工程弹塑性力学-第一章
弹性与塑性力学基础 第1章 应力分析
1 1 2 2 1 2 1 2 2 4
2
(1-7)
应力圆:任一截面正应力与剪应力关系图 确定任一截面上 的 和。 坐标系: - 圆 半 应力圆 心: 轴上点 径:
1 ( 1 2 ) 2
1 ( 1 2 ) 2
单 向 拉 伸 时 轴 与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
即:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
1 cos2 2 sin 2
(1-4)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
任一截面上 的 和 确定方法:
取任一截面上法向 和 的值。第一主应力截面法向夹角的二倍 2 ,由 轴逆时针旋转,应力圆上对应于2点的轴上的 和
弹性与塑性力学基础
哈工大(威海) 材料学院
第 一 章
应 力 分 析
弹性与塑性 力 学 基 础
第一章 应力分析
1.1.1 应力定义
哈工大(威海) 材料学院
弹塑性力学 第01-0章绪论
静力学: 物体的平衡条件--平衡微分方程和应力边界条件。 几何学: 位移与应变的关系--变形协调关系(几何方程和 位移边界条件)。 物理学: 应力与应变(或应变增量)的关系--本构关系。 如在材料力学中推导扭转切应力、弯曲正应力 时都应用了上述关系。
8、求解弹塑性力学问题的数学方法
由几何方程、物理方程、平衡方程及力和位移的边 界条件求出位移、应变、应力等函数。 精确解法:能满足弹塑性力学中全部方程的解。例 如运用分离变量法将偏微分方程组解耦并化为常微分方 程组进行求解,另外还有级数解法、复变函数解法、积 分变换等。 近似解法:根据问题的性质采用合理的简化假设而 获得近似结果;如有限元法、边界元法、有限差分法 等。
ε ≤ ε s 时,σ = Eε ε > ε s 时,σ = σ s sign ε
⎧1, 当 σ > 0 ⎪ ⎪ sign σ = ⎨0, 当 σ = 0 ⎪ ⎪ ⎩-1, 当 σ < 0
εs = σs E
4、线性强化(硬化)弹塑性模型
假设拉伸和压缩时屈服应力 的绝对值和强化模量E’都相同, 当不卸载时,应力—应变关系可 以写成
如:梁的弯曲问题
弹性力学
材料力学
当 l >> h 时,两者误差很小。
材料力学计算简单而结果往往是近似的,但不少情 况下精度可以满足工程要求的 变截面杆的分析
o
σ (x )
σ
(x )
? P
P x
τ (x )
二、弹塑性力学的基本假设
¾ 连续性假设,应力、应变和位移都可以用坐标的 连续函数表示,便于应用连续和极限的概念。 ¾ 均匀性假设,物体各部分的物理性质都相同,并 不会随坐标位置的改变而发生变化。 ¾ 各向同性假设,物体在各个方向具有相同的物理 性质,弹性常数不随坐标方向的改变而改变。
塑性力学(一)
(四)学习塑性力学的基本方法 塑性力学是连续介质力学的一个分支,故研 究时仍采用连续介质力学中的假设和基本方法。 (1) 受力分析及静力平衡条件(力的分析) 对一点单元体的受力进行分析。若物体受力作用 ,处于平衡状态,则应当满足的条件是什么?(静力 平衡条件)
(2) 变形分析及几何相容条件(几何分析) 材料是连续的,物体在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠”。则 材料变形时,对一点单元体的变形进行分析,应满 足的条件是什么?(几何相容条件) (3)力与变形间的本构关系 (物理分析) 固体材料受力作用必然产生相应的变形。不同的 材料,不同的变形,就有相应不同的物理关系。则对 一点单元体的受力与变形间的关系进行分析,应满足 的条件是什么?(物理条件,也即本构方程。)
(一)σ-ε曲线的简化 (二)σ-ε的关系式(分为三个不同的状态)
鉴于学习塑性力学问题的复杂性,通常在塑性理 论中要采用简化措施。为此得到基本上能反映材料的 力学性质,又便于数学计算的简化模型。 (一)σ-ε曲线的简化 理想弹塑性模型(软钢) 分段模型 大致分为两类: 连续模型 线性强化弹塑性模型 幂次强化模型 R-O模型
(6)包氏效应
卸载后,如果进行反向加载 (拉伸改为压缩)首先出现压缩 的弹性变形,后产生塑性变形, 但这时新的屈服极限将有所降 低,即压缩应力应变曲线比通常 的压缩试验曲线屈服得更早了。 这种由于拉伸时的强化影响到压 缩时的弱化现象称为包辛格 (Bauschinger)效应 (一般塑性理 论中都忽略它的影响) 。
小结: 由两个实验我们得到了四个结论: 1)应力-应变关系不再一一对应,且一般是非线性 的。 2)应力-应变的多值性。(出现卸载时) 3)在静水压力作用下,体积的改变都是弹性变形, 没有塑性变形。 4)在静水压力作用下,材料的塑性行为不受影响。
弹塑性力学第01章
学习目的
弹性力学的研究方法决定了它是一门基础理论课程,而 且理论直接用于分析工程问题具有很大的困难。原因主要是 它的基本方程-偏微分方程边值问题数学上求解的困难。由 于经典的解析方法很难用于工程构件分析,因此探讨近似解 法是弹性力学发展中的特色。近似求解方法,如差分法和变 分法等,特别是随着计算机的广泛应用而发展的有限元方法, 为弹性力学的发展和解决工程实际问题开辟了广阔的前景。 弹性力学课程的主要学习目的是使学生掌握分析弹性体 应力和变形的基本方法,为今后进一步的研究实际工程构件 和结构的强度、刚度、可靠性、断裂和疲劳等固体力学问题 建立必要的理论基础。
钱学森,著名科学家。我国 近代力学事业的奠基人之一。 在空气动力学、航空工程、 喷气推进、工程控制论、物 理力学等技术科学领域做出 许多开创性贡献。为我国火 箭、导弹和航天事业的创建 与发展做出了卓越贡献,是 我国系统工程理论与应用研 究的倡导人。1991年10月 16日,国务院、中央军委 授予钱学森"国家杰出贡献 科学家"荣誉称号和一级英 雄模范奖章。
粘弹性?
§1-2 弹塑性力学的研究内容
弹塑性力学是固体力学的一个重要分支, 是研究弹性和弹塑性物体变形规律的一门学 科,它推理严谨,计算结果准确,是分析和 解决许多工程技术问题的基础和依据。
目录
CH1 绪论 CH2 弹性力学基本理论 CH3 弹性力学平面问题 CH4 弹性力学空间问题 CH5 薄板的小挠度弯曲 CH6 弹性力学问题的变 分解法 CH7 简单应力状态下的弹 塑性问题 CH8 应力应变分析和屈服 条件 CH9 塑性本构关系 CH10 简单弹塑性问题 CH11 理想刚塑性体的平 面应变问题 CH12 结构的塑性极限分 析
弹塑性力学第一章弹塑性力学绪论资料
1、弹塑性本构关系
本构关系是指材料内任意一点的应力-应变之间的关 系,是材料本身的物理特性所决定的。弹性本构关系 是广义胡克定律,而塑性本构关系远比弹性本构关系 复杂。在不同的加载条件下要服从不同的塑性本构关 系。塑性本构关系有增量理论和全量理论。
6
2.研究荷载作用下物体内任意一点的应力和变形 在荷载作用下,物体内会产生内力,因此通常
广泛地探讨了许多复杂的问题,出现了许多边缘分支:
各向异性和非均匀体的理论,非线性板壳理论和非线性
弹性力学,考虑温度影响的热弹性力学,研究固体同气
体和液体相互作用的气动弹性力学和水弹性理论以及粘
弹性理论等。磁弹性和微结构弹性理论也开始建立起来。
此外,还建立了弹性力学广义变分原理。这些新领域的
发展,丰富了弹性力学的内容,促进了有关工程技术的
弹塑性力学
1
第一章 绪 论
§1-1 弹塑性力学基本概念和主要任务 §1-2 弹塑性力学的发展史
§1-3 基本假设及试验资料 §1-4 简化模型
2
1.1 弹塑性力学基本概念和主要任务
一、弹性(塑性)变形,弹性(塑性)阶段
可变形固体在外力作用下将发生变形。根据变形 的特点,固体在受力过程中的力学行为可分为两个明 显不同的阶段:当外力小于某一极限值(通常称为弹 性极限荷载)时,在引起变形的外力卸除后,固体能 完全恢复原来的形状,这种能恢复的变形称为弹性变 形,固体只产生弹性变形的阶段称为弹性阶段;外力 超过弹性极限荷载,这时再卸除荷载,固体将不能恢 复原状,其中有一部分不能消失的变形被保留下来, 这种保留下来的永久变形就称为塑性变形,这一阶段 称为塑性阶段。
10
在这个时期,弹性力学的一般理论也有很大的发展。
《弹塑性力学》第一章 绪论.ppt
2021/3/11
10
§1-2 基本假设和基本规律
2.1基本假设
假设1:固体材料是连续的介质,即固体体积 内处处充满介质,没有任何间隙。
从材料的微观看此假设不正确。因为粒子 间有空隙,但从宏观上看作为整体进行力学分 析时,假设1是成立的。假设1的目的:变形体 的各物理量为连续函数(坐标函数)。
2021/3/11
假设4:应力与应变关系为线性。此假设适 用于线弹性理论。
2021/3/11
13
§1-2 基本假设和基本规律
2.2 基本规律
完成弹塑性力学任务所要遵循的三个基 本规律(或应满足的三方面的条件):
1. 平衡规律:固体受到外力与自身的内力要 满足平衡方程,在弹性理论中它们为微分方 程(3个)。
2021/3/11
矢量的符号记法。 矢量也可以用它的标量表示:
x3 r
3
r r1e1 r2e2 r3e3 ri ei
e3 x2
i 1
x1 e1 e2
2021/3/11
20
§1-5 笛卡尔坐标系下的矢量、张
量基本知识
其中 e1、e2、e3为坐标的基方向(单位向量),
r1、r2、r3为r在坐标轴的投影(分量),都有
14
§1-2 基本假设和基本规律
2. 几何连续性规律:要求变形前连续的物 体,变形后仍为连续物体,由这个规律建立 几何方程(6个)或变形协调方程,均为微 分方程。
2021/3/11
15
§1-2 基本假设和基本规律
3. 物理(本构)关系:应力(内力) 与应变(变形)之间的关系,据材料的 不同性质 来建立,最常见的为各向 同性材料。
2021/3/11
3
工程弹塑性力学题库及答案
,而应变
,试证明当体积不变
证毕!
5.3 对于线性弹塑性随动强化模型,若 (1)、已知给定应力路径为 (2)、已知给定应变路径为
,试求 ,求对应的应变值。 ,求对应的应力值。
(1)解:①、 , ;②、
,
③、 ,
;④、
,
⑤、 ,
(2)解:①、 , ;②、
,
③、 ,
;
④、
,
⑤、 ,
5.4 在拉伸试验中,伸长率为
Mises 屈服条件:
故有
6.5 试用 Lode 应力参数 表达 Mises 屈服条件。 解:由定义:
即 Mises 屈服条件为 将上式代入,得:
即:
6.6 物体中某点的应力状态为
,该物体在单向拉伸
时
,试用 Mises 和 Tresca 屈服条件分别判断该点是处于弹性
状态还是塑性状态,如主应力方向均作相反的改变(即同值异号),则对被 研究点所处状态的判断有无变化? 解:(1)Mises 屈服条件判断
6.8证明下列等式: (1)、 证明:(1)、右边
(2)、
=左边
证毕!
(2)、
证毕!
6.9 设 、 、 为应力偏量,试证明用应力偏量表示 Mises 屈服条件时,其形式为
,提示:
证明:Mises 屈服条件:
,
,
又 又
证毕!
第七章 塑性本构关系
7.1 塑性全量理论的成立条件: 解:(1)应力主方向与应变主方向是重合的,即应力 Mohr 圆与应变 Mohr 圆相 似,应力 Load 参数 和应变 Load 参数 相等,而且在整个加载过程中主方向
力为多大,并求此时塑性应变增量的比。
解:设扭转剪应力 入 Mises 屈服条件,得
塑性力学-第一章
σdσ≥0 σdσ<0
dσ=Etdε dσ=Edε
弹性变形有以下特点: (1)弹性变形是可逆的。物体在变形过程中,外力所做的功以 能力(应变能)的形式储存在物体内,当卸载时,弹性应变 能将全部释放出来,物体的变形得以完全恢复; (2)无论材料是处于单向应力状态,还是复杂应力状态,在线 弹性变形阶段,应力和应变成线性比例关系; (3)对材料加载或卸载,其应力应变曲线路径相同。因此,应 力与应变是一一对应的关系。
塑性变形有以下特点:
(1)塑性变形不可恢复,所以外力功不可逆,塑性变形的产生必定 要耗散能量(称耗散能或形变功); (2)在塑性变形阶段,其应力应变关系是非线性的。由于本构方程 的非线性,所以不能使用叠加原理。又因为加载与卸载的规律不 同,应力与应变之间不再存在一一对应的关系,即应力与相应的应 变不能唯一地确定,而应当考虑加载路径(或加载历史); (3)在载荷作用下,变形体有的部分仍处于弹性状态称弹性区,有的 部分已进入了塑性状态称塑性区。在弹性区,加载与卸载都服从广 义胡克定律。但在塑性区,加载过程服从塑性规律,而在卸载过程 中则服从弹性的胡克定律,并且随着载荷的变化,两区域的分界面 也会发生变化; (4)依据屈服条件,判断材料是否处于塑性变形状态。
①结构的塑性极限分析和安定分析,对梁、桁架、刚架、拱、排架、圆 板、矩形极、柱壳、球壳、锥壳、组合壳等都已获得完全解。 ②构件的塑性极限分析和安定分析,已求出各种带有缺口、槽、孔的受 拉、受弯、受扭轴和构件的塑性极限载荷。 ③金属板料成形,包括深冲、翻边、扩口、缩口等工艺。 ④金属块体成形,包括镦粗、拉拔、挤压、锻造等工艺。 ⑤金属轧制,金属材料在两个反向旋转的轧辊间通过,并产生塑性变形。 ⑥塑性动力响应和塑性波,在防护工程、地震工程、穿甲和侵彻,高速成 形,超高速撞击、爆炸工程等方面都有重要应用。 ⑦自紧技术,通过使结构产生有益的残余应力,以增强厚壁圆筒弹性强度 和延长疲劳寿命。 ⑧在岩土力学中,用以研究地基承载能力、边坡稳定性、挡土墙的作用和 煤柱的承载能力。 ⑨用以研究估算和消除残余应力的方法。
弹塑性力学-01
材料力学的研究对象
2
弹性力学 • 研究对象-块体板壳
弹塑性力学 • 研究对象广泛 • 数学方法
3
构件的四项基本要求
•强 •刚 度:抵抗破坏(断裂或过量塑性变形)的 度:抵抗弹性变形的能力。
能力。 • 稳定性:保持其原有平衡状态的能力。
•韧
性:抵抗大塑性变形而不破裂的能力。
4
基本任务
• 研究可变形固体受到外载荷、温度变化及边界约束
1-2
弹塑性力学的基本任务
• 工程问题的对象是结构
• 结构的功能——承受载荷
• 结构的基本单元——构件
• 构件的属性 – 承受载荷、可变形、由固体材料构成
1
构件的种类——杆件、板、壳、块体
材料力学 • 研究对象-杆件
结构力学 • 研究对象-杆系
弹塑性力学 给出用材料力学和结构力学方 法无法准确求解问题的解法 给出材料力学和结构力学无法 给出的可靠性和精确度的度量
边界条件
边值问题 求解
对工程 问题作 出评价
20
1-5 弹塑性力学中的基本假设
• 按照物体的性质以及求解的范围,忽
略一些可以暂不考虑的因素,而提出 一些基本假设,使所研究的问题限制
在方便可行的范围以内。
21
一、连续性假设:物质密实地充满物体所在空间,毫无空隙。 (应力应变和位移等力学量可以用坐标的连续函数表示,可 用微积分数学工具) 二、均匀性假设:物体内,各处的力学性质完全相同。 三、各向同性假设:组成物体的材料沿各方向的力学性质完全 相同。(这样的材料称为各项同性材料;沿各方向的力学 性质不同的材料称为各项异性材料。) 四、小变形假设:材料力学所研究的构件在载荷作用下的变形 与原始尺寸相比甚小,故对构件进行受力分析时可忽略其 变形。 五、无初应力,物体原来处于一种无应力的自然状态,在外力 作用之前,物体内各点应力为零 22
工程塑性力学(第一章)
σ′
σ′
σs
σs
O
εp ε
εe
ε
O
εp ε
εe
ε
图 1-2
卸载和再加载
σ ′′
图 1-3 卸载后反向加载到屈服
1.2.2 没有明显屈服阶段的拉伸曲线(铝合金类)
屈服极限(应力)规定:0.2%塑性应变对应的应力, σ 0.2
σ σb σ0.2
σ′
O
0.2%
ε
σ ′′
图 1-4 没有明显屈服平台的应力应变曲线
1.5.2 卸载
从介于 Ps 和 Pe 之间的某一值 P * 卸载 ΔP ,服从弹性规律。应力应变的改变 量为
Δσ 1 = Δσ 3 =
Δε 1 = Δε 3 =
σ s ⎛ ΔP ⎞
⎛ ΔP ⎞ ⎜ ⎟ , Δσ 2 = σ s ⎜ ⎜ ⎟ ⎜ P ⎟ ⎟ 2 ⎝ Pe ⎠ ⎝ e ⎠
(1-20) (1-21)
σ
σs
E’
E
εs
图 1-7
ε
幂强化模型
σ = Aε n , 0 ≤ n ≤ 1
(1-3)
σ
n =1
A
n = 1/ 2 n = 1/ 3 n=0
1
ε
图 1-8
Ramberg-Osgood 模型
σ /σ0
ε / ε 0 = σ / σ 0 + (σ / σ 0 ) n
3 7
(1-4)
1
n = 0 n =1 n=2 n=5 n=∞
位移:
(1-18)
δ y = ε 2 ⋅ l = 2ε1l =
或
2σ 1 l E
δy P = (1 + 2 ) − 2 δe Pe
弹塑性力学-陈明祥版的-课后习题答案++
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ 在一定单位制下,除指明其大小还应指出其方向
的物理量,称为矢量。例如速度、加速度等。
x j xk
(I-25)
4.张量的分解
张量一般是非对称的。若张量 ai的j 分量满足
aij a ji
(I-27)
则 aij称为对称张量。 如果 的分ai量j 满足
aij a ji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11 a22 。a33 0
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
(1) 受力分析及静力平衡条件 (力的分析)
物体受力作用处于平衡状态,应当满足的条件 是什么?(静力平衡条件)
(2) 变形的几何相容条件 (几何分析)
材料是均匀连续的,在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠 ”, 此时材料变形应满足的条件是什么?(几何相 容条件)
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
工程塑性力学第二版第一章答案
工程塑性力学第二版第一章答案
1-1 说明下列式子的意义和区别:
(1) F1=F2;,(2) F1=F2 ,(3)力F1等效于力F2。
答:式(1)表示2个力的大小相等。
式(2)表示2个力矢量相等,即2个力的大小相等,方向相同。
式(3)表示2个力的大小相等,方向和作用线均相等。
1-2 试区别Fr=F1+F2,和Fr=F1+F2,两个等式代表的意义。
答:前者表示2个矢量相加,后者表示2个代数量相加。
1-3二力平衡条件与作用和反作用定律都是说二力等值、反向、共线,者有什么区别?
答:二力平衡条件是作用在1个刚体上的使之平衡的2个力,而作用和反作用力是分别作用在2个相互作用的物体上的2个大小相等的力。
1-4为什么说二力平衡条件、加减平衡力系原理和力的可传性等都只适用于刚体?
答:因为非刚体在力的作用下会产生变形。
例如:对于绳子或链条,当对其施加等值、反向、共线的压力时,它们将产生变形,而不能平衡。
1-5 什么叫二力构件?分析二力构件受力时与构件的形状有无关系?
答:在2个力作用下平衡的刚体称为二力构件(又称二力杆)。
分析二力构件受力时与构件的形状无关。
1-6如图所示,可否将作用于杆AC上D点的力F沿其作用线移动,变成杆BC上点的力F’,为什么?
答:不可以,根据力的可传性定理的限制条件。
1-7 如图所示,杆AB重为G,B端用绳子拉住,A端靠在光滑的墙面,问杆能否平衡?为什么?
答:不能,根据三力汇交定理内容。
塑性力学(一)
弹性变形 非弹性变形
塑性变形
粘性变形
粘性变形随时间而改变, 例蠕变、应力松弛等。
塑性变形、塑性变形特征、 塑性极限分析 构件受外荷载而变形,当外荷载卸除而 恢复的那部分变形称为弹性变形; 构件受外荷载而变形,当外载卸除而不 能恢复的那部分变形称为塑性变形。
塑性变形的特征: (1)变形的不可恢复性是塑性的基本特征。 (2)应力超过弹性范围后,应力-应变呈非线性关 系,叠加原理不再适用。 (3)塑性变形与加载历程有关,应力与应变之间不再 是单值关系。 (4)通常所指的塑性变形,忽略了时间因素的影响(常 温、低应变率)。
线性强化弹塑性模型,用于有显著强化性质 的材料。
线性强化刚塑性体模型
σ
σs
E1
o
σ = σ s + E 1ε
ε
线性强化刚塑性模型,用于弹性应变比塑性 应变小得多且强化性质明显的材料。
3、幂次强化模型
m=1 m=0.5 m=0.25 m=0
σ = B ε signε
m叫强化系数
其中,材料 常数B和 m 满足 B>0,0<m<1 。
(五)学习塑性力学的目的 塑性力学比弹性力学复杂得多,但为更好地了解 固体材料在外力作用下的性质,塑性理论的研究是十 分必要的,对于工程结构的设计来说,如不进行弹塑 性分析,则有可能导致浪费或不安全。学习塑性力学 的目的主要为: 1)研究在哪些条件下可以允许结构中某些部位的应力 超过弹性极限的范围,以充分发挥材料的强度潜力。 2)研究物体在不可避免地产生某些塑性变形后,对 承载能力和(或)抵抗变形能力的影响。 3)研究如何利用材料的塑性性质以达到加工成形的目 的。
当m=0时,代表理想 塑性体模型,当m=1时, 则为理想弹性体模型。
弹塑性力学总复习
《弹塑性力学》课程第一篇 基础理论部分第一章 应力状态理论1.1 基本概念1. 应力的概念应力:微分面上内力的分布集度。
从数学上看,应力sPF s ∆∆=→∆0lim ν由于微分面上的应力是一个矢量,因此,它可以分解成微分面法线方向的正应力νσ和微分面上的剪应力ντ。
注意弹塑性力学中正应力和剪应力的正负号规定。
2. 一点的应力状态(1)一点的应力状态概念凡提到应力,必须同时指明它是对物体内哪一点并过该点的哪一个微分面。
物体内同一点各微分面上的应力情况,称为该点的应力状态。
(2)应力张量物体内任一点不同微分面上的应力情况一般是不同的,这就产生了一个如何描绘一点的应力状态的问题。
应力张量概念的提出,就是为了解决这个问题。
在直角坐标系里,一点的应力张量可表示为⎪⎪⎪⎪⎭⎫⎝⎛=z zy zx yz yyx xz xy x ij στττστττσσ若已知一点的应力张量,则过该点任意微分面ν上的应力矢量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进一步求出该微分面上的总应力p 、正应力νσ和剪应力v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=(1-2b )22ννστ-=p(1-2c )(3)主平面、主方向与主应力由一点的应力状态概念可知,通过物体内任一点都可能存在这样的微分面:在该微分面上,只有正应力,而剪应力为零。
这样的微分面即称为主平面,该面的法线方向即称为主方向,相应的正应力称为主应力。
主应力、主方向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应力张量分量构成的矩阵,n σ为主应力,}{i n 为主方向矢量。
弹塑性力学一
坐标变换包括平移、旋转和反射。 对右手坐标系,平移和旋转变换后仍 保持右手系,反射变换则变成左手系。
对平移变换,一点的应力分量保持不变。 本节主要讨论坐标旋转变换时应力分量的变化 规律
考察物体内任一点o,设oxyz为旧坐标系,其 单位矢量为ex、ey、ez,相应的应力分量为
z z’
设ox’y’z’为新坐标,其单位 矢量为ex’、ey’ 、ez’ 。相应 的应力分量为
应力分量 单位:
应力的法向分量 应力的切向分量 MPa (兆帕)
—— 正应力 —— 剪应力
应力关于坐标连续分布的
应力分量沿坐标轴的分量: 用 表示坐标轴单位矢量
重要公式
(2) 一点的应力状态
通过一点P 的各个面上应力状况的集合 —— 称为一点的应力状态 x面的应力: x , xy , xz y面的应力: z面的应力:
F
y
0, Fz 0
可以得出其余两式。
斜面应力(Cauchy)公式
重要公式
设三角形ABC上的正应力为N , 则由投影可得 重要公式
将Cauchy公式代入,得
斜面应力矢量大小
重要公式 重要公式
斜面剪应力分量大小
重要公式
在物体的任意一点,如果已知六个应力分量
就可以求得任一斜面上的正应力和剪应力。就
y , yx , yz
z , zx , zy
用矩阵表示:
z
z
x xy xz yx y yz zx zy z
应力符号的意义:
x
O
xz xy y y yx yz x zx zy z
y yz P
弹塑性力学 第一章 绪论
σ
o
ε
1
3. 塑性力学与弹性力学的关联和区别: 密切性——弹性力学中的一些基本假设、应力应变分析、与 材料物理性质无关的基本概念、连续介质力学的宏观方法等 与塑性力学一致; 区别性——(A)应力应变关系,即本构关系:弹性力学有 广义胡克定律统一的应力应变关系,而塑性力学没有;(B) 与弹性力学不同,塑性力学的方程是非线性的,变形与加载 历程有关,数学求解更加困难。 4. 塑性力学所研究的问题: (1) 以试验观察所得结果为出发点,建立塑性状态下变形的基本
11
应用弹塑性力学
APPLIED ELASTO-PLASTICITY OF SOLIDS
强化阶段: 此阶段材料抵抗变形的能力有所增强。 如要增加应变,必须增大应力。 材料的强化 强度极限b —对应点G (拉伸强度), 最大名义应力。 强化阶段的卸载再加载规律: 若在强化阶段卸载,则卸载过程 - 关系为直线。 立即再加载时,-关系起初基本上 沿卸载直线上升直至当初卸载的荷载, 然后沿卸载前的曲线断裂—冷作硬化 现象。
松木顺纹拉伸、压缩和横纹压缩时的s —e 曲线 特点: a、顺纹拉伸强度很高,但受木节等缺 陷的影响波动; b、顺纹压缩强度稍低于顺纹拉伸强度, 但受木节等缺陷的影响小。 c、横纹压缩时可以比例极限作为其强 度指标。 d、横纹拉伸强度很低,工程中应避免 木材横纹受拉。 许用应力 [] 和弹性模量 E 均 应随应力方向与木纹方向倾角 不同而取不同数值。
p0.2
对应于p=0.2% 时的应力值
14
应用弹塑性力学
APPLIED ELASTO-PLASTICITY OF SOLIDS
塑性力学-绪论与第一章N
比例极限、弹性极限;线性弹性、弹性
§1.2
一种没有 明显的屈 服阶段, 例如一些 铝材的拉 伸试验曲 线。
一种有明显 的屈服阶段, 例如低碳钢 的拉伸试验 曲线。在这 种情形下, 在“屈服平 台”上应力 保持不变, 应变可以有 很大增长。
2. 如果应力超过弹性极限还继续加载,则完全卸载后应 变仍不为零,残留的应变称为塑性应变。记为 P 。 因此,弹性极限是产生不产生塑性应变的分界应力。
地震时混凝土构件中钢筋的塑性变形
切削中的塑性变形
图片引自周增文主编:《机械加工工艺基础》
材料的破坏伴随着塑性变形
(金属)材 料破坏区域 在破坏前经 历了明显的 (有时是非 常剧烈的) 塑性变形
材料的破坏伴随着塑性变形
(金属)材 料破坏区域 在破坏前经 历了明显的 (有时是非 常剧烈的) 塑性变形
尽管已取得很大成就,未解决的问题依然很多。特别是各种材料 的本构描述及小尺度下的材料塑性性质等方面。
塑性力学的应用
估计(或预测)工程结构的强度和寿命(塑 性力学通常会被用到)
寻找充分发挥材料的强度潜力的方法(例如 研究在哪些条件下可以允许结构中某些部 位进入塑性变形,以充分发挥材料的强度 潜力,减少用料,减轻结构自重 )
线性强化
§1.3
2 线性强化弹塑性模型 (材料的强化率较高且强化率在一 定范围内变化不大)
为分析简便,将材料
E'
的应变强化假定为线性强
化、并假定拉伸和压缩的 s
屈服应力绝对值相同、强 E 化模量也相同。
s E'
s E
于是单调载荷下(即 不考虑卸载时)的应力应 变关系可以写为:
o
塑性力学第一章
——采用塑性力学分析
三、塑性力学目的
研究在哪些条件下可以允许结构中某些 部位的应力超过弹性极限的范围,以充 分发挥材料的强度潜力
研究物体在不可避免地产生某些塑性变 形后,对承载能力和(或)抵抗变形能 力的影响
O
力应变曲线才以(1)式的规律沿MN
N M'
向下降。为了区分以上这种加载和卸
A'
载所具有的不同规律,就必须给出相
M ''
应的加卸载准则。
图2(a)
五、影响材料性质的其它几个因素
1、温度当温度上升时,材料的屈服应力将会 降低而塑性变形的能力则有所提高。
2、应变速率 如果实验时将加载速度提高几个数量 级,则屈服应力也会相应地提高,但材料的塑性应 变形能力会有所下降。 3.静水压力 当静水压力不太大时,材料体积的变 化服从弹性规律而不产生永久的塑性体积改变。
y2l(E2)l(E sl)P (Pe) ——垂直向下位移
若令
P
Pe
e
sl
E
,
P1 Pe 2
则当P由零增至Pe时,在图9的
坐标中为区间[0,1]上斜率等于
1的直线段OA。
O
线性强化
A
B 理想塑性
y e
图9
载荷-位移曲线
弹塑性解:
2 s.
当P由零逐渐增大到Pe时,第2杆的应力也逐渐增大而达到屈服状态: 如果P的值再继续增加,则(17)式已不再适用,相应的本构方程应改
6. 等向强化模型及随动强化模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用张量下标记号
( ij dij )l j 0 (1.9)
Kroneker delta记号
1.1 应力张量
dij记号:Kroneker-delta记号
d ij
1, 0,
i i
j j
采用张量表示
方向余弦满足条件:
1 0 0
dij 0 1 0 (1.10)
0 0 1
l12 l22 l32 1 (1.11)
l2
11 1
l2
22 2
l2
33 3
212l1l2
2 23l2l3
2 31l3l1
(1.5)
斜截面OABC上的剪应力:
N
SN2 1
SN2 2
S
2 N
3
2 N
(1.6)
1.1 应力张量
3).主应力及其不变量
主平面:剪应力等于零的截面 主应力--λ:主平面上的正应力
SSNN21
l1 l2
(1.7)
0.3 几个基本概念
下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号来表示和区
别该张量的所有分量。这种表示张量的方法,就称为下标记号法。
(x, y, z) (x1, x2, x3) xi (i 1, 2,3)
xx , xy , xz , yx , yy , yz , zx , zy , zz , ij (i, j x, y, z)
xy x xy xz
zx
y yx
B
A
z
y
用张量下标记号法
O
一点的应力状态
11 12 13
x
ij 21
22
23
(1.2)
数学上,在坐标变换时,服从一
31 32 33
下标即1、x、2、y、3表z方示向坐标x1、x2、x3
定坐标变换式的九个数所定义的
量叫做二阶张量。
1.1 应力张量
2).一点斜面上的应力(不计体力)
自由标号: 不重复出现的下标符号,在其变程N(关于三维空间N=3)
内分别取数1,2,3,…,N
哑标号:
重复出现的下标符号称为哑标号,取其变程N内所有分量, 然后再求和,也即先罗列所有各分量,然后再求和。
0.3 几个基本概念
求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为取其变程
N中所有的值然后求和,这就叫做求和约定。
2 、杨桂通
《弹塑性力学》
3 、徐秉业
《应用弹塑性力学》
第一章 弹塑性力学基础
1.1 应力张量 1.2 偏量应力张量 1.3 应变张量 1.4 应变速率张量 1.5 应力、应变 Lode参数
1.1 应力张量
1).一点的应力状态
n
lim
A0
pn A
正应力
n
lim
A0
ps A
剪应力
过C点可以做无 穷多个平面K
j 1
S
N
2
21l1
22l2
23l3
3
2 jlj
(1.3)
j 1
3
S
N
3
31l1 32l2 33l3
3 jlj
j 1
SNi ijl j (1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
N SN1l1 SN 2l2 SN 3l3
P
P
研究方法: 研究任务: 学习目的:
材料力学、结构力学:简化的数学模型
弹塑性力学:较精确的数学模型
建立并给出用材料力学、结构力学方 法无法求解的问题的理论和方法。
给出初等理论可靠性与精确度的度量。
确定一般工程结构的弹塑性变形与内 力的分布规律。 确定一般工程结构的承载能力。 为研究一般工程结构的强度、振动、 稳定性打下理论基础。
斜截面外法线n的方向余弦:
cos(n, cos(n,
x1 x2
) )
l1 l2
令斜截面ABC 的面积为1
SOBC SOAC
1 cos(n, x1) 1 cos(n, x2 )
l1 l2
cos(n, x3) l3
SOAB 1 cos(n, x3 ) l3
3
SN1 11l1 12l2 13l3 1 jl j
3 )l22
1 2
(
2
3 )]
0
1.1 应力张量
最大最小剪应力:
l1 ( 1
3
)[(1
3
)l12
(
2
3
)l22
1 2
(1
3
)]
0
l2
(
2
3
)[(1
3
)l12
(
2
3 )l22
1 2
(
2
3
)]
0
它们分别作用在 与相应主方向成 45º的斜截面上
l1
0
及l2
0
第一组解:l1
2 2
; l2 0 ; l3
八个面组成的图形,称为八面体。
1
• 八面体的法线方向余弦:
l1 l2 l3 l12 l22 l32 1
l1 l2 l3 1 / 3 (1.19)
或 arccos(l1) arccos(l2) arccos(l3) 5444'
• 八面体平面上应力在三个坐标轴上的投影分别为:
P1 1l1 1 / 3, P2 2l2 2 / 3, P3 3l3 3 / 3 (1.20)
1 3
(12
2 2
2 3
)
(1.22)
• 八面体面上的剪应力为:
8
F8
2
2 8
1 3
(12
2 2
2 3
)
1 9
(1
2
3 )2
1 3
(1 2 )2 ( 2 3 )2 ( 3 1)2
2 3
J12 3J2
(1.23)
1.1 应力张量
例题: 已知一点的应力状态由以下一组应力分量所确定, 即x=3, y=0, z=0,
J1 11 22 33 kk
是关于λ的三次方程,它的三个根,即为三个主 应力,其相应的三组方向余弦对应于三组主平面。
式中:
J2
11 21
12 22
22 32
23 33
33 13
31 11
1 2
(ii kk
ik ki
)
(1.15)
11 12 13 J3 21 22 23 ij
31 32 33
代入式(1.14)后得:
3 3 2 6 8 0 ( 4)( 1)( 2) 0
解得主应力为: 1 4; 2 1; 3 2;
1.2 应力偏量张量
1).应力张量分解
物体的变形
体积改变 形状改变
球应力状态/静水压力
由各向相等的应力状态引起的
弹性性质
材料晶格间的移动引起的
~力学的语言 z
O
x
不同的面上的应 力是不同的
n
C
A n
y
到底如何描绘一 点处的应力状态?
1.1 应力张量
C
z
一点的应力状态可由过该点的微小
正平行六面体上的应力分量来确定。
应力张量
ij yxx
xy y
xz yz
(1.1)
zx zy z
z
zx
zy yz
y
yx xz x
yz P zy
3 、张量函数的求导
aijbkl Cijkl
张量导数就是把张量的每个分量都对坐标参数求导数。
ui,i
ui xi
u1 x1
u2 x2
u3 x3
ui, jk
2ui x j xk
2ux x jxk
, 2uy x jxk
, 2uz x jxk
0.4 主要参考书目
1 、Y.C.Fung(冯元桢)
《Foundations of Solid Mechanics》 《固体力学导论》 《A first course in continuum mechanics 》《连续介质力学导论》
1.1 应力张量
3
八面体(每个坐标象限1个面)
4).八面体上的应力
• 八面体面上的正应力为:
2
8 P1l1 P2l2 P3l3 1l12 2l22 3l32
1 3
(1
2
3
)
1 3
J1
(1.21) 平均正应力
1
• 八面体面上的应力矢量为:
F8 2 P12 P22 P32 (1l1)2 ( 2l2 )2 (3l3 )2
lili 1
(1.12)
联合求解 l1,l2,l3:
(11 )l1 12l2 13l3 0
21l1 31l1
( 22 )l2 23l3 32l2 (33 )l3
0 0
l12 l22 l32 1
l1,l2,l3不全等于0
11 21 31
12 22
32
塑性性质
ij
d ij
Sij
(1.32)
球形应力张量
物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
代入
SSNN21