1独立性检验(应用检测题)

合集下载

独立性检验习题及答案

独立性检验习题及答案

1.2 独立性检验的基本思想及其初步应用例题:1.三维柱形图中柱的高度表示的是( )A .各分类变量的频数B .分类变量的百分比C .分类变量的样本数D .分类变量的具体值解析: 三维柱形图中柱的高度表示图中各个频数的相对大小.选A2. 统计推断,当______时,有95 %的把握说事件A 与B 有关;当______时,认为没有充分的证据显示事件A 与B 是有关的.解析:当841.3>k 时,就有95 %的把握说事件A 与B 有关,当076.2≤k 时认为没有充分的证据显示事件A 与B 是有关的.3.为了探究患慢性气管炎与吸烟有无关系,调查了却339名50岁以上的人,结果如下表所示,据此数据请问:50岁以上的人患慢性气管炎与吸烟习惯有关系吗?分析:有表中所给的数据来计算2K 的观测值k,再确定其中的具体关系.解:设患慢性气管炎与吸烟无关.a=43,b=162,c=13,d=121,a+b=205,c+d=134, a+c=56,b+d=283,n=339所以2K 的观测值为469.7))()()(()(2==+++-=d b c a d c b a bc ad n k .因此635.6>k ,故有99%的把握认为患慢性气管炎与吸烟有关.课后练习:1. 在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就( )A.越大B.越小C.无法判断D.以上都不对2.下列关于三维柱形图和二维条形图的叙述正确的是: ( ) A .从三维柱形图可以精确地看出两个分类变量是否有关系B .从二维条形图中可以看出两个变量频数的相对大小,从三维柱形图中无法看出相对频数的大小C .从三维柱形图和二维条形图可以粗略地看出两个分类变量是否有关系D .以上说法都不对3.对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是() A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大4. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确.5.若由一个2*2列联表中的数据计算得k 2=4.013,那么有 把握认为两个变量有关系6.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为23.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 ____;7.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。

独立性检验(历年高考)练习题

独立性检验(历年高考)练习题

独立性检验(历年高考)练习题1.为了研究某班学生打篮球的喜好与性别是否相关,对60名学生进行了问卷调查,得到了如下的2×2列联表。

现在有以下问题需要解决:I)在喜欢打篮球的学生中,采用分层抽样的方法抽取6人,其中男生应该抽几个?II)在上述抽样的6人中,恰好有一名女生的概率是多少?III)是否可以有95%的把握认为喜欢打篮球与性别有关?请说明理由。

临界值表如下:2.2014年山东省第二十三届运动会将在济宁举行,为了调查该市某校高中生是否愿意提供志愿者服务,使用简单随机抽样的方法对50名学生进行了调查,结果如下:I)在愿意提供志愿者服务的学生中,采用分层抽样的方法抽取6人,其中男生应该抽几个?II)在上述6人中,恰好有一名女生的概率是多少?III)可以有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关吗?临界值表如下:3.为了研究某市学生的百米跑成绩,按照男女比例随机抽取了50名学生进行测试,测试结果显示所有学生的成绩都在13秒到18秒之间。

将测试结果按照以下方式分成了五组:第一组:[13,14)第二组:[14,15)第三组:[15,16)第四组:[16,17)第五组:[17,18]以下是按照上述分组方法得到的频率分布直方图:现在有以下问题需要解决:1)设m和n表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即m,n∈[13,14)∪[17,18),求事件“m-n>2”的概率;2)根据规定,成绩小于16秒为达标。

如果男女生使用相同的达标标准,则男女生达标情况如下表:现在需要完成上表,并根据上表数据,判断是否可以有99%的把握认为“体育达标与性别有关”。

参考公式:nad-bc)K=,其中n=a+b+c+d。

a+b)(c+d)(a+c)(b+d)临界值表如下:。

独立性检验练习含答案

独立性检验练习含答案

§1.1 独立性检验一、基础过关1.当χ2>2.706时,就有________的把握认为“x 与y 有关系”.2.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶,则χ2≈__________.(结果保留3位小数)3.分类变量X 和Y 的列表如下,则下列说法判断正确的是________.(填序号)y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +da +b +c +d①ad -bc 越小,说明X 与Y 的关系越弱; ②ad -bc 越大,说明X 与Y 的关系越强; ③(ad -bc )2越大,说明X 与Y 的关系越强; ④(ad -bc )2越接近于0,说明X 与Y 的关系越强.4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,χ2=110×(40×30-20×20)260×50×60×50≈7.8.附表:P (χ2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是________.①在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”; ②在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”; ③有99%以上的把握认为“爱好该项运动与性别有关”; ④有99%以上的把握认为“爱好该项运动与性别无关”.5.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:年龄合计 不超过40岁 超过40岁吸烟量不多于20支/天 50 15 65 吸烟量多于20支/天10 25 35 合计6040100则有________的把握确定吸烟量与年龄有关. 二、能力提升6.某高校“统计初步”课程的教师随机调查了选该课的一些情况,具体数据如下表:专业 性别非统计专业统计专业 合计 男 13 10 23 女 7 20 27 合计203050为了判断主修统计专业是否与性别有关,根据表中的数据,得χ2=50×(13×20-10×7)223×27×20×30≈4.844.因为χ2≈4.844>3.841,所以判断主修统计专业与性别有关系,那么这种判断出错的可能性为________.7.在2×2列联表中,若每个数据变为原来的2倍,则卡方值变为原来的________倍. 8.下列说法正确的是________.(填序号)①对事件A 与B 的检验无关,即两个事件互不影响; ②事件A 与B 关系越密切,χ2就越大;③χ2的大小是判断事件A 与B 是否相关的惟一数据; ④若判定两事件A 与B 有关,则A 发生B 一定发生.9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:无效 有效 总计 男性患者 15 35 50 女性患者 6 44 50 总计2179100设H 0:服用此药的效果与患者的性别无关,则χ2的值约为________,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:支持新教材支持旧教材合计 教龄在15年以上的教师122537教龄在15年以下的教师102434合计224971根据此资料,你是否认为教龄的长短与支持新的数学教材有关?11.下表是某地区的一种传染病与饮用水的调查表:得病不得病总计干净水52466518不干净水94218312总计146684830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水的卫生程度有关,并比较两种样本在反映总体时的差异.三、探究与拓展12.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98)[29.98,30.02)频数126386182分组[30.02,30.06) [30.06,30.10) [30.10,30.14)频数9261 4乙厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02)频数297185159分组[30.02,30.06) [30.06,30.10) [30.10,30.14)频数766218(1)分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.答案1.90% 2.16.373 3.③ 4.③ 5.99.9% 6.5% 7.2 8.② 9.4.882 5%10.解 由公式得χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=71×(12×24-25×10)237×34×22×49≈0.08.∵χ2<2.706.∴我们没有理由说教龄的长短与支持新的数学教材有关. 11.解 (1)假设:传染病与饮用水的卫生程度无关. 由公式得χ2=830×(52×218-466×94)2146×684×518×312≈54.21.因为54.21>10.828.因此我们有99.9%的把握认为该地区这种传染病与饮用水的卫生程度有关. (2)依题意得2×2列联表:得病 不得病 总计 干净水 5 50 55 不干净水 9 22 31 总计147286此时,χ2=86×(5×22-50×9)255×31×14×72≈5.785.由于5.785>5.024,所以我们有97.5%的把握认为该种传染病与饮用水的卫生程度有关. 两个样本都能统计得到传染病与饮用水的卫生程度有关这一相同结论,但(1)问中我们有99.9%的把握肯定结论的正确性,(2)问中我们只有97.5%的把握肯定结论的正确性. 12.解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500×100%=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500×100%=64%. (2)甲厂 乙厂 总计 优质品 360 320 680 非优质品 140 180 320 总计5005001 000由列联表中的数据,得χ2=1 000×(360×180-320×140)2680×320×500×500≈7.353>6.635.所以有99%的把握认为“两个分厂生产的零件的质量有差异”.Welcome To Download !!!欢迎您的下载,资料仅供参考!。

独立性检验—高考真题

独立性检验—高考真题

独立性检验—高考真题一、解答题二、解答题1.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m <m≥对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.841 6.6352.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.8283.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.0500.010 0.001k 3.841 6.63510.8284.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.0500.0100.001k 3.841 6.63510.8285.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿性别男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:P(2K k ≥)0.0500.0100.001k 3.841 6.63510.828()()()()()22n ad bc K a b c d a c b d -=++++6.甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B 21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k 0.1000.0500.010k2.7063.841 6.635参考答案:1.(1)19.8(2)(i)23.4m=;列联表见解析,(ii)能【分析】(1)直接根据均值定义求解;(2)(i)根据中位数的定义即可求得23.4m=,从而求得列联表;(ii)利用独立性检验的卡方计算进行检验,即可得解.【详解】(1)试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==(2)(i)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m+==,故列联表为:m<m≥合计对照组61420试验组14620合计202040(ii)由(i)可得,2240(661414)6.400 3.84120202020K⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异. 2.(1)75%;60%;(2)能.【分析】根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075%200=,乙机床生产的产品中的一级品的频率为12060%200=.(2)()22400150801205040010 6.63527013020020039K ⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.3.(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量好3337空气质量不好228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.4.(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异.【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==, 50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K的值,独立性检验,属于简单题目.5.(1)7014%500=,(2)有99%的把握(3)见解析【详解】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014% 500=(2)22500(4027030160)9.96720030070430K⨯⨯-⨯==⨯⨯⨯.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.6.(1)A,B两家公司长途客车准点的概率分别为1213,78(2)有【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算2K ,再利用临界值表比较即可得结论.【详解】(1)根据表中数据,A 共有班次260次,准点班次有240次,设A 家公司长途客车准点事件为M ,则24012()26013==P M ;B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N ,则210()27840==P N .A 家公司长途客车准点的概率为1213;B 家公司长途客车准点的概率为78.(2)列联表准点班次数未准点班次数合计A24020260B21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.。

独立性检验

独立性检验
9000 8000 7000 6000 5000 4000 3000 2000 1000 0 不吸烟 吸烟 患肺癌 不患肺癌
二维 条形图
3)通过图形直观判断
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 不吸烟 吸烟
等高 条形图
患肺癌 比例
患肺癌 不患肺癌
不患肺癌 比例
【典例训练】 1.(2012·武汉高二检测)在独立性检验中,若随机变量K2的观 测值k≥6.635,则( )
(A)X与Y有关系,犯错的概率不超过1% (B)X与Y有关系,犯错的概率超过1% (C)X与Y没有关系,犯错的概率不超过1% (D)X与Y没有关系,犯错的概率超过1%
2.(2012·厦门高二检测)在对人们休闲方式的一次调查中,共 调查120人,其中女性70人、男性50人.女性中有40人主要的休 闲方式是看电视,另外30人主要的休闲方式是运动;男性中有
解:在假设K 2“性别与是否喜欢数学课程之间没有关系” K2 的前提下, 应该很小,并且
P( K 3.841 0.05 )
2
K 2的观测值 k 4.514 超过3.841,这就 而我们所得到的 意味着“性别与是否喜欢数学课程之间有关系”这一结论 是错误的可能性约为0.05,即有95%的把握认为“性别与 是否喜欢数学课程之间有关系”。
(a b c d)(ad bc) 2 【解析】选C.∵ K , (a b)(c d)(a c)(b d)
2
∴(ad-bc)2越大,则K2越大,X与Y关系越强,故选C.
3.在吸烟与患肺病这两个分类变量的计算中,下列说法中正确 的是( )
(A)若随机变量K2的观测值k>6.635,我们说吸烟与患肺病有关 的概率为0.99,则某人吸烟,那么他可能患有肺病的概率为

高中数学同步学案 独立性检验

高中数学同步学案 独立性检验

1.1独立性检验[对应学生用书P2]相互独立事件从分别写有1,2,3,4,5,6的6张卡片中任意抽取一张,设事件A =“抽出的是写有偶数的卡片”,B =“抽出的是写有3的倍数的卡片”.问题1:计算P(A),P(B). 提示:P(A)=36=12,P(B)=26=13.问题2:把事件A,B 同时发生记作AB,计算P(AB). 提示:P(AB)=16.问题3:P(A),P(B),P(AB)之间有什么关系? 提示:P(AB)=P(A)·P(B).1.定义一般地,对于两个事件A,B,如果有P(AB)=P(A)P(B),就称事件A与B相互独立,简称A与B独立.2.性质当事件A与B独立时,事件A与B,A与B,A与B也独立.3.定义的推广如果有P(A1A2…A n)=P(A1)P(A2)…P(A n),则称事件A1,A2,A3,…,A n相互独立.独立性检验1.2×2列联表B B合计A n11n12n1+A n21n22n2+合计n+1n+2n其中:n+1=n11+n21,n+2=n12+n22,n1+=n11+n12,n2+=n21+n22,n=n11+n21+n12+n22.2.独立性检验(1)χ2统计量的表达式χ2=n n11n22-n12n212n1+n2+n+1n+2.(2)经过对χ2统计量分布的研究,已经得到了两个临界值:3.841与6.635①当χ2>3.841时,有95%的把握说事件A与B有关;②当χ2>6.635时,有99%的把握说事件A与B有关;③当χ2≤3.841时,认为事件A与B是无关的.1.事件的独立性,A与B,A与B,A与B,A与B只要有一对相互独立,其余三对必然也相互独立.2.在列联表中,如果两个事件没有关系,则应有n11n22-n12n21≈0,因此|n11n22-n12n21|越小,说明两个事件之间关系越弱;|n11n22-n12n21|越大,说明两个事件之间关系越强.3.利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n越大,这个估计值越准确.如果抽取的样本容量很小,那么利用χ2进行独立性检验的结果就不具有可靠性.[对应学生用书P3]事件的独立性[例1] 一个家庭中有若干个小孩,假设生男孩和生女孩是等可能的,设A ={一个家庭中有男孩,又有女孩},B ={一个家庭中最多有一个女孩}.对下列两种情形讨论事件A 与事件B 的独立性.(1)家庭中有两个小孩; (2)家庭中有三个小孩.[思路点拨] 利用P(AB)与P(A)P(B)是否相等来判定.[精解详析] (1)有两个小孩的家庭,对应的样本空间Ω={(男,男),(男,女),(女,男),(女,女)},有4个基本事件,每个基本事件发生的概率均为14,这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)} AB ={(男,女),(女,男)}, 于是P(A)=12,P(B)=34,P(AB)=12.由此可知P(AB)≠P(A)P(B),所以事件A 与事件B 不相互独立.(2)有三个小孩的家庭,样本空间为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},由等可能性知,每个基本事件发生的概率均为18,这时A 中有6个基本事件,B 中有4个基本事件,AB 中含有3个基本事件, 于是P(A)=68=34,P(B)=48=12,P(AB)=38.P (A)P(B)=38,即P(AB)=38=P(A)P(B)成立,所以事件A 与事件B 是相互独立的.[一点通] 事件A 与事件B 相互独立的检验,应充分利用相互独立的定义,验证P(AB)与P(A)P(B)是否相等,若相等则相互独立;若不相等,则不相互独立.解决这一类问题,关键在于准确求出基本事件空间中的基本事件总数,确定事件A 与事件B 的概率.另一个关键点是正确理解题意,分析出事件AB 中的基本事件的个数,求出P(AB),即事件A 与事件B 同时发生的概率.1.从一副52张的扑克牌(不含大小王)中,任意抽出一张,设事件A :“抽到黑桃”,B :“抽到皇后Q”,事件A 与B 及A 与B 是否独立?解:从52张扑克牌中任意抽出一张的基本事件空间Ω中的基本事件总数为52, 事件A“抽到黑桃”的基本事件数为13,所以P(A)=1352=14. 事件B“抽到皇后Q”的基本事件数为4,所以P(B)=452=113.事件AB 为“抽到黑桃Q”,则P(AB)=152,所以P(AB)=P(A)P(B),即有152=14×113, 因此A 与B 相互独立.P(A )=3952=34,P(B )=4852=1213,P(A B )=3652=913,P(A )P(B )=34×1213=913,因此P(A B )=P(A )P(B ). 因此,A 与B 相互独立.2.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是0.6.计算: (1)两人都投中的概率; (2)其中恰有一人投中的概率.解:设A =“甲投篮一次,投中”,B =“乙投篮一次,投中”. (1)AB ={两人各投篮一次,都投中},由题意知,事件A 与B 相互独立, 所以P(AB)=P(A)·P(B)=0.6×0.6=0.36.(2)事件“两人各投篮一次,恰好有一人投中”包括两种情况:一种是甲投中,乙未投中(事件A B 发生),另一种是甲未投中,乙投中(事件A B 发生).根据题意,这两种情况在各投篮一次时不可能同时发生,即事件A B 与A B 互斥,并且A 与B ,A 与B 各自相互独立,因而所求概率为P(A B )+P(A B)=P(A)·P(B )+P(A )·P(B)=0.6×(1-0.6)+(1-0.6)×0.6=0.48.独立性检验的应用[例2] (12分)下表是某地区的一种传染病与饮用水的调查表:得病 不得病 合计 干净水 52 466 518 不干净水 94 218 312 合计146684830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病的有5人,不得病的有50人,饮用不干净水得病的有9人,不得病的有22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.[精解详析] (1)由公式得: χ2=830×52×218-466×942146×684×518×312≈54.21.∵54.21>6.635,所以有99%的把握说该地区这种传染病与饮用不干净水有关.(6分) (2)依题意得2×2列联表:得病 不得病 合计 干净水 5 50 55 不干净水 9 22 31 合计147286(8分)此时,χ2=86×5×22-50×9214×72×55×31≈5.785.(10分)因为5.785>3.841,所以我们有95%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99%的把握肯定结论的正确性,(2)中我们只有95%的把握肯定.(12分)[一点通] 解决独立性检验问题的基本步骤是:①根据相关数据,作列联表;②求χ2的值;③将χ2与临界值作比较,得出事件有关的可能性大小.3.为了调查某生产线上某质量监督员甲在与不在对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品有982件,次品有8件;甲不在现场时,510件产品中合格品有493件,次品有17件.试列出其2×2列联表.解:根据题目所给的数据作出如下的列联表:产品正品数次品数 合计 甲在现场 982 8 990 甲不在现场493 17 510 合计1 475251 5004.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,用独立性检验的方法来判断色盲与性别是否有关,你所得到的结论在什么范围内有效?解:由题意作出如下的列联表:色盲 非色盲 合计 男 38 442 480 女 6 514 520 合计449561 000将列联表中所给的数据,χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2,得χ2=1 000×38×514-6×4422480×520×44×956≈27.1.由于χ2≈27.1>6.635,所以我们有99%的把握认为性别与患色盲有关系.这个结论只对所调查的480名男人和520名女人有效.5.同时抛掷两颗均匀的骰子,请回答以下问题: (1)求两颗骰子都出现2点的概率;(2)若同时抛掷两颗骰子180次,其中甲骰子出现20次2点,乙骰子出现30次2点,问两颗骰子出现2点是否相关?解:(1)每颗骰子出现2点的概率都为16,由相互独立事件同时发生的概率公式得两颗骰子都出现2点的概率为16×16=136.(2)依题意,列2×2列联表如下:出现2点 出现其他点合计 甲骰子 20 160 180 乙骰子 30 150 180 合计50310360由公式计算得χ2=360×20×150-160×30250×310×180×180≈2.323.因为2.323<3.841,因此我们没有理由说两颗骰子出现2点相关.1.若事件A 与B 相互独立,则P(AB)=P(A)P(B),即可用P(AB)=P(A)P(B)来求相互独立事件同时发生的概率.2.独立性检验的步骤[对应学生用书P5]1.甲、乙两人分别对一目标射击一次,记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则在A与B,A与B,A与B,A与B中,满足相互独立的有( )A.1对B.2对C.3对D.4对解析:由已知:A与B相互独立,则A与B,A与B,A与B均相互独立,故有4对.答案:D2.下面是2×2列联表:则表中a,b的值分别为( )A.94,96 B.52,50C.52,54 D.54,52解析:∵a+21=73,∴a=52.又∵a+2=b,∴b=54.答案:C3.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.则下面的2×2列联表中n12和n+2的值分别是( )A.474,956 B.442,956C.38,44 D.514,994解析:n12=480-n11=480-38=442,n+2=1 000-38-6=956.答案:B4.博士生和硕士生毕业情况的一个随机样本给出了关于所获取的学位类别与学生性别的分类数据如下表.由表中的数据,可得( )硕士博士合计男162 27 189女143 8 151合计305 35 340A.性别与获取学位类别有关B.性别与获取学位类别无关C.性别决定获取学位的类别D.以上说法都不正确解析:χ2=162×8-143×272×340305×35×189×151≈7.34>6.635,所以有99%的把握认为性别与获取学位类别有关.而选项C中的表述不恰当,因为性别与获取学位类别不是因果关系,只是统计学上的一种非确定性关系,故不能用“决定”二字描述.答案:A5.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是的.(有关、无关).解析:∵χ2=27.63,∴χ2>6.635.∴有理由认为打鼾与患心脏病是有关的.答案:有关6.在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,假设在这段时间内两地是否下雨相互之间没有影响,则这段时间内,甲、乙两地都不下雨的概率为.解析:设A=“甲地下雨”,B=“乙地下雨”,则P(A)=0.3,P(B)=0.4,P(A)=0.7,P(B)=0.6,且A,B相互独立,故所求概率为P(A B)=P(A)P(B)=0.7×0.6=0.42.答案:0.427.已知甲、乙两袋中分别装有编号为1,2,3,4的四个小球,现从两袋中各取一球,设事件A=“两球的编号都是偶数”,B=“两球的编号之和大于6”.判断事件A,B是否相互独立.解:P(A)=416=14,P(B)=316.又AB=“两球的编号都为4”,P(AB)=1 16 .显然P(AB)≠P(A)P(B), 所以事件A,B 不独立.8.在对人们休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有44人主要的休闲方式是看电视,另外26人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2列联表; (2)判断性别与休闲方式是否有关系. 解:(1)由题意得2×2列联表如下.看电视 运动 合计 女 44 26 70 男 21 33 54 合计6559124(2)由(1)中表格所给数据,代入公式得 χ2=124×44×33-26×21265×59×70×54≈7.021>6.635,所以我们有99%的把握认为性别与休闲方式有关.。

独立性检验(历年高考)练习题

独立性检验(历年高考)练习题

精选历年高考题:独立性检验练习题1. 为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表:(I)用分层抽样的方法在喜爱打篮球的学生中抽6人,其中男生抽多少人?(II)在上述抽取的人中选2人,求恰有一名女生的概率;(III)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由。

下面的临界值表供参考:2. 2014年山东省第二十三届运动会将在济宁召开,为调查我市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:(I)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?(II)在(I)中抽取的6人中任选2人,求恰有一名女生的概率;(III)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:独立性检验统计量()()()()(),22dbcadcbabcadnK++++-=其中.dcban+++=3. 为调查某市学生百米运动成绩,从该市学生中按照男女比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[),14,13第二组[)15,14, 第五组[]18,17,如图是按上述分组方法得到的频率分布直方图.(1)设n m ,表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即[)[]18,1714,13,⋃∈n m ,求事件“2>-n m ”的概率;(2)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如下表:男 女 总计 达标a=24 b=_____ _____ 不达标c=_____ d=12 _____ 总计 _____ _____ n=50完成上表,并根据上表数据,能否有99﹪的把握认为“体育达标与性别有关”? 参考公式:()()()()().,22d c b a n d b c a d c b a bc ad n K +++=++++-=其中 参考数据:。

高考数学专题复习:独立性检验

高考数学专题复习:独立性检验

高考数学专题复习:独立性检验一、单选题1.某学校食堂对高三学生偏爱蔬菜还是肉类与性别的关系进行了一次调查,根据独立性检验原理,处理所得数据之后发现,有97.5%的把握但没有99%的把握认为偏爱蔬菜还是肉类与性别有关,则2K 的观测值可能为( ) k 2.706 A .2 3.206K =B .2 6.625K =C .27.869K =D .211.208K =2.某校为了解学生“玩手机游戏”和“学习成绩”是否有关,随机抽取了100名学生,运用2×2列联表进行独立性检验,经计算得到2 3.936K =,所以判定玩手机游戏与学习成绩有关系,那么这种判断出错的可能性为( )A .1%B .5%C .95%D .99%3.某校为了调查喜欢语文与性别的关系,随机调查了一些学生,数据如下表,由此判断喜欢语文与性别有关系,那么这种判断出错的可能性为( )()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .99.5%B .5%C .0.5%D .95%4.以下四个命题,其中正确的个数有( )①在独立性检验中,随机变量2K 的观测值越大,“认为两个分类变量有关”,这种判断犯错误的概率越小.②在线性回归方程ˆ0.80.35yx =-时,变量x 与y 具有负的线性相关关系; ③随机变量X 服从正态分布2(3,)N σ,若(4)0.64P X ≤=,则(23)0.07P X ≤≤=; ④两个随机变量相关性越强,则相关系数r 的值越接近于1. A .1个B .2个C .3个D .4个5.两个分类变量X 和Y ,它们的取值分别为{}12,x x 和{}12,y y ,其样本频数列联表如下表所示:则下列四组数据中,分类变量X 和Y 之间关系最强的是( ) A .4a =,2b =,3c =,6d = B .2a =,1b =,3c =,5d = C .4a =,5b =,6c =,8d =D .2a =,3b =,4c =,6d =6.为了丰富教职工业余文化生活,某校计划在假期组织70名老师外出旅游,并给出了两种方案(方案一和方案二),每位老师均选择且只选择一种方案,其中有50%的男老师选择方案一,有75%的女老师选择方案二,且选择方案一的老师中女老师占40%,则参照附表,得到的正确结论是( )附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.A .在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别有关”B .在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别无关”C .有95%以上的把握认为“选择方案与性别有关”D .有95%以上的把握认为“选择方案与性别无关”7.利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用22⨯列联表,由计算可得27.236K =,参照下表:得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别无关”B .有99%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关"D .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”8.如果根据性别与是否爱好运动的列联表得到2 3.852 3.841x ≈>,所以判断性别与运动有关,那么这种判断犯错的可能性不超过( ) A .2.5%B .0.5%C .1%D .5%9.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用22⨯列联表进行独立性检验.经计算2 6.058K =,则所得到的统计学结论是:有( )的把握认为“学生性别与支持该活动有关系”A .0.025%B .97.5%C .99%D .99.9%10.根据分类变量x 与y 的观测数据,计算得到2 2.974χ=.依据0.05α=的独立性检验,结论为( )A .变量x 与y 不独立B.变量x与y不独立,这个结论犯错误的概率不超过0.05C.变量x与y独立D.变量x与y独立,这个结论犯错误的概率不超过0.05二、填空题11.为了调查高中学生参加课外兴趣活动选篮球和舞蹈是否与性别有关,现随机调查了30名学生,得到如下22⨯列联表:根据表中的数据,及观测值2K(其中22()()()()()n ad bcKa b c d a c b d-=++++),参考数据:则在犯错误的概率不超过__________前提下,认为选择舞蹈与性别有关.12.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列联表:(单位:人)由上表中数据计算得2K的观测值22105(10302045)6.10955503075K⨯⨯-⨯=≈⨯⨯⨯,请估计在犯错误的概率不超过__________的前提下认为“文化程度与月收入有关系”.13.利用独立性检验的方法调查高中性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用22⨯列联表,由计算可得27.245K≈,参照下表2.706 至少有__________以上的把握认为“爱好该项运动与性别有关”.14.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =250(1320107)23272030⨯⨯-⨯⨯⨯⨯≈4.844.则认为选修文科与性别有关系出错的可能性为__________.三、解答题15.为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频率分布直方图如下:(1)求该市市民平均月收入的估计值(每组数据以区间中点值为代表).(2)将月收入不低于7500元称为“高收入”,否则称为“非高收入”,根据已知条件完成下面的22⨯列联表,并判断能否有99%的把握认为市民对楼市限购令的态度与收入有关.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.16.为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果: 表1:男生上网时间与频数分布表表2:女生上网时间与频数分布表(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数; (2)完成联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”.附:()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量.0.45517.某大学为鼓励学生进行体育锻炼,购买了一批健身器材供学生使用,并从该校大一学生中随机抽取了100名学生调查使用健身器材的情况,得到数据如表所示:(1)设每周使用健身器材的次数不低于3次为“爱好健身”,根据上表数据,填写22⨯列联表,并判断能否在犯错误的概率不超过0.10的前提下认为“男生和女生在使用健身器材的爱好方面有差异”;(2)从上述每周使用健身器材3次的学生中,利用分层抽样的方法抽取5名学生,再从抽取的5名学生中随机抽取3人,求3人中至多有一名女生的概率.18.在对人们休闲方式的一次调查中,仅就看电视与运动这两种休闲方式比较喜欢哪一种进行了调查.调查结果:接受调查总人数110人,其中男、女各55人;受调查者中,女性有30人比较喜欢看电视,男性有35人比较喜欢运动.(1)请根据题目所提供的调查结果填写下列22⨯列联表:(2)能否在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”?注:22()()()()()n ad bcKa b c d a c b d-=++++,(其中n a b c d=+++为样本容量)参考答案1.B【分析】根据把握率确定2K的观测值区间范围即可选择.【详解】∵有97.5%的把握但没有99%的把握,∴2K的观测值区间范围为[5.024,6.635),结合选项可知,2K的观测值可能为6.625.故选:B2.B【分析】根据2K的值,对照附表即可得解.【详解】由题得2 3.936 3.841K=>,所以判定玩手机游戏与学习成绩有关系,这种判断出错的可能性为5%. 故选:B3.C【分析】计算出2K的值可得答案.【详解】因为()22501520510258.33320307.89225753K⨯⨯-⨯==≈>⨯⨯⨯,所有这种判断出错的可能性0.5%.故选:C.4.A【分析】利用随机变量2K的观测值越大,说明两个变量有关系的可能性越大判断①;根据回归方程一次项系数的正负判断②;根据正态分布的性质判断③; 利用线性相关的概念判断④. 【详解】①:在独立性检验中,因为随机变量2K 的观测值越大,说明两个变量有关系的可能性越大,即犯错误的概率越大,故①错误;②:回归方程ˆ0.80.35yx =-的一次项系数为-0.35<0,故变量x 与y 具有负的线性相关关系,故②正确;③:随机变量X 服从正态分布2(3)N σ,,则(34)(4)(3)0.640.50.14P X P X P X <≤=≤-<=-=, 由对称性可知,(23)0.14P X ≤≤=,故③错误;④:两个随机变量的线性相关关系越强,则相关系数r 的绝对值越接近于1,故④错误. 正确的选项有1个. 故选:A 5.A 【分析】逐项求出ad bc -的值并加以对比,最大值对应的分类变量之间关系最强. 【详解】我们可以用ad bc -的大小近似的判断两个分类变量之间关系的强弱,ad bc -的值越小,关系越弱,越大,关系越强.这四组数据中ad bc -的值分别为18、7、2、0, 所以A 组数据的ad bc -的值最大,相比较而言这组数据反应的X 和Y 的关系最强. 故选:A. 6.C 【分析】设该校男老师的人数为x ,女老师的人数为y ,根据条件,得到22⨯列联表,求出x ,y 的值,利用公式计算2K 的值,再与表中临界值比较可得结果. 【详解】设该校男老师的人数为x ,女老师的人数为y ,则可得如下表格:由题意0.40.50.25x y =+,可得43y x =,可得30x =,40y =,则()227015301510 4.667 3.84125453040K ⨯-⨯=≈>⨯⨯⨯, 但4.667 5.024<,所以无97.5%以上有95%以上的把握认为“选择方案与性别有关”. 故选:C. 7.B 【分析】由已知的27.236K =,对比临界值表可得答案 【详解】解:因为27.236 6.635K =>,所以有99%以上的把握认为“爱好该项运动与性别有关”. 故选:B. 8.D 【分析】根据临界值附表比较,即得结论. 【详解】根据以下临界值附表可知这种判断犯错的可能性不超过5%. 故选:D 9.B【分析】将2K 的值与表中数据比较大小可知5.024 6.058 6.635<<,由此确定出相应的把握有多少.【详解】因为2 6.058K =,对照表格:5.024 6.058 6.635<<,所以有10.0250.97597.5%-==的把握认为“学生性别与是否支持该活动有关系”. 故选:B.10.C【分析】由表中数据以及独立性检验的思想即可得出结果.【详解】0.05α=时,2 3.841 2.974χ=>,所以在犯错概率不超过0.1时变量x 与y 有关.故选:C11.0.025【分析】由列联表中的数据,根据公式计算出2K 的值,再对照临界表即可得答案.【详解】 解:由列联表中的数据可得,2230(13827)27 5.4 5.024*********K ⨯⨯-⨯===>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为选择舞蹈与性别有关.故答案为:0.025.12.0.025【分析】根据2K ,对比临界值即可得出结论.【详解】∵6.109 5.024>,故能在犯错误的概率不超过0.025的前提下认为“文化程度与月收入有关系”.故答案为:0.025.13.99%【分析】根据卡方的值与参考数据比较即可判断;【详解】解:因为27.245K ≈,6.6357.2457.879<<,所以10.0199%-=故至少有99%以上的把握认为“爱好该项运动与性别有关”,故答案为:99%14.5%【分析】根据观测值k ≈4.844以及独立性检验的基本思想即可得出结果.【详解】K 2的观测值k ≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.故答案为:5%15.(1)63;(2)表格见解析,有.【分析】(1)每组数据区间中点值乘以该组的频率求和可得答案;(2)根据每组频率乘以50可得每组的人数可完成列联表,计算2K 可得答案.【详解】(1)该市市民平均月收入的估计值为400.1500.2600.3700.2800.1900.163⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图知每组的人数分别为5,10,15,10,5,5.可得22⨯列联表如下:所以()22502882128.33340103020K ⨯⨯-⨯=≈⨯⨯⨯,因为8.333 6.635>,所以有99%的把握认为市民对楼市限购令的态度与收入有关.16.(1)225;(2)列联表答案见解析,没有90%的把握认为“大学生上网时间与性别有关”.【分析】(1)设上网时间不少于60分钟的人数为x ,依题意有30750100x =,计算即可; (2)填写列联表,计算2K ,对照临界值得出结论.【详解】(1)设上网时间不少于60分钟的人数为x ,依题意有30750100x =,解得225x =,所以估计其中上网时间不少于60分钟的人数是225.(2)塻22⨯列联表如下:由表中数据可得到22200(60304070) 2.20 2.70610010013070K ⨯-⨯=≈<⨯⨯⨯, 故没有90%的把握认为“大学生上网时间与性别有关”.17.(1)表格见解析,不能;(2)710. 【分析】(1)根据已知数据统计列联表中的各项的人数,填写列联表,进而计算2K 并与0.1的临界值进行比较,得到论断;(2)利用分层抽样的等比例原则求得抽取的5人中男女生的人数,利用符号表示每个学生,利用列举法计数,得到所求概率.【详解】解:(1)填写的列联表如下所示:()2210222422320.506 2.70644565446K ⨯⨯-⨯=≈<⨯⨯⨯.所以不能在犯错误的概率不超过0.1的前提下认为“男生和女生在使用健身器材的爱好方面有差异”.(2)从每周使用健身器材3次的学生中,利用分层抽样的方法抽取5名学生,则抽取男生3名,抽取女生2名.将抽取的3名男生分别记为a ,b ,c ,2名女生分别记为m ,n ,则从5人中随机抽取3人的不同情况有abc ,abm ,abn ,acm ,acn ,amn ,bcm ,bcn ,bmn ,cmn ,共10种, 其中至多有一名女生的情况有abc ,abm ,abn ,acm ,acn ,bcm ,bcn ,共7种. 所以从抽取的5名学生中随机抽取3人,至多有一名女生的概率为710. 18.(1)答案见解析;(2)不能.【分析】(1)由题意填写列联表即可;(2)代入数据计算2K 的观测值,比较观测值与3.841的大小,判断能否在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系” .【详解】解.(1)根据题目所提供的调查结果,可得下列22⨯列联表:(2)根据列联表中的数据,可计算()2211030352025 3.66750605555K ⨯⨯-⨯=≈⨯⨯⨯,因为03.667 3.841k k ≈<=,所以不能在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”.。

3.1独立性检验(1)

3.1独立性检验(1)

4)若P( 2>5.024)= 0.025表示有97.5%的把握认为”Ⅰ与Ⅱ”有关系;
2 >3.841)= 0.05表示有95%的把握认为”Ⅰ与Ⅱ”有关系; 5)若P( 2 >2.706)= 0.10表示有90%的把握认为”Ⅰ与Ⅱ”有关系; 6)若P( 2 7)若P( ≤2.706),就认为没有充分的证据显示”Ⅰ与Ⅱ”有关系,
H 但也不能做出结论“ 0 成立”,即”Ⅰ与Ⅱ”没有关
分层训练:
P91:2,3
第三章:统计案例
某医疗机构为了了解呼吸道疾病与吸烟 是否有关,进行了一次抽样调查,共调查了 515个成年人,其中吸烟者220人,不吸烟者 295人,调查结果是:吸烟的220 人中37人患 呼吸道疾病, 183人不患呼吸道疾病;不吸 烟的295人中21人患呼吸道疾病, 274人不患 呼吸道疾病。
根据这些数据能否断定:患呼吸道疾 病与吸烟有关?
医生对患者提出忠告:“你这气管炎是长期吸烟 的结果,为了减缓症状,请快戒烟吧!”
呼吸道疾病真的与吸烟有关吗? 研究人员开发了一种新疫苗,怎样检验该疫苗 的有效性呢?
公安人员在勘测案发现场时,总是非常仔细地搜 查罪犯的脚印,理由之一是可以根据脚的大小来预测 罪犯的身高。这里,推理的依据是什么?
无论是一个家庭,还是一个企业,“量入为出”是 管理与经营的基本原则。支出与收入具有怎样的关系?
化简得
χ
2
n ad bc a c b d a b c d 其中n a b c d
2
1
根据表3-1-1中的数据,利用公式(1)计算 吸烟与呼吸道疾病列联表 患病 不患病 总计 吸烟 37 183 220
不吸烟 总计
2

独立性检验的基本思想综合测试题(有答案)

独立性检验的基本思想综合测试题(有答案)

独立性检验的基本思想综合测试题(有答案)选修2-33.2独立性检验的基本思想及其初步应用一、选择题1.统计假设H0:P(AB)=P(A)•P(B)成立时,有以下判断:①P(AB)=P(A)P(B);②P(AB)=P(A)P(B);③P(AB)=P(A)P(B).其中真命题个数是()A.1B.2C.3D.4答案]C2.在对吸烟与患肺病这两个分类变量的计算中,下列说法正确的是() A.若随机变量K2的观测值k>6.635,我们有99%的把握说明吸烟与患肺病有关,则若某人吸烟,那么他有99%的可能患有肺病B.若由随机变量求出有99%的把握说吸烟与患肺病有关,则在100个吸烟者中必有99个人患有肺病C.若由随机变量求出有95%的把握说吸烟与患肺病有关,那么有5%的可能性使得推断错误D.以上说法均不正确答案]C解析]K2的意义与概率不能混淆.3.对两个分类变量A、B的下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据A.1B.2C.3D.4答案]A解析]①正确,A与B无关即A与B相互独立;②不正确,K2的值的大小只是用来检验A与B是否相互独立;③不正确,例如借助三维柱形图、二维条形图等.故选A.4.以下关于独立性检验的说法中,错误的是()A.独立性检验依据小概率原理B.独立性检验得到的结论一定正确C.样本不同,独立性检验的结论可能有差异D.独立性检验不是判定两分类变量是否相关的唯一方法答案]B解析]独立性检验得到的结论不一定正确,如我们得出有90%的把握认为A与B有关,只是说这种判断的正确性为90%,具体问题中A与B 可能有关,可能无关,故答案选B.5.根据下面的列联表判断患肝病与嗜酒有关系的把握有()嗜酒不嗜酒合计患肝病7775427817未患肝病2099492148总计9874919965A.90%B.95%C.97.5%D.99.9%答案]D解析]由K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)得其观测值k=9965×(7775×49-2099×42)27817×2148×9874×91≈56.6>10.828.故有99.9%的把握认为患肝病与嗜酒有关系,答案选D.二、填空题6.吃零食是中学生中普遍存在的现象.吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表给出性别与吃零食的列联表男女总计喜欢吃零食51217不喜欢吃零食402868合计454085试回答吃零食与性别有关系吗?(答有或没有)____________.答案]有解析]k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=85(140-480)217×68×45×40=98260002080800≈4.700>3.841.故约有95%的把握认为“吃零食与性别”有关.7.根据下表,计算K2的观测值k≈________.(保留两位小数)又发病未发病作移植手术39157未作移植手术29167答案]1.78解析]k=392×(39×167-157×29)2196×196×68×324≈1.78.8.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表如下:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d对于以下数据,对同一样本能说明X与Y有关的可能性最大的一组的序号为________.①a=9,b=8,c=7,d=6②a=9,b=7,c=6,d=8③a=8,b=6,c=9,d=7④a=6,b=7,c=8,d=9答案]②解析]对于同一样本|ad-bc|越小,说明X与Y之间的关系越弱,|ad -bc|越大,说明X与Y之间的关系越强.|ad-bc|越大,K2越大,|ad -bc|越小,则K2越小.三、解答题9.调查339名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如下患慢性气管炎未患慢性气管炎总计吸烟43162205不吸烟13121134合计56283339试问:(1)有吸烟习惯与患慢性气管炎病是否有关?(2)用假设检验的思想给予说明.解析](1)根据列联表的数据,得到k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=339×(43×121-162×13)2205×56×283×134=6.674>6.635.所以有99%的把握认为“吸烟与患慢性气管炎病有关”.(2)假设“吸烟与患病之间没有关系”,由于事件A={K2≥6.635}的概率P(A)≈0.01,即A为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.10.某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:积极支持企业改革不太赞成企业改革合计工作积极544094工作一般326395合计86103189对于人力资源部的研究项目进行分析,根据上述数据能得出什么结论?解析]由公式k=189×(54×63-40×32)294×95×86×103≈10.76.因为10.76>7.879,所以有99.5%的把握说:员工“工作积极”与“积极支持企业改革”有关,可以认为企业的全体员工对待企业改革的态度与其工作的积极性是有关的.11.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下表所示.种子灭菌种子未灭菌合计有黑穗病26184210无黑穗病50200250合计76384460试按照原试验目的作统计推断.解析]由公式得,k=460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,所以我们有95%的把握认为种子灭菌与发生黑穗病是有关系的.12.打鼾不仅影响别人休息,而且可能与患有某种疾病有关.下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?患心脏病未患心脏病合计每一晚都打鼾30224254不打鼾2413551379合计5415791633解析]由公式②,k=1633×(30×1355-224×24)21379×254×54×1579≈68.33.因为68.33>6.635,所以有99%的把握说,每一晚都打鼾与患心脏病有关.。

高中数学独立性检验精选题目(附解析)

高中数学独立性检验精选题目(附解析)

高中数学独立性检验精选题目(附解析)(1)分类变量和列联表①分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.②列联表(ⅰ)定义:列出的两个分类变量的频数表,称为列联表.(ⅱ)2×2列联表.一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为(2)等高条形图①等高条形图和表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.②观察等高条形图发现aa+b和cc+d相差很大,就判断两个分类变量之间有关系.(3)独立性检验一、用2×2列联表分析两分类变量间的关系1.在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用aa+b与cc+d判断二者是否有关系.解:2×2列联表如下:a a+b =4364=0.671 875.cc+d=2760=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.注:(1)作2×2列联表时,关键是对涉及的变量分清类别.计算时要准确无误.(2)利用2×2列联表分析两个分类变量间的关系时,首先要根据题中数据获得2×2列联表,然后根据频率特征,即将aa+b与cc+d⎝⎛⎭⎪⎫ba+b与dc+d的值相比,直观地反映出两个分类变量间是否相互影响,但方法较粗劣.2.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:则当m取下面何值时,X)A.8B.9C.14D.19解析:选C由10×26≈18m,解得m≈14.4,所以当m=14时,X与Y的关系最弱.3.分类变量X和Y的列联表如下:则下列说法正确的是()A.ad-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越强C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强解析:选C|ad-bc|越小,说明X与Y关系越弱,|ad-bc|越大,说明X与Y关系越强.4.假设有两个变量X与Y,它们的取值分别为x1,x2和y1,y2,其列联表为:为()A.a=50,b=40,c=30,d=20B.a=50,b=30,c=40,d=20C.a=20,b=30,c=40,d=50 D.a=20,b=30,c=50,d=40解析:选D当(ad-bc)2的值越大,随机变量K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)的值越大,可知X与Y有关系的可能性就越大.显然选项D中,(ad-bc)2的值最大.5.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:________(填“是”或“否”).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b=1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.答案:是二、用等高条形图分析两分类变量间的关系1.某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类型是否有关系.解:作列联表如下:续表考前心情不紧94381475张总计426594 1 020相应的等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的人数的比例,从图中可以看出考前心情紧张的样本中性格内向的人数占的比例比考前心情不紧张样本中性格内向的人数占的比例高,可以认为考前紧张与性格类型有关.注:利用等高条形图判断两个分类变量是否相关的步骤:2.在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?解:根据题目给出的数据作出如下的列联表:色盲不色盲总计男38442480女6514520总计449561000根据列联表作出相应的等高条形图:从等高条形图来看,在男人中患色盲的比例要比在女人中患色盲的比例大得多,因此,我们认为患色盲与性别是有关系的.3.观察下列各图,其中两个分类变量x,y之间关系最强的是()解析:选D在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.4.在独立性检验中,可以粗略地判断两个分类变量是否有关系的是() A.散点图B.等高条形图C.假设检验的思想D.以上都不对解析:选B用等高条形图可以粗略地判断两个分类变量是否有关系,体现了数形结合思想,但是无法给出结论的可信程度,故选B.5.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:父母吸烟父母不吸烟总计子女吸烟23783320子女不吸烟678522 1 200总计915605 1 520利用等高条形图判断父母吸烟对子女吸烟是否有影响?解:等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.三、独立性检验1.研究人员选取170名青年男女大学生为样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;110名男生在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?用独立性检验的方法判断.(链接教材P95-例1)附:解:根据2×2k=170×(22×38-22×88)2110×60×44×126≈5.622>5.024.所以在犯错误的概率不超过0.025的前提下,认为“性别与态度有关系”.注:根据题意列出2×2列联表,计算K2的观测值,如果K2的观测值很大,说明两个分类变量有关系的可能性很大;如果K2的观测值比较小,则认为没有充分的证据显示两个分类变量有关系.2.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.(1)写出2×2列联表;判断能否在犯错误的概率不超过0.10的前提下认为猜对歌曲名称与年龄有关系;说明你的理由;(下面的临界值表供参考)P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879(2)6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.解:(1)根据所给的二维条形图得到列联表:正确错误总计20~30岁10304030~40岁107080总计20100120k=120×(10×70-10×30)220×100×40×80=3.∵3>2.706,∴在犯错误的概率不超过0.10的前提下认为猜对歌曲名称与年龄有关系.(2)按照分层抽样方法可知,20~30(岁)抽取:6×40120=2(人);30~40(岁)抽取:6×80120=4(人).在上述抽取的6名选手中,年龄在20~30(岁)有2人,年龄在30~40(岁)有4人.记至少有一人年龄在20~30岁为事件A,则P(A)=1-C34C36=1-420=45.故至少有一人年龄在20~30岁之间的概率为4 5.3.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差B.回归分析C.独立性检验D.概率解析:选C判断两个分类变量是否有关的最有效方法是进行独立性检验.4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是() A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,即k越小,“X与Y有关系”的可信程度越小.5.某班主任对全班50名学生进行了作业量的调查,数据如下表,则学生的性别与认为作业量的大小有关的把握大约为()A.99%C.90% D.无充分证据解析:选B由2×2列联表得K2的观测值k=50×(18×15-8×9)2 27×23×26×24≈5.059>5.024,故有97.5%的把握认为学生性别与认为作业量大小有关,故选B.6.为了解决高二年级统计案例入门难的问题,某校在高一年级的数学教学中设有试验班,着重加强统计思想的渗透,下面是高二年级统计案例的测验成绩统计表(单位:分)的一部分,试分析试验效果.附:解:k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100(32×38-18×12)250×50×44×56≈16.234.因为16.234>6.635,所以,在犯错误的概率不超过0.01的前提下认为高二年级统计案例的测试成绩与高一年级数学教学中增加统计思想的渗透有联系.巩固练习:1.下列关于K2的说法不正确的是()A.根据2×2列联表中的数据计算得出K2的观测值k≥6.635,而P(K2≥6.635)≈0,01,则有99%的把握认为两个分类变量有关系B.K2的观测值k越大,两个分类变量的相关性就越大C.K2是用来判断两个分类变量是否有关系的随机变量D.K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量解析:选D D选项的公式中分子应该是n(ad-bc)2.故选D.2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2A.成绩B.视力C.智商D.阅读量解析:选D因为K21=52×(6×22-14×10)2 16×36×32×20=52×8216×36×32×20,K22=52×(4×20-16×12)216×36×32×20=52×112216×36×32×20,K23=52×(8×24-12×8)216×36×32×20=52×96216×36×32×20,K24=52×(14×30-6×2)216×36×32×20=52×408216×36×32×20,则有K24>K22>K23>K21,所以阅读量与性别有关联的可能性最大.2.在某次独立性检验中,得到如下列联表:最后发现,两个分类变量没有任何关系,则a的值可能是() A.200 B.720C.100 D.180解析:选B由于A和B没有任何关系,根据列联表可知2001 000和180180+a基本相等,检验可知,B满足条件,故选B.3.两个分类变量X,Y,它们的取值分别为{x1,x2}和{y1,y2},其列联表为:若两个分类变量X,Y没有关系,则下列结论正确的是________(填序号).①ad≈bc;②aa+b≈cc+d;③c+da+b+c+d≈b+da+b+c+d;④c+aa+b+c+d≈b+da+b+c+d;⑤(a+b+c+d)(ad-bc)2(a+b)(b+d)(a+c)(c+d)≈0.解析:因为分类变量X,Y独立,所以aa+b ≈cc+d,化简得ad≈bc,所以①②⑤正确,③④显然不正确.答案:①②⑤4.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:已知在全部30人中随机抽取1人,抽到肝病患者的概率为4 15.(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?解:(1)设患肝病中常饮酒的人有x人,x+230=415,x=6.常饮酒不常饮酒总计患肝病628 不患肝病41822 总计102030由已知数据可求得K2=30×(6×18-2×4)210×20×8×22≈8.523>7.879,因此有99.5%的把握认为患肝病与常饮酒有关.(2)设常饮酒且患肝病的男性为A,B,C,D,女性为E,F,则任取两人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF,共8种.故抽出一男一女的概率是P=8 15.5.某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本频率分布直方图.表1甲流水线样本频数分布表产品质量/克频数(490,495] 6(495,500]8(500,505]14(505,510]8(510,515] 4(1)根据上表数据作出甲流水线样本频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据作出2×2列联表,并回答在犯错误的概率不超过多少的前提下认为“产品的包装质量与两条要自动包装流水线的选择有关”.解:(1)甲流水线样本频率分布直方图如下:(2)由表1知甲样本合格品数为8+14+8=30,由图1知乙样本中合格品数为(0.06+0.09+0.03)×5×40=36,故甲样本合格品的频率为3040=0.75,乙样本合格品的频率为3640=0.9,据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为0.75. 从乙流水线任取1件产品,该产品恰好是合格品的概率为0.9. (3)2×2列联表如下:甲流水线 乙流水线 总计 合格品 a =30 b =36 66 不合格品 c =10 d =4 14 总计4040n =80因为K 2k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=80×(120-360)266×14×40×40≈3.117>2.706, 所以在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关.。

《独立性检验》练习题

《独立性检验》练习题

《独立性检验》练习题一、选择题1.下面是一个2×2列联表y 1y 2总计x 1a 2173x 222527总计b46则表中a、b 处的值分别为()A.94、96B.52、50C.52、54D.54、522.关于独立性检验的说法中,错误的是()A.独立性检验依据小概率原理B.独立性检验原理得到的结论一定正确C.样本不同,独立性检验的结论可能有差异D.独立性检验不是判定两类事物是否相关的唯一方法3.利用独立性检验来考察两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 与Y 有关系”的可信程度.如果k 2>5.024,那么就有把握认为“X 与Y 有关系”的百分比为()A.25%B.75%C.2.5%D.97.5%4.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如下列联表:班级与成绩列联表优秀不优秀总计甲班113445乙班83745总计197190则随机变量2K 的观测值约为()A.0.60B.0.828C.2.712D.6.0045.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;)k (K 02 P 0.500.400.250.150.100.050.0250.0100.0050.001k 0.4550.708 1.323 2.072 2.706 3.841 5.0246.6357.87910.828B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误;D.以上三种说法都不正确.6.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110计算得,()22110403020207.860506050K⨯⨯-⨯=≈⨯⨯⨯.2()P K k≥0.0500.0100.001 k3.8416.63510.828参照附表,得到的正确结论是A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”7.对分类变量X与Y的随机变量2K的观测值K,说法正确的是()A.k越大,“X与Y有关系”可信程度越小;B.k越小,“X与Y有关系”可信程度越小;C.k越接近于0,“X与Y无关”程度越小D.k越大,"X与Y无关”程度越大8.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.根据以上数据,则()A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对9、分类变量X和Y的列联表如下y 1y2总计x1x b x+bx 2c d c+d杂质高杂质低旧设备37121新设备22202总计x+c b+d x+b+c+d则下列说法正确的是()A.xd-bc 越小,说明X 和Y 关系越弱B.xd-bc 越大,说明X 和Y 关系越强C.(xd-bc)2越大,说明X 和Y 关系越强D.(xd-bc)2越接近于0,说明X 和Y 关系越强10、某医疗研究所为了检验新研发的流感疫苗对甲型的H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设0H :“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出)635.6(2≥K P 01.0≈,则下列说法正确的是()A、这种疫苗能起到预防甲型H1N1流感的有效率为1%;B、若某人未使用该疫苗,则他在半年中有99%的可能性得到甲型H1N1;C、有1%的把握认为“这种疫苗不能起到预防甲型H1N1流感的作用”D、有99%的把握认为“这种疫苗不能起到预防甲型H1N1流感的作用”二、填空题11、我们常利用随机变量2K 来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验,其思想类似于数学上的.12.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:性别专业非统计专业统计专业男1310女720为了判断主修统计专业是否与性别有关系,根据表中的数据,得到=k (保留三位小数)13、为了探究50岁以上的人患慢性气管炎与吸烟有无关系时,提出的假设是;14、通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110则2K 的观测值=k (保留一位小数)15、假设有两个分类变量X 和Y,它们的取值分别为}{21,x x 和}{21,y y ,其2×2联表为:1y 2y 总计1x a b a+b 2x c d c+d 总计a+cb+da+b+c+d定义||dc cb a a W +-+=,则W 越(大或小),就有利于结论“X 和Y 有关系”;W 越(大或小),就越有利于结论“X 和Y 没有关系”;三、解答题16.某企业为考察生产同一种产品的甲、乙两条生产线的产品合格率,同时各抽取100件产品,检验后得到如下列联表:生产线与产品合格数列联表合格不合格总计甲线973100乙线955100总计1928200请问甲、乙两线生产的产品合格率在多大程度上有关系?17.在对人们的休闲方式的一次调查中,共调查了120人,其中女性60人,男性60人。

独立性检验

独立性检验

独立性检验【典例1】【2021云、贵、滇三省部分中学联考】为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值; (2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异?(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.0010k2.7063.8415.0246.6357.879 10.828参照公式:()()()()()22n ad bc k a b c d a c b d -=++++ 【思路引导】(1)根据茎叶图的概念作出茎叶图,根据平均数的概念求出平均数; (2)求出中位数,完成列联表,计算观测值,根据临界值表可得结果;(3)根据分层抽样求出抽取的5人中,男生身高正常和不正常的人数,利用列举法可求得古典概型的概率.【典例2】【2021·江西高三二模】春节期间,防疫常态化要求减少人员聚集,某商场为了应对防疫要求,但又不影响群众购物,采取推广使用“某某到家”线上购物APP,再由物流人员送货到家,下左图为从某区随机10,70的人口年龄段的频率分布直方图,下右图是该样本中使用了“某抽取100位年龄在[)某到家”线上购物APP人数占抽取总人数比的频率柱状图.(1)从年龄段在[)60,70的样本中,随机抽取两人,估计都不使用“某某到家”线上购物APP 的概率;(2)若把年龄低于40岁(不含)的人称为“青年人”,为确定是否有99.9%的把握认为“青年人”更愿意使用“某某到家”线上购物APP ,填写下列22⨯联表,并作出判断.“青年人”人数 非“青年人”人数 合计 使用APP 的人数 没有使APP 的人数 合计参考数据:()20P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)23;(2)22⨯列联表见解析;有99.9%的把握认为“青年人”更愿意使用“某某到家”线上购物APP .【思路引导】(1)根据题意,年龄段在[)60,70样本中共有6人,其中1人会使用“某某到家”线上购物APP ,利用列举法求得基本事件的总数,以及所求事件所包含的基本事件的个数,利用古典摡型的概率计算公式,即可求解.(2)根据统计图表,得出22⨯的列联表,利用公式,求得2K 的值,结合附表,即可得到结论.【典例3】【2021·湖北襄阳市·高三期末】某共享单车经营企业欲向甲巿投放单车,为制定适宜的经营策略﹐该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷﹑整理分析及开座谈会三个阶段.在随机问卷阶段,A ,B 两个调查小组分赴全市不同区域发放问卷并及时收回﹔在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15岁至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数﹔②为听取对发展共享单车的建议,调查组专门组织所抽取的"年龄达到35岁且偶尔使用单车的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A 组,求A 组这4人中得到礼品的人数X 的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,当年龄设定为25岁时,根据已有数据,完成下列2×2列联表(单位:人),并判断是否在犯错误的概率不超过1%的前提下有把握认为“经常使用共享单车与年龄有关”?【思路引导】(1)利用分层抽样,按比例计算这60人中“年龄达到35岁且偶尔使用单车”的人数﹔直接分析X 服从超几何分布,求概率,写出分布列,求出数学期望;(2)根据题意,25m =填写2×2列联表,套公式计算 3.063K ≈,对应参考值下结论.【典例4】【2020届山东省滨州市高三上学期期末考试】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用33+模式,其中语文、数学、外语三科为必考科目,每门科目满分均为150分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每门科目满分均为100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,采用分层抽样的方法从中抽取n 名学生进行调查,其中,女生抽取45人. (1)求n 的值;(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的n 名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的22⨯列联表,请将下面的22⨯列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;(3)在抽取到的45名女生中,按(2)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中抽取4人,设这4人中选择“物理”的人数为X ,求X 的分布列及期望.附:22()()()()()n ad bc K a b a c c d b d -=++++,n a b c d =+++【思路引导】(1)根据分层抽样的特征,以及题意,得到451000450n =,求解,即可得出结果; (2)根据题中数据,可直接完善列联表,根据公式求出2K ,结合临界值表,即可得出结果;(3)从45名女生中分层抽样抽9名女生,所以这9女生中有5人选择“物理”, 4人选择“地理”. 9名女生中再选择4名女生,则这4名女生中选择“物理”的人数X 可为0,1,2,3,4,分别求出其对应的概率,即可得到分布列,求出期望.【典例5】【广东省佛山市2019-2020学年高三教学质量检测(一)】党中央、国务院历来高度重视青少年的健康成长.“少年强则国强”,青少年身心健康、体魄强健、意志坚强、充满活力,是一个民族旺盛生命力的体现,是社会文明进步的标志,是国家综合实力的重要方面.全面实施《国家学生体质健康标准》,把健康素质作为评价学生全面健康发展的重要指标,是新时代的要求.《国家学生体质健康标准》有一项指标是学生体质指数(BMI),其计算公式为:()()22kgBMIm=体重身高,当BMI23.5>时,认为“超重”,应加强锻炼以改善BMI.某高中高一、高二年级学生共2000人,人数分布如表(a).为了解这2000名学生的BMI指数情况,从中随机抽取容量为160的一个样本.表(a)(1)为了使抽取的160个学生更具代表性,宜采取分层抽样,试给出一个合理的分层抽样方案,并确定每层应抽取出的学生人数;(2)分析这160个学生的BMI值,统计出“超重”的学生人数分布如表(b).(ⅰ)试估计这2000名学生中“超重”的学生数;(ⅱ)对于该校的2000名学生,应用独立性检验的知识,可分析出性别变量与年级变量哪一个与“是否超重”的关联性更强.应用卡方检验,可依次得到2K的观测值1k,2k,试判断1k与2k的大小关系.(只需写出结论)【思路引导】(1)按照高一男生、高一女生、高二男生、高二女生分层四层,然后利用分层抽样的方法确定每层的人数.(2)计算出“超重”发生的频率,用样本来估计总体的特征.【典例6】【2021·山东菏泽市·高三一模】随着生活质量的提升,家庭轿车保有量逐年递增.方便之余却加剧了交通拥堵和环保问题.绿色出行引领时尚,共享单车进驻城市黄泽市有统计数据显示.2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年齡分为“年轻人”(20岁~391岁)和“非年轻人”( 19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的经常使用共享单车的称为“单车族”.使用次数为5次或不足5次的称为“非单车族”.已知在“单车族”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为400的样本,请你根据图表中的数据,补全下列22列联表,并判断是否有95%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表年轻人非年轻人合计单车族非单车族合计(2)若将(1)中的频率视为概率,从该市市民中随机任取3人,设其中既是“单车族”又是“非年轻人”的人数为随机变量,X求X的分布列与期望.参考数据:独立性检验界值表其中,()()()()()22,n ad bcn a b c d Ka b c d a c b d-=+++=++++(注:保留三位小数).【思路引导】(1)补全的列联表,利用公式求得2 4.167 3.841K≈>,即可得到结论;(2)由(1)的列联表可知,经常使用单车的“非年轻人”的概率,即可利用独立重复试验求解随机变量X取每个数值的概率,列出分布列,求解数学期望.1. 【2021·河南省南阳市高三模拟考试】((文))直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成22列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为711,10510,; 方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为33151010,,.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表其中,22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 【思路引导】(1)由图1知,“年轻人”有160人,“非年轻人”有40人,由图2知,“经常使用直播销售用户”有120人,“不常使用直播销售用户” 有80人,即可补全的列联表,计算2K ,判断是否有85%的把握认为经常使用网络直播销售与年龄有关.(2)按方案一,设获利1X 万元,列1X 的分布列,并计算期望()1E X 和()1D X ;按方案二,设获利2X 万元列,列2X 的分布列,并计算期望()2E X 和()2D X ,比较两个方案的期望和方程,从而选取方案.2【辽宁省沈阳市铁路实验中学2019-2020学年高三上学期10月月考】.司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.(1)完成下面的22⨯列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;开车时使用手机 开车时不使用手机 合计 男性司机人数 女性司机人数 合计(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X ,若每次抽检的结果都相互独立,求X 的分布列和数学期望()E X .参考公式与数据:()20P k χ>0.15 0.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828参考公式()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【思路引导】(1)根据已知数据即可得到列联表;计算出28.2497.879χ≈>,对比临界值表可得到结果;(2)由样本估计总体思想,可得到随机抽检1辆,司机为男性且开车使用手机的概率为25,可知235X B ⎛⎫⎪⎝⎭,,由二项分布概率公式可计算得到每个取值所对应的概率,从而得到分布列;由二项分布数学期望计算公式可得()E X .3,.【2021·黑龙江齐齐哈尔市·高三一模】第五代移动通信技术(英语:5th generation mobile networks 或5th generation wireless sys-tems 5th-Generation 、,简称5G 或5G 技术)是最新一代蜂窝移动通信技术,也是继4G ()LTE-A WiMax 、、3G UMTS ()LTE 、和()2G GSM 系统之后的延伸.5G 的性能目标是高数据速率减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接.某大学为了解学生对“5G ”相关知识的了解程度,随机抽取100名学生参与测试,并将得分绘制成如下频数分布表:(1)将学生对“5G ”的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60分)两类,完成22⨯列联表,并判断是否有99.9%的把握认为“学生对“5G ”的了解程度”与“性别”有关?(2)以这100名学生中“比较了解”的频率作为该校学生“比较了解”的概率.现从该校学生中,有放回的抽取3次,每次抽取1名学生,设抽到“比较了解”的学生的人数为X ,求X 的分布列和数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++(n a b c d =+++).临界值表:2.072【思路引导】(1)根据题意补全22⨯列联表,然后根据公式可计算211.291K≈,因为11.29110.828>,最后作出判断即可;(2)由题意抽取的100名学生中“比较了解”的频率为707=10010,故抽取该校1名学生对“5G”技术“比较了解”的概率为710,属于典型的二项分布,随机变量满7~3,10X B⎛⎫⎪⎝⎭,然后根据二项分布概率计算公式列出分布列并计算数学期望即可.4.【辽宁省辽阳市2019-2020学年高三上学期期末】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.(1)根据以上数据完成22⨯列联表,并判断是否有95%的把握认为购买金额是否少于60元与性别有关.(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为p(每次抽奖互不影响,且p的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数X(元)的分布列并求其数学期望.附:参考公式和数据:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.附表:【思路引导】(1)完善列联表,计算214403.841 247K=>得到答案.(2)先计算13p=,分别计算()16527P X==,()2709P X==,()4759P X==,()88027P X==,得到分布列,计算得到答案.5.【2021·六盘山高级中学高三期末】为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):男:173 178 174 185 170 169 167 164 161 170女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值; (2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生 身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++ ()20P K k ≥ 0.100.050.0250.0100.0050.0010k2.7063.841 5.024 6.635 7.879 10.828(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.【思路引导】(1)根据题中数据完善茎叶图即可,结合平均数的计算公式即可求出结果;(2)根据题中数据完善列联表,再由()()()()()22n ad bc k a b c d a c b d -=++++求出2k ,结合临界值表即可得出结论;(3)先由题意确定身高属于正常的男生概率,进而可求出结果.6.【广西柳州市2019届高三毕业班1月模拟】我市为改善空气环境质量,控制大气污染,政府相应出台了多项改善环境的措施.其中一项是为了减少燃油汽车对大气环境污染.从2018年起大力推广使用新能源汽车,鼓励市民如果需要购车,可优先考虑选用新能源汽车.政府对购买使用新能源汽车进行购物补贴,同时为了地方经济发展,对购买本市企业生产的新能源汽车比购买外地企业生产的新能源汽车补贴高.所以市民对购买使用本市企业生产的新能源汽车的满意度也相应有所提高.有关部门随机抽取本市本年度内购买新能源汽车的100户,其中有70户购买使用本市企业生产的新能源汽车,对购买使用新能源汽车的满意度进行调研,满意度以打分的形式进行.满分100分,将分数按照[[[[[]02020404060608080100,),,),,),,),,分成5组,得如下频率分布直方图.(1)若本次随机抽取的样本数据中购买使用本市企业生产的新能源汽车的用户中有52户满意度得分不少于60分,把得分不少于60分为满意.根据提供的条件数据,完成下面的列联表.满意 不满意 总计 购本市企业生产的新能源汽车户数 购外地企业生产的新能源汽车户数 总计并判断是否有90%的把握认为购买使用新能源汽车的满意度与产地有关?(2)以频率作为概率,政府对购买使用新能源汽车的补贴标准是:购买本市企业生产的每台补贴()21aa >万元,购买外地企业生产的每台补贴a 万元.但本市本年度所有购买新能源汽车的补贴每台的期望值不超过3.4万元.则购买外地产的新能源汽车每台最多补贴多少万元? 附:()()()()()22n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.()20p k k ≥0.100 0.050 0.025 0.010 0.001 0k2.7063.8415.0246.63510.828【思路引导】(1)利用频率分布直方图可求出列联表中数据,代入公式即可求出2k ,然后与表中数据比较即可判断;(2)设购买新能源汽车的补贴每台为x 万元,则2x a =或x a =,分别求出对应概率,即可得到对应的分布列,进而表示出期望()E x 的表达式,令() 3.4E x ≤,解不等式即可。

独立性检验

独立性检验

总计 2148 7817 9965
通过公式计算
2 99657775 49 42 20992 56.632
7817 2148 9874 91
P( 2 10.828) 0.001
现在的 =256.632的观测值远大于10.828, 出现这样的观测值的概率不超过0.001。
故有99.9%的把握认为H0不成立,即有99.9% 的把握认为“患病与吸烟有关系”。
因当H0成立时,χ2≥6.635的概率约为0.01,故有99%的把握认 为该血清能起到预防感冒的作用。
P(χ≥x0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
x0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
P(χ≥x0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 x0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
例1.在500人身上试验某种血清预防感冒作用,把他们
2
n(ad bc)2
(a c)(b d)(a b)(c d)
独立性检验
用χ2统计量研究 这类问题的方法
步骤
通过数据和图表分析,得到 结论是:吸烟与患病有关
结论的可靠 程度如何?
第一步:列出2×2列联表
吸烟 不吸烟
总计
患病 a c
a+c
不患病 b d
b+d
总计 a+b c+d a+b+c+d

36741_《独立性检验的基本思想及其应用》同步练习1

36741_《独立性检验的基本思想及其应用》同步练习1

3.2独立性检验的基本思想及其初步应用A卷(课堂针对训练六)1.2双基再现1.★下列变量中不是分类变量的是()A.近视B.成绩C.性别D.饮酒2.★★下列说法中错误的是()A.有时可以把分类变量的不同取值用数字表示,但这时的数字除了分类以外没有其它含义B.在统计学中,独立性检验就是检验两个分类变量是否有关系的一种方法C.在进行独立性检验时,可以先利用三维柱形图和二维条形图粗略地判断两个分类变量是否有关系D.通过三维柱形图和二维条形可以精确的给出所得结论的可靠程度3.★★某高校《统计》课程的教师随机给出了选该课程的一些情况,具体数据如下:为了判断选修统计专业是否与性别有关,根据表中数据,得2 4.844K≈,因为2 3.841K>,所以可以判定选修统计专业与性别有关.那么这种判断出错的可能性为()A.5%B.95%C.1%D.99%4.★★某大学要研究性别与职称之间是否有关系,你认为该收集哪些数据?5.★★在三维柱形图中,主对角线的两个柱形高度的乘积bc相关越大,X与Y有关系的可能性就.6.★★★为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同的剂量的电离辐射照射小白鼠.在照射14天内的结果如下:进行统计分析时的统计假设是变式活学7.★★★(教材1.2例1变式)研究人员选取170名青年男女大学生的样本,对他(她)们进行一种心理测验,发现有60名女生对该心理的最后一个题目的反应是:作肯定的18名,否定42名;男生110名在相同的项目上作出肯定的有22名,否定的有88名.请问性别与态度之间是否存在某种关系?请分别用图形与独立性检验的方法进行判断.8.★★★★(教材1.2例1变式)在研究某种新措施对猪白痢的防治效果问题时,得到了以下治猪白痢是否有效?实践演练9.★★★★如何对草莓、橙子、桃子、苹果、梨等5种水果进行分类?10.★★★★★在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效?。

独立性检验的基本思想及其初步应用(含答案)

独立性检验的基本思想及其初步应用(含答案)

3.2 独立性检验的基本思想及其初步应用1.下面是一个2×2列联表:则表中a 、b ( D ). A .94、96 B .52、50 C .52、60 D .54、52 2.下列关于等高条形图的叙述正确的是 ( C ). A .从等高条形图中可以精确地判断两个分类变量是否有关系 B .从等高条形图中可以看出两个变量频数的相对大小 C .从等高条形图可以粗略地看出两个分类变量是否有关系 D .以上说法都不对3.关于分类变量x 与y 的随机变量K 2的观测值k ,下列说法正确的是 ( B ).A .k 的值越大,“X 和Y 有关系”可信程度越小B .k 的值越小,“X 和Y 有关系”可信程度越小C .k 的值越接近于0,“X 和Y 无关”程度越小D .k 的值越大,“X 和Y 无关”程度越大4.若由一个2×2列联表中的数据计算得k =4.013,那么在犯错误的概率不超过__0.05______的前提下认为两个变量之间有关系.5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2≥3.841)中数据,得到k =50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性约为___0.05___.6.在二维条形图中,两个比值( )相差越大,要推断的论述成立的可能性就越大。

A .b a a +与dc c + B .d c a +与b a c + C . d a a +与c b c + D . d b a +与ca c + 7.下列关于2K 的说法中正确的是( C )A .2K 在任何相互独立问题中都可以用来检验有关还是无关B .2K 的值越大,两个事件的相关性就越大C .2K 是用来判断两个分类变量是否有关系的随机变量,只对两个分类变量适合D .2K 的观测值k 的计算公式为 ))()()(()(d b c a d c b a bc ad n k ++++-=8.在吸烟与患肺癌这两个分类变量的计算中,下列说法正确的是( C )。

独立性检验例题

独立性检验例题
20030070430
以在犯错误的概率不超过0.01的前提下认为该地区的老年人
是否需要志愿者提供帮助与性别有关.
(3)由(2)的结论知,该地区的老年人是否需要志愿者提供帮助 与性别有关,并且从样本数据能看出该地区男性老年人与女 性老年人中需要帮助的比例有明显差异,因此在调查时,先 确定该地区老年人中男、女的比例,再把老年人分成男、女 两层并采用分层抽样方法,这比采用简单随机抽样方法更好.
4.根据下表计算k≈_____.
【解析】根据列联表中的数据得K2的观测值
nadbc2
39239167157292
kabcdac(bd) 19619668324
≈1.78.
答案:1.78
5.运动员参加比赛前往往做热身运动,下表是一体育运动的 研究机构对160位专业运动员追踪而得的数据,试问:由此数 据,你认为运动员受伤与不做热身运动有关吗?
【解析】选C.由K2的计算公式可知,(ad-bc)2越大,则K2越 大,故相关关系越强.
3.若由一个2×2列联表中的数据计算得K2=4.013,则两个变 量有关系的概率为_____. 【解析】因随机变量K2的观测值k=4.013>3.841.所以在犯 错误的概率不超过0.05的前提下,认为两个变量有关系. 答案:0.95
独立性检验例题
分类变量关系的分析
1.判断分类变量及其关系的方法: (1)利用数形结合思想,借助等高条形图来判断两个分类变量 是否相关是判断变量相关的常见方法. (2)一般地,在等高条形图中, a 与 c 相差越大,两个
ab cd
分类变量有关系的可能性就越大.
2.分析分类变量关系的步骤: (1)作大量的调查、研究,统计出结果. (2)列出列联表利用频率粗略估计. (3)作出等高条形图,从直观上进一步判断分类变量之间的关 联关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本套试题考查的内容比较全面,独立性检验的概念与方法、2×2列联表、随机变量2K 的值、三维柱形图、二维条形图、等高条形图等知识点在试题中都得到了充分体现,很多试题与现实生活相联系,新颖别致,有大量的原创与改编试题。

独立性检验的基本思想及其初步应用同步测试题A 组 一、选择题1.独立性检验中的统计假设就是假设两个事件A 、B ( )A 互斥B 不互斥C 相互独立D 不独立2.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就 ( )A. 越大B. 越小C.无法判断D. 以上都不对3.2010年3月26日,韩国军舰“天安”号发生不明原因爆炸事故离奇沉没,5月20日韩国军民联合调查团公布的调查结果说天安舰是遭受朝鲜小型潜水艇发射的鱼雷攻击而沉没的。

对此,许多网民表达了自己的意见,有的网友进行了调查,在参加调查的4258名男性公民中有2360名认为是朝鲜所为,3890名女性公民中有2386人认为朝鲜是遭陷害,在运用这些数据说明天安舰事件中朝鲜是否冤枉时用什么方法最有说服力?( ) A 平均数 B 回归分析 C 独立性检验 D 方差 4.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X和Y 有关系”的可信度。

如果k>5.024,那么就有把握认为“X 和Y 有关系”的百分比为A.25%B.75%C.2.5%D.97.5%5.假设有两个分类变量X 和Y ,它们的值域分别为},{21x x 和},{21y y ,其2×2列联表为:对以下数据,对同一样本能说明X与Y有关的可能性最大的一组为( ) A .5=a ,4=b ,3=c ,2=d B .5=a ,3=b ,4=c ,2=dC .2=a ,3=b ,4=c ,5=dD .2=a ,3=b ,5=c ,4=d 6.考察玉米种子经过药物处理跟生病之间的关系得到如下表数据:A. 玉米种子经过药物处理跟是否生病有关;B. 玉米种子经过药物处理跟是否生病无关;C. 玉米种子是否经过药物处理决定是否生病;D.以上都是错误的.二、填空题K≈,并且已知7.通过计算高中生的性别与喜欢唱歌列联表中的数据,得到2 4.98 2( 3.841)0.05,P K≥≈那么可以得到的结论是8.下面是一个2×2列联表处的值分别为,则K=三、解答题10.为了探究学生文、理分科是否与数学兴趣有关,调查了361名高二在校学生,调查结果如下表:试分析学生报考文、理与数学兴趣是否有关?11.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。

女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。

(1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系。

12.小李酷爱买彩票,一次他购买了1000元的彩票,共中了50元的奖,于是他回到家对彩票的号码进行了分析,分析后又去买了1000元的彩票,据说中奖金额比上次增加了51%,请分析他对号码的研究是否对中奖金额产生了大的影响?我们应该用怎样的心态对待买彩票的问题?B组一、选择题1.对长期吃含三聚氰胺的婴幼儿奶粉与患肾结石这两个分类变量的计算中,下列说法正确的是()A. 若2K的值大于6.635,我们有99%的把握认为长期吃含三聚氰胺的三鹿婴幼儿奶粉与患肾结石有关系,那么在100个长期吃含三聚氰胺的三鹿奶粉的婴幼儿中必有99人患有肾结石病;B.从独立性检验可知有99%的把握认为吃含三聚氰胺的三鹿婴幼儿奶粉与患肾结石有关系时,我们说某一个婴幼儿吃含三聚氰胺的三鹿婴幼儿奶粉,那么他有99%的可能患肾结石病;C.若从统计量中求出有95% 的把握认为吃含三聚氰胺的三鹿婴幼儿奶粉与患肾结石有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确。

2 1 000人,调查结果如下表所示:根据上述数据,试问色盲与性别关系是()A. 相互独立B.不相互独立C. 有99.9%的把握认为色盲与性别无关D. 只有0.1%的把握认为色盲与性别有关3根据表格提供的数据,估计“成绩与班级有关系”犯错误的概率约是()A.0.4B. 0.5C. 0.75D.0.854.高中学生中流行这样一句话“文科就怕数学不好,理科就怕英语不好”。

下表是一次针对高二文科学生的调查所得的数据,得出的结论是()A.有99%的把握说文科学生总成绩不好与数学成绩不好有关。

B. 有97.5%的把握说文科学生总成绩不好与数学成绩不好有关。

C. 有95%的把握说文科学生总成绩不好与数学成绩不好有关。

D. 有90%的把握说文科学生总成绩不好与数学成绩不好有关。

二、填空题5.考查黄烟经过培养液处理与否跟发生青花病的关系,调查了457株黄烟,得到下表中数据,请根据数据作统计分析,判断经过培养液处理的黄烟跟发生青花病是否有关(填:有或没有)6 研究人员选取170名高二学生的样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的22名,否定的38名;男生110名在相同的项目上作肯定的有22名,否定的有88名.你有的把握认为性别与态度之间存在某种关系.三、解答题7(1)判断认为喜欢玩电脑游戏与认为作业量多有关系的把握有多少?(2)依据上题中列联表中数据画出二维条形图、等高条形图,并对图形进行分析.8.某校高三年级共有1240人,在期末考试中,数学成绩优秀的有360人,在数学成绩优秀和非优秀的学生中,物理、化学、总分也为优秀的人数如下表,则数学成绩优秀与物理、化学、总分也优秀的哪个关系较大?独立性检验的基本思想及其初步应用检测题答案A组一、选择题1.C2.A 在三维柱形图中,主对角线上两个柱形高度的乘积(ab)与副对角线上的两个柱形的高度的乘积(bc)相差越大,“X与Y有关系”成立的可能性就越大,即两个变量有关系的可能性就越大,3.C首先观察该资料取自什么样的试验设计,由于参加讨论的公民按性别被随机的分成了两组,而且每一组又被分成了两种情况:认为是朝鲜所为与遭受陷害,故该资料取自完全随机统计,符合2×2列联表的要求,故用独立性检验最有说服力。

故选C 。

4.D 从表中可知,当024.5=k 时,对应的P(k K ≥2)为0.025,所以选D.5.D 对于同一样本,||bc ad -越小,说明X与Y之间的关系越弱;||bc ad -越大,说明X与Y之间的关系越强;6.B 2407(352039871)0.008133274106301k ⨯⨯-⨯=≈⨯⨯⨯, 因为0.008 2.706k =<,所以,玉米种子经过药物处理跟生病之间无关,故选B 二、填空题7.有约95%以上的把握认为 “性别与喜欢唱歌之间有关系” 8.26,44因为a+42=68,b+54=68+30,所以a=68-42=26,b=68+30-54=44 9.6.10解:50,55,30,20,45,10=+=+====d c b a d c b a ,.105,75,30==+=+n d b c a22()()()()()n ad bc K a b c d a c b d -=++++.10.630755055)20453010(1052=⨯⨯⨯⨯-⨯⨯= 三、解答题10.解:由公式,得 22361(138527398)1.871211150236125K ⨯⨯-⨯==⨯⨯⨯ 因为1.871 2.706<,所以说学生报考文、理科与是否对数学有兴趣无关。

11.解:(1)2×2的列联表22124(43332721) 6.20170546460K ⨯⨯-⨯=≈⨯⨯⨯因为25.024K ≥,所以有理由认为假设“休闲方式与性别无关”是不合理的, 即有97.5%的把握认为“休闲方式与性别有关”12.解:根据条件可知,购买了1000元的彩票,中奖金额为50元,即净赔950元,购买1500则222500(501424.595075.5)(50950)(5075.5)(95001424.5)(75.51424.5)K⨯-⨯=++++0.0014=这个值非常小,可见他对号码的分析对中奖的影响不大。

因此我们应当抱着平和的心态对待彩票问题,把主要精力用在工作与学习中。

B组一、选择题1.C 对于A,若2K的值为6.635,我们有99%的把握认为吃含三聚氰胺的三鹿奶粉的婴幼儿与患肾结石有关系,但在100个吃含三聚氰胺的三鹿婴幼儿奶粉婴幼儿中未必有99人患有肺病; 对于B同样不成立,C是正确的,故选C.2.B 27.13910,82k=>,所以的99.9%的把握认为色盲与性别是有关的,从而拒绝原假设,可以认为色盲与性别不是相互独立.3.B 计算2290(20272518)7290000.18218623 2.706454538524001400K⨯-⨯===<⨯⨯⨯可知,没有充分理由说明“成绩与班级有关系”,即成绩的“优秀与不优秀”与班级是相互独立的,所以估计“成绩与班级有关系”犯错误的概率约是0.5.4.B22 2()913(4782412399)6.233()()()()49042387736n ad bcKa b c d a c b d-⨯⨯-⨯==≈++++⨯⨯⨯。

因为6.233 5.024>,所以我们有97.5%的把握说文科学生总成绩不好与数学成绩不好有关。

二、填空题5. 答案:有根据公式得,241.61 6.635K=>,说明经过培养液处理的黄烟跟发生青花病是有关的.6 答案:97.5%解:根据题目所给数据建立2×2列联表:根据列联表中的数据得到22170(22382288)5.622 5.2041106044126K⨯⨯-⨯=≈>⨯⨯⨯.所以有97.5%的把握认为“性别与态度有关”.三、解答题7.解:(1)由表中数据计算2250(181589) 5.059 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯ 所以约有97.5%的把握认为两变量之间有关系.(2) ①在二维条形图中,我们用浅色条高表示认为作业多的人数,深色条高表示认为作业不多的人数, 如图1所示图1 从图中可以看出,喜欢玩电脑游中认为作业多的比例高于不喜欢玩电脑游戏中认为作业多的人数的比例,因此可以认为“喜欢玩电脑游戏与认为作业量多”是有关系的. ② 在等高条形图中,浅色的条高表示认为作业多得比例,深色的条高表示认为作业不多的比例,如图2所示图2等高条形图清晰地反映了两种情况下认为作业量多少的比例.因此可以认为“喜欢玩电脑游戏与认为作业量多’’是有关系的.由公式得:221240(228737132143)270.1143360880371869K ⨯⨯-⨯=≈⨯⨯⨯ 同理,列出数学与化学优秀的2×2列联表,计算得221240(225724135156)240.6112360880381859K ⨯⨯-⨯=≈⨯⨯⨯列出数学与总分优秀的2×2列联表,计算得221240(2677819399)486.3665360880366874K ⨯⨯-⨯=≈⨯⨯⨯又因为486.3665270.1143240.611210.828>>>,所以有99.9%的把握 认为数学成绩优秀与物理、化学、总分优秀都有关系,其中与总分优秀关系最大,与物理关系次之。

相关文档
最新文档