数学人教版九年级下册《解直角三角形应用举例教材分析、学法指导》
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计1
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计1一. 教材分析人教版数学九年级下册28.2《解直角三角形及其应用》是本节课的主要内容。
这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。
本节课的主要内容有:了解解直角三角形的定义,掌握解直角三角形的方法,以及解直角三角形在实际生活中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数和直角三角形的性质,对于这部分内容的理解和掌握程度参差不齐。
因此,在教学过程中,需要关注学生的学习情况,对于理解程度较好的学生,可以适当提高教学难度,对于理解程度较差的学生,需要进行个别辅导,帮助其理解和掌握本节课的内容。
三. 教学目标1.了解解直角三角形的定义,掌握解直角三角形的方法。
2.能够运用解直角三角形的方法解决实际问题。
3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.解直角三角形的定义和方法的掌握。
2.解直角三角形在实际生活中的应用。
五. 教学方法采用问题驱动法,通过引导学生发现问题,解决问题,从而掌握解直角三角形的方法和应用。
同时,采用案例分析法,通过分析实际生活中的案例,让学生了解解直角三角形在实际生活中的应用。
六. 教学准备1.PPT课件2.实际案例资料七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾锐角三角函数和直角三角形的性质,为新课的学习做好铺垫。
2.呈现(15分钟)讲解解直角三角形的定义和 methods,结合PPT课件,让学生直观地了解解直角三角形的过程。
3.操练(15分钟)让学生通过实际案例,运用解直角三角形的方法进行计算,巩固所学知识。
教师在此过程中进行个别辅导,帮助学生解决问题。
4.巩固(10分钟)让学生完成练习题,检查学生对解直角三角形方法的掌握程度。
教师对学生的答案进行讲解,纠正错误,巩固所学知识。
5.拓展(10分钟)分析实际生活中的案例,让学生了解解直角三角形在实际生活中的应用。
人教版初三数学下册《解直角三角形应用举例教材分析、学法指导》
《解直角三角形应用举例教材分析、学法指导》-----福州江南水都中学魏文勋一、教材分析(一)、教材的地位与作用本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。
通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。
从而进一步把形和数结合起来,提高分析和解决问题的能力。
它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。
它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的对学生进行这方面的能力培养。
(二)教学重点本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。
(三)、教学难点由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。
(四)、教学目标分析1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。
其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。
2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。
其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。
3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。
其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。
数学人教版九年级下册《解直角三角形》教材分析
教材分析饶河二中薛怀杰本节内容是在学生学习了直角三角形三边的关系以及锐角三角函数的基础上进行的。
本节知识既是前面所学知识的运用,又是高中继续学习三角函数和解斜三角形的严重知识储备,在整个数学教学体系中起着承上启下的作用。
另外由于解直角三角形在实际生活中的应用比较广博,同时蕴含着建模、转化、化归的数学思想方法,所以学习本节知识对学生而言具有严重的意义。
直角三角形全等的判定定理是解直角三角形的理论依据,它对全面、深入地理解解直角三角形有着极其严重的作用。
由直角三角形的判定定理可知:对于直角三角形,如果已知除直角外的两个元素分别相等(其中至少有一个是边),那么这两个三角形全等。
从而一个直角三角形的大小由三边和两个锐角中的两个元素(其中至少有一个是边)唯一确定,因此从理论上说我们就可以利用一边和另一个元素求其余元素。
有了锐角三角函数知识,并结合直角三角形的两个锐角互余及勾股定理,就可以进一步地由这两个元素的大小求出其他元素的大小,这就是解直角三角形。
可见解直角三角形与直角三角形全等的判定定理、勾股定理等已学知识有着密切的联系。
从联系的角度看待数学知识,加强数学知识之间的联系,对于养成优良的学习习惯,感悟数学学习、研究方法,培养分析和解决问题的能力,积累数学活动经验有着严重作用。
本节课要通过加强知识间的相互联系,使学生的学习形成正迁移。
教材中首先通过确定比萨斜塔倾斜程度问题引出解直角三角形的概念,接着通过一个“探究”栏目提出问题:在直角三角形中,除直角以外的五个元素之间有哪些关系?知道五个元素中的几个,就可以求其他元素了?将这个栏目中真正需要探究的第二个问题的思考过程完全留给学生,而直接给出结论:利用边、角之间的相互关系,知道三边和两个锐角中的两个元素(其中至少有一个是边),就可以求出其余的元素(俗称“知二求三”);进而给出“知二求三”解直角三角形的例题示范;并安排相当数量的练习题,使学生对“知二求三”的可行性以及详尽求解方法有充分体验,获得较多的感性认识,让学生进一步感受到了数形结合的思想方法。
九年级数学《解直角三角形的应用》说课稿
九年级数学《解直角三角形的应用》说课稿【小编寄语】查字典数学网小编给大家整理了九年级数学《解直角三角形的应用》说课稿,希望能给大家带来帮助!《解直角三角形的应用》说课稿今天我说课的内容是新人教版初中数学九年级下册第28章《解直角三角形的应用》,我将从教材分析、教法学法、教学程序、设计思路这四个方面进行说课。
一、教材分析(一)教材地位直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用.《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。
因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。
(二)教学目标这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。
但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。
针对上述学生情况,确定本节课的教学目标如下:1.通过观察、交流等活动,会建立直角三角形模型。
2.经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣.(三)重点难点1.重点:熟练运用有关三角函数知识.2.难点:如何添作辅助线解决实际问题.二、教法学法1.教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。
2.学法:主要是发挥学生的主观能动性。
学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。
三、教学程序(一)准备阶段我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。
预习作业:1. 如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?2. 填表:锐角α 三角函数3. 已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水平距离为 m,求这栋高楼有多高?4. 如图:AB=200m,在A处测得点C在北偏西300的方向上,在 B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?5.如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE= ,求BE的长。
人教初中数学九年级下册《28-2 解直角三角形及其应用》(教学设计)
人教初中数学九年级下册《28-2 解直角三角形及其应用》(教学设计)一. 教材分析《28-2 解直角三角形及其应用》是人教初中数学九年级下册的一章内容。
这一章节主要介绍了解直角三角形的知识和方法,以及直角三角形在实际生活中的应用。
本章内容是学生在学习了三角函数和勾股定理的基础上进行的,是初中数学的重要内容之一。
二. 学情分析学生在学习本章内容时,已经具备了一定的数学基础,如算术、代数和几何知识。
但是,对于解直角三角形的实际应用,可能还比较陌生。
因此,在教学过程中,需要引导学生将理论知识与实际应用相结合,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的方法,能够运用勾股定理和三角函数解决实际问题。
2.过程与方法:通过小组合作、探究学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。
四. 教学重难点1.重点:解直角三角形的方法和技巧。
2.难点:如何将解直角三角形的知识应用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解直角三角形的应用。
2.小组合作学习:让学生在小组内进行讨论和实践,提高学生的团队协作能力。
3.探究学习法:引导学生主动探究解直角三角形的方法,培养学生的创新能力。
六. 教学准备1.教学素材:准备相关的生活实例和问题,以便进行情境教学。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,如测量旗杆的高度,引出直角三角形和解直角三角形的重要性。
让学生思考如何解决这个问题,激发学生的学习兴趣。
2.呈现(10分钟)讲解解直角三角形的基本方法,如使用勾股定理和三角函数。
通过示例,引导学生理解并掌握这些方法。
3.操练(10分钟)让学生进行一些解直角三角形的练习题,巩固所学知识。
教师可以给予学生一定的指导,帮助学生解决问题。
4.巩固(10分钟)通过一些实际问题,让学生运用解直角三角形的知识解决问题。
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计2
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计2一. 教材分析人教版数学九年级下册28.2《解直角三角形及其应用》是本节课的教学内容。
这部分内容主要包括直角三角形的性质、锐角三角函数的概念及应用。
通过这部分内容的学习,学生能够理解和掌握直角三角形的性质,熟练运用锐角三角函数解决实际问题。
教材通过丰富的案例和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数的概念和直角三角形的性质。
但部分学生在应用锐角三角函数解决实际问题时,仍存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,针对性地进行辅导,帮助学生提高解题能力。
三. 教学目标1.理解直角三角形的性质,掌握锐角三角函数的概念及应用。
2.能够运用锐角三角函数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.教学重点:直角三角形的性质,锐角三角函数的概念及应用。
2.教学难点:运用锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,激发学生的学习兴趣。
2.案例教学法:分析实际问题,引导学生运用锐角三角函数解决问题。
3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力。
4.启发式教学法:引导学生主动思考,提高学生的逻辑思维能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。
2.练习题:准备相关练习题,巩固所学知识。
3.教学工具:准备三角板、直尺等教学工具,便于直观展示。
七. 教学过程1.导入(5分钟)利用生活实例,如测量楼高、电视塔高度等,引导学生思考如何利用数学知识解决实际问题。
激发学生的学习兴趣,引出本节课的主题。
2.呈现(10分钟)讲解直角三角形的性质,引导学生掌握锐角三角函数的概念。
通过示例,演示如何运用锐角三角函数解决实际问题。
3.操练(10分钟)学生分组讨论,分析练习题。
数学人教版九年级下册解直角三角形的应用举例
28.2解直角三角形及其应用举例教案背景:1、面向学生:初中三年级 学科:数学2、课时:4课时(本节为3课时)3、复习锐角三角函数的概念,解直角三角形的有关知识。
4、课前准备:导学案,多媒体课件。
教学课题:28.2解直角三角形及其应用举例教材分析:解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
本节课主要内容是通过认识仰角、俯角的意义,并结合解直角三角形的基本理论知识去解决生活中的简单实际问题,它是在学习了“锐角三角函数、解直角三角形的条件、方法”的基础上进一步深入教学,使学生能联系新旧知识学有所用。
教学方法:本节课主要运用了小组探究、精讲点拨、合作交流。
为了突出重点,突破难点,我充分运用了互联网的信息,制作了多媒体课件,另外对测量物体高度的方法进一步拓展,开阔了学生的知识面,提高了学生学习数学的兴趣。
教学过程:一、教学目标:(一)知识目标:理解仰角、俯角的意义,准确运用这些概念来解决一些实际问题。
(二)能力目标:培养学生将实际问题抽象成数学模型并进行解释与应用的能力。
(三)情感与态度目标:在探究学习过程中,注重培养学生的合作交流意识,激发学生学习数学的兴趣。
二、教学重点:理解仰角和俯角的概念教学难点:能解与直角三角形有关的实际问题。
三、关键:如何充分利用多媒体演示以及网络教学资源,使学生理解仰角和俯角的概念;并善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,这是突出重点和突破难点的关键。
四、教学过程设计:(一)、复习引入,知识储备1、解直角三角形一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。
由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形。
2、回想一下,解直角三角形的过程中用到了哪些知识?你能概括出直角三角形各元素之间的关系吗?(1)三边之间的关系(勾股定理) ;(2)两锐角之间的关系 C B A(3) 边角之间的关系sin A= , cos A= , tan A= ,sinB= , cosB= , tanB=3、平时观察物体时,我们的视线相对于水平线来说可有几种情况?三种:重叠、向上和向下。
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3一. 教材分析《人教版数学九年级下册28.2《解直角三角形及其应用》》这一章节是在学生已经掌握了锐角三角函数的基础上进行学习的,目的是让学生能够运用解直角三角形的知识解决实际问题。
本章节主要包括解直角三角形的概念、方法及其应用。
通过本章节的学习,学生能够进一步理解和掌握解直角三角形的方法,提高解决实际问题的能力。
二. 学情分析学生在学习本章节之前,已经掌握了锐角三角函数的知识,具备了一定的几何基础。
但是,对于解直角三角形的应用,学生可能还不够熟悉,需要通过实例讲解和练习来提高理解。
同时,学生可能对于实际问题的解决还缺乏一定的思路和方法,需要教师进行引导和指导。
三. 教学目标1.知识与技能:使学生理解和掌握解直角三角形的概念、方法及其应用。
2.过程与方法:通过实例讲解和练习,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。
四. 教学重难点1.重点:解直角三角形的概念、方法及其应用。
2.难点:如何运用解直角三角形的知识解决实际问题。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过实例讲解和练习,引导学生掌握解直角三角形的方法,并通过讨论和探究,提高学生解决实际问题的能力。
六. 教学准备1.教具准备:黑板、粉笔、课件等。
2.学具准备:练习本、直尺、三角板等。
七. 教学过程1.导入(5分钟)通过复习锐角三角函数的知识,引导学生回顾已学的三角函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)(1)讲解解直角三角形的概念,介绍解直角三角形的定义及其性质。
(2)讲解解直角三角形的方法,包括勾股定理、三角函数的定义等。
(3)通过示例,演示解直角三角形的具体步骤和应用。
3.操练(10分钟)学生独立完成练习题,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生分组讨论,总结解直角三角形的方法和技巧。
人教版数学九年级下册28 解直角三角形及其应用教案与反思
28.2 解直角三角形及其应用人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】店铺,不迷路!28.2.1 解直角三角形(第1课时)教学目标一、基本目标【知识与技能】1.了解什么叫解直角三角形.2.掌握解直角三角形的根据.3.能由已知条件解直角三角形.【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想.【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标【教学重点】解直角三角形的方法.【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P72~P73的内容,完成下面练习.【3min反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c.(1)两锐角互余,即∠A+∠B=90°;(2)三边满足勾股定理,即a2+b2=c2;(3)边与角关系sin A=cos B=ac,cos A=sin B=bc,tan A=ab,tan B=ba.3.Rt△ABC中,若∠C=90°,sin A=45,AB=10,那么BC=8,tan B=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2 巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( A )A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4 3.3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3 拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°∴MD=BMtan 60°=43,∴CD=CM-MD=12-4(3).【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P74~P75的内容,完成下面练习.【3min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tanα米.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2 巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少?(精确到0.1m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°.∵在Rt△ACD中,CD=21m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3m.活动3 拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D 两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)【互动探索】要求AB,先求出AE与BE→解直角三角形:Rt△ADE、Rt△BCE.【解答】在Rt△ADE中,∵∠ADE=65°,DE=15米,∴tan∠ADE=AE DE,即tan65°=AE15≈2.1,解得AE≈31.5米.在Rt△BCE中,∵∠BCE=42°,CE=CD+DE=6+15=21(米),∴tan∠BCE=BE CE,即tan42°=BE21≈0.9,解得BE≈18.9米.∴AB=AE-BE=31.5-18.9≈13(米).即旗杆AB的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt△ADE、Rt△BCE,利用AB=AE-BE即可求出答案.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!第3课时利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i=坡面的铅直高度坡面的水平宽度=坡角的正切值.【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P76~P77的内容,完成下面练习.【3min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m 的形式.坡面与水平面的夹角叫做坡角,记作α,有i =h l=tan α. 2.一斜坡的坡角为30°,则它的坡度为1∶ 3.(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD的长并与10海里比较→得出结论.【解答】如题图,过点A作AD⊥BC交BC的延长线于点D.在Rt△ABD中,∵tan∠BAD=BD AD ,∴BD=AD·tan55°.在Rt△ACD中,∵tan∠CAD=CD AD ,∴CD=AD·tan25°.∵BD=BC+CD,∴AD·tan55°=20+AD·tan25°,∴AD=20tan 55°-tan 25°≈20.79(海里).而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A距BC的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD,AD∥BC,路基顶宽BC=9.8m,路基高BE=5.8m,斜坡AB的坡度i=1∶1.6,斜坡CD的坡度i′=1∶2.5,求铁路路基下底宽AD的值(精确到0.1m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8m,i=1∶1.6,i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tanα=i=1∶1.6,tanβ=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2 巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为65米.2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C村村民欲修建一条水泥公路,将C村与区级公路相连.在公路A处测得C村在北偏东60°方向,沿区级公路前进500m,在B处测得C村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C作CD⊥AB,垂足落在AB的延长线上,CD即为所修公路,CD的长度即为公路长度.在Rt△ACD中,根据题意,有∠CAD=30°.∵tan∠CAD=CD AD,∴AD=CDtan 30°=3C D.在Rt△CBD中,根据题意,有∠CBD=60°.∵tan∠CBD=CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500m,∴3CD-33CD=500,解得CD≈433m.活动3 拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶3,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠CED=60°.∵AB的坡比为1∶3,∴∠ABE=30°,∴∠BAE =90°.∵AB =3米,∴AE =AB tan ∠ABE =3×33=3(米), ∴BE =2AE =23米.∵∠C =∠CED =60°,∴△CDE 是等边三角形.∵AC =6米,∴DE =CE =AC +AE =(6+3)米,∴BD =DE -BE =6+3-23=(6-3)(米).即浮漂D 与河堤下端B 之间的距离为(6-3)米.【互动总结】(学生总结,老师点评)本题既考查了解直角三角形,也考查了等边三角形的性质,根据已知条件构造出直角三角形及等边三角形是关键.环节3 课堂小结,当堂达标(学生总结,老师点评)⎩⎪⎨⎪⎧ 坡度与坡角⎩⎨⎧ 坡度的概念→通常写成比的形式坡角的概念→坡度越大,坡面就越陡方向角:指正北、正南方向线与目标方向线所形 成的角练习设计请完成本课时对应练习!【素材积累】 海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
人教版九年级数学下册28.2解直角三角形利用解直角三角形解决实际问题优秀教学案例
1.生活情境的创设:本节课通过现实生活中的实例导入,让学生感受到直角三角形在实际生活中的应用,激发了学生的学习兴趣,增强了学生的学习解决问题的能力。
3.教师巡回指导,及时给予反馈和解答学生的问题,提高学生的解题能力。
(四)总结归纳
1.让学生回顾本节课所学知识,总结解直角三角形的原理、方法和实际应用。
2.强调解直角三角形在现实生活中的重要性,激发学生学习的兴趣和责任感。
3.布置课后作业,要求学生运用所学知识解决实际问题,巩固所学内容。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示现实生活中的直角三角形实例,如建筑工人测量高度、运动员判断跳远距离等,引导学生关注直角三角形在实际生活中的应用。
2.提出问题:“这些实例中,为什么直角三角形能够解决问题?”让学生思考并回答,激发学生对直角三角形的兴趣。
3.总结:直角三角形在实际生活中具有广泛的应用,本节课我们将学习如何解直角三角形,并运用所学知识解决实际问题。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的场景为背景,创设具有挑战性的问题,激发学生的学习兴趣,引导学生运用解直角三角形解决实际问题。
2.探究情境:设计一系列问题,引导学生观察、思考、探究,激发学生的思维,培养学生独立解决问题的能力。
3.合作情境:组织学生进行小组讨论和实践,让学生在合作中交流、分享,培养学生的团队合作能力和解题策略。
人教版九年级数学下册28.2解直角三角形利用解直角三角形解决实际问题优秀教学案例
一、案例背景
本节内容以“人教版九年级数学下册28.2解直角三角形利用解直角三角形解决实际问题”为主题,旨在让学生掌握解直角三角形的知识和方法,并能够运用到实际问题中。在教学过程中,我以学生的生活经验为切入点,设计了丰富多样的教学活动,引导学生通过观察、思考、探究、合作等方式,深入理解解直角三角形的原理和应用,提高他们的数学素养和实际问题解决能力。
数学人教版九年级下册28.2解直角三角形的应用举例教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决具体问题时,对于角度和边长单位的转换和实际意义的理解。
举例解释:
-难点一:通过图形和实例,解释正弦、余弦、正切函数在不同象限的符号变化,如正弦函数在第二象限为正,在第三象限为负。
-难点二:指导学生如何从复杂的实际问题中提取关键信息,建立直角三角形的数学模型,例如在测量角度时,如何确定观察点与目标点之间的直角关系。
在小组讨论环节,我鼓励学生提出自己的观点和想法,并进行交流。这种开放性的讨论有助于培养学生的创新思维和团队协作能力。但同时,我也意识到在讨论过程中,需要更好地发挥引导作用,引导学生聚焦主题,避免讨论偏离方向。
1.对于基础概念的教学,应更加注重学生的理解程度,及时了解他们的困惑,并进行针对性的解答。
2.在实践活动和小组讨论中,要关注学生的参与度,鼓励他们积极思考、提问和分享,同时也要注意引导他们遵循正确的思考路径。
-难点三:在实际应用中,如何将测量得到的角度值或边长值转换为实际意义,例如将角度转换为方向,或将边长转换为距离。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形的应用举例》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量高度或距离的情况?”(如测量教学楼的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
九年级下册数学教案《解直角三角形的应用举例》
九年级下册数学教案《解直角三角形的应用举例》教材分析解直角三角形是继勾股定理后对直角三角形的进一步学习,主要研究如何利用解直角三角形的有关知识,解决与直角三角形有关的实际问题。
比如:方向角问题、仰角俯角问题、坡度问题等。
我们要理解解直角三角形的方法,理解方向角、仰角、俯角、坡度等名词的意义,掌握将实际问题转化为数学模型的思想方法,达到灵活运用数学知识解决实际问题的目的。
学情分析《解直角三角形的应用举例》是直角三角形的学习中重要的教学内容,是在学生已经学习了锐角三角函数的基本知识上,要求学生会运用“解直角三角形”的知识,按照一定的规则,解决实际生活中碰到的问题,从而达到“能力培养与方法习得”、“情感态度与价值观”的教学目标。
教学目标1、掌握仰角、俯角的概念,会正确运用概念解直角三角形的知识,解决实际问题。
2、体验方程思想和数形结合思想在解直角三角形中的用途。
3、感知解直角三角形的应用与现实生活的密切联系,进一步认识将数学知识运用于实践的意义。
教学重点将实际问题转化为解直角三角形问题。
教学难点将实际问题中的数量关系转化为直角三角形中元素间的关系求解。
教学方法讲授法,演示法,讨论法,练习法教学过程一、复习导入1、在直角三角形中,(由直角三角形中的已知元素,求出其余未知元素的过程)叫做解直角三角形。
2、如图,在解直角三角形的过程中,一般要用到的一些关系:(1)三边之间的关系a 2 +b 2 =c 2(勾股定理)(2)两锐角之间的关系∠A + ∠B = 90°(3)边角之间的关系sin A =∠A 的对边斜边 = a c cos A =∠A 的邻边斜边 = b c tan A =∠A 的对边∠A 的邻边= a b二、探究问题1、2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接。
“神舟”九号与“天宫”一号的组合体在离地球表面343km 的圆形轨道上运行。
如图,当组合体运行到地球表面P 点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P 点的距离是多少(地球半径约为6400km ,π取3.142,结果取整数)?分析:从组合体中能直接看到的地球表面最远点,是视线与地球相切时的切点。
人教版九年级数学下册:28.2.1《解直角三角形》说课稿5
人教版九年级数学下册: 28.2.1 《解直角三角形》说课稿5一. 教材分析《解直角三角形》是人教版九年级数学下册第28章第2节的一个内容。
这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。
解直角三角形是解决实际问题的重要工具,对于提高学生的数学应用能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。
但是,他们在解决实际问题时,往往会因为不能正确地列出直角三角形的已知条件而感到困惑。
因此,在教学过程中,我们需要帮助学生理解直角三角形的性质,熟练运用锐角三角函数解直角三角形。
三. 说教学目标1.知识与技能目标:使学生掌握解直角三角形的方法,能熟练运用锐角三角函数解直角三角形。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们的观察能力、思考能力和创新能力。
四. 说教学重难点重点:解直角三角形的方法和步骤。
难点:在解决实际问题时,如何正确地列出直角三角形的已知条件,运用解直角三角形的方法求解。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段。
六. 说教学过程1.导入:通过复习锐角三角函数和直角三角形的性质,引导学生进入本节内容。
2.自主学习:让学生自主探究解直角三角形的方法,教师巡回指导。
3.合作交流:学生分组讨论,分享解题心得,教师总结解直角三角形的方法。
4.教师引导:通过实例讲解,引导学生掌握解直角三角形的步骤。
5.练习巩固:让学生独立解决一些实际问题,巩固所学知识。
6.课堂小结:教师引导学生总结本节课的主要内容和收获。
七. 说板书设计板书设计如下:解直角三角形1.确定直角三角形的已知条件2.列出已知条件,画出直角三角形3.运用锐角三角函数求解4.检查答案,得出结论八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、合作交流情况。
人教版九年级数学下册:28.2.1《解直角三角形》说课稿3
人教版九年级数学下册: 28.2.1 《解直角三角形》说课稿3一. 教材分析《人教版九年级数学下册》第28章第2节《解直角三角形》是整个初中数学的重要内容之一。
本节课主要介绍了解直角三角形的知识和方法,通过学习,学生能够掌握直角三角形的性质,学会使用锐角三角函数解直角三角形。
教材从实际问题出发,引导学生探索直角三角形的边角关系,培养学生的动手操作能力和解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对函数、勾股定理等概念有了一定的了解。
但是,对于如何将实际问题转化为数学问题,以及如何运用所学知识解决实际问题,部分学生还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生将实际问题与数学知识相结合,提高学生解决实际问题的能力。
三. 说教学目标1.知识与技能:让学生掌握直角三角形的性质,学会使用锐角三角函数解直角三角形。
2.过程与方法:通过观察、操作、探索,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:直角三角形的性质,锐角三角函数在解直角三角形中的应用。
2.教学难点:如何将实际问题转化为数学问题,以及如何运用所学知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:多媒体课件、黑板、几何画板等。
六. 说教学过程1.导入新课:通过展示实际问题,引导学生思考如何解决这些问题,从而引出本节课的主题。
2.自主学习:让学生通过观察、操作、探索,掌握直角三角形的性质,学会使用锐角三角函数解直角三角形。
3.合作交流:学生分组讨论,分享各自的学习心得,解决学习中遇到的问题。
4.教师讲解:针对学生的讨论情况进行讲解,解答学生心中的疑问。
5.巩固练习:布置适量的练习题,让学生巩固所学知识。
6.总结拓展:对本节课的知识进行总结,引导学生思考如何将所学知识应用于实际问题。
人教版九年级数学下册28.2解直角三角形及其应用说课稿
(三)互动方式
我将设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:通过提问、解答、示范等方式,引导学生积极参与课堂讨论,关注学生的个体差异,给予个性化指导。
2.生生互动:组织学生进行分组讨论、合作解题,鼓励他们互相分享解题思路和方法,培养团队协作能力。
2.互相评价:组织学生互相评价,鼓励他们提出建议和意见,共同提高。
3.教师反馈:针对学生的表现,给予积极的反馈和建议,指导他们如何改进学习方法,提高学习效果。
(五)作业布置
课后作业布置如下:
1.书面作业:布置一些具有代表性的题目,让学生在课后巩固所学知识,达到熟练掌握的程度。
2.实践作业:鼓励学生在家中或学校周边寻找实际问题,运用解直角三角形的方法解决问题,并撰写解题报告。
人教版九年级数学下册28.2解直角三角形及其应用说课稿
一、教材分析
(一)内容概述
本节课为人教版九年级数学下册第28章第2节“解直角三角形及其应用”。该部分内容在整个课程体系中具有重要地位,它既是前面直角三角形知识的延伸,也为后续学习三角函数打下基础。本节课主要包含以下知识点:1.锐角三角函数的定义及性质;2.利用锐角三角函数解直角三角形;3.实际应用,如测量物体高度、求距离等。
2.学生在将实际问题转化为数学模型时可能遇到困难;
3.课堂时间有限,可能导致教学进度紧张。
应对策略:
1.对于理解不深的学生,我将通过个别辅导和课后答疑帮助他们;
2.通过案例分析和实际操作,引导学生学会转化问题;
3.合理安排课堂时间,确保教学内容的完整性和连贯性。
课后,我将通过以下方式评估教学效果:
数学人教版九年级下册《解直角三角形》效果分析
《解直角三角形》教学效果分析
饶河二中薛怀杰
本节课采用“问题情境—合作探究—建立模型—应用与拓展”的教学模式,让学生亲身经历知识的形成与应用过程,促进学生目标的达成。
以世界著名的建筑奇观—“比萨斜塔”引出新课,激发了学生学习兴趣和探究新知的欲望。
对于解直角三角形条件的探究,力求体现“学生为主体,教师为主导”的教育理念。
引导学生梳理直角三角中五个元素之间的关系,接着以问题串引导学生分类探究解直角三角形的条件,最后讨论交流发现结论。
让学生经历综合运用勾股定理、直角三角形的两个锐角互余和锐角三角函数解直角三角形的过程,培养学生分析问题解决问题的能力,让学生进一步感受“数形结合”思想方法。
在“建模应用”环节,我让学生从身边较为熟悉的实际例子出发,自己编写一道解直角三角形的题并解答,学生编写完解直角三角形的题后,独立完成,同桌交流,学生代表展示,教师引导归纳,学生可以进一步明确解直角三角形的条件,从而突破难点,培养学生发现问题、解决问题的能力。
我在教学中注重加强数学知识之间的联系,使学生的学习形成迁移,这对学生感悟数学学习、研究方法,培养分析和解决问题的能力,积累数学活动经验有着重要作用。
在教学方法上,我
鼓励学生自主探究、小组合作,让学生在“做中学”,为提供了广阔的探究空间,让学生独立思考,有效地改变了学生的学习方式,发展了学生的思维能力和创新意识。
九年级数学下册人教版28.2.1解直角三角形说课稿
(1)小组讨论:将学生分成小组,针对特定问题进行讨论,促进知识和经验的交流。
(2)小组竞赛:通过小组间的竞赛活动,激发学生的学习热情和竞争意识。
这些互动方式旨在营造积极的学习氛围,促进学生主动参与和合作,提高学习效果。
四、教学过程设计
(一)导入新课
新课导入是激发学生兴趣和注意力的关键环节。我将采用以下方式导入新课:
3.学习兴趣:学生对新颖、有趣的问题较为感兴趣,喜欢挑战性的题目,对实际应用性问题更感兴趣。
4.学习习惯:学生可能已经形成了自己的学习方法,但需要引导他们进行更加系统的思考和总结。
(二)学习障碍
学生在学习本节课之前可能具备以下前置知识或技能:
1.掌握三角形的基本概念和性质。
2.熟悉直角三角形的基本特征。
(二)教学反思
在教学过程中,我预见到可能出现的问题包括学生对三角函数概念的理解困难、解题过程中的计算错误以及对实际应用问题的把握不足。为应对这些问题,我会:
1.通过实例和动画辅助讲解,帮助学生形象理解三角函数。
2.在解题时强调检查和验证,培养学生的细心和耐心。
3.设计更多实际问题,让学生在实践中学习和应用。
2.设计有趣的实际例题,引导学生主动思考、探索,提高他们的学习兴趣。
3.创设小组讨论和合作学习的机会,让学生在互动中解决问题,培养他们的合作精神和团队意识。
4.鼓励学生提问,及时解答他们的疑问,让他们感受到学习的成就感。
5.定期进行课堂小测验,检验学生的学习效果,激发他们的竞争意识。
三、教学方法与手段
九年级数学下册人教版28.2.1解直角三角形说课稿
一、教材分析
(一)内容概述
本节课是九年级数学下册人教版28.2.1解直角三角形,它在整个课程体系中属于几何部分,是三角形知识体系的重要组成部分。本节课主要知识点包括:
人教版数学九年级下册教学设计28.2《解直角三角形及其应用》
人教版数学九年级下册教学设计28.2《解直角三角形及其应用》一. 教材分析人教版数学九年级下册第28.2节《解直角三角形及其应用》是本册教材中的重要内容,主要让学生掌握解直角三角形的各种方法,以及如何运用这些方法解决实际问题。
本节课的内容包括:了解直角三角形的性质,掌握解直角三角形的基本方法,学会运用解直角三角形解决实际问题。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对三角形有了一定的了解。
但是,对于解直角三角形的应用,部分学生可能会感到困难。
因此,在教学过程中,需要关注学生的学习困难,引导学生掌握解直角三角形的方法,并能够运用到实际问题中。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的基本方法,能够运用这些方法解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:解直角三角形的基本方法。
2.难点:如何运用解直角三角形的方法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的解决问题的能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备教学PPT和其他教学资源。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如:“一个房屋的面积是50平方米,已知其中一个角是90度,另外两个角的度数分别是30度和60度,求房屋的长和宽。
”2.呈现(10分钟)呈现房屋的示意图,引导学生观察并思考问题。
让学生尝试用已学的知识解决此问题,鼓励学生发表自己的观点和想法。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用解直角三角形的方法进行解决。
教师在这个过程中给予学生指导,帮助学生解决问题。
4.巩固(10分钟)请各组代表分享自己组的问题和解决过程,让全班学生共同讨论和评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《解直角三角形应用举例教材分析、学法指导》-----福州江南水都中学魏文勋
一、教材分析
(一)、教材的地位与作用
本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。
通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。
从而进一步把形和数结合起来,提高分析和解决问题的能力。
它既是前面所学知识的运用,也是高中继续解斜三角形的严重预备知识。
它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的对学生进行这方面的能力培养。
(二)教学重点
本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。
(三)、教学难点
由于直角三角形的边角之间的关系较多,学生一下难以烂熟运用,因此选择适合的关系式解直角三角形是本课的难点。
(四)、教学目标分析
1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。
其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的严重数学知识”。
2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。
其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的严重方式”。
3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。
其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和大凡能力方面都能得到充分发展”。
二、学法指导
(一)、教法分析
本节课采用的是“探究式”教法。
在以最简短的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。
接着通过例题,让学生主动探索解直角三角形所需的最简条件。
学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养结合协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。
教法设计思路:通过例题讲解,使学生熟悉解直角三角形的大凡方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。
(二)、学法分析
通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。
通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。
学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。
(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。