人工智能的认知革命解读
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能的认知革命
一、When?
什么时候人工智能将实现革命性突破?
国际上有很多非常有影响力的大牛或者是大咖论述过这个问题。例如,最伟大的科学家之一霍金讲:“人工智能不一定是好事。”比尔盖茨也说:“人工智能让我比较担忧。”最新的创业偶像马斯克说:“我们需要万分警惕人工智能,它们比核武器更加危险。”我们把他们叫做“人工智能威胁派”。
而另外一方面,业界有很多人,包括在座的很多专家,大家其实从另外一个角度看待人工智能,我们把他们叫“人工智能的理智派”。比如,机器学习大神Michael Jordan,Facebook的Yann Lecun等。
可以看到有一个问题是大家都关心的,那就是机器什么时候能实现智能的突破?我们知道,计算机出现到现在大概70年左右。那么我们就要问一下,人类的智能是怎么突破的?非常有意思的是,人类历史学家对这个问题研究了很长时间,而且已经得出了结论。以色列的一位年轻的历史学家尤瓦尔.赫拉利的《人类简史:从动物到上帝》中写到:七万年前,从非洲大陆走出来的智人实现了“奇点”的突破,占领了整个世界。
所以大家就会想知道,七万年前来自非洲的猿人到底发生了什么,好像智力一下子突然开窍了,统一了地球呢?猿人在地球上已经存在了300到400万年了,到7万年前才实现了智能的突破,这里面是一个非常长的时间。而计算机出现的时间刚刚只有几十年的时间,和猿人产生智能的时间周期相比,计算机刚刚度过的时间只能算一瞬间。
二、How?
人工智能如何才能实现最终的突破呢?
最近讨论比较热的一个话题是,神经科学对人工智能发展促进的可能性。最近这两年,美国政府已经顺利完成人工基因测序的研究。美国和欧洲正在开展一个新的为期十年的40亿美金的基础研究投资,美国叫“大脑图谱”,欧洲叫“人类大脑项目”。在这个方面,我国各个方面也在积极推进“中国脑计划”,比如中科院卓越创新工程里面,也涉及了这方面的研究。
我们可以看到,对于脑神经科学的研究,对于人工智能是可以产生促进作用的。现在脑科学的进展,已经使我们知道大脑里面的不同区域可以处理不同的细节。大家看左图,当一个图像进来以后,我们看到了不同的像素、点、线、轮廓最后到人脸,这是一个非常复杂的图像处理过程,需要使用几百亿个神经元。
而且非常有意思的是,人脑在处理各种不同的多媒体信号的时候,例如声音、图像、触觉,都是从细节到抽象逐步的向上传递,并且最后综合在一起的。当你看到一幅猫的图片的时候,你的大脑里已经有预备有猫的叫声,猫如果发出猫的声音,你的反应是正常的。如果猫发出的是老鼠的声音,那你觉得这是不正常的,又会调出另外一套处理机制。
如果把人的大脑皮层剖析开,就会发现大脑皮层是由六层的神经元结构构成的。最重要的一点是什么呢?大脑皮层记忆的方式,跟我们电脑的存储是完全不一样的。比如:大脑主要存储序列模式。一首歌曲从前到后听是能够记得住旋律的,而倒过来放我们就不认识了。包括自联想的回忆模式。比如:看到猫脸上半部,人脑的神经网络会帮你自动的联想出猫脸的下半部出来。
对比来说,电脑只能做运算和存储,而不是记忆。前一段时间跟李德毅院士专门探讨了记忆是如何帮助人脑实现智能的问题,我觉得在这方面的研究还差的很远,
还有大量改进的空间。
迄今为止工业界人工智能的成功经验是什么呢?以谷歌为代表的世界互联网公司,包括中国的阿里、腾讯、百度、讯飞,已经找到了一条路,那就是利用深度神经网络与大数据结合,这已经成为当前人工智能实现的一条主流路径。我觉得这条路径中还有一个非常重要的内容,就是基于互联网和移动互联网的“研究-工程-产品-用户”大闭环优化。
从2013年开始,其实DNN已经被广泛的应用在合成、识别、评测、增强等一系列方向。我们可以看到现在这个方面的工作,已经成为了当前机器学习和统计模式主流。现在的DNN对人脑神经网络的借鉴是非常非常抽象的,我们其实可以通过对人脑的研究进一步的优化DNN。
大学和研究院所要想做人工智能方面的工作,当前相对于互联网公司,一个很难比较的地方是什么呢?我总结了一个“研究-工程-产品-用户”大闭环优化的核心思想,用简单的四个字,可以说是“大、智、移、云”。
移动互联设备对智能交互(包括语音图像)提出了迫切的需求,而传统的嵌入式移动设备不能够提供足够的运算能力且缺乏足够的电力供应,而云计算出现以后,这些复杂的计算都可以放在云上。通过云计算自然就存储了大数据,而这些大数据结合刚刚讲的深度神经网络,可以很好的解决人工智能问题。我自己把它总结成为一个效应,叫“涟漪效应”。
“涟漪效应”就是水滴刚刚滴入水面的这个过程,会产生一个波纹逐步的覆盖整个水面。我们可以想象一个人工智能产品刚开始投入到市场上的时候,有些性能是不好的,就像讯飞的语音输入法。水波纹每一圈向外扩散就会有更多人使用,更多人使用,真实数据和使用经验就会放到云上,系统会根据这些数据和经验进
行自我学习和更新。当它扩散到更多的人使用的时候,就是波纹覆盖水面扩大的时候,已经是改进以后的系统。前一千万人免费使用系统的同时也贡献了宝贵的数据和经验。当第一千万零一个人使用的时候,他就会觉得:“哇,怎么这么好?”。
2010年以前的语音识别是不能在真实场景下使用的,我们科大讯飞刚推出语音输入法的时候,在实验室里面测试识别率是90%的系统,在真实的环境下识别率是多少呢?55.8%。但是利用涟漪效应和“大、智、移、云”,现在已经识别率达到了95%。人是多少?99.5%。但是现在识别率还在以每年30%的速度往上提升,大概5年以后就可以逼近人类的水平。
现在工业界所依赖的大闭环优化、深度学习和大数据方面,跟脑科学的研究思路有没有可能结合呢?我觉得是完全有可能的。因为现在人工智能网络借助于新的学习机理甚至于拓扑结构上的改进,将可以进一步成为人工智能发展强有力的推动力。
例如,一种新型的递归型深度神经网络RNN已经成为当前语音识别的一个新的标准配置,比传统的DNN方法可以再提高20%-30%。RNN就是一种非常新的网络拓扑结构,和人脑神经网络可以时间上可以进行信息积累类似,通过网络拓扑结构的优化和改变可以实现对序列性数据更好的处理能力。
三、Who?