压电陶瓷实验报告

合集下载

压电陶瓷模拟分析报告

压电陶瓷模拟分析报告

压电陶瓷模拟分析报告
近年来,压电陶瓷在科技领域中发挥着越来越重要的作用。

压电陶瓷作为一种具有压电效应的材料,能够通过施加外力或电场来改变其形状或产生电荷,具有广泛的应用前景。

为了更好地了解和利用压电陶瓷的性能,本文对其进行了模拟分析。

首先,我们通过有限元分析软件对压电陶瓷的机械特性进行了模拟。

我们将压电陶瓷材料分割为小的有限元单元,并在每个单元上施加一定的外力。

通过求解有限元方程,我们得到了压电陶瓷在不同载荷下的应力和变形情况。

结果显示,压电陶瓷在外力作用下会发生弯曲和拉伸等变形,这些变形程度与施加的外力大小有关。

接下来,我们对压电陶瓷的电学特性进行了模拟分析。

我们在压电陶瓷的两端施加电场,并通过求解电场分布方程得到了电场分布情况。

结果表明,压电陶瓷中的电场分布不均匀,电场在陶瓷内部呈现出高低不等的分布情况。

此外,我们还研究了电场强度对压电陶瓷的压电效应的影响。

结果显示,电场强度越大,压电效应越明显。

最后,我们对压电陶瓷的耦合特性进行了模拟分析。

我们同时考虑了机械载荷和电场的作用,并通过求解耦合方程得到了压电陶瓷的耦合效应。

结果显示,机械载荷和电场的耦合作用会导
致压电陶瓷的形状变化和电荷分布的改变。

这种耦合效应使得压电陶瓷能够广泛应用于传感器、执行器等领域。

综上所述,通过模拟分析压电陶瓷的机械、电学和耦合特性,我们对其性能有了更深入的理解。

这些模拟结果为我们设计和制造更高性能的压电陶瓷材料提供了指导。

未来,我们将继续研究压电陶瓷的模拟分析,以进一步拓展其应用领域,并为实际应用提供更好的支持。

压电陶瓷性能实验报告

压电陶瓷性能实验报告

一、实验目的1. 了解压电陶瓷的基本性能、结构、用途、制备方法。

2. 掌握压电陶瓷常见的表征方法及检测手段。

3. 通过实验,掌握压电陶瓷的性能测试方法,并对实验数据进行处理和分析。

二、实验原理压电陶瓷是一种具有压电效应的陶瓷材料,当受到外力作用时,会在其表面产生电荷;反之,当施加电场时,压电陶瓷会产生形变。

压电陶瓷的性能主要包括压电系数、介电常数、损耗角正切、机械品质因数等。

三、实验材料与仪器1. 实验材料:压电陶瓷样品2. 实验仪器:(1)电容测微仪(2)机械标定仪(3)直流电源(4)扫描隧道显微镜(5)谐振法测定仪(6)准静态法测定仪四、实验步骤1. 样品准备:将压电陶瓷样品清洗干净,并用无水乙醇进行脱脂处理。

2. 压电陶瓷性能测试:(1)电容测微仪测试:将压电陶瓷样品固定在电容测微仪上,通过改变直流电压,观察样品的轴向变形和弯曲变形。

(2)谐振法测定:将压电陶瓷样品固定在谐振法测定仪上,测量样品的频率响应曲线和压电耦合系数。

(3)准静态法测定:将压电陶瓷样品固定在准静态法测定仪上,测量样品的压电常数d33。

3. 数据处理与分析:将实验数据输入计算机,进行数据处理和分析,得出压电陶瓷的性能参数。

五、实验结果与分析1. 电容测微仪测试结果:通过电容测微仪测试,得出压电陶瓷样品的轴向变形和弯曲变形与电压的关系曲线。

根据曲线,计算出样品的压电系数。

2. 谐振法测定结果:通过谐振法测定,得出压电陶瓷样品的频率响应曲线和压电耦合系数。

根据曲线,计算出样品的介电常数和损耗角正切。

3. 准静态法测定结果:通过准静态法测定,得出压电陶瓷样品的压电常数d33。

根据测定结果,分析样品的压电性能。

六、实验结论1. 压电陶瓷样品具有良好的压电性能,满足实验要求。

2. 实验过程中,通过电容测微仪、谐振法测定和准静态法测定,分别获得了压电陶瓷样品的轴向变形、弯曲变形、频率响应曲线、压电耦合系数、介电常数、损耗角正切和压电常数等性能参数。

实验2压电陶瓷特性及振动的干涉测量

实验2压电陶瓷特性及振动的干涉测量

——压电常数
实验2 压电陶瓷特性及振动的干涉测量
3. 压电陶瓷振动特性的研究
正弦信号的频率反映了振动
光电信 号(V)
A
的速度;
三角波一个周期内包含的正
驱动电 压(V)
弦波周期数量反映了振幅。
光电探头
R
G
激光器
1
时间 t(s)
提取信号
时间 t(s)
扩束镜 示
压电陶瓷附件波2T器分束镜反射

反射镜
驱动 电压
驱动 电源
实验2 压电陶瓷特性及振动的干涉测量
实验2 压电陶瓷特性及振动的干涉测量
1. 压电陶瓷特性
l l0 a V
l0
3
——压电常数
1
2
图1 实验用的圆管形压电陶瓷
实验2 压电陶瓷特性及振动的干涉测量
2. 干涉法测量压电常数
l l0 a V
l0
a l V l0
l n 2
a n 2l0 V

电致伸缩实验报告

电致伸缩实验报告

一、实验目的通过本实验,了解压电陶瓷的电致伸缩效应,测量其电致伸缩系数,并分析影响电致伸缩系数的因素。

二、实验原理电致伸缩效应是指在外加电场作用下,某些物质(如压电陶瓷)的体积发生变化的现象。

这种现象在压电陶瓷的应用中具有重要意义,如声波发射、振动传感等。

本实验中,通过调节电源输出电压,观测压电陶瓷的形变,记录并画出压电陶瓷的n-U曲线,用线性回归法求准线性区域的电致伸缩系数。

三、实验仪器与材料1. 压电陶瓷样品2. 数字电压表3. 线性电源4. 压电陶瓷夹具5. 标准砝码6. 拉伸计7. 记录纸及笔四、实验步骤1. 将压电陶瓷样品固定在夹具上,确保样品稳定。

2. 调节线性电源输出电压,从低到高逐渐增加电压,同时观察压电陶瓷样品的形变情况。

3. 记录不同电压下压电陶瓷样品的形变量,并画出n-U曲线(升压过程和降压过程)。

4. 对n-U曲线进行线性回归,求准线性区域的电致伸缩系数。

五、实验数据与结果1. 实验数据电压(V)形变量(mm)0.0 0.00.5 0.11.0 0.21.5 0.32.0 0.42.5 0.53.0 0.63.5 0.74.0 0.84.5 0.95.0 1.02. 结果分析(1)n-U曲线分析根据实验数据,绘制n-U曲线,可以看出在低电压范围内,压电陶瓷的形变量与电压成正比,即存在线性关系。

随着电压的增加,形变量逐渐增大,但增长速度逐渐变慢。

在较高电压下,形变量与电压不再保持线性关系,说明电致伸缩效应在高压区域已趋于饱和。

(2)电致伸缩系数计算对n-U曲线进行线性回归,得到准线性区域的电致伸缩系数为1.2×10^-4 mm/V。

六、实验结论1. 本实验验证了压电陶瓷的电致伸缩效应,通过调节电源输出电压,可以观测到压电陶瓷的形变情况。

2. 在低电压范围内,压电陶瓷的形变量与电压成正比,电致伸缩效应明显。

3. 电致伸缩系数为1.2×10^-4 mm/V,说明压电陶瓷具有较好的电致伸缩性能。

压电陶瓷实验报告

压电陶瓷实验报告

压电陶瓷微位移性能测量实验报告一、实验目的:1、了解压电陶瓷的性能参数;2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法;3、掌握压电陶瓷微位移测量方法;二、实验仪器:电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根三、实验原理:(一)利用测微台架标定电容测微仪在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。

这样得到一组数据即可对电容测微仪进行标定。

图1 电容侧微仪标定原理图(二)用标定后的电容测微仪测量压电陶瓷管的线性度在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。

图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲四、实验步骤(一)标定电容测微仪的线性度1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。

2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。

3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。

4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。

(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。

)5、实验完成后,调整测微台架使探头远离标定平板到合适位置,取下标定平板(并估算找出电容测微仪的线性工作区,我们找的较为好的线性工作区是0~100μm)以进行压电陶瓷的性能及其微位移测量的实验。

无铅压电陶瓷实验报告

无铅压电陶瓷实验报告

一、实验目的本实验旨在探究无铅压电陶瓷的制备工艺、性能测试及其在压电应用中的潜在价值。

通过实验,了解无铅压电陶瓷的物理化学性质,掌握其制备过程,并评估其在压电性能方面的表现。

二、实验材料与设备1. 实验材料:- 钛酸铋钠(Na0.5Bi0.5TiO3,简称NBT)- 钛酸锶钡(BaxSr1-xTiO3,简称BST)- 氧化铋(Bi2O3)- 氧化钡(BaO)- 氧化钠(Na2O)- 氧化钾(K2O)- 氧化锂(Li2O)2. 实验设备:- 搅拌机- 烧结炉- 压电测试仪- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- 能量色散谱仪(EDS)三、实验步骤1. 粉体合成:将上述原料按一定比例混合,在搅拌机中充分混合均匀,制备成粉末。

2. 烧结:将混合好的粉末装入模具,在烧结炉中加热至一定温度,保温一段时间后冷却。

3. 性能测试:利用压电测试仪测试样品的压电性能,包括介电常数、介电损耗、压电系数等。

利用SEM、XRD和EDS分析样品的微观结构和物相组成。

四、实验结果与分析1. 介电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的介电常数(εr=1000-3000),介电损耗较低(tanδ=0.001-0.02),表现出良好的介电性能。

2. 压电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的压电系数(d33=300-500pC/N),在压电应用中具有较高的潜力。

3. 微观结构:SEM结果表明,样品具有良好的晶粒结构,晶粒尺寸约为1-2 μm。

XRD结果表明,样品主要由NBT相组成,并伴有少量其他相。

EDS结果表明,样品中元素分布均匀。

4. 性能优化:通过调整原料比例、烧结温度等参数,可以进一步优化无铅压电陶瓷的性能。

例如,增加氧化铋的含量可以提高材料的压电系数,降低烧结温度可以缩短烧结时间。

五、结论本实验成功制备了NBT基无铅压电陶瓷,并对其性能进行了测试。

结果表明,NBT基无铅压电陶瓷具有较高的介电常数、压电系数和良好的微观结构,具有在压电应用中的潜力。

压电陶瓷生产实习报告

压电陶瓷生产实习报告

压电陶瓷生产实习报告一、实习背景及目的随着科技的不断发展,压电陶瓷材料在各个领域的应用越来越广泛,如超声波设备、精密测量、自动控制等。

为了更好地了解压电陶瓷的生产工艺和应用,提高自己的实践能力,我参加了为期一周的压电陶瓷生产实习。

本次实习的主要目的是:1. 了解压电陶瓷的生产工艺流程,掌握其主要性能指标。

2. 学习压电陶瓷在实际应用中的优势和局限性。

3. 提高自己的动手实践能力和团队协作能力。

二、实习内容与过程1. 生产工艺流程学习在实习的第一天,我们参观了压电陶瓷生产车间,了解了压电陶瓷的生产工艺流程。

生产工艺主要包括原材料准备、成型、烧结、磨削、抛光等步骤。

(1)原材料准备:压电陶瓷的主要原料有氧化铅、氧化锌、氧化钛等,通过精确的计量、混合、干燥等过程,制备出符合要求的原始粉末。

(2)成型:将原始粉末经过压制成型,制成所需形状的压电陶瓷坯体。

(3)烧结:将压电陶瓷坯体放入高温炉中,通过高温烧结,使原始粉末发生化学反应,形成具有一定性能的压电陶瓷。

(4)磨削:对烧结后的压电陶瓷进行磨削,使其表面光滑,尺寸精确。

(5)抛光:对磨削后的压电陶瓷进行抛光,提高其表面光洁度。

2. 性能测试与分析在实习的第二、三天,我们学习了如何测试压电陶瓷的性能,主要包括压电常数、电容、介电常数、绝缘电阻等。

通过测试数据的分析,我们可以了解压电陶瓷的性能是否达到预期要求。

3. 实际应用探讨在实习的第四天,我们学习了压电陶瓷在实际应用中的优势和局限性。

压电陶瓷具有超声波发生、接收、精密测量等优点,因此在许多领域得到了广泛应用。

但同时,压电陶瓷也存在一些局限性,如耐高温性能较差、脆性大等。

4. 动手实践在实习的最后两天,我们亲自动手,参与了压电陶瓷的生产过程。

通过实践,我们更深入地了解了压电陶瓷的生产工艺,提高了自己的动手实践能力。

三、实习收获通过本次实习,我收获了以下几点:1. 了解了压电陶瓷的生产工艺流程,掌握了其主要性能指标。

干涉法测量压电陶瓷特性.

干涉法测量压电陶瓷特性.

实验一干涉法测量压电陶瓷特性一、实验目的1.通过实验掌握激光测长仪的基本工作原理。

2.掌握搭设激光光路基本方法与技巧。

3.学会用干涉方法测量微小位移。

二、实验原理测量位移是迈克尔逊干涉仪的典型应用,测量原理如图 11—1所示:图 11-1由 Ne— Ne激光器发出的光经分光镜G后,光束被分成两路,反射光射向参考镜M1(固定),透射光射向测量镜M2(可移动),两路光分别经M1、M2反射后,在分光镜处会合,在接受屏P 处产生干涉条纹,通过给压电陶瓷加电压使M2的移动,干涉条纹发生变化,由于干涉条纹明暗变化一次,相当于测量镜M2移动了入/2,若条纹变化N 次,则位移L由下式确定:L = N •入/2 (11 — 1)所以通过测出条纹的变化数就可计算出位移量,这就是激光测长仪的基本原理。

三、实验仪器光学平台、Ne— Ne激光器(波长0.6328um)、可调反射镜、分光镜、接收屏、一维导轨、可调高压电源(调节范围0 — 300v)、被测压电陶瓷。

四、实验内容与要求实验内容1.推导位移L与条纹变化数N的关系式。

2.测量位移L与电压U的关系,并描出 U — L曲线。

3.计算出最大位移量Lmax。

实验要求1.调整激光器使之发出的光与平台平行。

2.用自准法在光路中调整扩束镜和分光镜,使透镜光轴与光束同轴、分光镜与光束垂直。

3.给压电陶瓷加电,要求干涉条纹每变化一次记录相应的电压值。

注意事项1.调整光路时不能用眼睛正对激光束,以免伤害眼睛。

要用白纸接收光。

2.连接电源时注意不要短路,电压最高加至300V。

压电陶瓷制备与测试实验报告

压电陶瓷制备与测试实验报告

压电陶瓷制备与测试实验报告一、实验要求1、了解压电陶瓷的基本性能、结构、用途、制备方法。

2、了解压电陶瓷常见的表征方法及检测手段。

3、掌握压电陶瓷材料压电、介电性能等性能测试方法。

4、掌握压电陶瓷的性能分析方法。

二、压电陶瓷材料制备过程主要包括以下步骤:配料-混合-预烧-粉碎-成型-排胶-烧结-被电极-极化-测试。

1、配料:Bi2O3···14.1244113464136 Sc2O3···4.13930659262249 PbO···23.339070300907 TiO2···8.397211760056962、原料选用纯度高、细度小和活性大的粉料,根据配方或分子式选择所用原料,并按原料纯度进行修正计算,然后进行原料的称量。

按化学配比配料以后,使用行星式球磨机将各种配料混合均匀。

实验室常采用的是水平方向转动球磨方式,震动球磨是另一种常用的球磨方法,此外还有气流粉碎法等混合方法。

3、混合球磨后的原料进行预烧。

预烧是使原料间发生固相化学反应以生成所需产物的过程,预烧过程中应注意温度和保温时间的选择。

将预烧反应后的材料使用行星式球磨机粉碎。

4、成型的方法主要有四种;轧膜成型、流延成型、干压成型和静水压成型。

轧膜成型适用于薄片元件;流延成型适合于更薄的元件,膜厚可以小于10 m;干压成型适合于块状元件;静水压成型适合于异形或块状元件。

除了静水压成型外,其他成型方法都需要有粘合剂,粘合剂一般占原料重量的3%左右。

成型以后需要排胶。

粘合剂的作用只是利于成型,但它是一种还原性强的物质,成型后应将其排出以免影响烧结质量。

5、烧结是将坯体加热到足够高的温度,使陶瓷坯体发生体积收缩、密度提高和强度增大的过程。

烧结过程的机制是组成该物质的原子的扩散运动。

烧结的推动力是颗粒或者晶粒的表面能,烧结过程主要是表面能降低的过程。

压电陶瓷特性实验报告

压电陶瓷特性实验报告

压电陶瓷特性实验报告压电陶瓷特性实验报告引言压电陶瓷是一种能够在外力作用下产生电荷的材料,具有广泛的应用领域。

本实验旨在研究压电陶瓷的特性,包括压电效应、介电特性和机械特性等方面。

通过实验,我们可以更深入地了解压电陶瓷的性能和应用潜力。

实验一:压电效应在这个实验中,我们使用了一块压电陶瓷片和一台压电仪器。

首先,我们将压电陶瓷片固定在仪器上,并施加一定的压力。

随后,我们观察到仪器上显示的电压值随着施加的压力而变化。

这说明压电陶瓷具有压电效应,即在外力作用下会产生电荷。

实验二:介电特性为了研究压电陶瓷的介电特性,我们使用了一台电容测试仪。

首先,我们将压电陶瓷片固定在测试仪上,并连接电源。

随后,我们通过改变电源的电压,观察到测试仪上显示的电容值的变化。

这表明压电陶瓷在电场作用下会发生介电极化,导致电容值的变化。

实验三:机械特性在这个实验中,我们使用了一台拉伸试验机。

我们将压电陶瓷片固定在试验机上,并施加一定的拉伸力。

通过改变施加的力大小,我们观察到压电陶瓷片的形变情况。

同时,我们还测量了形变量与施加力的关系。

结果显示,压电陶瓷具有良好的机械特性,能够在外力作用下发生可逆的形变。

实验四:应用潜力通过以上实验的结果,我们可以看出压电陶瓷具有多种特性,具备广泛的应用潜力。

例如,在传感器领域,压电陶瓷可以用于测量压力、温度和加速度等参数。

此外,在声学领域,压电陶瓷可以用于扬声器和麦克风等设备。

还有一些其他领域,如医疗、能源和通信等,也可以应用压电陶瓷技术。

结论通过本次实验,我们深入了解了压电陶瓷的特性。

压电效应、介电特性和机械特性是压电陶瓷的重要特性,为其在多个领域的应用提供了基础。

压电陶瓷的应用潜力巨大,可以为现代科技的发展做出重要贡献。

我们相信,在进一步研究和技术创新的推动下,压电陶瓷将在未来得到更广泛的应用。

天津大学工程光学实验——压电陶瓷特性测量

天津大学工程光学实验——压电陶瓷特性测量

d 2 1 2nL
光程差没变化一个波长干涉条纹就明暗变化一次,则测量过程中 d 相对 应的干涉条纹变化次数为
实验内容 1. 推导出位移 L 和条纹变化数 N 的关系式。 2. 测量位移 L 与电压 U 的关系,并表述 U-L 曲线。 3. 计算出最大位移量 Lmax。 实验要求 1. 调整激光器使光束与平台平行,并进行扩束。
位移l和条纹变化数n的推导设在测量开始时一束激光经分光器g分成两束它们经参考反射镜m1和目标反射镜m2后沿原路返回并在分光电处重新相遇两束光的光程差为为目标反射镜m2到分光点的距离为参考镜m1到分光点的距离
天津大学本科生实验报告ห้องสมุดไป่ตู้
课程名称:压电陶瓷特性测量 实验二
一、 实验目的
姓名:
学号:
学院:精仪学院
Lmax 10.76 m
1. 通过实验掌握激光测长仪的基本工作原理; 2. 掌握搭设激光光路的基本方法与技巧; 3. 学会用干涉方法测量微小位移。 二、 实验原理 测量位移是迈克尔逊干涉仪的典型应用,测量原理如图-1 所示。 由 He-Ne 激光器发出的光 经分光镜 G 后,光束被分成两 路,反射光射向参考镜 M1(固 定) , 透射光射向测量镜 M2 (可 移动) ,两路光分别经 M1、M2
N
式中 0 为激光光波中心波长。
d 2nL 0 0
天津大学本科生实验报告
课程名称:压电陶瓷特性测量 姓名: 学号: 学院:精仪学院
五、 思考题 实验原理光路中未加补偿镜,为什么?请说明原因。 答:由于实验中使用单色光,光程损失可以通过调节参考反射镜的位置进行 补偿,这样就可以免去补偿镜。
反射后,在接受屏 P 处产生干涉,通过测出条纹的变化数可计算出位移量, 这就是激光测长仪的基本原理。 三、 实验仪器

压电效应实验报告

压电效应实验报告

压电效应实验报告
1. 实验目的
通过实验了解和验证压电效应的基本原理,掌握压电效应的产生条
件以及应用领域。

2. 实验原理
压电效应是指在某些晶体、陶瓷材料中,当受到外力作用时,会产
生电荷分离的现象,即产生电压差。

这种现象即为压电效应。

压电效
应的原理是晶格结构的不对称性,当外力作用于晶体时,导致晶体内
部阳离子和阴离子位移而产生电荷分离,从而产生电势差。

3. 实验步骤
(1)将压电陶瓷片固定在夹具上;
(2)连接电源,使陶瓷片两端加上一定的电压;
(3)在陶瓷片上施加外力,观察电压变化;
(4)记录电压值随外力变化的曲线。

4. 实验结果
实验中,我们观察到在陶瓷片受到外力作用时,电压值呈现出明显
的变化。

当外力增加时,电压值逐渐增大;当外力减小或取消时,电
压值也相应减小或消失。

这说明压电效应是一种具有线性关系的现象。

5. 结论
通过本次实验,我们验证了压电效应的存在,并了解了其产生的原理。

压电效应在声波传感、压力传感、振动传感等领域具有重要的应用价值,可以提高传感器的灵敏度和稳定性,有着广阔的应用前景。

6. 实验感想
本次实验让我们更深入地了解了压电效应这一现象,并对实际中的应用有了更清晰的认识。

压电效应作为一种重要的物理效应,在现代科技领域有着广泛的应用,希望通过不断的实践和学习,能够更好地掌握其原理和应用,为科学技术的发展做出自己的贡献。

7. 参考资料
无。

实验2压电陶瓷特性及振动的干涉测量

实验2压电陶瓷特性及振动的干涉测量
压电陶瓷具有高灵敏度、 低噪声、高分辨率等优点, 广泛应用于传感、驱动和 测量等领域。
压电陶瓷的应用
在振动测量、声学、医学 成像等领域,压电陶瓷作 为传感器用于测量压力、 振动等物理量。
振动干涉的基本原理
干涉现象定义
当两束或多束相干波相遇时,它 们在某些区域相互加强,在某些 区域相互抵消,这种现象称为干
在实验过程中,可能存在的误差来源 包括测量设备的精度、环境温度和湿 度的波动、人为操作误差等。
误差分析
我们分析了每个误差来源对实验结果 的影响程度,并计算了它们的标准偏 差。结果表明,这些误差对实验结果 的影响较小,可以忽略不计。
05 结论与展望
实验结论总结
压电效应,其形变量与施加电压成
样分析物体的振动模式和振幅。
学习使用干涉仪器的操作方法,包括调 节干涉图样、测量振动位移和速度等参 数,以及如何分析测量数据以获取压电
陶瓷的振动特性。
02 实验原理
压电陶瓷的压电效应
01
02
03
压电效应定义
压电陶瓷在受到外力作用 时会产生电压,这种由压 力变化产生电场的现象称 为压电效应。
压电陶瓷的特性
实验2:压电陶瓷特性及振动的干 涉测量
目 录
• 实验目的 • 实验原理 • 实验步骤 • 实验结果分析 • 结论与展望
01 实验目的
了解压电陶瓷的特性
压电陶瓷是一种特殊的材料,具有将机械能转换为电能或将 电能转换为机械能的能力。在实验中,我们将通过观察压电 陶瓷的振动模式和响应特性,深入了解其压电效应的原理和 应用。
了解压电陶瓷的介电常数、压电常数和机电耦合系数等关键 参数,这些参数决定了压电陶瓷的能量转换效率和性能。
学习振动干涉测量的原理和方法

压电陶瓷实验报告

压电陶瓷实验报告
压电陶瓷实验报告
压电陶瓷实验报告
引言
压电陶瓷作为一种重要的功能材料,在电子、声学、光学等领域有着广泛的应用。本次实验旨在研究压电陶瓷的基本性质和应用,并通过实验验证压电效应的存在。
实验一:压电效应的观察
在这个实验中,我们使用了一块压电陶瓷片,并将其固定在一块金属基座上。通过连接电源,我们可以对陶瓷片施加压力。实验中,我们使用了一个示波器来记录压电陶瓷片的振动情况。
实验结果显示,当施加压பைடு நூலகம்时,压电陶瓷片开始振动,并产生电压信号。这就是压电效应的基本原理。压电陶瓷的晶格结构使其能够将机械能转化为电能,从而产生电压。
实验二:压电陶瓷的应用
在这个实验中,我们探索了压电陶瓷在声学领域的应用。我们将压电陶瓷片固定在一个共振腔内,并通过连接电源施加电压。实验结果显示,当施加电压时,压电陶瓷片开始振动,并产生声波。
这种应用被广泛用于传感器和振动马达等设备中。压电陶瓷可以将机械能转化为电能,并产生电压信号,从而实现电子设备的工作。
结论
通过这次实验,我们深入了解了压电陶瓷的基本性质和应用。压电陶瓷作为一种功能材料,在电子、声学、光学等领域有着广泛的应用前景。压电效应的存在使得压电陶瓷能够将机械能转化为电能,并产生电压信号,从而实现各种设备的工作。
这种应用被广泛用于扬声器和超声波传感器等设备中。压电陶瓷的振动频率可以通过施加的电压来调节,从而实现不同频率的声波产生。
实验三:压电陶瓷的应用
在这个实验中,我们研究了压电陶瓷在电子领域的应用。我们将压电陶瓷片固定在一个电路板上,并通过连接电源施加电压。实验结果显示,当施加电压时,压电陶瓷片产生电压信号。
尽管本次实验只是简单地介绍了压电陶瓷的基本原理和应用,但我们相信,通过进一步的研究和实验,我们可以发现更多压电陶瓷的潜在用途,并为各个领域的技术发展做出贡献。

压电陶瓷报告

压电陶瓷报告

项目编号0912011411自然科学√项目分类社会科学中国海洋大学本科生研究发展计划(OUC-SRDP)项目研究报告项目名称:钛酸铋钠基无铅压电陶瓷材料的溶胶-凝胶法制备及电性能研究负责人:杜乘风所在学院:材料科学与工程研究院专业年级:2007级材料化学指导教师: 戴金辉起止年月:2009 年06 月至2010 年04 月1.文献综述1.1 压电陶瓷压电铁电陶瓷是功能陶瓷中应用广泛的一类,铁电性应用在存储器、记忆器等领域、压电性应用在换能器、驱动器、声表面波器件等领域,热释电应用在探测器、报警器、焦平面列阵等领域,介电应用在电容器、传感器等领域。

包括电容器陶瓷在内的压电铁电陶瓷,其世界市场份额占整个功能陶瓷的三分之一。

压电陶瓷,是一种能够将机械能和电能互相转换的功能陶瓷材料,即是一种具有压电效应的材料。

在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。

电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。

用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。

压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。

地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。

压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。

这不能不说是压电陶瓷的一大奇功。

压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,但基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。

谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。

PZT陶瓷的压电性能测试实验报告

PZT陶瓷的压电性能测试实验报告

测量头原理示意图
4. PZT压电陶瓷d33的测量
4. PZT压电陶瓷d33的测量
3.操作方法
3.1 测试前的准备工作
3.1.1 用两根多芯电缆把测量头和仪器本体连接好,接通电源。 3.1.2 把附件盒内的Φ20尼龙片插入测量头得上下探头之间,调节 手轮,是尼龙片刚好压住为止。 3.1.3 把仪器后面板上的“显示选择”开关置于“d33”一侧,此时 前面板上右上方绿灯亮。 3.1.4 仪器后面板设有“量程选择”开关,可根据需要选择。一般 置于“×1”档即可,如材料的d33值较低可置于“×0.1”档;但两档要 分别为零。 3.1.5 按下“快速模式”,仪器通电预热10分钟后,调节“凋零” 旋钮使面板表指示在“0”与“-0”之间跳动,跳动即完成,撤掉尼龙片 开始测量。凋零一律在“快速模式”下进行,为减少测量误差,在测 量过程中零点如有变化或换档时,需要从新凋零。
快速模式即连续测量,被测元件均为极化后已放置一点时间并已彻 底放电后的试样,此时“放电提示”红色发光二极管闪烁,随时提醒 操作人员首先对压电元件放电后再进行测量,以避免损坏仪器。选择 “快速模式”测量,每更换一个被测元件,表头会迅速显示d33结果及 正负极性。
3.4“安全模式”测量
对于刚刚极化完的压电试样,在短时间内,即使多次放电也很难彻 底放完,压电试样上仍然会存在少则几千伏,多则几万伏的电压。选 择“安全模式”可使仪器在测量过程中能自动对被测元件进行放电, 以确保仪器安全。在插入被测试样后,放电过程开始并自动完成,此 时表头指示为零,按下“测量触发”键,表头才能显示出测量结果。 每测一只元件,都要重复一次上述过程。在“安全模式”状态下, “放电提示”指示灯熄灭,“测量触发”按钮内的绿色发光二极管一 直点亮。
PZT压电陶瓷的制备及其d33 的测试

压电陶瓷材料实验报告

压电陶瓷材料实验报告

一、实验目的1. 了解压电陶瓷材料的基本特性和应用领域。

2. 掌握压电陶瓷材料的制备方法及性能测试技术。

3. 分析压电陶瓷材料的性能与结构之间的关系。

二、实验原理压电陶瓷材料是一种具有压电效应的无机非金属材料,其基本原理是在外部机械力的作用下,内部产生电荷,从而实现机械能与电能之间的相互转换。

压电陶瓷材料具有高介电常数、高介电损耗、高压电系数等特性,广泛应用于声学、光电子、传感器、驱动器等领域。

三、实验材料与仪器1. 实验材料:PZT(锆钛酸铅)压电陶瓷材料。

2. 实验仪器:(1)高温烧结炉:用于压电陶瓷材料的烧结。

(2)X射线衍射仪(XRD):用于分析压电陶瓷材料的晶体结构。

(3)扫描电子显微镜(SEM):用于观察压电陶瓷材料的微观结构。

(4)压电系数测试仪:用于测试压电陶瓷材料的压电系数。

(5)介电性能测试仪:用于测试压电陶瓷材料的介电常数和介电损耗。

四、实验步骤1. 压电陶瓷材料的制备(1)将PZT粉末与适量粘结剂混合,制成浆料。

(2)将浆料涂覆在陶瓷基板上,形成压电陶瓷薄膜。

(3)将压电陶瓷薄膜放入高温烧结炉中,进行烧结,烧结温度为850℃左右,保温时间为2小时。

2. 压电陶瓷材料的性能测试(1)X射线衍射分析:对烧结后的压电陶瓷材料进行XRD分析,确定其晶体结构。

(2)扫描电子显微镜分析:对压电陶瓷材料进行SEM分析,观察其微观结构。

(3)压电系数测试:利用压电系数测试仪测试压电陶瓷材料的压电系数。

(4)介电性能测试:利用介电性能测试仪测试压电陶瓷材料的介电常数和介电损耗。

五、实验结果与分析1. X射线衍射分析(1)通过XRD分析,确定压电陶瓷材料的晶体结构为PZT相。

(2)分析压电陶瓷材料的晶体结构特点,如晶胞参数、晶粒尺寸等。

2. 扫描电子显微镜分析(1)通过SEM分析,观察压电陶瓷材料的微观结构,如晶粒尺寸、晶界、孔隙等。

(2)分析压电陶瓷材料的微观结构对性能的影响。

3. 压电系数测试(1)测试压电陶瓷材料的压电系数,确定其性能。

压电陶瓷压电性能测定实验报告

压电陶瓷压电性能测定实验报告

广东工业大学实验报告学院电子科学与技术(电子信息材料及元器件)专业班成绩评定学号姓名(号)教师签名十二题目:压电陶瓷压电性能测定第周星期一、实验目的iv. 了解压电常数的概念和意义;v. 掌握压电陶瓷压电常数的测定方法。

vi. 学会操作ZJ-3AN 型准静态d33 测量仪。

二、实验内容1. 实验老师介绍使用压电常数测量仪测试d33 的原理与步骤;2. 测试压电陶瓷的压电常数。

三、实验(设计)仪器设备和材料清单ZJ-3AN 型准静态d33 测量仪、压电陶瓷晶片等。

四、实验原理压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有压电效应的材料。

当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。

逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。

压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。

通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。

五、实验步骤1. 用两根多芯电缆把测量头和仪器本体连接好,接通电源;2. 把Φ20 尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为止;3. 把仪器后面板上的“显示选择” 开关置于“d33” 一侧,此时面板右上方绿灯亮;4. 把仪器后面板上的“量程选择” 开关置于“×1” 档;5. 按下“快速模式”,仪器通电预热10 分钟后,调节“调零” 旋钮使面板表指电子科学与技术专业实验指导书126示在“0” 与“-0” 之间跳动。

调零即完成,撤掉尼龙片开始测量。

6. 依次接入待测元件,表头显示d33 结果及正负极性,记录于表12-1。

7. 取三次测量的平均值。

六、实验数据测试与记录。

压电陶瓷振动的干涉测量实验报告

压电陶瓷振动的干涉测量实验报告

一、实压电陶瓷振动的干涉测量实验报告验目的与实验仪器1.实验目的1了解压电陶瓷的性能参数;2了解电容测微仪的工作原理,掌握电容测微仪的标定方法;3、掌握压电陶瓷微位移测量方法.2.实验仪器压电陶瓷材料一端装有激光反射镜,可在迈克尔逊干涉仪中充当反射镜、光学防震平台、半导体激光器、双踪示波器、分束镜、反射镜、二维可调扩束镜、白屏、驱动电源、光电探头、信号线等.二、实验原理1. 压电效应压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释.晶体在机械力作用下,总的电偶极矩极化发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系.1 正压电效应:压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度.对于各向异性晶体,对晶体施加应力时,晶体将在 X,Y,Z 三个方向出现与应力成正比的极化强度, 即:E = g·T g为压电应力常数,2 逆压电效应:当给压电晶体施加一电场 E 时,不仅产生了极化,同时还产生形变 ,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效应.这是由于晶体受电场作用时,在晶体内部产生了应力压电应力,通过应力作用产生压电应变.存在如下关系:S = d·U d为压电应变常数对于正和逆压电效应来讲, g和d 在数值上是相同的.2. 迈克耳逊干涉仪的应用迈克耳逊干涉仪可以测量微小长度.上图是迈克耳逊干涉仪的原理图.分光镜的第二表面上涂有半透射膜,能将入射光分成两束,一束透射,一束反射.分光镜与光束中心线成 45°倾斜角.M1和 M2为互相垂直并与分束镜都成 45°角的平面反射镜,其中反射镜 M1后附有压电陶瓷材料.由激光器发出的光经分光镜后,光束被分成两路,反射光射向反射镜 M1附压电陶瓷,透射光射向测量镜 M2固定,两路光分别经 M1、M2反射后,分别经分光镜反射和透射后又会合,经扩束镜到达白屏,产生干涉条纹.M1和M2与分光镜中心的距离差决定两束光的光程差.因而通过给压电陶瓷加电压使 M1随之振动,干涉条纹就发生变化.由于干涉条纹变化一级,相当于测量镜 M1移动了λ/2,所以通过测出条纹的变化数就可计算出压电陶瓷的伸缩量.三、实验步骤1)将驱动电源分别与光探头,压电陶瓷附件和示波器相连,其中压电陶瓷附件接驱动电压插口,光电探头接光探头插口,驱动电压波形和光探头波形插口分别接入示波器 CH1 和 CH2;2)在光学实验平台上搭制迈克尔逊干涉光路,使入射激光和分光镜成 45度,反射镜 M1 和 M2与光垂直,M1 和 M2 与分光镜距离基本相等;3)打开激光器,手持小孔屏观察各光路,适当调整各元件位置和角度,保证经分光镜各透射和反射光路的激光点不射在分光镜边缘上.4)遮住 M1,用小孔屏观察扩束镜前有一光点,再遮住 M2 分辨另一光点,分别调整 M1 和 M2的倾角螺丝直至两光点重合,并调整扩束镜位置使其与光点同轴,观察白屏上出现干涉条纹,再反复调整各元件,最好能达到扩束光斑中有 2 到 3 条干涉条纹.5)打开驱动电源开关,将驱动电源面板上的波形开关拨至左边“—”直流状态,旋转电源电压旋钮,可发现条纹随之移动;每移动一条干涉条纹,代表压电陶瓷伸缩位移变化了半个波长,即650/2nm=325nm 用笔在白屏上做一参考点.将直流电压降到最低并记录,平静一段时间,等条纹稳定后,缓慢增加电压,观察条纹移动,条纹每移过参考点一条,就记录下相应的电压值;测到电压接近最高值时,再测量反方向降压过程条纹反方向移动对应的电压变化数据.由所测数据做出电压-位移关系图,并求出压电常数.6)取下白屏,换上光电探头,打开示波器.将示波器至于双踪显示,CH1 触发状态.将驱动电源波形拨至右侧“m”三角波,CH1 观察到驱动三角波电信号,CH2 观察到一系列类似正弦波的波形代表干涉条纹经光电探头转换的信号,条纹移动的级数多少反映压电陶瓷伸缩长度的大小,即在三角波一个周期内正弦信号周期的数量反映压电陶瓷的振幅.将驱动幅度调到最大,光放大旋钮调到最大,改变驱动频率,记录随驱动三角波频率周期变化的正弦信号周期数量,体会压电陶瓷的频率响应特性.四、数据处理1. 位移-电压特性曲线的绘制和平均压电常数的计算由位移-正向电压特性曲线斜率可知,压电常数d 1 = nm /V 由位移-反向电压特性曲线斜率可知,压电常数d 2 = nm /V 则压电常数d = d 1+d 2/2 = +/2 = nm /V 2. 振幅、周期、速度的计算我们选取某一特定周期下的图象来计算振幅、周期和速度 1振幅从右图可以看出,在三角波的一个周期内,总共有10个周期的正弦波.由于一个正弦波代表压电陶瓷移动的距离为λ/2. 则:振幅A = 10×650nm 2= 3250nm2周期振动与加在它两端的电压呈正比,则振动的周期即为 CH1 的周期,周期T = μs3速度振动的速度为半个波长除以时间,这个时间是CH2 的周期,即:v =λ/2T2= λ2·f = 325×10-9m × ≈ ×10-5m/s3. 改变驱动电压频率来观察波形特性的变化由表可知,当CH1驱动频率变大时,CH2 波形的频率不断增大.也就是说速度不断增大,周期不断减小.五、分析讨论提示:分析讨论不少于400字1. 迈克尔逊涉装置以及压电陶瓷装置可以测得压电陶瓷的压电常数,从实验数据得出误差的主要原因有:①光程差没有控制得分精确,导致涉条纹观察困难,调整电压时难以观察与暗条纹重合,使得测量电压出现较大误差;②迈克尔逊干涉仪光路搭建存在误差,使得射光电探头的光路不分稳定,让振动的波存在误差,难以清晰地数出个周期内峰值的数量,从造成计算结果的误差;③反射镜没有完全垂直造成误差.在实验中发现在白屏上出现的是等厚干涉条纹,此时的光程差公式与等倾干涉不太一样,这将对我们的计算过程产生较大影响.2. 关于正逆压电效应中压电常数,课本上没有对其大小和关系作出说明,我通过查阅资料发现:正压电效应实质上是机械能转化为电能的过程.当在压电材料表面施加电场,因电场作用时电偶极矩会被拉长,压电材料为抵抗变化,会沿电场方向伸长,这种通过电场作用而产生机械形变的过程称为“逆压电效应”.逆压电效应实质上是电能转化为机械能的过程.如果外界电场较强,那么压晶体管还会出现电致伸缩效应electrostricTIon effect,即材料应变与外加电场强度的平方成正比的现象.可以证明,正压电效应和逆压电效应中的系数是相等的,且具有正压电效应的材料必然具有逆压电效应.六、实验结论1. 使波器观察压电陶瓷振动的幅度和频率,只改变频率的时候,每个三波周期内的振动涉的峰数不发改变,代表涉的振幅不发改变.只改变振幅的时候,三波周期内的峰数发改变,代表振幅发改变但是频率不发改变,由此可以计算得任意点的速度.2. 本次实验我们通过改变驱动电压观察干涉条纹的移动,了解了压电陶瓷的逆压电效应,并求得了压电常数.七、原始数据要求与提示:此处将原始数据拍成照片贴图即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压电陶瓷微位移性能测量实验报告
一、实验目的:
1、了解压电陶瓷的性能参数;
2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法;
3、掌握压电陶瓷微位移测量方法;
二、实验仪器:
电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根
三、实验原理:
(一)利用测微台架标定电容测微仪
在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。

这样得到一组数据即可对电容测微仪进行标定。

图1 电容侧微仪标定原理图
(二)用标定后的电容测微仪测量压电陶瓷管的线性度
在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。

图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲
四、实验步骤
(一)标定电容测微仪的线性度
1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。

2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。

3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。

4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。

(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。

)5、实验完成后,调整测微台架使探头远离标定平板到合适位置,取下标定平板(并估算找出电容测微仪的线性工作区,我们找的较为好的线性工作区是0~100μm)以进行压电陶瓷的性能及其微位移测量的实验。

(二)、压电陶瓷加电时的性能及其微位移测量
测压电陶瓷轴向伸缩:
1、将压电陶瓷的中线(Z)接至变压器的U+端,两边的两个接线头均接至变压器的地接口端(GND)。

2、将压电陶瓷小心垂直轻放在测微台架的台架上(如图3),并将探头靠近压电陶瓷至电容测微仪线性工作区(注:应先粗调而后细调以使电容测微仪示值在6~94μm以内,
因为在加压0~200V 时,估计其最大伸缩变化在6μm 左右,且电容测微仪较好的线性工作区大约在0~100μm )。

3、打开变压器电源,从0~200V ,以10 V 为单位(最小精度),逐渐改变加在压电陶 瓷上的电压值,并读取对应的电容测微仪示值;而后从200~0V ,也以10 V 为单位逐渐改变加在压电陶瓷上的电压值,并读取对应的电容测微仪示值(仍然采用一人操作,一人读取数据的方式)。

4、待实验后,关闭变压器的供给电源,调整机械标定仪使探头远离压电陶瓷到合适位置,小心将压电陶瓷卧放,以进行下面压电陶瓷侧向弯曲实验。

测压电陶瓷侧向弯曲:
1、将压电陶瓷两边的两个接线头分别接至变压器的U+端和地接口端(GND )。

2、小心将压电陶瓷卧放在测微台架的台架上(如图4)后,将探头靠近压电陶瓷至电容测微仪的线性工作区(注:应先粗调而后细调以使电容测微仪示值在15~85μm 以内,因为在加压0~200V 时,估计其最大弯曲度在15μm 左右,且电容测微仪较好的线性工作区大约在0~100μm )。

3、按照测压电陶瓷轴向伸缩的实验步骤3测量数据。

4、待实验后,关闭变压器的供给电源,调整机械标定仪使探头远离压电陶瓷,而后向上调整探头到合适位置,小心将压电陶瓷取下保存好以备以后做实验用。

5、关闭做实验的总电源,整理实验平台,并整理数据,完成实验报告。

五、实验数据处理与分析 实验一:标定电容测微仪的线性度
20406080100120140D a t a o f m e a s u r e m e n t /u m
Shift/um
Figure1:电容测微仪线性标定结果。

X 轴为移动的标准值,Y 轴为测微仪显示值
Figure1为电容测微仪标定的结果,总体上看电容测微仪的指示值与真值有较好的线性,且正向和反向标定结果几乎一致。

但是二者之间仍然有一定的偏差。

这是由工作台的螺纹回程误差以及工作台的震动等不稳定因素造成的。

从图中可以看出看出从30—120μm 的范围内线性较好,所以可以选择在这一段内进行压电陶瓷电压变形测量实验。

实验二:测量压电陶瓷轴向伸缩
实验测得随加载电压变化,压电陶瓷轴向伸缩量如下表所示:
D a t a o f m e a s u r e m e n t /u m
U/V
Figure2给出的是对压电陶瓷逐步增加和减小施加的电压,压电陶瓷轴向变形的实验结果。

可以看出,不管是增压还是减压,压电陶瓷轴向位移与施加的电压有较好的线性关系,只是压电陶瓷存在明显的迟滞现象。

且电压减到零时,压电陶瓷并没有回到初始位置。

迟滞效应是由于压电陶瓷分子间存在阻力和残余极化所引起的。

实验三:测量压电陶瓷径向弯曲
35
40
45
50
55
60
65
D a t a o f m e a s u r e m e n t /u m
U/V
Figure3给出的是压电陶瓷弯曲变形量随着施加电压增减的变化规律图。

与轴向变形时一样,弯曲变形相对于施加的电压也有较好的线性,但增减电压位移也出现迟滞现象,迟滞变形现象较为明显,正返程测量结果偏差较大。

总结:压电陶瓷是具有加上电压会伸长或收缩的性质,利用这个性质可以实现微小位移的移动,对于精密仪器来说必不可少。

压电陶瓷的迟滞现象限制了其应用领域,因此了解压电陶瓷的原理和迟滞现象,克服其不足之处,这对我们利用压电陶瓷进行精密移动必不可少。

相关文档
最新文档