J1081.325/ln /ln Δ42112121,121⨯=-'+'=-'+'=+=+=T T R M m V V RT M m T T C Mm V V RT M m E W Q Q Q m V DAAB DA AB由此得到该循环的效率为%15/==Q W η8-15 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.题 8-15 图分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =KT ,C 为常数.将其与理想气体物态方程pV =νRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题8-14的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C MmQ -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-=CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R /2,摩尔定容热容C V ,m =3R /2.故循环效率为()()%3.125/2ln 2312/5/2ln 231/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η8-16 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫⎝⎛'--''-='-''=T ηηT T T8-17 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?题 8-17 图分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知()()())/1(/11111,,B A B C D C AB DC A B m p CD m p ABCD T T T T T T T T T T T T C T T C Q Q ---=---=---=-=ννη (1)与求证的结果比较,只需证得BAC D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2) V C /T C =V D /T D (3)C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.8-18 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27 ℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式QPtQ W ==η,可得此条件下的最大功率. 解 根据分析,热机获得的最大功率为()1-712s J 100.2/1⋅⨯=-==tQ T T tQp η8-19 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q /1/112-=-=η出发,利用热力学第一定律和等体、等压方程以及γ=C p ,m /C V ,m 的关系来证明.题 8-19 图证 该热机循环的效率为CA BC Q Q Q Q /1/112-=-=η其中Q BC =νC p,m (T C -T B ),Q CA =νC V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1=T C /V 2,T A /p 1 =T C /p 2,代入上式得()()1/1/12121---=p p V V γη8-20 一定量的理想气体,沿图示循环,请填写表格中的空格.过程 内能增量J /E ∆ 对外作功J /W吸收热量J /Q B A → 1000C B → 1500 A C →-500ABCA=η分析 本循环由三个特殊过程组成.为填写表中各项内容,可分四步进行: (1)先抓住各过程的特点填写一些特殊值,如等温过程0=∆E ,等体过程0=W 等.(2)在第一步基础之上,根据热力学第一定律即可知道B A →,C B →过程的吸热Q .(3)对A C →过程,由于经ABCA 循环后必有0=∆E ,因此由表中第一列即可求出A C →过程内能的变化.再利用热力学第一定律即可写出A C →过程的Q 值.(4)在明确了气体在循环过程中所吸收的热量1Q 和所放出热量2Q ,或者所作净功W 后,可由公式1121Q WQ Q =-=η计算出循环效率.题 8-20 图解 根据以上分析,计算后完成的表格如下:过程 内能增量J /E ∆ 对外作功J /W吸收热量J /QB A → 1000 0 1000C B → 0 1500 1500 A C → -1000-500-1500ABCA=η40%8-21 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)题 8-21 图分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106 J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 . 解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e 在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107 J=8.0 kW·h8-22 1 mol 理想气体的状态变化如图所示,其中31→为温度300 K 的等温线.试分别由下列过程计算气体熵的变化:(1)经等压过程21→和等体过程32→由初态1到末态3;(2)经等温过程由初态1到末态3.分析 熵是热力学系统的状态函数,状态A 与B 之间的熵变AB S ∆不会因路径的不同而改变. 31→为等温过程,其熵变⎰→→==∆→321.//d 31T Q T Q S 过程由两个子过程构成,总的熵变应等于各子过程熵变之和,即322131→→→∆+∆=∆S S S ,但要注意21→和32→过程中温度是变化的,在计算熵变⎰=∆T Q S /d 时,必须寻找Q 与T 的函数关系,经统一变量后再积分.这里可以利用等压过程的T C Q p d d m ,=和等体过程的T C Q V d d m ,=两个公式. 解 (1)根据分析计算321→→过程的熵变如下:2ln ln)(ln ln lnlnln ln d d 12m ,m ,31m ,12m ,23m ,12m ,23m ,12m ,m ,m ,3221313221R V V C C V VC V V C p p C V V C T T C T T C T T C T TC S S S V p V p V p V p T T V T Tp =-=+=+=+=+=∆+∆=∆⎰⎰→→→(2) 直接由等温过程31→从初态到末态的熵变为2ln ln d d 1d 1131111313131R V V R V V T RT V p T Q T S V VVV =====∆⎰⎰⎰→ 从计算的结果可以看出,(1)和(2)计算的过程不同,但两种过程的熵变确实是相同的.可见熵变是状态量.。
08热力学第二定律习题解答
第八章热力学第二定律一选择题1. 下列说法中,哪些是正确的?( )(1)可逆过程一定是平衡过程;(2)平衡过程一定是可逆的;(3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。
A. (1)、(4)B. (2)、(3)C. (1)、(3)D. (1)、(2)、(3)、(4)解:答案选A。
2. 关于可逆过程和不可逆过程的判断,正确的是( )(1) 可逆热力学过程一定是准静态过程;(2) 准静态过程一定是可逆过程;(3) 不可逆过程就是不能向相反方向进行的过程;(4) 凡是有摩擦的过程一定是不可逆的。
A. (1)、(2) 、(3)B. (1)、(2)、(4)C. (1)、(4)D. (2)、(4)解:答案选C。
3. 根据热力学第二定律,下列哪种说法是正确的?( )A.功可以全部转换为热,但热不能全部转换为功;B.热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运动的能量,但无规则运动的能量不能变成有规则运动的能量。
解:答案选C。
4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:( )A. 温度不变,熵增加;B. 温度升高,熵增加;C. 温度降低,熵增加;D. 温度不变,熵不变。
解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。
因过程是不可逆的,所以熵增加。
故答案选A 。
5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是( )(1) 两种不同气体在等温下互相混合;(2) 理想气体在等体下降温;(3) 液体在等温下汽化;(4) 理想气体在等温下压缩;(5) 理想气体绝热自由膨胀。
A. (1)、(2)、(3)B. (2)、(3)、(4)C. (3)、(4)、(5)D. (1)、(3)、(5) 解:答案选D 。
二 填空题1.在一个孤立系统内,一切实际过程都向着 的方向进行。
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
第八章 热力学功课答案
根据热力学第一定律: Q A E AD 绝热过程: Q 0 ; AC 等温过程: Q AAC ; AB 等压过程: Q AAB E AB ,且 E AB 0
[ B ]2.(基础训练 6)如图所示,一绝热密闭的容器,用隔
《大学物理Ⅰ》答题纸
p0
第八 章
姓名 __________ 学号 ____________
【提示】如图。等温 AC 过程:温度不变, TC TA 0 ;
等压过程:
TB TA TA
绝热过程: TAVA 1
得: TD TA
【或者】等压过程: Ap
绝热过程:
∵ R
i 2
pA
姓名 __________ 学号 ____________
一、选择题
第八章 热力学基础
[ A ]1.(基础训练 4)一定量理想气体从体积 V1,膨 胀到体积 V2 分别经历的过程是:A→B 等压过程,A→C 等温过 程;A→D 绝热过程,其中吸热量最多的过程
(A)是 A→B. (B)是 A→C. (C)是 A→D. (D)既是 A→B 也是 A→C, 两过程吸热一样多。
板分成相等的两部分,左边盛有一定量的理想气体,压强为 p0,右边
为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压
强是 (A) p0.
(B) p0 / 2. (C) 2γp0. (D) p0 / 2γ.
【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律 Q A E 得
增加。
[ D ]4.(自测提高 1)质量一定的理想气体,从相同状态出发,分别经历等温过 程、等压过程和绝热过程,使其体积增加 1 倍.那么气体温度的改变(绝对值)在
第8章热力学习题解答
第8章 热力学基础8.1基本要求1.理解准静态过程、功、热量的概念,并掌握功的计算方法。
2.掌握热力学第一定律及其在理想气体各等值过程中的应用。
3.掌握理想气体定体和定压摩尔热容及比热容比的概念及计算方法。
4.理解绝热过程,能熟练地分析、计算理想气体在此过程的功、热量和内能的增量。
5.理解循环过程的基本特征,理解热机循环和致冷循环的物理意义,理解热机效率的计算方法。
掌握卡诺循环及其特点,能熟练地分析、计算卡诺循环的效率。
6.理解热力学第二定律的两种表述及其等效性,了解可逆过程、不可逆过程及卡诺定理。
7.理解热力学第二定律的本质,了解熵的概念和熵增加原理。
8.2基本概念1 准静态过程系统经历的每一个中间状态都无限地接近平衡态的状态变化过程。
2 功热力学系统与外界交换能量的一种方式,准静态过程中系统对外界做的功为21V V V W pdV pdV ==⎰⎰3 热量传热过程中传递的能量,热力学系统与外界交换能量的另一种方式。
4 摩尔热容当一个系统温度升高(或降低)dT 时,吸收(或放出)的热量如果为dQ ,则系统的热容定义为:dQ C dT= 5 定体摩尔热容若1mol 的理想气体在等体过程中温度改变dT 时所传递的热量为V dQ ,则定体摩尔热容为:,2V V m dQ i C R dT ==,等体过程中内能的增量可表示为:21,21()V m E E C T T ν-=- 6 定压摩尔热容若1mol 的理想气体在等压过程中温度改变dT 时传递的热量为p dQ ,则气体的定压摩尔热容为:,pp m dQ C dT =,与定体摩尔热容的关系为,,p m V m C C R =+,等压过程所吸收的热量可表示为:,21()p p m Q C T T ν=-7 比热容比定压摩尔热容,p m C 与定体摩尔热容,V m C 的比值,用γ表示,,2p m V m C i C iγ+== 8 循环过程 系统经过一系列的状态变化过程以后又回到原来状态的过程,循环过程的重要特征是内能的增量0E ∆=9 正循环及热机的效率过程进行的方向在p V -图上按顺时针方向进行的循环过程叫正循环,工质作正循环的热机效率为:1221111Q Q Q W Q Q Q η-===- 10 逆循环及致冷机的效率 过程进行的方向在p V -图上按逆时针方向进行的循环过程叫逆循环,工质作逆循环的致冷机效率为:2212Q Q e W Q Q ==- 11 可逆和不可逆过程 系统逆过程能重复正过程的每一状态且不引起外界任何变化的状态变化过程称为可逆过程,一切与热现象有关的实际宏观过程都是不可逆的,可逆过程是从实际过程中抽象出来的一种理想过程。
大学物理第八章习题及答案
V 第八章 热力学基础8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为( )(A) (B)(C) (D)8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B )(A) 2 000 J (B) 1 000 J(C) 4 000 J (D) 500 J8-6 根据热力学第二定律( A )(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D)任何过程总是沿着熵增加的方向进行8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少?解:由于外界对气体做功,所以:300J=W-由于气体的内能减少,所以:J∆E=300-根据热力学第一定律,得:J∆+=W=EQ300-600300=--又由公式WQ e 2=得:J 421005.1⨯==eW Q 8-12理想卡诺热机在温度为27C 0和127C 0的两个热源之间工作,若在正循环中,该机从高温热源吸收1200J 的热量,则将向低温热源放出多少热量?对外做了多少功?解:由1121Q W T T =-=η得:J 3001200400300400)1(121=⨯-=-=T T Q WJ 90012=-=W Q Q8-13一卡诺热机在1000K 和270C 的两热源之间工作。
8热力学
习题及参考答案第八章 热力学 参考答案思考题8-1 “功、热量和内能都是系统状态的单值函数”这种说法对吗?如有错请改正。
8-2 质量为M 的氦气(视为理想气体),由同一初态经历下列两种过程:(1)等体过程;(2)等压过程。
温度升高了ΔT ,要比较这两种过程中气体内能的改变,有一种解答如下:(1) 等体过程T C ME V V ∆∆μ= (2) 等压过程T C ME p p ∆∆μ=∵V p C C ,∴Vp E E ∆∆以上解答是否正确?如有错误请改正。
8-3 摩尔数相同的氦气和氮气(视为理想气体),从相同的初状态(即p 、V 、T 相同)开始作等压膨胀到同一末状态,下列有关说法有无错误?如有错误请改正。
(1)对外所作的功相同; (2)从外界吸收的热量相同; (3)气体分子平均速率的增量相同。
8-4 一定量的理想气体,从p-V 图上同一初态A 开始,分别经历三种不同的过程过渡到不同的末态,但末态的温度相同,如图所示,其中A →C 是绝热过程,问:(1)在A →B 过程中气体是吸热还是放热?为什么? (2)在A →D 过程中气体是吸热还是放热?为什么?8-5 在下列理想气体各种过程中,哪些过程可能发生?哪些过程不可能发生?为什么?(1)等体加热时,内能减少,同时压强升高; (2)等温压缩时,压强升高,同时吸热; (3)等压压缩时,内能增加,同时吸热; (4)绝热压缩时,压强升高,同时内能增加。
8-6 甲说:“系统经过一个正的卡诺循环后,系统本身没有任何变化。
”乙说:“系统经过一个正的卡诺循环后,不但系统本身没有任何变化,而且外界也没有任何变化。
”甲和乙谁的说法正确?为什么?8-7 从理论上讲,提高卡诺热机的效率有哪些途径?在实际中采用什么办法? 8-8 关于热力学第二定律,下列说法如有错误请改正: (1)热量不能从低温物体传向高温物体;(2)功可以全部转变为热量,但热量不能全部转变为功。
8-9 理想气体经历如图所示的abc 平衡过程,则该系统对外作功A ,从外界吸收的热量Q 和内能的增量ΔE 的正负情况为(A )ΔE >0,Q >0,A <0; (B )ΔE >0,Q >0,A >0; (C )ΔE >0,Q <0,A <0; (D )ΔE <0,Q <0,A >0。
工程热力学思考题参考答案
第八章压气机的热力过程1、利用人力打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机缸常以水冷却或气缸上有肋片,为什么答:因为气体在压缩时,以等温压缩最有利,其所消耗的功最小,而在人力打气时用湿布包裹气筒的下部或者在压气机的气缸用水冷却,都可以使压缩过程尽可能的靠近等温过程,从而使压缩的耗功减小。
2、既然余隙容积具有不利影响,是否可能完全消除它答:对于活塞式压气机来说,由于制造公差、金属材料的热膨胀及安装进排气阀等零件的需要,在所难免的会在压缩机中留有空隙,所以对于此类压缩机余隙容积是不可避免的,但是对于叶轮式压气机来说,由于它是连续的吸气排气,没有进行往复的压缩,所以它可以完全排除余隙容积的影响。
3、如果由于应用气缸冷却水套以及其他冷却方法,气体在压气机气缸中已经能够按定温过程进行压缩,这时是否还需要采用分级压缩为什么答:我们采用分级压缩的目的是为了减小压缩过程中余隙容积的影响,即使实现了定温过程余隙容积的影响仍然存在,所以我们仍然需要分级压缩。
4、压气机按定温压缩时,气体对外放出热量,而按绝热压缩时不向外放热,为什么定温压缩反较绝热压缩更为经济答:绝热压缩时压气机不向外放热,热量完全转化为工质的内能,使工质的温度升高,压力升高,不利于进一步压缩,且容易对压气机造成损伤,耗功大。
等温压缩压气机向外放热,工质的温度不变,相比于绝热压缩气体压力较低,有利于进一步压缩耗功小,所以等温压缩更为经济。
5、压气机所需要的功可从第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需要的功,并用T-S图上面积表示其值。
答:由于压缩气体的生产过程包括气体的流入、压缩和输出,所以压气机耗功应以技术功计,一般用w c 表示,则w c =-w t由第一定律:q=△h+w t ,定温过程:由于T 不变,所以△h 等于零,既q=w t ,q=T △s ,21lnp p R s g =∆,则有 多变过程:w c =-w t =△h-q 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=-111121n n g c p p T R n n w 绝热过程:即q=0,所以6、活塞式压气机生产高压气体为什么要采用多级压缩及级间冷却的工艺答:由于活塞式压气机余隙容积的存在,当压缩比增大时,压气机的产气量减小,甚至不产气,所以要将压缩比控制在一定范围之内,因此采用多级压缩,以减小单级的压缩比。
基础物理学上册习题解答和分析 第八章热力学基础题解和分析
习题八8-1 如果理想气体在某过程中依照V=pa 的规律变化,试求:(1)气体从V 1膨胀到V 2对外所作的功;(2)在此过程中气体温度是升高还是降低?分析 利用气体做功公式即可得到结果,根据做正功还是负功可推得温度的变化。
解:(a) ⎪⎪⎭⎫ ⎝⎛-===⎰⎰21222112121V V a dV V apdV W v v v v (b) 降低 8-2 在等压过程中,0.28千克氮气从温度为293K 膨胀到373K ,问对外作功和吸热多少?内能改变多少?分析 热力学第一定律应用。
等压过程功和热量都可根据公式直接得到,其中热量公式中的热容量可根据氮气为刚性双原子分子知其自由度为7从而求得,而内能则由热力学第一定律得到。
解:等压过程: 2121()()m W P V V R T T M=-=-()32808.31373293 6.651028J =⨯⨯-=⨯ ()()J T T C Mm Q p 4121033.229337331.82728280⨯=-⨯⨯⨯=-=据J E W E Q 41066.1,⨯=∆+∆=8-3 1摩尔的单原子理想气体,温度从300K 加热到350K 。
其过程分别为(1)容积保持不变;(2)压强保持不变。
在这两种过程中求:(1)各吸取了多少热量;(2)气体内能增加了多少;(3)对外界作了多少功分析 热力学第一定律应用。
一定量的理想气体,无论什么变化过程只要初末态温度确定,其内能的变化是相同的。
吸收的热量则要根据不同的过程求解。
解: 已知气体为1 摩尔单原子理想气体31,2V m C R M==(1) 容积不变。
()()J T T C Mm Q V 25.62330035031.82312=-⨯⨯=-=根据E Q W W E Q ∆==+∆=,0,。
气体内能增量J E 25.623=∆。
对外界做功0=W . (2) 压强不变。
215()8.31(350300)1038.75,2p m Q C T T J M=-=⨯⨯-=J E 25.623=∆,J J J W 5.41525.62375.1038=-=8-4 一气体系统如题图8-4所示,由状态a 沿acb 过程到达b 状态,有336焦耳热量传入系统,而系统作功126焦耳,试求: (1) 若系统经由adb 过程到b 作功42焦耳,则有多少热量传入系统?(2) 若已知J E E a d 168=-,则过程ad 及db 中,系统各吸收多少热量?(3)若系统由b 状态经曲线bea 过程返回状态a,外界对系统作功84焦耳,则系统与外界交换多少热量?是吸热还是放热?分析 热力学第一定律应用。
汪志诚热力学统计物理的习题答案(第8章)
第八章 玻色统计和费米统计习题8.1试证明:对于玻色系统或费米系统,玻耳兹曼关系成立,即ln S k =Ω。
解:对于理想费米系统,与分布{}l a 相应的系统的微观状态数为 !!()!l l l l la a ωωΩ=-∏ 取对数,并应用斯特令近似公式,得()()ln ln ln ln llllllllla a a a ωωωωΩ=----⎡⎤⎣⎦∑另一方面,根据理想费米系统的熵为()ln ln ln ln S k k N U αβαβαβ⎛⎫∂Ξ∂Ξ=Ξ--=Ξ++ ⎪∂∂⎝⎭()ln l l l k a αβε⎡⎤=Ξ++⎢⎥⎣⎦∑其中费米巨配分函数的对数为 ()ln ln 1la l leβεω--Ξ=-+∑由费米分布 1lll a eαβεω+=+得 1ll l lea αβεωω--+=-和 lnl ll la a ωαβε-+=所以 ln lnl l ll la ωωωΞ=--∑()()ln ln ln ln ln l l ll l l l l l l l l l l l l l l aS k a k a a a a a ωωωωωωωωω⎛⎫-=+=----⎡⎤ ⎪⎣⎦-⎝⎭∑∑两式比较可知:ln S k =Ω。
习题8-2 试证明,理想玻色和费米系统的熵可表示为:()().ln 1ln 1B E s s s s lS k f f f f =--++⎡⎤⎣⎦∑,()().ln 1ln 1F D s s s s lS k f f f f =----⎡⎤⎣⎦∑其中s f 为量子态s 上的平均粒子数,s ∑对粒子的所有量子态求和。
解:我们先讨论理想费米系统的情形。
根据上题有,理想费米系统的熵可表示为 ()().ln ln ln F D lllllllllS ka a a a ωωωω=----⎡⎤⎣⎦∑()ln ln l l l l l l l l l a a ka a ωωωω⎡⎤-=--+⎢⎥⎣⎦∑ 1ln 1ln l l l l l ll l l l a a a a kωωωωω⎡⎤⎛⎫⎛⎫=---+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∑ 式中s∑表示对粒子各能级求和。
8热力学
习题及参考答案第八章 热力学 参考答案思考题8-1 “功、热量和内能都是系统状态的单值函数”这种说法对吗?如有错请改正。
8-2 质量为M 的氦气(视为理想气体),由同一初态经历下列两种过程:(1)等体过程;(2)等压过程。
温度升高了ΔT ,要比较这两种过程中气体内能的改变,有一种解答如下:(1) 等体过程T C ME V V ∆∆μ= (2) 等压过程T C ME p p ∆∆μ=∵V p C C ,∴Vp E E ∆∆以上解答是否正确?如有错误请改正。
8-3 摩尔数相同的氦气和氮气(视为理想气体),从相同的初状态(即p 、V 、T 相同)开始作等压膨胀到同一末状态,下列有关说法有无错误?如有错误请改正。
(1)对外所作的功相同; (2)从外界吸收的热量相同; (3)气体分子平均速率的增量相同。
8-4 一定量的理想气体,从p-V 图上同一初态A 开始,分别经历三种不同的过程过渡到不同的末态,但末态的温度相同,如图所示,其中A →C 是绝热过程,问:(1)在A →B 过程中气体是吸热还是放热?为什么? (2)在A →D 过程中气体是吸热还是放热?为什么?8-5 在下列理想气体各种过程中,哪些过程可能发生?哪些过程不可能发生?为什么?(1)等体加热时,内能减少,同时压强升高; (2)等温压缩时,压强升高,同时吸热; (3)等压压缩时,内能增加,同时吸热; (4)绝热压缩时,压强升高,同时内能增加。
8-6 甲说:“系统经过一个正的卡诺循环后,系统本身没有任何变化。
”乙说:“系统经过一个正的卡诺循环后,不但系统本身没有任何变化,而且外界也没有任何变化。
”甲和乙谁的说法正确?为什么?8-7 从理论上讲,提高卡诺热机的效率有哪些途径?在实际中采用什么办法? 8-8 关于热力学第二定律,下列说法如有错误请改正: (1)热量不能从低温物体传向高温物体;(2)功可以全部转变为热量,但热量不能全部转变为功。
8-9 理想气体经历如图所示的abc 平衡过程,则该系统对外作功A ,从外界吸收的热量Q 和内能的增量ΔE 的正负情况为(A )ΔE >0,Q >0,A <0; (B )ΔE >0,Q >0,A >0; (C )ΔE >0,Q <0,A <0; (D )ΔE <0,Q <0,A >0。
第八章 统计热力学
12. 若规定粒子在 0K 的能值为零, 则在 0K 时, 系统的热力学函数不一定等于零的是 (A) U (B) H (C) A (D) S 答案:D 13.统计热力学主要研究。 (A) 平衡体系 (B) 近平衡体系 (C) 非平衡体系 (D) 耗散结构 (E) 单个粒子的行 为 答案:A 14.体系的微观性质和宏观性质是通过( )联系起来的。 (A) 热 力 学 (B) 化 学 动 力 学 (C) 统 计 力 学 (D) 经 典 力 学 (E) 量 子 力 学 答案:C 15.在台称上有 7 个砝码,质量分别为 1g、2g、5g、10g、50g、100g,则能够称量的质量 共有:
U Ni i
i
答案:B
26. 对于单原子理想气体在室温下的一般物理化学过程, 若欲通过配分函数来求过程中热力 学函数的变化 (A) 必须同时获得 qt、qr、qV、qe、qn 各配分函数的值才行 (B) 只须获得 qt 这一配分函 数的值就行; (C) 必须获得 qt、qr、qV 诸配分函数的值才行 (D) 必须获得 qt、qe、qn 诸配 分函数的值才行。 答案:B 27. 通过对谐振子配分函数的讨论, 可以得出 1mol 晶体的热容 CV,m=3R, 这一关系与下列哪 一著名定律的结论相同? (A) 爱因斯坦(Einstein)定律 (B) 杜隆-柏蒂(Dulong-Petit)定律; (C) 德 拜 (Debye) 立 方 定 律 ; (D) 玻 兹 曼 分 布 定 律. 答案:B 28. 单维谐振子的配分函数 qV=[exp(-h /2kT)]/[(1-exp(-h /kT)]在一定条件下可演化 为 kT/h , 该条件是 (A) h kT, m 1 (B) kT h , m 1 (C) 0 = 0, kT >> h (D) 0 = 0, kT h (E) 0 = 0, m 1. 答案:C 29.根据热力学第三定律, 对于完美晶体, 在 S0=kln0 中, 应当是 (A) 0 = 0 ; (B) 0 0 ; (C) 0 = 1 ; (D) 0 1 ; (E) 0 1
热力学与统计物理第八章部分习题讲解
2312Nii p E m ==∑321321313311!Nii p N mN NNi Z edq dq dp dp N hβ=-=∑=∏⎰321321331!Nii p N NmNNi Vedp dp N hβ=-=∑=∏⎰(参见185页)233223212!!iNp NNNmi Ni VVm edp N h N h βπβ-=⎛⎫== ⎪⎝⎭∏⎰压强:1ln N kT PZ VVβ∂==∂,故有:P V N kT =内能:熵: ()ln ln ln S k Z Z k Z Uβββ⎛⎫∂=-=+ ⎪∂⎝⎭固体中原子的简正谐振动满足Bose 分布,而简正振配分函数可写为321i iNieZ eeωββφβω---=-∏301ln ln(1)iNi Z U eβωβ-==---∑其中 30012Nii U ωφ==+∑由166-167页有Debye 频谱有239()0D DDN d g d ωωωωωωωωω⎧≤⎪=⎨⎪>⎩()20309ln ln 1DDNZ U ed ωβωβωωω-=---⎰引入变量 ,D Dyx kT kTTωθω===()2039ln ln 1x yN Z U y edy xβ-=---⎰高温下:1,1,ln(1)ln yyx ey e y--≈--≈0ln 3ln Z U N x N β=--+03ln()D U N Nββω=--+固体内能: 0ln 3U Z U NkT β∂=-=+∂熵: (ln )3ln 4DTS k Z U N k N k βθ=+=+低温下:342011,ln(1)3145yyyx y edy dy e π∞∞--==--⎰⎰内能:熵: ()344ln 5D T S k Z U N k πβθ⎛⎫=+=⎪⎝⎭解:由正则分布函数可得(1 (2)22222ln ln nnE nn E nZEeEZ Z eZββββββ--∂⎛⎫⎛⎫∂∂∂∂===+ ⎪ ⎪∂∂∂⎝⎭⎝⎭∑∑(3) ()22222()ln E E EZ Eββ∂∂=-==-∂∂2vE T kT C T β∂∂=-=∂∂(4 (5) 对单原子分子理想气体33,22v E N kT C N k==E E ∆=解:sN E N seαβ∞--=Ξ=∑∑(,)sE NNN N sN eeeZ T V βαα∞∞---==Ξ==∑∑∑[]11(,)(,)!NN Z T V Z T V N =上式中的(,)N Z T V 为N 个粒子的正则配分函数,1(,)Z T V 为一个粒子的配分函数,参见式(6.63)的计算过程有32122(,)m Z T V V h πβ⎛⎫= ⎪⎝⎭1101(,)exp (,)!NN eZ T V e Z T V N αα∞--=⎡⎤⎡⎤Ξ==⎣⎦⎣⎦∑3222ln m e V h απβ-⎛⎫Ξ= ⎪⎝⎭3222ln ln m N e V h απαβ-⎛⎫∂=-Ξ==Ξ ⎪∂⎝⎭3222ln V m h N παβ⎡⎤⎛⎫⎢⎥= ⎪⎢⎥⎝⎭⎢⎥⎣⎦322ln 2N h kT kT V m βμαπ⎡⎤⎛⎫⎢⎥=-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦3222313ln 22m U e V N kT h απβββ-⎛⎫∂=-Ξ== ⎪∂⎝⎭32212ln kTm kT P e V N V V h V απββ-⎛⎫∂=Ξ== ⎪∂⎝⎭ln ln (ln )S k αβαβ∂Ξ∂Ξ=Ξ--∂∂(ln )k N U αβ=Ξ++35(1)()22N k N k αα=++=+解:将小体积v 内的粒子看作系统,体积V-v 内的粒子看作粒子源和热源。
第八章热力学答案
第八章 热力学基础(2014)一.选择题1. 【基础训练4】[ A ]一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B.(B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。
【参考答案】根据热力学过程的功即过程曲线下的面积,知AD AC AB A A A >>; 再由热力学第一定律气体吸热E A Q ∆+= AD 过程0=Q ; AC 过程AC A Q =;AB 过程AB AB E A Q ∆+=,且0>∆AB E2 【基础训练6】 [ B ]如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ.【参考答案】该过程是绝热的自由膨胀过程,所以0=Q 0=A由热力学第一定律 0=∆E ∴0=∆T 220/0/p P V V =⇒=由3【基础训练10】 [D ]一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有 (A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【参考答案】由上题分析知:0=∆E ;而绝热自由膨胀过程是不可逆的,故熵增加。
4. 【自测提高3】 [ A ]一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程是吸热还是放热. (A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热. (C) abc 过程和def 过程都吸热. (D) abc 过程和def 过程都放热.【参考答案】内能是状态量,与过程无关。
工程热力学思考题答案,第八章
第八章压气机的热力过程1、利用人力打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机缸常以水冷却或气缸上有肋片,为什么?答:因为气体在压缩时,以等温压缩最有利,其所消耗的功最小,而在人力打气时用湿布包裹气筒的下部或者在压气机的气缸用水冷却,都可以使压缩过程尽可能的234高,压力升高,不利于进一步压缩,且容易对压气机造成损伤,耗功大。
等温压缩压气机向外放热,工质的温度不变,相比于绝热压缩气体压力较低,有利于进一步压缩耗功小,所以等温压缩更为经济。
5、压气机所需要的功可从第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需要的功,并用T-S图上面积表示其值。
答:由于压缩气体的生产过程包括气体的流入、压缩和输出,所以压气机耗功应以技术功计,一般用w c 表示,则w c =-w t由第一定律:q=△h+w t ,定温过程:由于T 不变,所以△h 等于零,既q=w t ,q=T △s ,21lnp p R s g =∆,则有 多变过程:w c =-w t =△h-q所以c w 6数n 7m2s 2’nm i=S T ∆0为图中的17nm1.8、如图8-13所示的压缩过程1-2,若是可逆的,则这一过程是什么过程?他与不可逆绝热压缩过程1-2的区别何在?两者之中哪一过程消耗的功大?大多少?图8-13答:若压缩过程1-2是可逆过程,则其为升温升压的吸热过程。
它与不可逆绝热过程的区别是:此过程没有不可逆因素的影响,在所有以1-2过程进行的压缩过程其耗功是最小的。
对于不可逆绝热压缩过程:q=△u+w,q=0,所以w=-△u,w c=△u可逆压缩过程1-2:q=△u+w,⎰=21Tdsq,所以⎰-∆=21Tdsuwc,所以不可逆绝热的耗功大,大了⎰21Tds。
第八章 热力学答案
第八章 热力学基础(2014)一.选择题1、 【基础训练4】[ A ]一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程就是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)就是A →B 、(B)就是A →C 、 (C)就是A →D 、(D)既就是A →B 也就是A →C , 两过程吸热一样多。
【参考答案】根据热力学过程的功即过程曲线下的面积,知AD AC AB A A A >>; 再由热力学第一定律气体吸热E A Q ∆+= AD 过程0=Q ; AC 过程AC A Q =;AB 过程AB AB E A Q ∆+=,且0>∆AB E2 【基础训练6】 [ B ]如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强就是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【参考答案】该过程就是绝热的自由膨胀过程,所以0=Q 0=A由热力学第一定律 0=∆E ∴0=∆T 220/0/p P V V =⇒=由 3【基础训练10】 [D ]一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有(A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【参考答案】由上题分析知:0=∆E ;而绝热自由膨胀过程就是不可逆的,故熵增加。
4、 【自测提高3】 [ A ]一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),与图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程就是吸热还就是放热.(A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热.(C) abc 过程与def 过程都吸热. (D) abc 过程与def 过程都放热. 【参考答案】内能就是状态量,与过程无关。
(完整版)大学物理学(课后答案)第8章
第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。
则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。
而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。
8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。
开始时它们的压强和温度都相同。
现将3 J 热量传给氦气,使之升高到一定的温度。
若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。
故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。
故正确的是(C )。
8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。
又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。
大学物理答案8.第八章
⼤学物理答案8.第⼋章第⼋章热⼒学第⼀和第⼆定律思考题8-13 强光照射物体,可以使物体的温度上升,导致物体内能的改变。
试问这⼀过程属于热量传递还是⼴义的做功。
8-14 储⽓瓶中的⼆氧化碳急速喷出,瓶⼝处会出现固态的⼆氧化碳----⼲冰。
为什么?8-15 ⽇常⽣活中有“摩擦⽣热”的提法,从物理上讲正确的表述是什么?8-16 有⼈说:只有温度改变时,才有吸热或放热现象。
这种说法正确吗?试举例说明之。
8-17 微元dW、dQ和dU与具体微元过程有关吗?微元dQT呢?8-18 参考§8.4关于开尔⽂表述与克劳修斯表述等价性的证明,试⽤反证法证明卡诺循环与克劳修斯表述的等价性。
8-19 等温膨胀过程的熵变⼤于零,有⼈说这表明此过程是不可逆的过程。
这种说法正确吗?8-20 基于克劳修斯表述证明两条绝热线不可能相交。
8-21 定义状态量焓H=U+pV。
对准静态且只有压强做功的过程,证明dH=Tds+Vdp,并说明该量在等压过程中的物理意义。
8-22报载,⼀⼩孩在夏季午睡时,由于长时间压着⼀个⼀次性打⽕机,导致打⽕机破裂,其⽪肤轻度冻伤。
试思考其中的物理原因。
8-23 ⼀般来说,物体吸热(放热)温度上升(下降),其热容量为正值。
但是对于⾃引⼒系统,热容量可能取负值。
试以第七章例7.3为例说明之。
习题8-1 某⼀定量氧⽓原处于压强P1=120atm 、体积V1=1.0L 、温度t1=27摄⽒度的状态,经(1)绝热膨胀,(2)等温膨胀,(3)⾃由膨胀,体积增⾄V2=5.0L 。
求这三个过程中⽓体对外做功及末状态压⼒值。
解:112120, 1.0,300 5.0p atm V l T K V l====氧⽓的775225p vC R R C γ=== (1)绝热膨胀:111611122212() 1.2810a V p V p V p p P V ---===? 1412[1()] 1.44101V pVW J V γγ-=-=?- (2)等温过程:111611122212() 1.2810a V p V p V p p P V ---=∴==? 1412[1()] 1.44101V pVW J V γγ-=-=?- (3)⾃由膨胀,T 不变 622.4310a p P =? W=08-2 将418.6J 的热量传给标准态下的5.00×10-3kg 的氢⽓[Cv,m=20.331J/(mol.k)] (1) 若体积不变,这热量变为什么?氢⽓的温度变为多少? (2) 若温度不变,这热量变为什么?氢⽓的压强及体积变为多少? (3) 若压强不变,这热量变为什么?氢⽓的温度和体积变为多少?解:(1)V 不变5131416.8, 1.01310,273.15 510Q W U Q J P Pa T K M Kg-?=+?∴?==?==?50, 8.05522M QW Q U R T T KM R µµ?=?=?=∴?== 273.158.05281.2()T K ∴=+=(2)T 不变12211123111111 0, 1.0775.610QMRT V VMU Q W RT Ln e V V MRT MPV RT V m P µµµµ-===∴===∴==?223112225.610 1.0776.0310() 9.4110 ( )PV V m P Pa V --∴=??=?==? (3)P 不变22321212221211111 , 5.85(),72273.15 5.7279.0()5.7210P MQQ C T T K M R T K V V T MRTT MRT V V m T T T PT P µµµµ??===∴=+======?1125()121.6 299.02M W P V V J U R T J µ=-=?== 计算结果Q U W ?≠?+是因为Cp 和Cv 近似取值,若取实验值20.331,28.646v p C C ==可得:25.845,279.0,297.1T K T K U J ?==?=8-3有20.0L 的氢⽓,温度为27摄⽒度,压强为P=1.25105pa 。
工程热力学思考题参考答案
工程热力学思考题参考答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]第八章压气机的热力过程1、利用人力打气筒为车胎打气时用湿布包裹气筒的下部,会发现打气时轻松了一点,工程上压气机缸常以水冷却或气缸上有肋片,为什么答:因为气体在压缩时,以等温压缩最有利,其所消耗的功最小,而在人力打气时用湿布包裹气筒的下部或者在压气机的气缸用水冷却,都可以使压缩过程尽可能的靠近等温过程,从而使压缩的耗功减小。
2、既然余隙容积具有不利影响,是否可能完全消除它答:对于活塞式压气机来说,由于制造公差、金属材料的热膨胀及安装进排气阀等零件的需要,在所难免的会在压缩机中留有空隙,所以对于此类压缩机余隙容积是不可避免的,但是对于叶轮式压气机来说,由于它是连续的吸气排气,没有进行往复的压缩,所以它可以完全排除余隙容积的影响。
3、如果由于应用气缸冷却水套以及其他冷却方法,气体在压气机气缸中已经能够按定温过程进行压缩,这时是否还需要采用分级压缩为什么答:我们采用分级压缩的目的是为了减小压缩过程中余隙容积的影响,即使实现了定温过程余隙容积的影响仍然存在,所以我们仍然需要分级压缩。
4、压气机按定温压缩时,气体对外放出热量,而按绝热压缩时不向外放热,为什么定温压缩反较绝热压缩更为经济答:绝热压缩时压气机不向外放热,热量完全转化为工质的内能,使工质的温度升高,压力升高,不利于进一步压缩,且容易对压气机造成损伤,耗功大。
等温压缩压气机向外放热,工质的温度不变,相比于绝热压缩气体压力较低,有利于进一步压缩耗功小,所以等温压缩更为经济。
5、压气机所需要的功可从第一定律能量方程式导出,试导出定温、多变、绝热压缩压气机所需要的功,并用T-S 图上面积表示其值。
答:由于压缩气体的生产过程包括气体的流入、压缩和输出,所以压气机耗功应以技术功计,一般用w c 表示,则w c =-w t由第一定律:q=△h+w t ,定温过程:由于T 不变,所以△h 等于零,既q=w t ,q=T △s ,21lnp p R s g =∆,则有 多变过程:w c =-w t =△h-q 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=-111121n n g c p p T R n n w 绝热过程:即q=0,所以6、活塞式压气机生产高压气体为什么要采用多级压缩及级间冷却的工艺答:由于活塞式压气机余隙容积的存在,当压缩比增大时,压气机的产气量减小,甚至不产气,所以要将压缩比控制在一定范围之内,因此采用多级压缩,以减小单级的压缩比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题1. 【基础训练4】[ A ]一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程: (A)是A →B. (B)是A →C. (C)是A →D.(D)既是A→B 也是A →C , 两过程吸热一样多。
【参考答案】根据热力学过程的功即过程曲线下的面积,知AD AC AB A A A >>;再由热力学第一定律气体吸热E A Q ∆+=AD 过程0=Q ;AC 过程AC A Q =;AB 过程AB AB E A Q ∆+=,且0>∆A B E2 【基础训练6】 [ B ]如图所示,一绝热密闭的容器,用隔板分成相等的两部分, 左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ【参考答案】该过程是绝热的自由膨胀过程,所以0=Q 0=A由热力学第一定律 0=∆E ∴0=∆T 220/0/p P V V =⇒=由3【基础训练10】 [D ]一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有: (A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E 【参考答案】由上题分析知:0=∆E ;而绝热自由膨胀过程是不可逆的,故熵增加。
4. 【自测提高3】 [ A ]一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程是吸热还是放热.(A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热. (C) abc 过程和def 过程都吸热. (D) abc 过程和def 过程都放热.【参考答案】内能是状态量,与过程无关。
所以图(1)中:abc 过程和ac 过程的内能增量相同,并由ac 为等温线可知 0=∆E 。
而功是过程曲线下的面积,显然abc 过程的功0>A 。
由热力学第一定律:abc 过程:0.>=∆+=A E A Q 所以abc 过程是吸热过程。
同理,在图(2)中:def 过程和df 过程的内能增量相同,并由绝热df 过程知 A E -=∆根据过程曲线下的面积:def 过程的功/.A 小于df 过程的功.A所以def 过程0)(///<-+=∆+=A A E A Q 所以def 过程是放热过程5. 【自测提高4】 [ B ]用下列两种方法:(1) 使高温热源的温度T 1升高ΔT ;(2) 使低温热源的温度T 2降低同样的值ΔT ,分别可使卡诺循环的效率升高Δη1和Δη2,两者相比,(A) Δη1>Δη2. (B) Δη1<Δη2. (C) Δη1=Δη2. (D) 无法确定哪个大.V【参考答案】由卡诺循环效率公式 121T T -=η 有 T T T T T ∆+-=-=∆1212/11ηηη 1212/22T T T T T ∆--=-=∆ηηη 0121221<∆+-∆-=∆-∆TT T T T T ηη6. 【自测提高6】 [ B ] 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.【参考答案】既然是绝热过程就有E A ∆-=,而两个绝热过程对应的温度变化值相同E ∆⇒的数值相同,所以作功A 的数值相同,即过程曲线下的面积相同。
二. 填空题7. 【基础训练13】一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热 500 J ;若为双原子分子气体,则需吸热 700 J. 【参考答案】 据题意)(200J T R MmV P PdV A =∆⋅=∆⋅==⎰ 对于单原子分子 内能)(300200232J T R M m i E =⨯=∆⋅=∆ 所以)(500300200J E A Q =+=∆+= 对于双原子分子)(50020025J E =⨯=∆ )(700J E A Q =∆+= 8. 【基础训练14】给定的理想气体(比热容比γ为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T = 01)31(T ⋅-γ压强p = 0)31(P ⋅γ【参考答案】已知绝热过程的体积变化,求温度的变化,选绝热过程方程T V T V ⋅=⋅--101γγ∴ 01010)31()(T T V V T ⋅=⋅=--γγ同理已知绝热过程的体积变化,求压强的变化,选绝热过程方程 γγPV V P =00 有 000)31()(P P V V P ⋅=⋅=γγ9. 【自测提高12】如图所示,绝热过程AB 、CD ,等温过程DEA , 和任意过程BEC ,组成一循环过程.若图中ECD 所包围的面积为70 J ,EAB 所包围的面积为30 J ,DEA 过程中系统放热100 J ,则:(1) 整个循环过程(ABCDEA )系统对外作功为40J .(2) BEC 过程中系统从外界吸热为140Jpabp【参考答案】(1) Q AB CDEA =∆E+A=0+A =A EABE (逆循环)+A ECDE (正循环)=(-30)+70=40J(2)Q ABCDEA =Q AB + Q BEC + Q CD + Q DEA= 0+ Q BEC +0+ Q DEA= Q BEC +(—100)=40J所以 Q BEC =140J10. 【自测提高13】如图示,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1 33.3% ,η2:50% , η3. 66.7% 【参考答案】根据卡诺循环的效率:121T T -=η (1T 对应高温热源的温度,2T 对应低温热源的温度)3132111001=-=-=-=T T T T T T ab cd 高低η 212111002=-=-=-=T T T T T T cd ef 高低η323111003=-=-=-=T T T T T T ab ef 高低η11. 【附录B----13】附图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是CM BM 和过程;(2) 气体吸热的是CM 过程.【参考答案】*温度如何变化要与等温线比较——过A BC 三点做形如等温线MT 的曲线(是双曲线的一支,图中未画出),可知靠近原点且过C 点曲线对应温度低,过B 的温度略高,过A 的对应的温度最高,所以CM BM 和过程是升温过程,AM 过程温度降低。
*是吸热还是放热要与绝热过程比较——对于绝热过程,A E -=∆,即外界对系统所做的功全部用来增加系统的内能。
对CM 过程而言,内能增加的比绝热过程的多(温度增加的多),而外界对系统所做的功却少于绝热过程,所以一定从外界吸收了部分热量。
即CM 过程是吸热过程.[对AM 过程来说,内能减少,0<∆E ,系统作功为负,故是放热过程;BM 过程中,外界对系统所做的功大于绝热过程的,而内能增加的比绝热过程的要少(温度增加得小),所以一定有部分热量放出来。
即BM AM 和过程都是放热过程。
]12. 【附录E----19】如附图所示,理想气体从状态A 出发经ABCDA 循环过程,回到初态A 点,则循环过程中气体净吸的热量为Q =)(1062.14J ⨯.Vp O 3T 02TT 0f ad b ce p (atm) V (L)【参考答案】依热力学第一定律,循环过程净吸收的热量为 A Q =即循环过程所包围的面积(注意单位!)三.计算题13. 【基础训练18】温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) )(1072.23ln 29831.81ln312J V V RT A ⨯=⨯⨯⨯==ν (2) 由双原子分子的4.1=γ及绝热过程方程 212111T V T V --=γγ 得)(192)31(298)(14.112112K V V T T =⨯==--γ 即此过程的K T 106-=∆ )(1020.2)106(31.825123J T R i E A ⨯=-⨯⨯⨯-=∆⋅⋅-=∆-=ν14【基础训练25】以氢(视为刚性分子的理想气体)为工作物质进行卡诺循环,如果在绝热膨胀时末态的压强p 2是初态压强p 1的一半,求循环的效率.【参考答案】设绝热膨胀初态的温度为T 1 , 末态温度为T 2 ,此即卡诺循环过程对应的高温热源的温度和低温热源的温度,则循环的效率即为 121T T -=η 再依绝热膨胀初态和末态压强和温度的过程方程γγγγ212111T p T p --= 及57=γ82.0)(11212==-γγP PT T 所以%18=η15. 【自测提高18】气缸内贮有36 g 水蒸汽(视为刚性分子理想气体),经abcda 循环过程如图所示.其中a -b 、c -d 为等体过程,b -c为等温过程,d -a 为等压过程.试求:(1) d -a 过程中水蒸气作的功W da ;(2) a -b 过程中水蒸气内能的增量∆E ab ;(3) 循环过程水蒸汽作的净功W ;(4) 循环效率η.【参考答案】(1)a d →过程——水蒸气作的功A da 为过程曲线下的面积,因体积减小,故功为负J V P A da 33510065.5102510013.12⨯-=⨯⨯⨯⨯-=∆-=-(2)b a →过程())(10039.310013.1410252622453J V P V P i T R i M m E a a b b ab ⨯=⨯⨯⨯⨯⨯=-=∆=∆- (3)循环过程水蒸汽作的净功为过程曲线下所围的面积。
在等温过程c b →中 0=∆E 依热力学第一定律)(100532.12ln 102510013.16ln ln 435J V V V P V V RT M mPdV Q A bc b b b c b bc bc ⨯=⨯⨯⨯⨯=====-⎰ 循环过程水蒸汽作的净功为 )(10467.53/J A A A da bc ⨯≈-= (4)此循环过程中,b a →过程是吸热的)(10039.34J E Q ab ab ⨯=∆=p (atm ) V (L)c b →过程吸热,)(10053.14J A Q bc ⨯==)(10082.44J Q Q Q bc ab ⨯=+=吸热 其它两个过程都是放热过程,从a d c →→过程中,)(10065.53J A A da cda ⨯-==)(10039.34J E E E E ab ba ca cda ⨯-=∆-=∆=∆=∆)(105455.34J E A Q cda cda ⨯-=∆+=放热故循环过程的效率为%1310082.4105455.31144≈⨯⨯-=-=吸热放热Q Q η16. 【自测提高19】如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比. 解:由p a V /=得221V a P = (1) 依作功的定义)11(12122221V V a dV Va PdV A V V -=⋅⋅==⎰⎰(2) 根据理想气体状态方程222111T V P T V P = 122222121222112111V V V V a V V a V P V P T T =⋅⋅==17. 【自测提高20】1 mol 单原子分子理想气体的循环过程如的T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量;(2) 经一循环系统所作的净功;(3) 循环的效率. 解:据T---V 曲线知ab 过程等压压缩,bc 过程等容升温(压强增大), ca 为等温膨胀过程。