2020年福建省中考数学试卷(有详细解析)

合集下载

福建省泉州实验中学2020年中考数学质检试卷(二) 解析版

福建省泉州实验中学2020年中考数学质检试卷(二) 解析版

2020年福建省泉州实验中学中考数学质检试卷(二)一、选择题(本大题10小题,每小题4分,共40分)1.下列运算正确的是()A.(﹣2)2÷B.3x2﹣4x2=﹣1C.D.(x﹣2)﹣3=x62.截止3月4日,各级财政共安排疫情防控资金1104.8亿元.将数据“1104.8亿”用科学记数法表示为()A.0.11048×104B.1.1048×1011C.0.11048×1012D.1.1048×1033.如图所示的几何体的俯视图是()A.B.C.D.4.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1D.5.已知,在△ABC中,AB=AC,如图,(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD•BC6.《九章算术》中有这样一段表述:“今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗.下禾八秉,益实一斗与上禾二秉,而实一十斗.问上、下禾实一秉各几何?”其意大致为:今有上等稻七捆,减去一斗,加入下等稻二捆,共计十斗;下等稻八捆,加上一斗、上等稻二捆,共计十斗.问上等稻、下等稻一捆各几斗?设一捆上等稻有x斗,一捆下等稻y斗,根据题意,可列方程组为()A.B.C.D.7.如图,AB是⊙O的直径,BP是⊙O的切线,AP与⊙O交于点C,D为BC上一点,若∠P=36°,则∠ADC等于()A.18°B.27°C.36°D.54°8.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.B.C.D.29.从﹣2,0,1,,,3这六个数中,随机抽取一个数记为a,则使关于x的二次函数y=x2+(3﹣a)x﹣1在x<﹣1的范围内y随x的增大而减小,且使关于x的分式方程2﹣=的解为正数的a共有()A.2个B.3个C.4个D.1个10.如图,点O为正六边形的中心,P,Q分别从点A(1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2020次相遇地点的坐标为()A.B.(1,0)C.D.(﹣1,0)二、填空题(共6小题,每小题4分,共24分)11.把多项式4x﹣4x3因式分解为:.12.不等式组的最大整数解为.13.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是.14.如图,在扇形AOB中,∠AOB=90°,点C是OB的中点,过C作CD⊥OB交于D,交弦AB于E.若OA=2,则阴影部分的面积为.15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AE平分∠CAB交CD于点B,若BC=CE,则∠B的正弦值为.16.在矩形ABCD中,AB=3,BC=4,点E是AD上一动点,过点E作EF∥BD交AB于F,将△AEF沿EF折叠,点A的对应点A'落在△BCD的边上时,AE的长为.三、解答题(共9小题,共86分)17.计算:﹣(π﹣3)0﹣cos45°.18.先化简,再求值:,其中x满足x2+3x﹣1=0.19.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.20.如图,一次函数y=﹣x+b与反比例函数的图象交于点A(m,1)和B(1,﹣3).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是x轴正半轴上一点,连接AP,BP.当△ABP是直角三角形时,求出点P的坐标.21.已知如图是边长为10的等边△ABC .(1)作图:在三角形ABC 中找一点P ,连接P A 、PB 、PC ,使△P AB 、△PBC 、△P AC 面积相等.(不写作法,保留痕迹.) (2)求点P 到三边的距离和P A 的长.22.某公司根据市场计划调整投资策略,对A 、B 两种产品进行市场调查,收集数据如下表:项目 产品 年固定成本 (单位:万元)每件成本 (单位:万元)每件产品销售价 (万元) 每年最多可生产的件数 A 20 m 10 200 B40818120其中,m 是待定系数,其值是由生产A 的材料的市场价格决定的,变化范围是6<m <8,销售B 产品时需缴纳x 2万元的关税.其中,x 为生产产品的件数.假定所有产品都能在当年售出,设生产A ,B 两种产品的年利润分别为y 1、y 2(万元). (1)写出y 1、y 2与x 之间的函数关系式,注明其自变量x 的取值范围. (2)请你通过计算比较,该公司生产哪一种产品可使最大年利润更大?23.某面包推出一款新面包,每个面包的成本价为4元,售价为10元,该款面包当天只出一炉(一炉至少15个,至多30个),当天如果没有售完,剩余的面包以每个2元的价格处理掉,为了确定这一炉面包的个数,该店记录了新款面包最近30天的日需求量(单位:个),整理得下表:日需求量1518212427频数108732(1)若该店新款面包出炉的个数均为20个,日需求量为15个,求新款面包的日利润;(2)试以这30天内新款面包日利润的平均数作为决策依据,说明这款面包日均出炉个数定为20个还是21个?24.已知:AB为⊙O的直径,点C,D在⊙O上,=,连接AD,OC.(1)如图1,求证:AD∥OC;(2)如图2,过点C作CE⊥AB于点E,求证:AD=2OE;(3)如图3,在(2)的条件下,点F在OC上,且OF=BE,连接DF并延长交⊙O于点G,过点G作GH⊥AD于点H,连接CH,若∠CFG=135°,CE=3,求CH的长.25.若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线为“等边抛物线”.(1)判断抛物线C1:y=x2﹣2x是否为“等边抛物线”?如果是,求出它的对称轴和顶点坐标;如果不是,说明理由.(2)若抛物线C2:y=ax2+2x+c为“等边抛物线”,求ac的值;(3)对于“等边抛物线”C3:y=x2+bx+c,当1<x<m时,二次函数C3的图象落在一次函数y=x图象的下方,求m的最大值.2020年福建省泉州实验中学中考数学质检试卷(二)参考答案与试题解析一.选择题(共10小题)1.下列运算正确的是()A.(﹣2)2÷B.3x2﹣4x2=﹣1C.D.(x﹣2)﹣3=x6【分析】利用实数的运算法则对A进行判断;利用合并同类项对B进行判断;根据二次根式的除法法则对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、原式=4×=5,所以A选项错误;B、原式=﹣x2,所以B选项错误;C、原式=﹣=5﹣,所以C选项错误;D、原式=x6,所以D选项正确.故选:D.2.截止3月4日,各级财政共安排疫情防控资金1104.8亿元.将数据“1104.8亿”用科学记数法表示为()A.0.11048×104B.1.1048×1011C.0.11048×1012D.1.1048×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1104.8亿=110480000000,所以将1104.8亿用科学记数法表示为1.1048×1011,故选:B.3.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看,所得到的图形即可.【解答】解:该几何体的俯视图为故选:D.4.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1D.【分析】由抛物线y=2(x﹣1)2可以确定函数的对称轴x=1,再由对称轴x==1即可求解;【解答】解:抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,可知函数的对称轴x==1,∴m=﹣;将点(﹣,n)代入函数解析式,可得n=2(﹣﹣1)2=;故选:A.5.已知,在△ABC中,AB=AC,如图,(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD•BC【分析】根据作图方法可得BC=BD=CD,进而可得△BCD等边三角形,再利用垂直平分线的判定方法可得AD垂直平分BC,利用等腰三角形的性质可得∠BAD=∠CAD,利用面积公式可计算四边形ABDC的面积.【解答】解:根据作图方法可得BC=BD=CD,∵BD=CD,∴点D在BC的垂直平分线上,∵AB=AC,∴点A在BC的垂直平分线上,∴AD是BC的垂直平分线,故C结论正确;∴O为BC中点,∴AO是△BAC的中线,∵AB=AC,∴∠BAD=∠CAD,故A结论正确;∵BC=BD=CD,∴△BCD是等边三角形,故B结论正确;∵四边形ABDC的面积=S△BCD+S△ABC=BC•DO+BC•AO=BC•AD,故D选项错误,故选:D.6.《九章算术》中有这样一段表述:“今有上禾七秉,损实一斗,益之下禾二秉,而实一十斗.下禾八秉,益实一斗与上禾二秉,而实一十斗.问上、下禾实一秉各几何?”其意大致为:今有上等稻七捆,减去一斗,加入下等稻二捆,共计十斗;下等稻八捆,加上一斗、上等稻二捆,共计十斗.问上等稻、下等稻一捆各几斗?设一捆上等稻有x斗,一捆下等稻y斗,根据题意,可列方程组为()A.B.C.D.【分析】根据题意表示出7捆上等稻+2捆下等稻=11,8捆下等稻+1+2捆上等稻=10,分别得出等式即可.【解答】解:设一捆上等稻有x斗,一捆下等稻y斗,根据题意,可列方程组为:.故选:A.7.如图,AB是⊙O的直径,BP是⊙O的切线,AP与⊙O交于点C,D为BC上一点,若∠P=36°,则∠ADC等于()A.18°B.27°C.36°D.54°【分析】连接BC,根据圆的切线垂直于经过切点的半径得到∠ABP=90°,求出∠BAP,根据圆周角定理解答即可.【解答】解:连接BC,∵BP是⊙O的切线,∴AB⊥BP,∴∠ABP=90°,∴∠BAP=90°﹣∠P=54°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣∠BAP=36°,由圆周角定理得,∠ADC=∠ABC=36°,故选:C.8.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.B.C.D.2【分析】延长AD、BC,两线交于O,解直角三角形求出OB,求出OC,根据勾股定理求出OA,求出△ODC∽△OBA,根据相似三角形的性质得出比例式,代入求出即可.【解答】解:延长AD、BC,两线交于O,∵在Rt△ABO中,∠B=90°,tan A==,AB=3,∴OB=4,∵BC=2,∴OC=OB﹣BC=4﹣2=2,在Rt△ABO中,∠B=90°,AB=3,OB=4,由勾股定理得:AO=5,∵∠ADC=90°,∴∠ODC=90°=∠B,∵∠O=∠O,∴△ODC∽△OBA,∴=,∴=,解得:DC=,故选:C.9.从﹣2,0,1,,,3这六个数中,随机抽取一个数记为a,则使关于x的二次函数y=x2+(3﹣a)x﹣1在x<﹣1的范围内y随x的增大而减小,且使关于x的分式方程2﹣=的解为正数的a共有()A.2个B.3个C.4个D.1个【分析】根据关于x的二次函数y=x2+(3﹣a)x﹣1在x<﹣1的范围内y随x的增大而减小,可得抛物线对称轴小于﹣1,根据关于x的分式方程2﹣=的解为正数,可得x>0,解得a>﹣3,进而可得a的取值范围,得结论.【解答】解:∵关于x的二次函数y=x2+(3﹣a)x﹣1在x<﹣1的范围内y随x的增大而减小,∴抛物线对称轴方程x=,即≥﹣1,解得a≥1,∵关于x的分式方程2﹣=的解为正数,∴x>0,解分式方程,得x=6﹣2a,∴6﹣2a>0,解得a<3,∴1≤a<3,∵从﹣2,0,1,,,3这六个数中,随机抽取一个数记为a,∵解分式方程,得x=6﹣2a,当a=时,x=3,原分式方程的分母为0,∴a≠,∴符合条件的正数a共有2个,为1,.故选:A.10.如图,点O为正六边形的中心,P,Q分别从点A(1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2020次相遇地点的坐标为()A.B.(1,0)C.D.(﹣1,0)【分析】根据A(1,0),O为正六边形的中心,可得OA=AB=1,连接OB,作BG⊥OA于点G,可得AG=OA=,BG=,可得C(﹣,),E(﹣,﹣),根据题意可得,P,Q第一次相遇地点的坐标在点C(﹣,),以此类推:第二次相遇地点在点E(﹣,﹣),第三次相遇地点在点A(1,0),…如此循环下去,即可求出第2020次相遇地点的坐标.【解答】解:∵A(1,0),O为正六边形的中心,∴OA=AB=1,连接OB,作BG⊥OA于点G,则AG=OA=,BG=,∴B(,),∴C(﹣,),E(﹣,﹣),∵正六边形的边长=1,∴正六边形的周长=6,∵点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,∴第1次相遇需要的时间为:6÷(1+2)=2(秒),此时点P的路程为1×2=2,点的Q路程为2×2=4,此时P,Q相遇地点的坐标在点C(﹣,),以此类推:第二次相遇地点在点E(﹣,﹣),第三次相遇地点在点A(1,0),…如此下去,∵2020÷3=673…1,∴第2020次相遇地点在点C,C的坐标为(﹣,).故选:A.二.填空题(共6小题)11.把多项式4x﹣4x3因式分解为:4x(1+x)(1﹣x).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=4x(1﹣x2)=4x(1+x)(1﹣x).故答案为:4x(1+x)(1﹣x).12.不等式组的最大整数解为2.【分析】先求出不等式组的解集,再根据不等式组的解集求出即可.【解答】解:,由①得:x>﹣6,由②得:x≤2,则不等式组的解集是﹣6<x≤2,则它的最大整数解是2,故答案为:2.13.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是0.【分析】根据一元二次方程的定义和判别式的意义得到a﹣1≠0且△=(﹣2)2﹣4×(a ﹣1)×3≥0,再求出两不等式的公共部分得到a≤且a≠1,然后找出此范围内的最大整数即可.【解答】解:根据题意得a﹣1≠0且△=(﹣2)2﹣4×(a﹣1)×3≥0,解得a≤且a≠1,所以整数a的最大值为0.故答案为0.14.如图,在扇形AOB中,∠AOB=90°,点C是OB的中点,过C作CD⊥OB交于D,交弦AB于E.若OA=2,则阴影部分的面积为+﹣1.【分析】连接OD,根据已知条件得到OC=BC=OB=OC,求得∠ODC=30°,CD ∥OA,根据平行线的性质得到∠AOD=∠CDO=30°,CE=OA=1,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OD,∵OB=OA=OD,点C是OB的中点,∴OC=BC=OB=OD,∵CD⊥OB,∴∠OCD=∠BCD=∠AOB=90°,∴∠ODC=30°,CD∥OA,∴∠AOD=∠CDO=30°,CE=OA=1,∴CD=OC=,∴阴影部分的面积为+1×﹣(1+2)×1+1×1=+﹣1,故答案为:+﹣1.15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AE平分∠CAB交CD于点B,若BC=CE,则∠B的正弦值为.【分析】延长AE交BC于F,过点F作FH⊥AB于H,由角平分线的性质可求CF=FH,由余角的性质可得∠AFC=∠AED=∠CEF,可得CE=CF=FH,利用锐角三角函数可求解.【解答】解:如图,延长AE交BC于F,过点F作FH⊥AB于H,∵AE平分∠CAB,∴∠CAF=∠BAF,又∵FH⊥AB,∠ACB=90°,∴CF=FH,∵∠ACF=∠CDA=90°,∴∠CAF+∠AFC=90°=∠BAF+∠AED,∴∠AFC=∠AED=∠CEF,∴CE=CF=FH,∵BC=CE,∴BC=CF,∴BF=CF,∴sin B===,故答案为.16.在矩形ABCD中,AB=3,BC=4,点E是AD上一动点,过点E作EF∥BD交AB于F,将△AEF沿EF折叠,点A的对应点A'落在△BCD的边上时,AE的长为2或.【分析】分两种情况讨论,当点A'落在BD上时,由折叠的性质可得AH=A'H,由平行线分线段成比例可求AE的长;当点A'落在BC上时,由勾股定理可求BD的长,由锐角三角函数可求AN的长,由勾股定理可求AE的长.【解答】解:如图,当点A'落在BD上时,连接AA'交EF于H,∵将△AEF沿EF折叠,∴AH=A'H,∵EF∥BD,∴,∴AE=DE=AD=2;若点A'落在BC上时,如图,当点A'落在BC上时,连接AA'交EF于点H,过点A'作A'N⊥AD于N,∵A'N⊥AD,∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∴AB=A'N=3,AN=A'B,∵AB=3,BC=4=AD,∴BD===5,∵将△AEF沿EF折叠,∴AA'⊥EF,AE=A'E,AF=A'F,∵EF∥BD,∴AA'⊥BD,∴∠AA'B+∠A'BD=90°,又∵∠ABD+∠A'BD=90°,∴∠ABD=∠AA'B,∴tan∠ABD=tan∠AA'B==,∴BA'==,∵A'E2=A'N2+NE2,∴AE2=9+(AE﹣)2,∴AE=,综上所述:AE=2或,故答案为:2或.三.解答题(共1小题)17.计算:﹣(π﹣3)0﹣cos45°.【分析】直接利用二次根式的性质、零指数幂的性质、特殊角的三角函数值分别化简进而答案.【解答】解:原式==.18.先化简,再求值:,其中x满足x2+3x﹣1=0.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x2+3x﹣1=0即可解答本题.【解答】解:====3x(x+3)=3x2+9x,∵x2+3x﹣1=0,∴x2+3x=1,∴原式=3x2+9x=3(x2+3x)=3×1=3.19.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,等量代换得到DE=BC,DE∥BC,于是得到四边形BCED是平行四边形;(2)连接BE,根据已知条件得到AD=BD=DE=2,根据直角三角形的判定定理得到∠ABE=90°,AE=4,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,∴DE=BC,DE∥BC,∴四边形BCED是平行四边形;(2)解:连接BE,∵DA=DB=2,DE=AD,∴AD=BD=DE=2,∴∠ABE=90°,AE=4,∵cos A=,∴AB=1,∴BE==.20.如图,一次函数y=﹣x+b与反比例函数的图象交于点A(m,1)和B(1,﹣3).(1)填空:一次函数的解析式为y=﹣x﹣2,反比例函数的解析式为y=﹣;(2)点P是x轴正半轴上一点,连接AP,BP.当△ABP是直角三角形时,求出点P的坐标.【分析】(1)将点A,点B坐标代入解析式可求解;(2)分两种情况讨论,由相似三角形的性质可求解.【解答】解:(1)∵点A(m,1)和B(1,﹣3)在反比例函数的图象上,∴k=1×(﹣3)=﹣3,k=m×1,∴m=﹣3,∴点A(﹣3,1),∴反比例函数解析式为:y=;∵一次函数y=﹣x+b过点B(1,﹣3),∴﹣3=﹣1+b,∴b=﹣2,∴一次函数解析式为:y=﹣x﹣2;故答案为:y=﹣x﹣2,;(2)如图1,当∠ABP=90°时,过点P作CD⊥x轴,过点A作AC⊥DC于C,过点B 作BD⊥CD于D,设点P的坐标为(x,0),∴AC=x+3,CP=1,PD=3,BD=x﹣1,∵∠APB=90°,∴∠APC+∠BPD=90°,又∵∠APC+∠CAP=90°,∴∠CAP=∠BPD,又∵∠C=∠BDP=90°,∴△ACP∽△PBD,∴,∴,∴x1=﹣1,x2=﹣1﹣(舍去),∴点P(﹣1+,0);当∠ABP=90°时,∵直线y=﹣x﹣2与x轴交于点C,与y轴交于点D,∴点C(﹣2,0),点D(0,﹣2),∴OC=2,OD=2,CD=2,BC=3,∵cos∠OCD=,∴,∴CP=6,∵点C(﹣2,0),∴点P(4,0),综上所述:点P的坐标为(,0)或(4,0).21.已知如图是边长为10的等边△ABC.(1)作图:在三角形ABC中找一点P,连接P A、PB、PC,使△P AB、△PBC、△P AC 面积相等.(不写作法,保留痕迹.)(2)求点P到三边的距离和P A的长.【分析】(1)依据△P AB、△PBC、△P AC面积相等,可得点P为△ABC的内心,作△ABC的内角平分线,交点P即为所求;(2)依据∠DBP=30°,∠ADB=90°,BD=BC=5,即可得到点P到三边的距离为,进而得出AP=AD﹣PD=.【解答】解:(1)如图所示,点P即为所求;(2)由(1)可得,点P为△ABC的内角平分线的交点,∴∠DBP=30°,∠ADB=90°,BD=BC=5,∴PD=tan30°×BD=,∴点P到三边的距离为,∵Rt△ABD中,AD=tan60°×BD=5,∴AP=AD﹣PD=5﹣=.22.某公司根据市场计划调整投资策略,对A、B两种产品进行市场调查,收集数据如下表:项目产品年固定成本(单位:万元)每件成本(单位:万元)每件产品销售价(万元)每年最多可生产的件数A20m10200B40818120其中,m是待定系数,其值是由生产A的材料的市场价格决定的,变化范围是6<m<8,销售B产品时需缴纳x2万元的关税.其中,x为生产产品的件数.假定所有产品都能在当年售出,设生产A,B两种产品的年利润分别为y1、y2(万元).(1)写出y1、y2与x之间的函数关系式,注明其自变量x的取值范围.(2)请你通过计算比较,该公司生产哪一种产品可使最大年利润更大?【分析】(1)根据A产品的年利润=每件售价×年销售量﹣(年固定成本+每件成本×销售量),B产品的年利润=每件售价×年销售量﹣(年固定成本+每件成本×销售量)﹣特别关税,分别求出y1,y2与x的函数关系式,根据表格写出自变量x的取值范围;(2)利用函数的性质求得最大值,进一步比较得出答案即可.【解答】解:(1)由年销售量为x件,按利润的计算公式,有生产A、B两产品的年利润y1,y2分别为:y1=10x﹣(20+mx)=(10﹣m)x﹣20(0≤x≤200),y2=18x﹣(40+8x)﹣x2=﹣x2+10x﹣40(0≤x≤120).(2)∵6<m<8,∴10﹣m>0,∴y1=(10﹣m)x﹣20随着x的增大而增大,当m=6,x=200时,利润最大为780万元;∵y2=﹣x2+10x﹣40=﹣(x﹣100)2+460,∴当x=100时,利润最大为460万元,∴该公司生产A种产品可使最大年利润更大.23.某面包推出一款新面包,每个面包的成本价为4元,售价为10元,该款面包当天只出一炉(一炉至少15个,至多30个),当天如果没有售完,剩余的面包以每个2元的价格处理掉,为了确定这一炉面包的个数,该店记录了新款面包最近30天的日需求量(单位:个),整理得下表:日需求量1518212427频数108732(1)若该店新款面包出炉的个数均为20个,日需求量为15个,求新款面包的日利润;(2)试以这30天内新款面包日利润的平均数作为决策依据,说明这款面包日均出炉个数定为20个还是21个?【分析】(1)日需求量为15个,新款面包的日利润X=15×(10﹣4)+(20﹣15)×(2﹣4)=80(元);(2)新款面包出炉的个数均为20个,日需求量为18个,新款面包的日利润为X=18×(10﹣4)+(20﹣18)×(2﹣4)=104(元),日需求量不少于20个,新款面包的日利润为X=20×(10﹣4)=120(元),则该店新款面包出炉的个数均为20个,这30天内新款面包日利润的平均数为:X=(80×10+104×8+120×12)=102.4(元);若新款面包出炉的个数均为21个,日需求量为15个,新款面包的日利润为X=15×(10﹣4)+(21﹣15)×(2﹣4)=78(元),日需求量为18个,新款面包的日利润为X=18×(10﹣4)+(21﹣18)×(2﹣4)=102(元),日需求量不少于21个,新款面包的日利润为X=21×(10﹣4)=126(元),则该店新款面包出炉的个数均为21个,这30天内新款面包日利润的平均数为:X=(78×10+102×8+126×12)≈103.6(元);即可得出结果.【解答】解:(1)该店新款面包出炉的个数均为20个,日需求量为15个,新款面包的日利润为:X=15×(10﹣4)+(20﹣15)×(2﹣4)=90﹣10=80(元);(2)新款面包出炉的个数均为20个,日需求量为18个,新款面包的日利润为:X=18×(10﹣4)+(20﹣18)×(2﹣4)=108﹣4=104(元),日需求量不少于20个,新款面包的日利润为:X=20×(10﹣4)=120(元),∴该店新款面包出炉的个数均为20个,这30天内新款面包日利润的平均数为:X=(80×10+104×8+120×12)==102.4(元);若新款面包出炉的个数均为21个,日需求量为15个,新款面包的日利润为:X=15×(10﹣4)+(21﹣15)×(2﹣4)=90﹣12=78(元),日需求量为18个,新款面包的日利润为:X=18×(10﹣4)+(21﹣18)×(2﹣4)=108﹣6=102(元),日需求量不少于21个,新款面包的日利润为:X=21×(10﹣4)=126(元),∴该店新款面包出炉的个数均为21个,这30天内新款面包日利润的平均数为:X=(78×10+102×8+126×12)=≈103.6(元);∵103.6>102.4∴这款面包日均出炉个数定为21个比20个利润大,∴这款面包日均出炉个数定为21个.24.已知:AB为⊙O的直径,点C,D在⊙O上,=,连接AD,OC.(1)如图1,求证:AD∥OC;(2)如图2,过点C作CE⊥AB于点E,求证:AD=2OE;(3)如图3,在(2)的条件下,点F在OC上,且OF=BE,连接DF并延长交⊙O于点G,过点G作GH⊥AD于点H,连接CH,若∠CFG=135°,CE=3,求CH的长.【分析】(1)证明∠DAB=∠COB即可.(2)由于O是圆心,也就是直径的中点,于是延长CO交⊙O于F,延长CE交圆O于G,连接FG,BD,则OE为中位线,再证AD=FG即可.(3)连接BD交OC于N,则OC垂直平分BD,注意到OCB是等腰三角形,于是可得△COE≌△BON,从而DN=BN=CE,CN=BE=OF=x,在Rt△OCE中利用勾股定理可以求出x,延长CO交HG于R,交⊙O于P,可得△RFG是等腰直角三角形,于是FG=RF,对于交点F使用相交弦定理可以算出RF长度,再算出HR长度即可由勾股定理得出CH长度.【解答】解:(1)如图1,连接OD,∵BC=CD,∴∠COD=∠COB=∠BOD,∵∠DAB=∠BOD,∴∠DAB=∠COB,∴AD∥OC.(2)如图2,延长CO交圆O于F,延长CE交圆O于G,连接FG,BD,则∠CGF=∠BDA=90°,∵CE⊥AB于E,∴CG=2CE,∠OEC=90°,∴∠COE+∠OCE=90°,∵∠COE=∠DAB,∠DAB+∠DBA=90°,∴∠OCE=∠DBA,∴AD=FG∵CO=FO,∴OE=FG,∴AD=2OE.(3)如图3,延长CO交圆O于P,连接BD交OC于N,作PM⊥AD于M,连接BC、BF.则∠ADB=90°,∵AD∥OC,∴OC⊥BD,∴DN=BN,∵CE⊥AB于E,∴∠OEC=∠ONB=90°,∵OB=OC,∠COE=∠BON,∴△COE≌△BON(AAS),∴BN=CE=3,ON=OE,∴DN=BN=3,CN=BE=OF,∵∠CFG=135°,∴∠DFC=∠PFG=45°,∴FN=DN=3,DF=DN=3,设BE=x,则OC=3+2x,OE=3+x,在Rt△OCE中:OE2+CE2=OC2,所以(3+x)2+9=(3+2x)2,解得x=1,∴CF=4,OC=OB=5,AB=CP=10,PF=6,∵FM⊥AD,∴∠FMD=∠FMH=90°,∵OC∥AD,∴∠MDF=∠DFC=45°,∴MF=DM=DF=3,设CP交HG于R,∵HG⊥AD,∴CP⊥HG,∴∠GRF=∠HRF=90°,∴RF=RG,FG=RF,HR=MF=3,又∵CF•PF=DF•FG,∴24=6RF,∴RF=4,∴CR=CF+RF=8,在Rt△CHR中:CH2=HR2+CR2=9+64=73,∴CH=.25.若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线为“等边抛物线”.(1)判断抛物线C1:y=x2﹣2x是否为“等边抛物线”?如果是,求出它的对称轴和顶点坐标;如果不是,说明理由.(2)若抛物线C2:y=ax2+2x+c为“等边抛物线”,求ac的值;(3)对于“等边抛物线”C3:y=x2+bx+c,当1<x<m时,二次函数C3的图象落在一次函数y=x图象的下方,求m的最大值.【分析】(1)根据“等边抛物线”的定义得到抛物线C1:y=x2﹣2x是“等边抛物线”;然后根据抛物线的性质求得它的对称轴和顶点坐标;(2)设等边抛物线与x轴的两个交点分别为A(x1,0),B(x2,0),知AB=|x1﹣x2|=|﹣|=||,结合顶点坐标(﹣,)知=,据此求解可得;(3)由(2)中b2﹣4ac=12知c=,结合等边抛物线过(1,1)求得b=﹣6或b=2,依据对称轴位置得b=﹣6,联立,求得x=1或x=6,从而得出答案.【解答】解:(1)抛物线y=x2﹣2x是“等边抛物线”.对称轴x=2,顶点坐标为(2,﹣2).理由如下:由y=x2﹣2x=x•(x﹣2)知,该抛物线与x轴的交点是(0,0),(4,0).又因为y=x2﹣2x=(x﹣2)2﹣2,所以其顶点坐标是(2,﹣2).∴抛物线与x轴的两个交点及其顶点构成等边三角形的边长为4,∴抛物线y=x2﹣2x是“等边抛物线”.对称轴x=2,顶点坐标为(2,﹣2);(2)设等边抛物线与x轴的两个交点分别为A(x1,0),B(x2,0),令y=ax2+bx+c=0,∴x=,∴AB=|x1﹣x2|=|﹣|=||=||=| |.又∵抛物线的顶点坐标为(﹣,),∴=.∵4﹣4ac≠0,∴||=,∴ac=﹣2;(3)由(2)得b2﹣4ac=12,∴c=,∴C3:y=x2+bx+,∵1<x<m时,总存在实数b,使二次函数C3的图象在一次函数y=x图象的下方,即抛物线与直线有一个交点为(1,1),∴该等边抛物线过(1,1),∴1+b+=1,解得b=﹣6或b=2,又对称轴x=﹣=﹣>1,∴b<﹣2,∴b=﹣6,∴y=x2﹣6x+6,联立,解得x=1或x=6,∴m的最大值为6.。

2020年福建省中考数学试卷(附答案解析)

2020年福建省中考数学试卷(附答案解析)

2020年福建省中考数学试卷一. 选择题:本题共10小题,每小题4分,共4()分.在每小题给出的四个选项中,只有 一项是符合要求的.1.(4分)一丄的相反数是(5)C. 一丄5D. —5A. 5B.丄52. (4 分)如图所示的六角螺母, 其俯视图是()3・(4分)如图,而积为1的等边三角形ABC 中,D. E, F 分别是AB, BC, C4的中 点,则ADEF 的而积是()4. (4分)下列给岀的等边三角形.平行四边形.圆及扇形中,既是轴对称图形又是中 心对称图形的是()5. (4分)如图,AD 是等腰三角形ABC 的顶角平分线,BD=5,则CD 等于(6. (4分)如图,数轴上两点M, N 所对应的实数分别为加,小则加一畀的结果可能是( )1£-2 -1A. 一 1B ・ 17. (4分)下列运算正确的是( )A ・ 3a 2—a 2=3C. (一3"以)2=一6“2沪8・(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩 人去买几株椽.每株脚钱三文足,无钱准与一株椽其大意为:现请人代买一批椽,这批 椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好 等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方 程是( )A. 3 (x-1)B. ^1^=3XX-1C. 3x-1 =^210_D. ^1^1=3XX9・(4分)如图,四边形ABCD 内接于00, AB=CD. A 中点,ZBDC=60° , 则ZADB 等于()M. J --- t-J ----- >0 12C. 2 D ・3B ・(“+”)2=a 2+b 2A. 40°B. 50° D. 70°cC.10. (4分)已知P| (A -!,yi ), P 2(X2, >'2)是抛物线y=ax 1-2ax 上的点,下列命题正 确的是( )二、填空题:本题共6小题,每小题4分,共24分.11. (4 分)I 一81= ___ .12. (4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为 ________ .13. (4分)一个扇形的圆心角是90。

2023福建省数学中考真题及答案

2023福建省数学中考真题及答案

2023年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.(4分)下列实数中,最大的数是( )A.﹣1B.0C.1D.22.(4分)如图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A.B.C.D.3.(4分)若某三角形的三边长分别为3,4,m,则m的值可以是( )A.1B.5C.7D.94.(4分)党的二十大报告指出,我国建成世界上规模最大的教育体系、社会保障体系、医疗卫生体系,教育普及水平实现历史性跨越,基本养老保险覆盖十亿四千万人,基本医疗保险参保率稳定在百分之九十五.将数据1040000000用科学记数法表示为( )A.104×107B.10.4×108C.1.04×109D.0.104×1010 5.(4分)下列计算正确的是( )A.(a2)3=a6B.a6÷a2=a3C.a3•a4=a12D.a2﹣a=a6.(4分)根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A.43903.89(1+x)=53109.85B.43903.89(1+x)2=53109.85C.43903.89x2=53109.85D.43903.89(1+x2)=53109.857.(4分)阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②分别以C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM8.(4分)为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )A.平均数为70分钟B.众数为67分钟C.中位数为67分钟D.方差为09.(4分)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为( )A.﹣3B.﹣C.D.310.(4分)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为( )A .B .2C .3D .2二、填空题:本题共6小题,每小题4分,共24分。

2020年福建省泉州实验中学中考数学质检试卷(三) 解析版

2020年福建省泉州实验中学中考数学质检试卷(三)  解析版

2020年福建省泉州实验中学中考数学质检试卷(三)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c的大小关系为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a2.(4分)下列命题中是假命题的是()A.多边形的外角和等于360°B.直角三角形的外角中可以有锐角C.三角形两边之差小于第三边D.如果两个角大小相等,且它们的和等于平角,那么这两个角都是直角3.(4分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“2”相对的面上的数字是()A.1B.3C.4D.54.(4分)若二次函数y=x2﹣mx的对称轴是x=﹣3,则关于x的方程x2+mx=7的解是()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=﹣7D.x1=﹣1,x2=7 5.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°6.(4分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是()A.14道B.13道C.12道D.11道7.(4分)设一元二次方程(x﹣2)(x﹣3)﹣p2=0的两实根分别为α、β(α<β),则α、β满足()A.2<α<3≤βB.α≤2且β≥3C.α≤2<β<3D.α<2且β>3 8.(4分)五张如图所示的长为a,宽为b(a>b)的小长方形纸片,按如图的方式不重叠地放在矩形ABCD中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足的关系式为()A.a=2b B.a=3b C.3a=2b D.2a=3b+19.(4分)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣10.(4分)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:x3﹣x=.12.(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.13.(4分)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是.14.(4分)如图,在扇形OEF中,∠EOF=90°,半径为2,正方形ABCD的顶点C是的中点,点D在OF上,点A在OF的延长线上,则图中阴影部分的面积为.15.(4分)如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB=CB,曲线y=(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为.16.(4分)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动,当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于.三、解答题(本大题共9小题,8+8+8+8+8+10+10+12+14=86,共86分)17.(8分)解不等式组,并将解集表示在数轴上.18.(8分)先化简,再求值,其中x=﹣3.19.(8分)已知:如图,E、F是▱ABCD的对角线AC上的两点,CE=AF.请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.20.(8分)已知边长为a的正方形ABCD和∠O=45°.(1)以∠O为一个内角作菱形OPMN,使OP=a;(要求:尺规作图,不写作法,保留作图痕迹)(2)设正方形ABCD的面积为S1,菱形OPMN的面积为S2,求的值.21.(8分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.22.(10分)小军的爸爸和小慧的爸爸都是出租车司机,他们在每天的白天、夜间都要到同一加油站各加一次油.白天和夜间的油价不同,有时白天高,有时夜间高,但不管价格如何变化,他们两人采用固定的加油方式:小军的爸爸不论是白天还是夜间每次总是加60L油,小慧的爸爸则不论是白天还是夜间每次总是花300元钱加油.假设某天白天油的价格为每升a元,夜间油的价格为每升b元.问:(1)小军的爸爸和小慧的爸爸在这天加油的平均单价各是多少?(2)谁的加油方式更合算?请你通过数学运算,给以解释说明.23.(10分)由于空气污染严重,某工厂生产了两种供人们外出时便于携带的呼吸装置,其质量按测试指标划分:指标大于等于88为优质产品,现随机抽取这两种装置各100件进行检测,检测结果統计如表:测试指标分组[70,76)[76,82)[82,88)[88,94)[94,100]频数装置甲81240328装置乙71840296(1)试分别估计装置甲、装置乙为优质品的概率;(2)设该厂生产一件产品的利润率y与其质量指标的关系式为,根据以上统计数据,估计生产一件装置乙的利润率大于0的概率,若投资100万生产装置乙,请估计该厂获得的平均利润;(3)若投资100万,生产装置甲或装置乙中的一种,请分析生产哪种装置获得的利润较大?24.(12分)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D,连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)求证:∠BAP=∠CAP;(2)判断直线PC与⊙O的位置关系,并说明理由;(3)若AB=5,BC=10,求PC的长.25.(14分)已知二次函数y=ax2+bx+t﹣1,t<0.(1)当t=﹣2时,①若二次函数图象经过点(1,﹣4),(﹣1,0),求a,b的值;②若2a﹣b=1,对于任意不为零的实数a,是否存在一条直线y=kx+p(k≠0),始终与二次函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由;(2)若点A(﹣1,t),B(m,t﹣n)(m>0,n>0)是二次函数图象上的两点,且S△AOB=n﹣2t,当﹣1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.2020年福建省泉州实验中学中考数学质检试卷(三)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c的大小关系为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【分析】根据零次幂、负整数指数幂的计算方法进行计算后,再比较大小即可.【解答】解:a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c==9,所以c>a>b,故选:B.2.(4分)下列命题中是假命题的是()A.多边形的外角和等于360°B.直角三角形的外角中可以有锐角C.三角形两边之差小于第三边D.如果两个角大小相等,且它们的和等于平角,那么这两个角都是直角【分析】根据多边形的外角和定理对A进行判断;根据三角形的外角和与之相邻的内角互为邻补角可对B进行判断;根据三角形三边的关系对C进行判断;根据平角和直角的定义对D进行判断.【解答】解:A、多边形的外角和等于360°,所以A选项为真命题;B、直角三角形的外角中没有锐角,一个直角两个钝角,所以B选项为假命题;C、三角形两边之差小于第三边,所以C选项为真命题;D、如果两个角大小相等,且它们的和等于平角,那么这两个角都是直角,所以D选项为真命题.故选:B.3.(4分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“2”相对的面上的数字是()A.1B.3C.4D.5【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第一个图和第二个图可看出与4相邻的数有1,3,5,6,所以与4相对的数是2.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第一个图和第二个图可看出与4相邻的数有1,3,5,6,所以与4相对的数是2.故选:C.4.(4分)若二次函数y=x2﹣mx的对称轴是x=﹣3,则关于x的方程x2+mx=7的解是()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=﹣7D.x1=﹣1,x2=7【分析】先根据二次函数y=x2﹣mx的对称轴是x=﹣3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.【解答】解:∵二次函数y=x2﹣mx的对称轴是x=﹣3,∴﹣=﹣3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选:D.5.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°【分析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.6.(4分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是()A.14道B.13道C.12道D.11道【分析】设小明至少答对的题数是x道,答错的为(20﹣2﹣x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【解答】解:设小明至少答对的题数是x道,5x﹣2(20﹣2﹣x)≥60,x≥13,∵x为整数,∴x=14,故选:A.7.(4分)设一元二次方程(x﹣2)(x﹣3)﹣p2=0的两实根分别为α、β(α<β),则α、β满足()A.2<α<3≤βB.α≤2且β≥3C.α≤2<β<3D.α<2且β>3【分析】当p=0,易得α=2,β=3,当p≠0,对于(x﹣2)(x﹣3)﹣p2=0有两不等根,看作二次函数y=(x﹣2)(x﹣3)与直线y=p2=0有两个公共点,利用y=(x﹣2)(x﹣3)与x轴的交点坐标为(2,0),(3,0)得到p<2,β>3.【解答】解:当p=0,(x﹣2)(x﹣3)=0,解得α=2,β=3,当p≠0,(x﹣2)(x﹣3)﹣p2=0,看作二次函数y=(x﹣2)(x﹣3)与直线y=p2=0有两个公共点,而y=(x﹣2)(x﹣3)与x轴的交点坐标为(2,0),(3,0),直线y=p2在x轴上方,所以p<2,β>3,综上所述,α≤2且β≥3.故选:B.8.(4分)五张如图所示的长为a,宽为b(a>b)的小长方形纸片,按如图的方式不重叠地放在矩形ABCD中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足的关系式为()A.a=2b B.a=3b C.3a=2b D.2a=3b+1【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a 与b的关系式【解答】解:左上角阴影部分的长为AE,宽为AF=2b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=3b+PC,∴AE+a=3b+PC,即AE﹣PC=3b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=2b×AE﹣a×PC=2b(PC+3b﹣a)﹣aPC=(2b﹣a)PC+6b2﹣2ab,则2b﹣a=0,即a=2b,故选:A.9.(4分)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.【解答】解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选:D.10.(4分)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.B.C.D.【分析】如图,连接EB.设OA=r.作等腰Rt△ADB,AD=DB,∠ADB=90°,则点E在以D为圆心DA为半径的弧上运动,运动轨迹是,点C的运动轨迹是,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.【解答】解:如图,连接EB.设OA=r.∵AB是直径,∴∠ACB=90°,∵E是△ACB的内心,∴∠AEB=135°,作等腰Rt△ADB,AD=DB,∠ADB=90°,则点E在以D为圆心DA为半径的弧上运动,运动轨迹是,点C的运动轨迹是,∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α∴==.故选:A.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).12.(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约90千克.【分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.13.(4分)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是(﹣2,1).【分析】设D(x,y),由四边形ABCD是平行四边形,可得AC与BD互相平分,由中点坐标公式可得,解方程组即可解决问题.【解答】解:设D(x,y),∵四边形ABCD是平行四边形,∴AC与BD互相平分,由中点坐标公式可得,解得,∴点D的坐标为(﹣2,1),故答案为(﹣2,1)14.(4分)如图,在扇形OEF中,∠EOF=90°,半径为2,正方形ABCD的顶点C是的中点,点D在OF上,点A在OF的延长线上,则图中阴影部分的面积为π﹣1.【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形FOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:如图,连接OC.∵在扇形AOB中∠EOF=90°,正方形ABCD的顶点C是的中点,∴∠COF=45°,∴OC=CD=2,∴OD=CD=,∴阴影部分的面积=扇形FOC的面积﹣三角形ODC的面积=×π×22﹣×()2=π﹣1.故答案为:π﹣1.15.(4分)如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB=CB,曲线y=(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为4.【分析】作CD⊥x轴于D,BF⊥x轴于F,过B作BE⊥CD于E,根据待定系数法求得直线解析式,进而求得A的坐标,通过证得△EBC≌△FBA,得出CE=AF,BE=BF,设B(m,),则4﹣=m﹣1,m﹣3=,求得k=4,得到反比例函数的解析式y=,把x=1代入求得函数值4,则a=4﹣0=4.【解答】解:作CD⊥x轴于D,BF⊥x轴于F,过B作BE⊥CD于E,∵过点C(3,4)的直线y=2x+b交x轴于点A,∴4=2×3+b,解得b=﹣2,∴直线为y=2x﹣2,令y=0,则求得x=1,∴A(1,0),∵BF⊥x轴于F,过B作BE⊥CD于E,∴BE∥x轴,∴∠ABE=∠BAF,∵∠ABC=90°,∴∠ABE+∠EBC=90°,∵∠BAF+∠ABF=90°,∴∠EBC=∠ABF,在△EBC和△FBA中∴△EBC≌△FBA(AAS),∴CE=AF,BE=BF,设B(m,),∵4﹣=m﹣1,m﹣3=,∴4﹣(m﹣3)=m﹣1,解得m=4,k=4,∴反比例函数的解析式为y=,把x=1代入得y=4,∴a=4﹣0=4,∴a的值为4.故答案为4.16.(4分)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动,当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于.【分析】如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.首先说明点G 与点E重合时,FG的值最大,如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.利用相似三角形的性质构建方程求解即可.【解答】解:如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.∵E(﹣2,0),F(0,6),∴OE=2,OF=6,∴EF==2,∵∠FGE=90°,∴FG≤EF,∴当点G与E重合时,FG的值最大.如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.∵P A=PB,BE=EC=a,∴PE∥AC,BJ=JH,∵四边形ABCD是菱形,∴AC⊥BD,BH=DH=,BJ=,∴PE⊥BD,∵∠BJE=∠EOF=∠PEF=90°,∴∠EBJ=∠FEO,∴△BJE∽△EOF,∴=,∴=,∴a=,∴BC=2a=,故答案为:.三、解答题(本大题共9小题,8+8+8+8+8+10+10+12+14=86,共86分)17.(8分)解不等式组,并将解集表示在数轴上.【分析】先把原不等式组化简,再分别求解,最后求不等式组的解集并在数轴上表示出来.【解答】解:原不等式组可变形为:,解得,故不等式组的解为:0.5<x≤3,此解集在数轴上表示为:.18.(8分)先化简,再求值,其中x=﹣3.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣••=﹣,当x=﹣3时,原式=﹣=1.19.(8分)已知:如图,E、F是▱ABCD的对角线AC上的两点,CE=AF.请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.【分析】首先连接BD交AC于点O,由▱ABCD的对角线AC上的两点,CE=AF,易得OE=OF,OB=OD,继而可得四边形BEDF是平行四边形,即可证得结论.【解答】解:BE=DF,BE∥DF.证明:连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵CE=AF,∴CE﹣OC=AF﹣OA,即OE=OF,∴四边形BEDF是平行四边形,∴BE=DF,BE∥DF.20.(8分)已知边长为a的正方形ABCD和∠O=45°.(1)以∠O为一个内角作菱形OPMN,使OP=a;(要求:尺规作图,不写作法,保留作图痕迹)(2)设正方形ABCD的面积为S1,菱形OPMN的面积为S2,求的值.【分析】(1)根据四边相等的四边形时是菱形画出图形即可.(2)分别求出正方形,菱形的面积即可解决问题.【解答】解:(1)如图,菱形ONMP即为所求.(2)如图,过点N作NH⊥OP于H.∵AB=ON=OP=a,∴正方形ABCD的面积S1=a2,在Rt△ONH中,∵∠NOH=45°,ON=a,∴NH=a,∴菱形ONMP的面积S2=a2,∴==.21.(8分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB =AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.22.(10分)小军的爸爸和小慧的爸爸都是出租车司机,他们在每天的白天、夜间都要到同一加油站各加一次油.白天和夜间的油价不同,有时白天高,有时夜间高,但不管价格如何变化,他们两人采用固定的加油方式:小军的爸爸不论是白天还是夜间每次总是加60L油,小慧的爸爸则不论是白天还是夜间每次总是花300元钱加油.假设某天白天油的价格为每升a元,夜间油的价格为每升b元.问:(1)小军的爸爸和小慧的爸爸在这天加油的平均单价各是多少?(2)谁的加油方式更合算?请你通过数学运算,给以解释说明.【分析】(1)根据题意列出算式,再求出即可;(2)两算式相减,根据求出的结果比较即可.【解答】解:(1)小军的爸爸在这天加油的平均单价是:(元/L)小慧的爸爸在这天加油的平均单价是:(元/L);(2),而a≠b,a>0,b>0,所以从而,即.因此,小慧的爸爸的加油方式比较合算.23.(10分)由于空气污染严重,某工厂生产了两种供人们外出时便于携带的呼吸装置,其质量按测试指标划分:指标大于等于88为优质产品,现随机抽取这两种装置各100件进行检测,检测结果統计如表:测试指标分组[70,76)[76,82)[82,88)[88,94)[94,100]频数装置甲81240328装置乙71840296(1)试分别估计装置甲、装置乙为优质品的概率;(2)设该厂生产一件产品的利润率y与其质量指标的关系式为,根据以上统计数据,估计生产一件装置乙的利润率大于0的概率,若投资100万生产装置乙,请估计该厂获得的平均利润;(3)若投资100万,生产装置甲或装置乙中的一种,请分析生产哪种装置获得的利润较大?【分析】(1)根据频数求比值,得到估计装置甲、装置乙为优质品的概率;(2)根据题意得到变量对应的数字,结合变量对应的事件写出变量对应的概率,进而可估计该厂获得的平均利润;(3)比较生产装置甲或装置乙获得的利润,即可得出结论.【解答】解:(1)装置甲为优质品的概率:=0.4;装置乙为优质品的概率:=0.35;(2)设装置乙的利润率为w,则w的可能取值为﹣2,2,4,∵当t<76时,即w=﹣2时,P==0.07,当76≤t<88时,即w=2时,P==0.58,当t≥88时,即w=4时,P=0.35,∴估计生产一件装置乙的利润率大于0的概率为P=0.58+0.35=0.93;∵w=﹣2×0.07+2×0.58+4×0.35=2.42,∴投资100万生产装置乙,估计该厂获得的平均利润为242万;(3)设装置甲的利润率为m,则m的可能取值为﹣2,2,4,∵当t<76时,即w=﹣2时,P=0.08,当76≤t<88时,即w=2时,P=0.52,当t≥88时,即w=4时,P=0.4,∴w=﹣2×0.08+2×0.52+4×0.4=2.48,∵w>m,∴生产甲装置获得的利润较大.24.(12分)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦,过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D,连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)求证:∠BAP=∠CAP;(2)判断直线PC与⊙O的位置关系,并说明理由;(3)若AB=5,BC=10,求PC的长.【分析】(1)根据切线的性质得到OA⊥AD,根据垂径定理、圆周角定理证明结论;(2)过C点作直径CE,连接EB,根据圆周角定理得到∠EBC=90°、∠BAC=∠E,得到∠PCE=90°,根据切线的判定定理证明;(3)根据勾股定理求出⊙O的半径,证明Rt△PCM∽Rt△CEB,根据相似三角形的性质列出比例式,代入计算得到答案.【解答】(1)证明:∵AD是⊙O的切线,∴OA⊥AD,∵BC∥AD,∴OA⊥BC,∴=,∴∠BAP=∠CAP;(2)解:PC与圆O相切,理由如下:过C点作直径CE,连接EB,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(3)解:∵AD是⊙O的切线,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=5,AC=AB=5,在Rt△AMC中,AM===5,设⊙O的半径为r,则OC=r,OM=AM﹣r=5﹣r,在Rt△OCM中,OM2+CM2=OC2,即(5﹣r)2+52=r2,解得:r=3,∴CE=2r=6,OM=5﹣r=2,∴BE=2OM=4,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=,∴PC=.25.(14分)已知二次函数y=ax2+bx+t﹣1,t<0.(1)当t=﹣2时,①若二次函数图象经过点(1,﹣4),(﹣1,0),求a,b的值;②若2a﹣b=1,对于任意不为零的实数a,是否存在一条直线y=kx+p(k≠0),始终与二次函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由;(2)若点A(﹣1,t),B(m,t﹣n)(m>0,n>0)是二次函数图象上的两点,且S△AOB=n﹣2t,当﹣1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.【分析】(1)①当t=﹣2时,二次函数为y=ax2+bx﹣3.把(1,﹣4),(﹣1,0)分别代入y=ax2+bx﹣3,得出关于a、b的二元一次方程组,解方程组即可;②由2a﹣b=1得出b=2a﹣1.将y=kx+p代入y=ax2+bx﹣3,整理得出ax2+(2a﹣k﹣1)x﹣3﹣p=0,根据直线与二次函数图象交于不同的两点,得到△=(2a﹣k﹣1)2+4a (3+p)=4a2﹣4a(k﹣p﹣2)+(1+k)2>0,由非负数的性质得出当k﹣p﹣2=0时,总有△>0,取p=1,k=3,即可得出结论;(2)把A(﹣1,t)代入y=ax2+bx+t﹣1,得出b=a﹣1.根据S△AOB=n﹣2t,利用割补法求出m=3,则A(﹣1,t),B(3,t﹣n).由n>0,得出t>t﹣n.再分两种情况进行讨论:①当a>0时,由t>t﹣n,求出a<,则0<a<;②当a<0时,由t>t ﹣n,可知A、B在对称轴的右侧,﹣≤﹣1,即﹣≤﹣1,求出a≥﹣1,则﹣1≤a<0.【解答】解:(1)①当t=﹣2时,二次函数为y=ax2+bx﹣3.把(1,﹣4),(﹣1,0)分别代入y=ax2+bx﹣3,得,解得,所以a=1,b=﹣2;②∵2a﹣b=1,∴b=2a﹣1,∴当直线y=kx+p与二次函数y=ax2+bx﹣3图象相交时,kx+p=ax2+(2a﹣1)x﹣3,整理,得ax2+(2a﹣k﹣1)x﹣3﹣p=0,∴△=(2a﹣k﹣1)2+4a(3+p),若直线与二次函数图象交于不同的两点,则△>0,∴(2a﹣k﹣1)2+4a(3+p)>0,整理,得4a2﹣4a(k﹣p﹣2)+(1+k)2>0,∵无论a取任意不为零的实数,总有4a2>0,(1+k)2≥0,∴当k﹣p﹣2=0时,总有△>0,∴可取p=1,k=3,∴对于任意不为零的实数a,存在直线y=3x+1,始终与二次函数图象交于不同的两点;(2)把A(﹣1,t)代入y=ax2+bx+t﹣1,可得b=a﹣1.∵A(﹣1,t),B(m,t﹣n)(m>0,n>0),且S△AOB=n﹣2t,t<0,∴[﹣t+(n﹣t)](m+1)﹣×1×(﹣t)﹣×(n﹣t)m=n﹣2t,解得m=3,∴A(﹣1,t),B(3,t﹣n).∵n>0,∴t>t﹣n.分两种情况:①当a>0时,二次函数图象的顶点为最低点,当﹣1≤x≤3时,点A是该函数图象的最高点,则y A≥y B,分别把A(﹣1,t),B(3,t﹣n)代入y=ax2+bx+t﹣1,得t=a﹣b+t﹣1,t﹣n=9a+3b+t﹣1,∵t>t﹣n,∴a﹣b+t﹣1>9a+3b+t﹣1,∴2a+b<0,即2a+(a﹣1)<0,解得a<,∴0<a<;②当a<0时,由t>t﹣n,可知:若A、B在对称轴的异侧,当﹣1≤x≤3时,图象的最高点是抛物线的顶点而不是A点;若A、B在对称轴的左侧,因为当x≤﹣时,y随x的增大而增大,所以当﹣1≤x≤3时,点A为该函数图象的最低点;若A、B在对称轴的右侧,因为当x≥﹣时,y随x的增大而减小,所以当﹣1≤x≤3时,点A为该函数图象的最高点,则﹣≤﹣1,即﹣≤﹣1,解得a≥﹣1,所以﹣1≤a<0.综上,a的取值范围是0<a<或﹣1≤a<0.。

2020年福建省中考数学试卷附详细答案解析

2020年福建省中考数学试卷附详细答案解析

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30= .12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P 在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M (1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2020•长春)3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2020•福建)如图,由四个正方体组成的几何体的左视图是()A.B.C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2020•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2020•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2020•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2020•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,故选A.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2020•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2020•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2020•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2020•福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2020•福建)计算|﹣2|﹣30= 1 .【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2020•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于 6 .【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2020•福建)一个箱子装有除颜色外都相同的 2个白球,2个黄球,1个红球.现添加同种型号的 1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2020•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7 .【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2020•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108 度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2020•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2020•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2020•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2020•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠B AC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2020•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2020•福建)如图,四边形ABCD内接于⊙O,AB是⊙O 的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2020•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2020•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的 A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15 (Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的 100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的 100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的 100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2020•福建)如图,矩形ABCD中,AB=6,AD=8,P,E 分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.25.(14分)(2020•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN=S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN+S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

2020年福建省中考数学试题(含参考答案与试题解析)

2020年福建省中考数学试题(含参考答案与试题解析)
5.如图, AD 是等腰三角形 ABC 的顶角平分线, BD 5 ,则 CD 等于( )
A. 10
B. 5
C. 4
D. 3
【答案】B
【解析】
【分析】
根据等腰三角形三线合一的性质即可判断 CD 的长.
【详解】∵ AD 是等腰三角形 ABC 的顶角平分线
∴CD=BD=5. 故选:B. 【点睛】本题考查等腰三角形的三线合一,关键在于熟练掌握基础知识.
试问 6210 文能买多少株椽?设这批椽的数量为 x 株,则符合题
6210 3 x
B.
6210 3 x 1
C. 3x 1 6210
D.
x
【答案】A
【解析】
【分析】
根据“这批椽的价钱为 6210 文”、“每件椽的运费为 3 文,剩下的椽的运费恰好等于一株椽的 价钱”列出方程解答.
故选:C
【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确 m 和 n 的范围,然
后再确定 m n 的范围即可.
7.下列运算正确的是( )
A. 3a2 a2 3
B. (a b)2 a2 b2
C. 3ab2 2 6a2b4
D. a a1 1(a 0)
【答案】D
【解析】
等于( )
A. 40
【答案】A 【解析】 【分析】
B. 50
C. 60
D. 70
根据 AB CD ,A 为 BD 中点求出∠CBD=∠ADB=∠ABD,再根据圆内接四边形的性质得
到∠ABC+∠ADC=180°,即可求出答案.
【详解】∵ A 为 BD 中点,
∴ AB AD ,
∴∠ADB=∠ABD,AB=AD,
6.如图,数轴上两点 M , N 所对应的实数分别为 m, n ,则 m n 的结果可能是( )

2020年福建省中考数学试卷(权威解析)

2020年福建省中考数学试卷(权威解析)

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣52.如图所示的六角螺母,其俯视图是( )A .B .C .D .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( ) A .1B .12C .13D .14第3题 第5题 第6题4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A.10B.5C.4D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.37.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=39.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|=.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x≤6−x,①3x+1>2(x−1).②18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE =∠DAF.19.(8分)先化简,再求值:(1−1x+2)÷x2−1x+2,其中x=√2+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC . ①判断DF 和PF 的数量关系,并证明; ②求证:EP PF=PC CF.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.2020年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.−15的相反数是( ) A .5B .15C .−15D .﹣5【解答】解:−15的相反数是15,故选:B .2.如图所示的六角螺母,其俯视图是( )A .B .C .D .【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆. 故选:B .3.如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14【解答】解:∵D ,E ,F 分别是AB ,BC ,CA 的中点, ∴DE =12AC ,DF =12BC ,EF =12AB , ∴DF BC=EF AB=DE AC=12,∴△DEF ∽△ABC , ∴S △DEF S △ABC=(DE AC)2=(12)2=14,∵等边三角形ABC 的面积为1, ∴△DEF 的面积是14,故选:D .4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A .等边三角形是轴对称图形,不是中心对称图形; B .平行四边形不是轴对称图形,是中心对称图形; C .圆既是轴对称图形又是中心对称图形; D .扇形是轴对称图形,不是中心对称图形. 故选:C .5.如图,AD 是等腰三角形ABC 的顶角平分线,BD =5,则CD 等于( )A .10B .5C .4D .3【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.下列运算正确的是()A.3a2﹣a2=3B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a⋅1a=1,故本选项符合题意;故选:D.8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210x B.6210x−1=3C.3x﹣1=6210x D.6210x=3【解答】解:依题意,得:3(x﹣1)=6210 x.故选:A.9.如图,四边形ABCD内接于⊙O,AB=CD,A为BD̂中点,∠BDC=60°,则∠ADB等于()A .40°B .50°C .60°D .70°【解答】解:∵A 为BD ̂中点,∴AB ̂═AD ̂,∵AB =CD ,∴AB ̂=CD ̂,∴AB ̂=AD ̂=CD ̂,∵圆周角∠BDC =60°,∴∠BDC 对的BC ̂的度数是2×60°=120°,∴AB ̂的度数是13×(360°﹣120°)=80°,∴AB ̂对的圆周角∠ADB 的度数是12×80°=40°,故选:A .10.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2﹣2ax 上的点,下列命题正确的是()A .若|x 1﹣1|>|x 2﹣1|,则y 1>y 2B .若|x 1﹣1|>|x 2﹣1|,则y 1<y 2C .若|x 1﹣1|=|x 2﹣1|,则y 1=y 2D .若y 1=y 2,则x 1=x 2【解答】解:∵抛物线y =ax 2﹣2ax =a (x ﹣1)2﹣a ,∴该抛物线的对称轴是直线x =1,当a >0时,若|x 1﹣1|>|x 2﹣1|,则y 1>y 2,故选项B 错误;当a <0时,若|x 1﹣1|>|x 2﹣1|,则y 1<y 2,故选项A 错误;若|x 1﹣1|=|x 2﹣1|,则y 1=y 2,故选项C 正确;若y 1=y 2,则|x 1﹣1|=|x 2﹣1|,故选项D 错误;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|= 8 .【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为 13 .【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为13, 故答案为:13. 13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 4π .(结果保留π)【解答】解:S 扇形=90⋅π⋅42360=4π, 故答案为4π.14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 ﹣10907 米.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC = 30 度.【解答】解:正六边形的每个内角的度数为:(6−2)⋅180°6=120°,所以∠ABC =120°﹣90°=30°,故答案为:30. 16.设A ,B ,C ,D 是反比例函数y =k x图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是 ①④ .(写出所有正确结论的序号)【解答】解:如图,过点O 任意作两条直线分别交反比例函数的图象于A ,C ,B ,D ,得到四边形ABCD .由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当OA =OC =OB =OD 时,四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②【解答】解:解不等式①,得:x ≤2,解不等式②,得:x >﹣3,则不等式组的解集为﹣3<x ≤2.18.(8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE=∠DAF .【解答】证明:四边形ABCD 是菱形,∴∠B =∠D ,AB =AD ,在△ABE 和△ADF 中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .19.(8分)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1. 【解答】解:原式=x+2−1x+2•x+2(x+1)(x−1)=1x−1,当x =√2+1时,原式=1√2+1−1=√22. 20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.【解答】解:(1)设销售甲种特产x 吨,则销售乙种特产(100﹣x )吨,10x +(100﹣x )×1=235,解得,x =15,∴100﹣x =85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w 万元,销售甲种特产a 吨,w =(10.5﹣10)a +(1.2﹣1)×(100﹣a )=0.3a +20,∵0≤a ≤20,∴当a =20时,w 取得最大值,此时w =26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.(8分)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sinA =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.【解答】解:(1)连接OB ,如图1,∵AB 与⊙O 相切于点B ,∴∠ABO =90°,∵sinA =12,∴∠A =30°,∴∠BOD =∠ABO +∠A =120°,∴∠BED =12∠BOD =60°;(2)连接OF ,OB ,如图2,∵AB 是切线,∴∠OBF =90°,∵BF =3√3,OB =3,∴tan ∠BOF =BF OB =√3, ∴∠BOF =60°,∵∠BOD =120°,∴∠BOF =∠DOF =60°,在△BOF 和△DOF 中,{OB =OD ∠BOF =∠DOF OF =OF,∴△BOF ≌△DOF (SAS ),∴∠OBF =∠ODF =90°,∴DF 与⊙O 相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.(10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.【解答】解:(1)如图,四边形ABCD 即为所求;(2)如图,∵CD ∥AB ,∴∠ABP =∠CDP ,∠BAP =∠DCP ,∴△ABP ∽△CDP ,∴AB CD =AP PC ,∵AB ,CD 的中点分别为M ,N ,∴AB =2AM ,CD =2CN ,∴AM CN =AP PC ,连接MP ,NP ,∵∠BAP =∠DCP ,∴△APM ∽△CPN ,∴∠APM =∠CPN ,∵点P 在AC 上,∴∠APM +∠CPM =180°,∴∠CPN +∠CPM =180°,∴M ,P ,N 三点在同一条直线上.24.(12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;②求证:EP PF =PC CF .【解答】解:(1)∵△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,∴AB =AD ,∠BAD =90°,△ABC ≌△ADE ,在Rt △ABD 中,∠B =∠ADB =45°,∴∠ADE =∠B =45°,∴∠BDE =∠ADB +∠ADE =90°.(2)①DF =PF .证明:由旋转的性质可知,AC =AE ,∠CAE =90°,在Rt △ACE 中,∠ACE =∠AEC =45°,∵∠CDF =∠CAD ,∠ACE =∠ADB =45°,∴∠ADB +∠CDF =∠ACE +∠CAD ,即∠FPD =∠FDP ,∴DF =PF .②证明:过点P 作PH ∥ED 交DF 于点H ,∴∠HPF =∠DEP ,EP PF =DH HF ,∵∠DPF =∠ADE +∠DEP =45°+∠DEP ,∠DPF =∠ACE +∠DAC =45°+∠DAC ,∴∠DEP =∠DAC ,又∵∠CDF =∠DAC ,∴∠DEP =∠CDF ,∴∠HPF =∠CDF ,又∵FD =FP ,∠F =∠F ,∴△HPF ≌△CDF (ASA ),∴HF =CF ,∴DH =PC ,又∵EP PF =DH HF , ∴EP PF =PC CF .25.(14分)已知直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,BC =4,且对于该二次函数图象上的任意两点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.(1)求二次函数的表达式;(2)若直线l 2:y =mx +n (n ≠10),求证:当m =﹣2时,l 2∥l 1;(3)E 为线段BC 上不与端点重合的点,直线l 3:y =﹣2x +q 过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.【解答】解:(1)∵直线l 1:y =﹣2x +10交y 轴于点A ,交x 轴于点B ,∴点A (0,10),点B (5,0),∵BC =4,∴点C (9,0)或点C (1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C (9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C (1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a (x ﹣1)(x ﹣5),过点A (0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣5)=2x 2﹣12x +10;(2)当m =﹣2时,直线l 2:y =﹣2x +n (n ≠10),∴直线l 2:y =﹣2x +n (n ≠10)与直线l 1:y =﹣2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P (x P ,y P ),∴{y P=−2x P+n y P =−2x P +10 解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2∥l 1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t=10t+80t−40=10(√t√2√t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.。

2020年福建省中考数学试卷(附答案解析)

2020年福建省中考数学试卷(附答案解析)

2020年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)-的相反数是()A.5B.C.-D.-52.(4分)如图所示的六角螺母,其俯视图是()A.B.C.D.3.(4分)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.4.(4分)下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.36.(4分)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1B.1C.2D.37.(4分)下列运算正确的是()A.3a2-a2=3B.(a+b)2=a2+b2C.(-3ab2)2=-6a2b4D.a•a-1=1(a≠0)8.(4分)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x-1)=B.=3C.3x-1=D.=39.(4分)如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.(4分)已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2-2ax上的点,下列命题正确的是()A.若|x1-1|>|x2-1|,则y1>y2B.若|x1-1|>|x2-1|,则y1<y2C.若|x1-1|=|x2-1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.(4分)|-8|=.12.(4分)若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.(4分)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.(4分)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.(4分)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.(4分)设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.19.(8分)先化简,再求值:(1-)÷,其中x=+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D重合的点,sin A=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.25.(14分)已知直线l1:y=-2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=-2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=-2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.【试题答案】一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.B【解答】解:-的相反数是,2.B【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆.3.D【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,4.C【解答】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.5.B【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.6.C【解答】解:∵M,N所对应的实数分别为m,n,∴-2<n<-1<0<m<1,∴m-n的结果可能是2.7.D【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a=1,故本选项符合题意;8.A【解答】解:依题意,得:3(x-1)=.9.A【解答】解:∵A为中点,∴═,∵AB=CD,∴=,∴==,∵圆周角∠BDC=60°,∴∠BDC对的的度数是2×60°=120°,∴的度数是(360°-120°)=80°,∴对的圆周角∠ADB的度数是。

福建省福州市2020年中考数学试题(含答案)

福建省福州市2020年中考数学试题(含答案)

年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是A .0.7B .21C .πD .-8 2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角 4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 25.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <36.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 ) 9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α) 10.下表是某校合唱团成员的年龄分布第2题年龄/岁 13 14 15 16 频数515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差 11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0 二、填空题(共6小题,每题4分,满分24分) 13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 . 15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(- )0 .20.(7分)化简:a -b -ba b a ++2)(21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .x y O x y O x y O x y O22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张? 23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人; (3)预测 福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM . (1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系; (2)求∠ABD 的度数. 26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM . (1)当AN 平分∠MAB 时,求DM 的长; (2)连接BN ,当DM =1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。

2024年福建省中考数学真题试卷及答案

2024年福建省中考数学真题试卷及答案

2024年福建省中考数学真题试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 下列实数中,无理数是( )A. 3-B. 0C.23D.2. 据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( ) A. 696110⨯B. 2696.110⨯C. 46.96110⨯D. 50.696110⨯3. 如图是由长方体和圆柱组成的几何体,其俯视图是( )A. B.C. D.4. 在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A. 30︒B. 45︒C. 60︒D. 75︒5. 下列运算正确的是( )A. 339a a a ⋅=B. 422a a a ÷=C. ()235a a = D. 2222a a -=6. 哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( ) A.14B.13C.12D.237. 如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为AB 的中点,则ACM ∠等于( )A. 18︒B. 30︒C. 36︒D. 72︒8. 今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是( ) A. ()1 4.7%120327x += B. ()1 4.7%120327x -= C.1203271 4.7%x=+D.1203271 4.7%x=-9. 小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A. OB OD ⊥B. BOC AOB ∠=∠C. OE OF =D. 180BOC AOD ∠+∠=︒10. 已知二次函数()220y x ax a a =-+≠的图象经过1,2a A y ⎛⎫⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A. 可以找到一个实数a ,使得1y a >B. 无论实数a 取什么值,都有1y a >C. 可以找到一个实数a ,使得20y <D. 无论实数a 取什么值,都有20y <二、填空题:本题共6小题,每小题4分,共24分.11. 因式分解:2x x +=12. 不等式321x -<的解集是______.13. 学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是______.(单位:分)14. 如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为______.15. 如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为______.16. 无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD ==______.(单位:N )(参考数据:sin400.64,cos400.77︒=︒=)三、解答题:本题共9小题,共86分。

2020年福建省中考数学试卷(含解析)

2020年福建省中考数学试卷(含解析)

2020年福建省中考数学试卷(考试时间:120分钟满分:150分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.﹣的相反数是()A.5 B.C.﹣D.﹣52.如图所示的六角螺母,其俯视图是()A.B.C.D.3.如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1 B.C.D.4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10 B.5 C.4 D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1 B.1 C.2 D.37.下列运算正确的是()A.3a2﹣a2=3 B.(a+b)2=a2+b2C.(﹣3ab2)2=﹣6a2b4D.a•a﹣1=1(a≠0)8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=B.=3C.3x﹣1=D.=39.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于()A.40°B.50°C.60°D.70°10.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2﹣2ax上的点,下列命题正确的是()A.若|x1﹣1|>|x2﹣1|,则y1>y2B.若|x1﹣1|>|x2﹣1|,则y1<y2C.若|x1﹣1|=|x2﹣1|,则y1=y2D.若y1=y2,则x1=x2二、填空题:本题共6小题,每小题4分,共24分.11.|﹣8|=.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.16.设A,B,C,D是反比例函数y=图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式组:18.(8分)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.19.(8分)先化简,再求值:(1﹣)÷,其中x=+1.20.(8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.21.(8分)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D 重合的点,sinA=.(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.22.(10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.(10分)如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.(12分)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.25.(14分)已知直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x 轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=﹣2时,l2∥l1;(3)E为线段BC上不与端点重合的点,直线l3:y=﹣2x+q过点C且交直线AE于点F,求△ABE与△CEF 面积之和的最小值.参考答案与试题解析一、选择题1.【解答】解:﹣的相反数是,故选:B.2.【解答】解:从上面看,是一个正六边形,六边形的中间是一个圆.故选:B.3.【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.4.【解答】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形不是轴对称图形,是中心对称图形;C.圆既是轴对称图形又是中心对称图形;D.扇形是轴对称图形,不是中心对称图形.故选:C.5.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.6.【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.7.【解答】解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;D、原式=a=1,故本选项符合题意;故选:D.8.【解答】解:依题意,得:3(x﹣1)=.故选:A.9.【解答】解:∵A为中点,∴═,∵AB=CD,∴=,∴==,∵圆周角∠BDC=60°,∴∠BDC对的的度数是2×60°=120°,∴的度数是(360°﹣120°)=80°,∴对的圆周角∠ADB的度数是,故选:A.10.【解答】解:∵抛物线y=ax2﹣2ax=a(x﹣1)2﹣a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1﹣1|>|x2﹣1|,则y1>y2,故选项B错误;当a<0时,若|x1﹣1|>|x2﹣1|,则y1<y2,故选项A错误;若|x1﹣1|=|x2﹣1|,则y1=y2,故选项C正确;若y1=y2,则|x1﹣1|=|x2﹣1|,故选项D错误;故选:C.二、填空题11.【解答】解:∵﹣8<0,∴|﹣8|=﹣(﹣8)=8.故答案为:8.12.【解答】解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为,故答案为:.13.【解答】解:S扇形==4π,故答案为4π.14.【解答】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为﹣10907米.故答案为:﹣10907.15.【解答】解:正六边形的每个内角的度数为:=120°,所以∠ABC=120°﹣90°=30°,故答案为:30.16.【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,三、解答题17.【解答】解:解不等式①,得:x≤2,解不等式②,得:x>﹣3,则不等式组的解集为﹣3<x≤2.18.【解答】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.19.【解答】解:原式=•=,当时,原式==.20.【解答】解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w万元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.【解答】解:(1)连接OB,如图1,∵AB与⊙O相切于点B,∴∠ABO=90°,∵sinA=,∴∠A=30°,∴∠BOD=∠ABO+∠A=120°,∴∠BED=∠BOD=60°;(2)连接OF,OB,如图2,∵AB是切线,∴∠OBF=90°,∵BF=3,OB=3,∴,∴∠BOF=60°,∵∠BOD=120°,∴∠BOF=∠DOF=60°,在△BOF和△DOF中,,∴△BOF≌△DOF(SAS),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.22.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.【解答】解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD∥AB,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴=,∵AB,CD的中点分别为M,N,∴AB=2AM,CD=2CN,∴=,连接MP,NP,∵∠BAP=∠DCP,∴△APM∽△CPN,∴∠APM=∠CPN,∵点P在AC上,∴∠APM+∠CPM=180°,∴∠CPN+∠CPM=180°,∴M,P,N三点在同一条直线上.24.【解答】解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.25.【解答】解:(1)∵直线l1:y=﹣2x+10交y轴于点A,交x轴于点B,∴点A(0,10),点B(5,0),∵BC=4,∴点C(9,0)或点C(1,0),∵点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.∴当x≥5时,y随x的增大而增大,当抛物线过点C(9,0)时,则当5<x<7时,y随x的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x>3时,y随x的增大而增大,符合题意,∴设抛物线解析式为:y=a(x﹣1)(x﹣5),过点A(0,10),∴10=5a,∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣5)=2x2﹣12x+10;(2)当m=﹣2时,直线l2:y=﹣2x+n(n≠10),∴直线l2:y=﹣2x+n(n≠10)与直线l1:y=﹣2x+10不重合,假设l1与l2不平行,则l1与l2必相交,设交点为P(x P,y P),∴解得:n=10,∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1;(3)如图,、∵直线l3:y=﹣2x+q过点C,∴0=﹣2×1+q,∴q=2,∴直线l3,解析式为L:y=﹣2x+2,∴l3∥l1,∴CF∥AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴=()2,设BE=t(0<t<4),则CE=4﹣t,∴S△ABE=×t×10=5t,∴S△CEF=()2×S△ABE=()2×5t=,∴S△ABE+S△CEF=5t+=10t+﹣40=10(﹣)2+40﹣40,∴当t=2时,S△ABE+S△CEF的最小值为40﹣40.。

2023年福建省中考数学试卷含答案解析

2023年福建省中考数学试卷含答案解析

绝密★启用前2023年福建省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列实数中,最大的数是( )A. −1B. 0C. 1D. 22. 如图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A.B.C.D.3. 若某三角形的三边长分别为3,4,m,则m的值可以是( )A. 1B. 5C. 7D. 94. 党的二十大报告指出,我国建成世界上规模最大的教育体系、社会保障体系、医疗卫生体系,教育普及水平实现历史性跨越,基本养老保险覆盖十亿四千万人,基本医疗保险参保率稳定在百分之九十五.将数据1040000000用科学记数法表示为( )A. 104×107B. 10.4×108C. 1.04×109D. 0.104×10105. 下列计算正确的是( )A. (a2)3=a6B. a6÷a2=a3C. a3⋅a4=a12D. a2−a=a6. 根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x,根据题意可列方程( )A. 43903.89(1+x)=53109.85B. 43903.89(1+x)2=53109.85C. 43903.89x2=53109.85D. 43903.89(1+x2)=53109.857. 阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;CD的长为半径作弧,两弧在∠AOB内交②分别以C,D为圆心,以大于12于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是( )A. ∠1=∠2且CM=DMB. ∠1=∠3且CM=DMC. ∠1=∠2且OD=DMD. ∠2=∠3且OD=DM8. 为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )A. 平均数为70分钟B. 众数为67分钟C. 中位数为67分钟D. 方差为09. 如图,正方形四个顶点分别位于两个反比例函数y =3x 和y =nx 的图象的四个分支上,则实数n 的值为( )A. −3B. −13 C. 13 D. 310. 我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为3√ 32,若用圆内接正十二边形作近似估计,可得π的估计值为( )A. √ 3B. 2√ 2C. 3D. 2√ 3第II 卷(非选择题)二、填空题(本大题共6小题,共24.0分)11. 某仓库记账员为方便记账,将进货10件记作+10,那么出货5件应记作______ .12. 如图,在▱ABCD 中,O 为BD 的中点,EF 过点O 且分别交AB ,CD 于点E ,F.若AE =10,则CF 的长为______ .13. 如图,在菱形ABCD 中,AB =10,∠B =60°,则AC 的长为______ .14. 某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:如果将每位应聘者的综合知识、工作经验、语言表达的成绩按5:2:3的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是______ .15. 已知1a +2b =1,且a ≠−b ,则ab−aa+b 的值为______ .16. 已知抛物线y =ax 2−2ax +b(a >0)经过A(2n +3,y 1),B(n −1,y 2)两点,若A ,B 分别位于抛物线对称轴的两侧,且y 1<y 2,则n 的取值范围是______ .三、解答题(本大题共9小题,共86.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年福建省中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共40.0分)1.−15的相反数是()A. 5B. 15C. −15D. −52.如图所示的六角螺母,其俯视图是()A.B.C.D.3.如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A. 1B. 12C. 13D. 144.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.5.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A. 10B. 5C. 4D. 36.如图,数轴上两点M,N所对应的实数分别为m,n,则m−n的结果可能是()A. −1B. 1C. 2D. 37.下列运算正确的是()A. 3a2−a2=3B. (a+b)2=a2+b2C. (−3ab2)2=−6a2b4D. a⋅a−1=1(a≠0)8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A. 3(x−1)=6210x B. 6210x−1=3C. 3x−1=6210x D. 6210x=39.如图,四边形ABCD内接于⊙O,AB=CD,A为BD⏜中点,∠BDC=60°,则∠ADB等于()A. 40°B. 50°C. 60°D. 70°10.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共6小题,共24.0分)11.|−8|=______.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为______.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为______.(结果保留π)14. 2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为______米.15. 如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC =______度.16. 设A ,B ,C ,D 是反比例函数y =k x 图象上的任意四点,现有以下结论:①四边形ABCD 可以是平行四边形;②四边形ABCD 可以是菱形;③四边形ABCD 不可能是矩形;④四边形ABCD 不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共8.0分)17. 先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1.四、解答题(本大题共8小题,共78.0分)18. 解不等式组:{2x ≤6−x, ①3x +1>2(x −1). ②19. 如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF.求证:∠BAE =∠DAF .20.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.⏜上21.如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是BCD.不与B,D重合的点,sinA=12(1)求∠BED的大小;(2)若⊙O的半径为3,点F在AB的延长线上,且BF=3√3,求证:DF与⊙O相切.22.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.23.如图,C为线段AB外一点.(1)求作四边形ABCD,使得CD//AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.24.如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:EPPF =PCCF.25.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1. B解:−15的相反数是15,2. B解:从上面看,是一个正六边形,六边形的中间是一个圆.3. D解:∵D ,E ,F 分别是AB ,BC ,CA 的中点,∴DE =12AC ,DF =12BC ,EF =12AB , ∴DF BC =EF AB =DE AC =12,∴△DEF∽△ABC ,∴S △DEFS △ABC =(DE AC )2=(12)2=14, ∵等边三角形ABC 的面积为1,∴△DEF 的面积是14,4. C解:A.等边三角形是轴对称图形,不是中心对称图形;B .平行四边形不是轴对称图形,是中心对称图形;C .圆既是轴对称图形又是中心对称图形;D .扇形是轴对称图形,不是中心对称图形.5. B解:∵AD 是等腰三角形ABC 的顶角平分线,BD =5,∴CD =5.6. C解:∵M ,N 所对应的实数分别为m ,n ,∴−2<n <−1<0<m <1,∴m −n 的结果可能是2.7.D解:A、原式=2a2,故本选项不符合题意;B、原式=a2+2ab+b2,故本选项不符合题意;C、原式=9a2b4,故本选项不符合题意;=1,故本选项符合题意;D、原式=a⋅1a8.A.解:依题意,得:3(x−1)=6210x9.A解:∵A为BD⏜中点,∴AB⏜═AD⏜,∵AB=CD,∴AB⏜=CD⏜,∴AB⏜=AD⏜=CD⏜,∵圆周角∠BDC=60°,∴∠BDC对的BC⏜的度数是2×60°=120°,×(360°−120°)=80°,∴AB⏜的度数是13×80°=40°,∴AB⏜对的圆周角∠ADB的度数是1210.C解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;11.8解:∵−8<0,∴|−8|=−(−8)=8.12.13解:∵从甲、乙、丙3位“爱心辅学”志愿者中随机选1位共有3种等可能结果,其中甲被选中只有1种结果,∴甲被选到的概率为13,13.4π解:S扇形=90⋅π⋅42360=4π,故答案为4π.14.−10907解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数,∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为−10907米.15.30解:正六边形的每个内角的度数为:(6−2)⋅180°6=120°,所以∠ABC=120°−90°=30°,16.①④解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,17.解:原式=x+2−1x+2⋅x+2 (x+1)(x−1)=1x−1,当x=√2+1时,原式=√2+1−1=√22.18.解:解不等式①,得:x≤2,解不等式②,得:x>−3,则不等式组的解集为−3<x≤2.19.证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,{AB=AD ∠B=∠D BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.20.解:(1)设销售甲种特产x吨,则销售乙种特产(100−x)吨,10x+(100−x)×1=235,解得,x=15,∴100−x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w元,销售甲种特产a吨,w=(10.5−10)a+(1.2−1)×(100−a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.21.解:(1)连接OB,如图1,∵AB与⊙O相切于点B,∴∠ABO=90°,∵sinA=12,∴∠A=30°,∴∠BOD=∠ABO+∠A=120°,∴∠BED=12∠BOD=60°;(2)连接OF,OB,如图2,∵AB是切线,∴∠OBF=90°,∵BF=3√3,OB=3,∴tan∠BOF=BFOB=√3,∴∠BOF=60°,∵∠BOD=120°,∴∠BOF=∠DOF=60°,在△BOF和△DOF中,{OB=OD∠BOF=∠DOF OF=OF,∴△BOF≌△DOF(SAS),∴∠OBF=∠ODF=90°,∴DF与⊙O相切.22.解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×650=120;(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:150×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2020年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2020年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470 >960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.23.解:(1)如图,四边形ABCD即为所求;(2)如图,∵CD//AB,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴ABCD =APPC,∵AB,CD的中点分别为M,N,∴AB=2AM,CD=2CN,∴AMCN =APPC,连接MP,NP,∵∠BAP=∠DCP,∴△APM∽△CPN,∴∠APM=∠CPN,∵点P在AC上,∴∠APM+∠CPM=180°,∴∠CPN+∠CPM=180°,∴M,P,N三点在同一条直线上.24.解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH//ED交DF于点H,∴∠HPF=∠DEP,EPPF =DHHF,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵EPPF =DHHF,∴EPPF =PCCF.25. 解:(1)∵直线l 1:y =−2x +10交y 轴于点A ,交x 轴于点B ,∴点A(0,10),点B(5,0),∵BC =4,∴点C(9,0)或点C(1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C(9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去, 当抛物线过点C(1,0)时,则当x >3时,y 随x 的增大而增大,符合题意, ∴设抛物线解析式为:y =a(x −1)(x −5),过点A(0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x −1)(x −5)=2x 2−12x +10;(2)当m =−2时,直线l 2:y =−2x +n(n ≠10),∴直线l 2:y =−2x +n(n ≠10)与直线l 1:y =−2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P(x P ,y P ),∴{y P =−2x P +n y P =−2x P +10解得:n =10,∵n =10与已知n ≠10矛盾,∴l 1与l 2不相交,∴l 2//l 1;(3)如图,、∵直线l 3:y =−2x +q 过点C ,∴0=−2×1+q ,∴q =2,∴直线l 3,解析式为L :y =−2x +2,∴l 3//l 1,∴CF//AB ,∴∠ECF =∠ABE ,∠CFE =∠BAE ,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4−t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t =10t+80t−40=10(√t−√2t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.。

相关文档
最新文档