2015九年级上学期第一次调研数学试题及答案

合集下载

阜宁益林中学2015届九年级上学情调研数学试题及答案

阜宁益林中学2015届九年级上学情调研数学试题及答案

(卷面分值:150分 答卷时间:120分)一.选择题:(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有1.已知方程2kx —x +1=0 有两个不等的实数根,则k 的范围是( ▲ )A .k >14B .k <14C .k ≠ 14D .k <14且 k ≠ 02.如图,一张半径为1的圆形纸片在边长为(3)a a ≥的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是( ▲ )A .2a π- B . 4π- C .π D . 2(4)a π-3.圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是( ▲ ) A .40° B .80° C .120° D .150°4.若二次函数y =(x-3)2+k 的图象过A (-1,y 1)、B (2,y 2)、C (3+2,y 3)三点,则y 1、y 2、y 3的大小关系正确的是( ▲ )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 3>y 1>y 25.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( ▲ ) A .40°B .50°C .60°D .70°6.下列命题中,正确的是( ▲ ) A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.三角形的外心在三角形的外面D.与某圆一条半径垂直的直线是该圆的切线 7.若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ▲ ) A .m =l B .m >l C .m ≥l D .m ≤l 8、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系B.二.填空题(请将正确答案填写在横线上,本大题共10小题,每小题3分,计30分) 9.一组数据3、4、5、5、6、7的方差是 .10.方程x 2-x =0的解为 ______11.将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 ___________________12.某商品原价是400元,连续两次降价后的价格为289元,则平均每次降价的百分率 为13、已知点P 到⊙O 的最远距离为10cm ,最近距离为4cm ,则该圆半径为 cm . 14、选择一组你喜欢的a,b,c 的值,使二次函数y=ax 2+bx+c (a ≠0)的图像同时 满 足下列条件:①开口向下;②当x ﹤2时,y 随x 的增大而增大;③当x ﹥2时,y 随x 的增大而减小。

2014-2015学年度第一学期10月调研九年级数学试题

2014-2015学年度第一学期10月调研九年级数学试题

2014-2015学年度第一学期10月调研九年级数学试题一、填空题(本题共12小题,每空2分,共24分).4.方程29180x x-+=的两个根是等腰三角形的底和腰,则这个等腰三角形周长为 6.如图,AB 是⊙O的直径,点C 、D 在⊙O 上,0110=∠B O C ,OC AD //,则7.现定义运算“★”,对于任意实数a 、b ,都有a ★b =b a a +-32, 如8.⊙O 9.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道10.如图,在⊙O 中,CD 是直径,弦CD AB ⊥,垂足为E ,连接BC .若cm AB 22=,'3022o=∠BCD ,则⊙O 的半径为 cm .11.若两个不等实数m 、n 满足条件:0122=--mm ,0122=--n n ,则22n m +的值.第5题第6题第9题12. 如图,AOB ∆为等腰三角形,顶点A 的坐标(2,),底边OB 在x 轴上.将AOB ∆绕点B 按顺时针方向旋转一定角度后得'''B O A ∆,点A 的对应点'A 在x 轴上,则点'O 的坐标为二、单项选择题(本题共5小题,每小题只有1个选项符合题意。

每小题3分,共15分)13.关于x 的方程032)1(2=-++mx x m 是一元二次方程,则m 的取值是【 】.A 任意实数 .B 1≠m .C 1-≠m .D 1>m14.已知⊙O 的直径为3cm ,点P 到圆心O 的距离2=OP cm ,则点P 【 】.A 在⊙O 外 .B 在⊙O 上 .C 在⊙O 内 .D 不能确定15. 一元二次方程220x x +-=的根的情况是 【 】 A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根D.没有实数根16.若03)(2)(22222=-+-+b a b a ,则代数式22b a +的值 【 】.A -1 .B 3 .C -1或3 .D 1或-317.小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是 【 】.A 2 .B 5 .C 22 .D 3三、解答题(本大题共10小题,共81分) 18. (每题4分共16分)解一元二次方程.(1)09)3(2=--x (2)0522=--x x第10题第12题第17题(3)3(2)2(2)x x x -=- (4)x x 8172=+19. (6分)关于x 的一元二次方程012)1(2=++--m mx x m .(1)求证:方程有两个不相等的实数根; (2)m 为何整数时,此方程的两个根都为正整数.20.(6分)汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?21. (6分)如图所示,某窗户由矩形和弓形组成,已知弓形的跨度m AB 3=,弓形的高m EF 1=,现计划安装玻璃,请帮工程师求出弧AB 所在圆O 的半径r22. (6分)如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B 市位于点P 的北偏东75°方向上,距离P 点480千米.(1)说明本次台风是否会影响B 市;(2)若这次台风会影响B 市,求B 市受台风影响的时间.23. (8分)已知,如图1,ABC ∆中,BC BA =,D 是平面内不与A 、B 、C 重合的任意一点,DBE ABC ∠=∠,BE BD =. (1)求证:ABD ∆≌CBE ∆;(2)如图2,当点D 是ABC ∆的外接圆圆心时,请判断四边形BDC E 的形状,并证明你的结论.24.(8分)在矩形ABCD 中,cm AB 5=,cm BC 10=,点P 从点A 沿矩形的边以scm 1的速度经B 向C 运动,点Q 从B 点出发沿矩形的边以scm 2的速度经C 向D 运动,点P 、Q 同时运动,且一点到达终点另一点也停止运动,求几秒后以P 、Q 、B 为顶点的三角形的面积等于6平方厘米?25.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

2015初三调研考试数学试卷

2015初三调研考试数学试卷

A. 2 B. 1 C. 0 D.1 2、某工厂第二季度的产值比第一季度的产值增长了 x%,第三季度的产值又比第二季度的 产值增长了 x%,则第三季度的产值比第一季度的产值增长 A.2x% B.1+2x% C. (1+x%)x% D. (2+x%)x% 3、如图,正方形 OABC 的两边 OA、OC 分别在 x 轴、y 轴上,点 D(5,3)在边 AB 上,以 C 为中心,把△CDB 旋转 90°,则旋转后点 D 的对应点 D′的坐标是 A.(2,10) B.(-2.0) C.(2,10) D.(10,2) (-2.0) (-2,0)
m)称为 M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图 4 的极坐标 系下,如果正六边形的边长为 2,有一边 OA 在射线 Ox 上,则正六边形的顶点 C 的极坐标应
记为 A.(60°,4) B.(45°,4) C.(60°,2 2 ) D.(50°,2 2 ) 6、设非零实数 a , b , c 满足 图3 图4
2
A.2005
B.2006
C.2007
D.2008
8、一个质地均匀的正方体的六个面上分别标有数 1,2,3,4,5,6.掷这个正方体三次, 则其朝上的面的数和为 3 的倍数的概率是 A.
2 3
B.
1 3
C.
3 4
D.
1 2
二、填空题(4'×10=40') 9、 ﹣|﹣3|﹣(﹣π)0+2014=
2 2
九年级调研考试数学试卷
第 4 页 (共 4 页)
(第 15 题图) 14、如上图,一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正 方形中未被小正方形覆盖部分的面积是 (用 a、b 的代数式表示) .

2015-2016学年新人教版九年级上调研数学试卷含答案解析

2015-2016学年新人教版九年级上调研数学试卷含答案解析

2015-2016学年九年级(上)调研数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程为一元二次方程的是()A.x+=1 B.ax2+bx+c=0 C.x(x﹣1)=x D.x+2.一元二次方程x2=x的解为()A.x=1 B.x=0 C.x1=1,x2=2 D.x1=0,x2=13.抛物线y=ax2+4ax﹣5的对称轴为()A.x=﹣2a B.x=4 C.x=2a D.x=﹣24.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.线段 B.等边三角形C.平行四边形D.正五边形5.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°6.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°7.设同一个圆的内接正六边形、正八边形、正十二边形的边心距分别为r6,r8,r12,则r6,r8,r12的大小关系为()A.r6>r8>r12B.r6<r8<r12C.r8>r6>r12D.不能确定8.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定2点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是()A.y1≥y2B.y1>y2C.y1<y2D.y1≤y210.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.811.如图,点A、B的坐标分别为(1,2),(3,),现将线段AB绕点B顺时针旋转180°得线段A1B,则A1的坐标为()A.(1,﹣5)B.(5,﹣2)C.(5,﹣1)D.(﹣1,5)12.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题:本大题共6个小题,每小题3分,共18分.13.已知x=﹣1是方程x2+mx﹣5=0的一个根,则m=,方程的另一根为.14.如图,在扇形AOB中,∠AOB=90°,弧AB的长为2π,则扇形AOB的面积为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.已知某产品的成本两年降低了75%,则平均每年降低.17.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.18.对于抛物线y=ax2+bx+c(a≠0),有下列说法:①当b=a+c时,则抛物线y=ax2+bx+c一定经过一个定点(﹣1,0);②若△=b2﹣4ac>0,则抛物线y=cx2+bx+a与x轴必有两个不同的交点;③若b=2a+3c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;④若a>0,b>a+c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;其中正确的有.三、解答题(本大题共7小题,共86分,解答时应写出文字说明,证明过程或演算步骤)19.计算:(1)用公式法解方程:x2+3x﹣2=0(2)已知a2+a=0,请求出代数式()的值.20.如图,已知抛物线y=﹣ax2+2ax+3a(a≠0)与x轴交于A、B两点,与y轴交于点C.(1)请直接写出A、B两点的坐标.(2)当a=,设直线AC与抛物线的对称轴交于点P,请求出△ABP的面积.21.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程总有两个不相等的实数根.(2)设方程的两根为x1,x2(x1<x2),则当0≤p时,请直接写出x1和x2的取值范围.22.在Rt△ABC中,∠ACB=90°,现将Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC(如图①)(1)请判断ED与AB的位置关系,并说明理由.(2)如图②,将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,记平移后的三角形为Rt△DEF,连接AE、DC,求证:∠ACD=∠AED.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?24.如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.①求△COD的面积.②试判断直线CD与☉O的位置关系,并说明理由.(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.25.如图,抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.(1)求该抛物线的解析式.(2)在抛物线上是否存在一点N,使得|MN﹣ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.九年级(上)调研数学试卷(12月份)参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程为一元二次方程的是()A.x+=1 B.ax2+bx+c=0 C.x(x﹣1)=x D.x+【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是分式方程的解,故A错误;B、a=0时,是一元一次方程,故B错误;C、是一元二次方程,故C正确;D、是无理方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.一元二次方程x2=x的解为()A.x=1 B.x=0 C.x1=1,x2=2 D.x1=0,x2=1【考点】解一元二次方程-因式分解法.【分析】首先把x移项,再把方程的左面分解因式,即可得到答案.【解答】解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故选D.【点评】此题主要考查了因式分解法解一元二次方程,关键是把方程的右面变为0.3.抛物线y=ax2+4ax﹣5的对称轴为()A.x=﹣2a B.x=4 C.x=2a D.x=﹣2【考点】二次函数的性质.【专题】探究型.【分析】根据抛物线的解析式可以求得对称轴的值,从而可以解答本题.【解答】解:∵抛物线y=ax2+4ax﹣5,∴对称轴为:x=.故选D.【点评】本题考查二次函数的性质,解题的关键是知道求对称轴的公式.4.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.线段 B.等边三角形C.平行四边形D.正五边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°【考点】圆周角定理.【分析】连接OC,然后根据等边对等角可得:∠OCB=∠OBC=40°,然后根据三角形内角和定理可得∠BOC=100°,然后根据周角的定义可求:∠1=260°,然后根据圆周角定理即可求出∠A的度数.【解答】解:连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°,∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用,解题的关键是:熟记在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°【考点】旋转的性质.【专题】几何图形问题.【分析】因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O 逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.【解答】解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.【点评】本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.7.设同一个圆的内接正六边形、正八边形、正十二边形的边心距分别为r6,r8,r12,则r6,r8,r12的大小关系为()A.r6>r8>r12B.r6<r8<r12C.r8>r6>r12D.不能确定【考点】正多边形和圆.【分析】圆的内接正多边形,边数越多,多边形就和圆越接近,则边心距就越接近圆的半径.【解答】解:根据同一个圆的内接正多边形的特点得:r6<r8<r12;故选:B.【点评】本题考查了正多边形和圆;熟记正多边形的边数越多,就越接近外接圆,边心距越大是解决问题的关键.8.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.211221x2<3时,y1与y2的大小关系正确的是()A.y1≥y2B.y1>y2C.y1<y2D.y1≤y2【考点】二次函数图象上点的坐标特征;解二元一次方程组;待定系数法求二次函数解析式.【专题】计算题;压轴题.【分析】根据题意知图象过(0,5)(1,2)(2,1),代入得到方程组,求出方程组的解即可得到抛物线的解析式,化成顶点式得到抛物线的对称轴,根据对称性得到A的对称点,利用增减性即可得出答案.【解答】解:根据题意知图象过(0,5)(1,2)(2,1),代入得:且,解得:a=1,b=﹣4,c=5,∴抛物线的解析式是y=x2﹣4x+5=(x﹣2)2+1,∴抛物线的对称轴是直线x=2,∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故选B.【点评】本题主要考查对二次函数图象上点的坐标特征,解二元一次方程组,用待定系数法求二次函数的解析式等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键.10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.8【考点】切线的性质;勾股定理的逆定理;圆周角定理.【专题】压轴题.【分析】设EF的中点为O,圆O与AB的切点为D,连接OD,连接CO,CD,则有OD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形OC+OD=EF,由三角形的三边关系知,CO+OD>CD;只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC的斜边AB 的高上CD时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选D.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.11.如图,点A、B的坐标分别为(1,2),(3,),现将线段AB绕点B顺时针旋转180°得线段A1B,则A1的坐标为()A.(1,﹣5)B.(5,﹣2)C.(5,﹣1)D.(﹣1,5)【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】设A1的坐标为(m,n),根据旋转的性质得BA=BA1,∠ABA1=180°,则可判断点B为AA1的中点,根据线段中点坐标公式得到3=,=,解得a=5,b=﹣1,然后解方程求出a、b即可得到A1的坐标.【解答】解:设A1的坐标为(m,n),∵线段AB绕点B顺时针旋转180°得线段A1B,∴BA=BA1,∠ABA1=180°,∴点B为AA1的中点,∴3=,=,解得a=5,b=﹣1,∴A1的坐标为(5,﹣1).故选C.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.利用线段中点坐标公式是解决本题的关键.12.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【专题】压轴题.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF 中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.二、填空题:本大题共6个小题,每小题3分,共18分.13.已知x=﹣1是方程x2+mx﹣5=0的一个根,则m=﹣4,方程的另一根为x=5.【考点】一元二次方程的解.【专题】计算题;压轴题.【分析】把x=﹣1代入原方程,即可求m,再把m的值代入,可得关于x的一元二次方程,利用因式分解法求解方程,可得x1=5,x2=﹣1,从而可求答案.【解答】解:把x=﹣1代入方程,得(﹣1)2﹣m﹣5=0,∴m=1﹣5=﹣4,∴原方程为x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,即另一根为x=5.故答案是﹣4;x=5.【点评】本题考查了一元二次方程的解,解题的关键是理解方程的根的概念以及使用因式分解法解方程.14.如图,在扇形AOB中,∠AOB=90°,弧AB的长为2π,则扇形AOB的面积为4π.【考点】扇形面积的计算;弧长的计算.【分析】首先运用弧长公式求出扇形的半径,运用扇形的面积公式直接计算,即可解决问题.【解答】解:∵∠AOB=90°,弧AB的长为2π,∴=2π,解得:r=4,∴扇形的面积为=4π.故答案为:4π.【点评】此题主要考查了扇形的面积公式、弧长公式等知识点及其应用问题;应牢固掌握扇形的面积公式、弧长公式,这是灵活运用、解题的基础和关键.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.已知某产品的成本两年降低了75%,则平均每年降低50%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故答案是:50%.【点评】本题考查一元二次方程的一共有.需要学生具备理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.17.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1.【考点】旋转的性质;全等三角形的判定与性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.18.对于抛物线y=ax2+bx+c(a≠0),有下列说法:①当b=a+c时,则抛物线y=ax2+bx+c一定经过一个定点(﹣1,0);②若△=b2﹣4ac>0,则抛物线y=cx2+bx+a与x轴必有两个不同的交点;③若b=2a+3c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;④若a>0,b>a+c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;其中正确的有①③④.【考点】抛物线与x轴的交点;二次函数的性质.【分析】利用二次函数的性质以及抛物线与x轴的交点坐标逐一分析得出答案即可.【解答】解:①抛物线y=ax2+bx+c一定经过一个定点(﹣1,0),则0=a﹣b+c,即b=a+c,此选项成立成立;②方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,当c=0时,cx2+bx+a=0不成立,即抛物线y=cx2+bx+a与x轴必有两个不同的交点不成立;③当b=2a+3c,则b2﹣4ac=(2a+3b)2﹣4ac=4a2+8ac+9b2=4(a+c)2+5c2,而a≠0,于是b2﹣4ac>0,则方程必有两个不相等的实数根;④当a>0,b>a+c,则b2﹣4ac<(a+c)2﹣4ac=(a﹣c)2>0,则抛物线y=ax2+bx+c与x轴必有两个不同的交点,结论成立.正确的结论是①③④.故答案为:①③④.【点评】此题考查抛物线与x轴的交点坐标,二次函数的性质,掌握二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质是解决问题的关键.三、解答题(本大题共7小题,共86分,解答时应写出文字说明,证明过程或演算步骤)19.计算:(1)用公式法解方程:x2+3x﹣2=0(2)已知a2+a=0,请求出代数式()的值.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】(1)首先找出公式中的a,b,c的值,再代入求根公式求解即可.(2)首先把括号内的分式进行通分,进行加法运算,然后把除法转化成乘法,进行乘法运算,然后把已知的式子求出a的值,代入化简以后的式子即可求解.【解答】解:(1)a=1,b=3,c=﹣2,△=b2﹣4ac=9+8=17,∴x===,则:x1=,x2=(2).解:原式=[+]÷=•=;由a2+a=0,解得:a=0或﹣1,当a=0时,原分式无意义,当a=﹣1时,原式==﹣.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.由考查了公式法解一元二次方程.20.如图,已知抛物线y=﹣ax2+2ax+3a(a≠0)与x轴交于A、B两点,与y轴交于点C.(1)请直接写出A、B两点的坐标.(2)当a=,设直线AC与抛物线的对称轴交于点P,请求出△ABP的面积.【考点】抛物线与x轴的交点.【专题】计算题.【分析】(1)利用抛物线与x轴的交点问题,通过解方程﹣ax2+2ax+3a=0即可得到A(3,0),B(﹣1,0);(2)当a=时,y=﹣x2+2x+3,先确定C点坐标,再利用待定系数法求出直线AC的解析式为y=﹣x+3,接着确定P点坐标,然后根据三角形面积公式求解.【解答】解:(1)令y=0,﹣ax2+2ax+3a=0,整理得x2﹣2x﹣3=0,解得x1=3,x2=﹣1,所以A(3,0),B(﹣1,0);(2)当a=时,y=﹣x2+2x+3,当x=0时,y=3,则C(0,3),设直线AC的解析式为y=kx+b,把A(3,0),C(0,3)代入得,解得,所以直线AC的解析式为y=﹣x+3,而抛物线的对称轴为直线x=1,当x=1时,y=﹣x+3=2,则P(1,2),所以△APB的面积=×(3+1)×2=4.【点评】本题考查了抛物线与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.21.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程总有两个不相等的实数根.(2)设方程的两根为x1,x2(x1<x2),则当0≤p时,请直接写出x1和x2的取值范围.【考点】根的判别式;根与系数的关系.【专题】计算题;一次方程(组)及应用.【分析】(1)方程整理为一般形式,表示出根的判别式,根据根的判别式的值为正数,即可得证;(2)根据p的范围,表示出两根的取值范围即可.【解答】(1)证明:方程可变形为x2﹣5x+6﹣p2=0,∵△=25﹣4(6﹣p2)=4p2+1>0,∴方程总有两个不相等的实数根;(2)解:设方程的两根为x1,x2(x1<x2),则当0≤p时,x1和x2的取值范围分别为0<x1≤2,3≤x2<5.【点评】此题考查了根的判别式,以及根与系数的关系,熟练掌握运算法则是解本题的关键.22.在Rt△ABC中,∠ACB=90°,现将Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC(如图①)(1)请判断ED与AB的位置关系,并说明理由.(2)如图②,将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,记平移后的三角形为Rt△DEF,连接AE、DC,求证:∠ACD=∠AED.【考点】旋转的性质;平移的性质.【专题】证明题.【分析】(1)延长ED交AB于F,如图①,根据旋转的性质得∠A=∠E,再利用∠A+∠B=90°得到∠E+∠B=90°,则根据三角形内角和定理易得∠EFB=90°,于是利用垂直的定义可判断ED⊥AB;(2)如图②,先利用平移的性质和(1)中的结论得到DE⊥AB,即∠ADE=90°,则利用圆周角定理的推论得到点C和点D在以AE为直径的圆上,然后根据圆周角定理即可得到结论.【解答】(1)解:ED⊥AB.理由如下:延长ED交AB于F,如图①,∵Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC,∴∠A=∠E,∵∠A+∠B=90°∴∠E+∠B=90°∴∠EFB=90°∴ED⊥AB;(2)证明:如图②,∵将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,∴DE⊥AB,∴∠ADE=90°,∵∠ACE=90°,∴点C和点D在以AE为直径的圆上,∴∠ACD=∠AED.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决(2)的关键是确定点C和点D在以AE为直径的圆上,从而利用圆周角定理求解.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【专题】应用题.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.①求△COD的面积.②试判断直线CD与☉O的位置关系,并说明理由.(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.【考点】圆的综合题.【分析】(1)①利用已知结合梯形面积以及三角形面积求法得出答案;②过点O作OF⊥CD于F,得出OF的长,再利用切线的判定方法得出答案;(2)利用勾股定理得出y与x之间的关系,再利用一元二次方程根的判别式得出S的最值.【解答】解:(1)①由题意可得:∵S梯形ABCD=(AD+BC)•AB=40,S△AOD=AD•AO=4,S△BOC=BC•BO=16,∴S△COD=40﹣4﹣16=20;②直线CD与☉O相切,理由如下:过点D作DE⊥BC于E,则四边形ABED是矩形∴DE=AB=8,BE=AD=2∴CE=6在Rt△CDE中,CD==10,过点O作OF⊥CD于F,则S△COD=CD•OF=20,解得:OF=4,即OF=AB,故直线CD与☉O相切;(2)设BC=y,则CD=x+y,CE=|y﹣x|,在Rt△DCE中,DC2﹣CE2=DE2,即(x+y)2﹣(y﹣x)2=64,则y=(x>0),∴S=(AD+BC)•AB=(x+)×8=4x+(x>0),故4x2﹣Sx+64=0(x>0),∵该方程是关于x的一元二次方程,且此方程一定有解,∴△=S2﹣1024≥0,根据二次函数解得:S≥32或S≤﹣32(负值舍去),∴S≥32,∴S有最小值,最小值为32.【点评】此题主要考查了圆的综合以及一元二次方程根的判别式和切线的判定、勾股定理等知识,正确掌握切线的判定方法作出辅助线是解题关键.25.如图,抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.(1)求该抛物线的解析式.(2)在抛物线上是否存在一点N,使得|MN﹣ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形两边之和大于第三边,可得N在直线OM上,根据解方程组,可得答案;(3)根据平行线间的距离相等,可得过P点平行BC的直线,根据解方程组,可得Q点坐标,再根据BC向下平移BC与l1相距的单位,可得l2,根据解方程组,可得答案.【解答】解:(1)将A、B两点代入解析式,得,解得.故抛物线的解析式为y=﹣x2+2x+3(2)存在点N使得|MN﹣ON|的值最大.过程如下:如图1:作直线OM交抛物线于两点,则两交点即为N点,y=﹣x2+2x+3的对称轴为x=1.设BC的解析式为y=kx+b,将B(3,0),C(0,3)代入函数解析式,得,解得,BC的解析式为y=﹣x+3,当x=1时,y=2,即M(1,2).设直线OM的解析式为y=kx,将M(1,2)代入函数解析式,得k=2.直线OM的解析式为y=2x.联立抛物线与直线OM的解析式,可得解得:,∴存在点N,其坐标为N1(,2),N2(﹣,﹣2)(3)如图2:,由题意可得:P(1,4),直线BC的解析式为y=﹣x+3∵S△QMB=S△PMB,∴点Q在过点P且平行于BC的直线l1上,设其交点为Q1;或在BC的下方且平行于BC的直线l2上,设其交点为Q2,Q3,∴设l1的解析式为y=﹣x+b把点P的坐标代入可得:b=5∴设l1的解析式为y=﹣x+5联立得解得:(不符合题意,舍),,∴Q1(2,3).根据对称性可求得直线l2的解析式为y=﹣x+1联立得解得,∴Q2(,),Q3(,),综上所述,满足条件的点Q共有3个,其坐标分别为Q1(2,3),Q2(,),Q3(,).【点评】本题考查了二次函数综合题,利用待定系数求函数解析式;利用同一条直线上两线段的差最大得出N在直线OM上是解题关键;利用平行线间的距离相等得出Q在过P点平行于BC的直线上是解题关键,注意BC下方距的距离是BC与l1相距的单位l2上存在符合条件的点,以防遗漏.。

2015年第一次中考适应性调研测试 数学试题参考答案及评分标准

2015年第一次中考适应性调研测试 数学试题参考答案及评分标准

2015年第一次中考适应性调研测试数学试题答卷时间:120分钟 满分:150分注意事项:1.本试卷的选择题和非选择题都在答题纸上作答,不能..答在试卷上. 2.答卷前,考生务必将自己的学校、姓名、考试号用0.5毫米黑水笔填写在答题纸对应位置上.3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.4.非选择题必须在指定的区域内,用0.5毫米黑色字迹的签字笔作答,不能超出指定区域或在非指定区域作答,否则答案无效.一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,恰有..一项..是符合题目要求的,请将正确选项的序号填涂在答题纸上. 1.一个数的相反数是3,则这个数是( ▲ ) A .31 B .-31C .-3D .3 2.十八大开幕当天,网站关于此信息的总浏览量达550000000次.将550000000用科学记数法表示为( ▲ )A .8105.5⨯ B .81055⨯ C . 710550⨯ D .101055.0⨯ 3.下列四个立体图形中,主视图为圆的是( ▲ )A .B .C .D . 4.下列运算正确的是( ▲ )A .3a 2-2a 2=1B .(a 2)3=a 5C .a 2·a 4=a 6D .(2a 2)2=2a 45.如图,a //b ,∠1=130°,则∠2=( ▲ )A .50°B .70°C .120°D .130°6.下列“表情图”中,不属于轴对称图形的是( ▲ )A .B .C .D . 7.函数y=-x-2的图象不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 8.甲、乙两名同学在一次用频率去估计概率的实验中,绘出了某一结果出现的频率的折线图,则符合这一结果的实验可能是( ▲ ) A .掷一枚正六面体的骰子,出现1点的概率B .抛一枚硬币,出现正面的概率C .任意写一个整数,它能被2整除的概率D .从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率9.如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2).将△ABO 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线 xky (x >0)上,则k 的值为( ▲ )A .2B .3C .4D .610.如图,⊙O 是以原点为圆心,2为半径的圆,点P 是直线y=-x+6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( ▲ )1ab2A .3B .4C .26-D .123-二、填空题(本题共8小题,每小题3分,共24分)不需写出解答过程,把最后结果填在答题纸对应的位置上.11.因式分解:3a 2-3= ▲ .12.将一副直角三角板ABC 和EDF 如图放置(其中∠A=60°,∠F=45°),使点E 落在AC 边上,且ED//BC ,则∠CEF 的度数为 ▲ .13.某排球队12名队员的年龄如下表所示:则该队队员年龄的中位数是 ▲ .14.如图,在正方形ABCD 中,点P 在AB 边上,AE ⊥DP 于E 点,CF ⊥DP 于F 点,若AE=3,CF=5,则EF= ▲ .15.如果关于x 的方程3x 2-mx+3=0有两个相等的实数根,那么m 的值为 ▲ . 16.如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为 ▲ cm .17.在平面直角坐标系xOy 中,已知点A (-5,0),点B (5,0),点C 在x 轴上,且AC+BC=6,写出满足条件的点C 的坐标 ▲ 米.18.如图1,菱形ABCD 的对角线交于点O,AC=2BD ,点P 是AO 上一个动点,过点P 作AC 的垂线交菱形的边于M 、N 两点,设AP=x ,△OMN 的面积为y ,表示y 与x 的函数关系的图象大致如图2所示,则菱形的周长为 ▲ .三、解答题(本题共10小题,共96分)解答时应写出文字说明、证明过程或演算步骤.请在答题纸对应的位置和区域内解答.19.(本小题满分10分)(1)计算:(-2)-1+12+cos60°;(2)解不等式组:⎩⎪⎨⎪⎧2-3(x -3)≤5,1+2x 3>x -1.并把解集在数轴上表示出来.20.(本小题满分8分) (1)计算:2a a 2-4-1a -2.1-2-12345(2)如图,四边形ABCD中,AB∥CD,∠B=∠D.求证:四边形ABCD为平行四边形.21.(本小题满分8分)某中学九年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第二天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?21.(本小题满分7分)如图,在△ABC和△ACD中,CB=CD,设点E是CB的中点,点F是CD的中点.(1)请你在图中作出点E和点F(要求用尺规作图,保留作图痕迹,不写作法与证明);(2)连接AE、AF,若∠ACB=∠ACD,请问△ACE≌△ACF吗?并说明理由.23.(本小题满分9分)某校实施课堂教学改革后,学生的自主学习、合作交流能力有了很大提高.九(2)班的陈老师为了解本班学生自主学习、合作交流的具体情况,对部分同学进行了一段时间的跟踪调查,将调查结果(分为A:特别好;B:好;C:一般;D:较差四类)绘制成以下不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了 同学,并补全条形统计图; (2)扇形统计图中,D 类所占圆心角为 度;(3)为了共同进步,陈老师想从被调查的A 类(1男生2女生)和D 类(男女生各占一半)中分别选取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求所选的两位同学恰好是一男一女的概率.24.(本小题满分8分)有一种小凳子的示意图如图所示,支柱OE 与地面l 垂直.小凳子表面CD 与地面l 平行,凳腿OA 与地面l 的夹角为40°,OE =36cm ,OA = OB =25cm .求小凳子表面CD 与地面l 的距离(精确到1cm ).(备用数据:sin 40°≈0.6428,cos 40°≈0.7660,tan 40°≈0.8391.)25.(本小题满分10分)已知:如图一次函数y =12x -3的图形与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.项目50% B 25% C15% AD E CDOBl40°A26.(本小题满分10分)阅读理解:课本在研究“圆周角和圆心角的关系”时,有以下内容.【议一议】如图1,其中O 为圆心,观察圆周角∠ABC 与圆心角∠AOC ,它们的大小有什么关系?说说你的想法,并与同伴交流.小亮首先考虑了一种特殊情况,即∠ABC 的一边BC 经过圆心O (图2). ∵∠AOC 是△ABO 的外角, ∴∠AOC =∠ABO +∠BAO ∵OA =OB ,∴∠ABO =∠BAO , ∴∠AOC =2∠ABO ,即∠ABC =12∠AOC .如果∠ABC 的两边都不经过圆心O (图1,图3),那么结果会怎样?你能将图1与图3的两种情况分别化成图2的情况去解决吗?自主证明:请在图1和图3中选择一种情况解决上述问题(即∠ABC 与∠AOC 的大小关系).写出证明过程.拓展探究:将图1中的弦AB 绕点B 旋转,当AB 与⊙O 相切时(图4),试探究∠ABC 与∠BOC 的大小关系?写出你的结论.并说明理由.图1图227.(本小题满分12分)将矩形纸片OABC 发在平面直角坐标系中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 坐标是(8,6),点P 是边AB 上的一个动点,将△OAP 沿OP 折叠,使点A 落在点Q 处.(1)如图1,当点Q 恰好落在OB 上时,求点P 的坐标;(2)如图2,当点P 是AB 中点时,直线OQ 交BC 于点M 点. ①求证:MB =MQ ; ②求点Q 的坐标.28.(本小题满分14分)如图,已知抛物线y =-14x 2+b +4与x 轴相交于A 、B 两点,与y 轴相交于点C ,已知A 点的坐标为A (-2,0).(1)求抛物线的解析式及它的对称轴;(2)平移抛物线的对称轴所在直线l ,它在第一象限与抛物线相交于点M ,与直线BC 相交于点N ,当l 移动到何处时,线段MN 的长度最大?最大值是多少?(3)在x 轴上是否存在点Q ,使得△ACQ 为等腰三角形?若存在,直接写出符合条件的Q 点坐标;若不存在,请说明理由.图36)2015年第一次中考适应性调研测试数学试题参考答案及评分标准一、选择题(本题共10小题,每小题3分,共30分)1.C2.A3.B4.C5.A6.B7.A8.D9. B 10. B 二、填空题(本题共8小题,每小题3分,共24分)三、解答题(本题共10小题,共96分) 19.解(1)原式=213221++- …………………………3分=32 (5)分(2)42<≤x……………………8分数轴表示略. …………………………10分20(1)解:原式()()()()222222-++--+=a a a a a a ……………………1分()()2222-+--=a a a a (2)分()()222-+-=a a a ……………………3分21+=a ……………………4分 (2)证法一:∵AB ∥CD ∴∠B +∠C =180° …………………………5分又∵∠B =∠D ∴∠D +∠C =180° …………………………6分 ∴AD ∥BC …………………………………………………7分 ∴四边形ABCD 是平行四边形 ………………………………8分证法二:连接AC∵AB ∥CD , ∴∠BAC =∠DCA ………………………5分 又∵∠B =∠D ,AC =CA∴△ABC ≌△CDA (AAS ) ………………………6分 ∴AB =CD ………………………………7分 ∴四边形ABCD 是平行四边形 ………………………8分21.(1)解:设第二、三两天捐款增长率为x …………………………1分 根据题意列方程得,10000×(1+x )2=12100, …………………………3分 解得x 1=0.1,x 2=﹣2.1(不合题意,舍去). …………………………5分 答:第二、三两天捐款的增长率为10%. …………………………6分 (2)12100×(1+0.1)=13310(元). …………………………7分 答:第四天该校收到的捐款为13310元. …………………………8分 22.证明:(1)如图所示…………………………3分(2)△ACE ≌△ACF …………………………4分 理由:∵CB =CD ,点E 、F 分别是CB 、CD 的中点,∴CE =CF …………………………5分 又∵∠ACB =∠ACD ,AC =AC∴△ACE ≌△ACF …………………………7分23.(1)20(1分),条形图正确(2分); ……………………3分(2)36; ……………………5分(3)所有可能的结果如下: (7)分共有6种等可能的结果,恰好是一男一女的结果有3种 ……………………8分 ∴P (一男一女)=2163= ………………………………………………………9分24.解:延长EO 交AB 于点F , ∵EO ⊥AB , ∴90OFA ∠=︒.……………………2分 l在Rt △OF A 中,sin40250.642816.07OF OA =⋅︒=⨯=, ……………………5分 3516.0751.07EF OE OF =+=+=(cm )≈51cm ……………………7分 ∴点E 到地面的距离是51cm . ……………………8分25.解:直线y =12x -3与x 轴交于点A (6,0),与y 轴交于点B (0,-3), ∴OA =6,OB =3, ……………………1分 ∵OA ⊥OB ,CD ⊥AB ,∴∠ODC =∠OAB , ……………………2分 ∴tan ∠ODC =tan ∠OAB ,即OD OA OC OB =, ……………………3分 ∴OD =463OC OA OB ⨯==8. ……………………4分 ∴点D 的坐标为(0,8) ………………………5分 设过CD 的直线解析式为y =kx +8,将C (4,0)代入0=4k +8,解得k =-2.……………………6分 ∴直线CD :y =-2x +8, ……………………7分 由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ……………………9分 ∴点E 的坐标为(225,-45) ………………………10分26.自主证明:连接BO ,并延长BO 交⊙O 于点D (如图1) ………………1分 由小亮的证明知:∠ABD =21∠AOD ,∠CBD =21∠COD ……………3分 ∴∠ABC =∠ABD +∠CBD =21∠AOD +21∠COD =21(∠AOD +∠COD ) =21∠AOC ……………………5分 说明:选择图3证明的相应给分拓展探究:∠ABC =21∠BOC , ……………………………6分理由如下:延长BO 交⊙O 于点E ,连接EC ,则∠BEC =21∠BOC ……………7分 ∵BA 与⊙O 相切于点B ,∴∠ABO =90°,即∠ABC +∠CBO =90° ……………8分 又∵BD 是⊙O 的直径,∴∠BCE =90°,即∠BEC +∠CBO =90° ……………9分 ∴∠ABC =∠BEC , ∴∠ABC =21∠BOC ……………………………10分 27.(1)解法一:矩形ABCD 中,AO =6,OC =AB =8 ∴OB =10由折叠知:△OPQ ≌△OP A , ∴OQ =OA =6;PQ =AP ………………1分 设AP =x ,在Rt △PQB 中,PQ =AP =x ,QB =10-6=4,PB =8-x∴222)8(4x x -=+ ,解得x =3 ………………………………………3分 ∴点P 的坐标为(3,6) ………………………………………………………4分 解法二:说明OB =10,OQ =6,PQ =AP ………………………………………1分说明△BQP ∽△BAO …………………………………………………2分∴ BO BP OA PQ = ,设AP =x ,则1086x x -= 解得x =3 ………………3分 ∴点P 的坐标为(3,6) ………………………………………4分(2)①连结PM , 由折叠知:PQ =P A ,∠PQM =∠B =90° ………………………5分又∵AP =PB ,PM =PM ……………………………………………6分∴Rt △PQM ≌Rt △PBM (HL ) ………………………7分 ∴BM =MQ …………………………8分②过Q 作QN ⊥OC ,垂足为N ,设BM =MQ =m ,则OM =6+m ,CM =6-m在Rt △OMC 中,222)6()6(8m m +=-+ 解得:326386,310386,38=+==-=∴=OM MC m ……………………9分 ∵△OQN ∽△OMC ,∴OMOQ OC ON MC QN == ………………………………10分 ∴ 133********=⨯⨯=⋅=OM MC OQ QN ,137226368=⨯⨯=⋅=OM OQ OC ON ………………………11分∴点Q 的坐标是(1372,1330) …………………………………………………12分 28.(1)∵抛物线4412++-=bx x y 经过点A (-2,0) ∴23,442)2(412=∴=+--⨯-b b ………………………………2分 ∴抛物线的解析式为423412++-=x x y ……………………3分 对称轴3)41(223=-⨯-=x …………………………………4分 (2)当x =0时,y =4 ∴C (0,4) 当y =0时,0423412=++-x x , 解得:8,221=-=x x ∴A (-2,0),B (8,0) ……………………5分 设直线BC 的解析式为y =mx +n ,它经过B (8,0),C (0,4)则⎩⎨⎧=+=084n m n 解得 ⎪⎩⎪⎨⎧=-=421n m ∴直线BC 为421+-=x y …………7分 ∴MN =4)4(41241)421()42341(222+--=+-=+--++-x x x x x x …………9分 ∴当x =4时,MN 的最大值为4即:当对称轴移至(4,0)时,MN 的长度最大,最大值是4 …………10分(3)存在点Q ,使△ACQ 为等腰三角形,它的坐标为:)0,252(),0,252(),0,2(),0,3(4321---Q Q Q Q …………………14分 (每个1分,共4分。

2015上9年级数学试题卷20160114

2015上9年级数学试题卷20160114

2017学年第一学期月考考试卷九年级数学试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是A.第①块B.第②块C.第③块D.第④块3.排水管的截面如图,水面宽AB=8,圆心O到水面的距离OC=3,则排水管的半径等于A.5 B.6 C.8 D.44.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是A.cm BcmC. cm D.cm5. 已知a:b=c:d,则下列式子中正确的是A.a:b=c2:d2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a﹣d):(b﹣d)2015学年第一学期九年级数学试题卷第1 页共6 页6. 一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,经过反复大量实验后,甲同学根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是 A .袋子里一定有三个白球B .袋子中白球占小球总数的十分之三C .再摸三次球,一定有一次是白球D .再摸1000次,摸出白球的次数会接近330次7. 如图是抛物线y=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),有下列结论:①2a+b =0; ②abc >0;③方程ax 2+bx+c =3有两个相等的实数根; ④当y <0时,-2<x <4. 其中正确的是 A .①②③ B .①③④C .①③D .①②③④8. 如图,两正方形彼此相邻且内接于半圆,若大正方形的面 积为16cm 2,则小正方形的面积为 A .6cm 2 B .5cm 2 C .4cm 2 D .3cm 29.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,C 、D 两点不重合,设CD 的长度为x , △ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能 表示y 与x 之间的函数关系的是2015学年第一学期九年级数学试题卷 第 3 页 共 6 页10. 如图,△ABC 内接于⊙ O ,其外角平分线AD 交⊙ O 于D ,DM ⊥ AC 于M ,下列结论中正确的是 ①DB=DC ; ②AC+AB =2CM ; ③AC ﹣AB =2AM ; ④ABD ABC S S ∆∆= . A .① B .①②③ C .③④ D .①②③④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.如图,⊙ O 是△ ABC 的外接圆,∠ AOB =70°,则∠ C 为 ▲ 度. 12.为了解学生的实验操作能力,某区组织学生进行科学实验调 演,共设12个实验项目,其中物理5个,化学4个,生物3个, 规定由实验者本人抽签,以确定某一个项目的实验演示.小虎同学 参加了这次调演,那么他抽到化学实验的概率是 ▲ 13.将函数21432y x x =-+-化为2()y a x m k =-+ 的形式,得 ▲ ,它的图象顶点坐标是 ▲ .14. 在△ABC 中,AB =6cm ,AC =5cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ ADE :S 四边形BCED =1:8,则AD = ▲ cm . 15.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 则旋转后点D 的对应点D ′的坐标是 ▲ .16. 如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆ 的面积为1S ,322B D C ∆的面积为2S ,…,(第11题)2015学年第一学期九年级数学试题卷 第 4 页 共 6 页1n n n B D C +∆的面积为n S ,则3S = ▲ ;n S = ▲ .(用含n 的代数式表示) 三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤. 如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17. (本小题6分)小红用下面的方法来测量学校教学大楼CD 的高度:如图,在水平地面点P 处放一平面镜,镜子与教学大楼的距离 PD =20米.当她与镜子的距离BP =2.5米时,她刚 好能从镜子中看到教学大楼的顶端C .已知她的眼 睛距地面高度AB =1.6米,请你帮助小红测量出大楼 CD 的高度.18.(本小题8分)已知:如图,AB 为⊙ O 的直径,点 C 、D 在⊙ O 上,且BC =6cm ,AC =8cm ,∠ABD =45°. (1)求弧.BD ..的长;(2)求图中阴影部分的面积.19.(本小题8分)如图,点P 在⊙ O 外,PB 交⊙ O 于 A 、B 两点,PC 交⊙ O 于D 、C 两点.(1)选出图中的四条成比例线段,得比例式 ▲ ; (2)请证明(1)的结论.20. (本小题10分)小南、小铭和两个陌生人甲、乙同在如图所示 的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯.(1)用列表或画树状图求出甲、乙二人在同一层楼出电梯的概率; (2)小南和小铭比赛,规则是:若甲、乙在同一层或相邻楼层出 电梯,则小南胜,否则小铭胜.该游戏是否公平?若公平,说明理 由;若不公平,请修改游戏规则,使游戏公平.21.(本小题10分)某商场试销一种商品,成本为每件200元,规定试销期间销售单价不低于成本单价,且获利不得高于50%,一段时间后,发现销售量y (件)与销售单价x (元)之间的函数关系如下表: (1)请根据表格中所给数据,求出y 关于x 的函数关系式;(2)设商场所获利润为W 元,将商品销售单价定为多少时,才能使所获利润最大?最大利润是多少?22.(本小题12分)如图,四边形ABCD 内接于半径为4的⊙O ,BD =. (1)求∠C 的度数;(2)连接AC 交BD 于E ,必有△ABE ∽△CDE . 若E 为AC 的中点,且AB ,请在图中找到一个不同于△CDE 的三角形,使它与△ABE 相似,并证明你的结论. (3)在(2)的条件下,求四边形ABCD 的面积.23.(本小题12分)如图,在平面直角坐标系中,有抛物线y=ax2+bx+3,已知OA=OC=3OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)求过A,B,C三点圆的半径;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(4)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.2015学年第一学期九年级数学试题卷第6 页共6 页。

2015年初中毕业升学考试抽样调研测试卷(一)数学附答案

2015年初中毕业升学考试抽样调研测试卷(一)数学附答案

2015年初中毕业升学考试抽样调研测试卷(一)数学说明:1.本试卷共6页(试题卷4页,答题卷2页),满分120分,考试时间120分钟. 2.答题前,请将准考证号、姓名、座位号写在答题卷指定位置,答案写在答题卷相应的区域内,在试题卷上答题无效..........一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.) 1.2的倒数是 (A )21 (B )2- (C )2(D )21-2.下面的几何体中,俯视图为三角形的是(A )(B ) (C ) (D )3.计算232)3(y x 结果正确的是(A )649y x (B )546y x (C )646y x (D )549y x4.等腰三角形的周长是16,底边长是4,则它的腰长是(A )4 (B )6 (C )7 (D )8 5.一组数据:,2,3,4,x ,若它们的众数是2,则x 是 (A ) (B )2(C )3(D )46.已知⊙O 的半径为6cm ,圆心O 到直线的距离为5cm ,则直线与⊙O 的交点个数为(A )0 (B ) (C )2(D )无法确定7.若实数x ,y 满足052=++-y x ,则xy 的值是(A )10 (B )3 (C )7 (D )10-8.不等式313+>-x x 的解集在数轴上表示正确的是(A ) (B ) (C ) (D ) 9.一个多边形的内角和与外角和之比为2:11,则这个多边形的边数是 (A )13 (B )12 (C )11 (D )1010.直线kx y =)0(>k 与双曲线xy 2=交于),(11y x A 、),(22y x B 两点,则122153y x y x -的值是 (A )4-(B )6-(C )4(D )611.如图1,一张矩形纸片ABCD 的长a AB =,宽b BC =.将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则=b a :CD E(A )1:2 (B )1:2 (C )3:3 (D )2:312.如图2,半圆O 的直径为AB ,E ,F 为AB 的三等分点.FN EM //交半圆于M ,N ,且 60=∠NFB ,33=+FN EM ,则它的半径是(A )22(B )23(C )4(D )3二、填空题(本大题共6小题,每小题3分,共18分.) 13.计算:=⋅32a a ★ .14.因式分解:=++2422x x ★ .15.如图3,直线a 、b 被直线c 所截.若b a //, 401=∠,702=∠,则=∠3 ★ 度. 16.关于x ,y 的方程组⎩⎨⎧=-=+3,6m y m x 中,=+y x ★ .17.如图4,在ABC ∆中,点D 、E 、F 分别为BC 、AD 、CE 的中点.若1=∆BFC S ,则=∆ABC S ★ .18.如图5,菱形ABCD 的一个内角是60,将它绕对角线的交点O 顺时针旋转90后得到菱形D C B A ''''.旋转前后两菱形重叠部分多边形的周长为838-,则菱形ABCD 的边长为 ★ .三、解答题(本大题共8小题,满分66分.) 19.(本题满分6分)计算:10230tan 33)13(-+--+-20.(本题满分6分) 如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,EF 过点O 且与AD 、BC 交于点E 、F .求证:OF OE =.21.(本题满分6分)春节过后,6名村民用1200元共同租用一辆小客车去广东工作.出发时又增加部分村A B FC D E O 图 2ABFE NMO abc 312图3 ABDEFC图4A/图5民,结果每位村民比原来少分摊50元.求增加村民的人数.22. (本题满分8分)某市记者为了调查该市市民对雾霾天气成因的认识情况,进行了随机调查,并对结果绘制成如下不完整的统计图表.请根据图表中提供的信息解答下列问题: (1)=m ★ ,=%n ★ %;(2)若该市人口约为60万人,请你估计其中持D 组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,抽中持C 组“观点”的人概率是多少?23.(本题满分8分)如图,某校一大楼AB 的高为18米,不远处有一水塔CD .某同学在楼底A 处测得塔顶D 处的仰角为62,在楼顶B 点测得塔顶D 处的仰角为381.0米) .(参考数据:88.062sin ≈ ,47.062cos ≈ ,88.162tan ≈ ,62.038sin ≈ ,79.038cos ≈ ,78.038tan ≈ )24.(本题满分10分)为迎接2014年世界杯足球赛,某商家购进甲、乙两种纪念品.甲种纪念品的进货价甲y (元/件)与进货数量甲x (件)的关系如图所示. (1)求甲y 与甲x 的关系式;(2)若商家购进甲种纪念品的数量x 不少于145件,且甲种纪念品的进货价不低于120元/件,则该商家有几种进货方案?(3)该商家若购进甲、乙两种纪念品共200件,其中乙种纪念品的进货价乙y (元/件)与进货数量乙x (件)满足关系式1301.0+-=乙乙x y .商家分别以180元/件、150 元/件出售甲、乙两种纪念品,并且全部售完.在(2)的条件下,购进甲种纪念 品多少件时,所获总利润最大?最大利润是多少? (说明:本题不要求写出自变量x 的取值范围)AC B DE%20%10%n25.(本题满分10分)如图,已知PA 、PB 是⊙O 的切线,A 、B 为切点. 直径AC 的延长线与PB 的延长线交于点D . (1)求证:CBD APB ∠=∠2;(2)若 30=∠CBD ,32=BD .求图中阴影部分的面积(结果保留根号与π).26.(本题满分12分)如图,抛物线c ax y +=2经过)2,0(),0,1(-B A 两点.连结AB ,过点A 作AB AC ⊥,交抛物线于点C . (1)求该抛物线的解析式; (2)求点C 的坐标;(3)将抛物线沿着过A 点且垂直于x 轴的直线对折,再向上平移到某个位置后此抛物线与直线AB 只有一个交点,请直接写出此交点的坐标.P数学参考答案及评分标准二、填空题(本大题共6小题,每小题3分,共18分.)三、解答题(本大题共8小题,满分66分.)19.解:原式=2133331+⨯-+……………………………………………………4分 = 21331+-+ ……………………………………………………5分=211 ……………………………………………………………………6分20.证明: ∵平行四边形ABCD ,∴CE AD //,OC OA = ………2分∴FCO EAO ∠=∠, ………………3分 又∵FOC EOA ∠=∠ ………………4分∴△AOE ≌△COF ………………5分∴ OF OE = ………………6分21. 解:设增加了x 个村民,由题意得 …………………………………1分506120061200=+-x…………………………………………3分 解之得 :2=x ……………………………………4分经检验2=x 是原方程的解 . ……………………………………5分答:增加了2个村民 . ……………………………………6分 22.解:(1)15,40 ……………………………………4分(2)60400120⨯万18=万. 所以持D 组“观点”的市民人数约是18万. …6分 (3)P (持C 组“观点”)41400406012080400=----=答:此人持C 组“观点”的概率是41. ……………………………………8分 23. 解:过B 点作DC BE ⊥于E ,则m AB EC AC BE 18,===.A B F C D E O设xm DE = ……………………………………………1分 在BDE Rt ∆中,BE x =︒38tan , ∴︒=38tan x BE …………2分 在ACD Rt ∆中,ACx 1862tan +=︒+=∴62tan 18x AC …………………………3分AC BE = ︒+=︒∴62tan 1838tan x x ………4分76.12≈x …………………………6分 m DC 8.3076.301876.12≈=+=∴答:水塔CD 的高度约是8.30米. …………………………8分24.解:(1)设一次函数关系式为b kx y +=甲甲,由图象可得⎩⎨⎧=+=+1405014810b k b k ………………………………………………………1分 解得:⎩⎨⎧=-=1502.0b k ………………………………………………………2分所求的关系式是:1502.0+-=甲甲x y ………………………………3分(2)依题意得1502.0+-x ≥120………………………………………4分x ≤150 ………………………………………………………………5分x ≥145 145∴≤x ≤150 x 是正整数,150,149,148,147,146,145=∴x ……………………………6分答:共有六种进货方案. ……………………………………………7分 (3)由题意得,乙种纪念品的进货价为:1101.0130)200(1.0+=+--=x x y 乙 ……………………………8分设总利润为P 元.8000303.0)1.040)(200()302.0()150)(200()180(2+-=--++=--+-=x x x x x x y x y x P 乙甲 503.02302=⨯--=-=a b x ∴>=,03.0a 当50≥x 时,P 随x 的增大而增大.又 145≤x ≤150∴当150=x 时,P 最大 =10250元……………………………10分 答:购进甲种纪念品150件时,所获总利润最大,为10250元.……………………………9分25. (1)证明:连接AB OP ,.…………1分 ∵BP AP ,是⊙O 的切线∴OP BP AP ,=平分APB ∠……2分AB OP ⊥∴∵AC 是⊙O 的直径∴︒=∠90ABC 即:BC AB ⊥……………3分 ∴OB BC //∴1∠=∠CBD ……………………………4分12∠=∠APB∴CBD APB ∠=∠2………………………5分(2) 连接OB .∵ 30=∠CBD ,∴ 301=∠ ∵PA 、PB 是⊙O 的切线,∴ 90=∠=∠OBP OAP ,PB PA =,又OB OA = ∴△OAP ≌△OBP∴O BP O AP S S ∆∆= ………………………………………6分 在ODB Rt ∆中, 602=∠ 2tan ∠=BD OB 260tan 32==…………………………7分在OBP Rt ∆中, 1tan ∠=OBPB 32=∴3221=⋅⋅=∆PB OB S OBP …………………………8分∴342==+=∆∆∆O BP O BP O AP O APB S S S S 四边形∵602=∠ 120=∠∴AOBππ343601202=⋅⨯=OB S AOB 扇形 …………………………………9分 ∴所求的阴影面积:π3434-=-=AOB OAPB S S S 扇形四边形 …………………10分26.解:(1)因为抛物线c ax y +=2经过)2,0(),0,1(-B A 两点,则有:⎩⎨⎧-==+20c c a解之得:⎩⎨⎧-==22c a ……………………………………2分所求的抛物线的解析式是:222-=x y ………………3分(2)∵AB AC ⊥,又根据题意可知:DB OA ⊥∴AOD Rt ∆∽BOA Rt ∆ ………………4分 ∴AOODBO AO =P∴BOAO OD 2=又根据)2,0(),0,1(-B A ,则有:1=AO ,2=BO∴21=OD∴)21,0(D ……………………………5分设直线AC 的解析式是b kx y +=,则有⎪⎩⎪⎨⎧=+=021b k b 解之得:⎪⎪⎩⎪⎪⎨⎧=-=2121b k ∴所求的解析式是:2121+-=x y ………………………………6分由直线AC 与抛物线222-=x y 相交,则有:2221212-=+-x x 解之得:451-=x ,12=x …………7分 当45-=x 时,8921)45(21=+-⨯-=y∴点C 的坐标是)89,45(-…………………………………8分(3)所求交点的坐标是)3,25( …………………………………12分。

2015年中考复习调研考试数学附答案

2015年中考复习调研考试数学附答案

15.如图 8,口 ABCD 中,点 E 在边 AD 上,以 BE 为折痕,将△ABE 向上翻折,点 A 正好落在 CD 上的点 F,若△FDE 的周长 为 8,△FCB 的周长为 22,则 FC 的长为 。 D
16 . 当 m , n 是 正 实 数 , 且满 足 m n mn 时 , 就 称 点
21. 为鼓励居民节约用电, 某市电力公司规定了电费的分段计算的方法: 每月用电不超过 100 度,按每度电 0.50 元计算;每月用电超过 100 度,超出部分按每度电 0.65 元计算. (1)某用户为了解日用电量,记录了 4 月第一周的用电量: 日 期 1日 5 2日 7 3日 8 4日 6 5日 4 6日 5 7日 7 用电量 (单位:度)
得分
评卷人 四、 (本大题共 3 小题,每小题 10 分,共 30 分. )

20.如图 10,△ABC 中∠ACB=90°,AC=8cm,BC=6cm (1)作 AB 边的中垂线(要求:保留作图痕迹,并把垂足标为 E,把与 AC 的交点标为 F) (2)求线段 EF 的长度。
B
A
C
图 10
数学(调)第 5 页 共 14 页
O
x
O
x
O
x
O
x
9.
A. B. C. D. 点 P 在数轴上运动,它所对应的数值为 a ,如图 5,当点 P 从点 A 运动到点 B ,则代数 式 A. 4 C. 6
a 12
a 3 的最大值为(
B. a 1 D. a 3

A P -1 0 1 B 2
图5 k 10. 如图 6,点 P(3a,a)是反比例函数 y= (k>0)与⊙O 的一个交点, x y 图中阴影部分的面积为 10π,则反比例函数的解析式为( ) 3 A.y= x 10 C.y= x 5 B.y= x 12 D.y= x O P x

2014-2015学年第一学期10月第一次学情调研(九年级数学试卷)

2014-2015学年第一学期10月第一次学情调研(九年级数学试卷)
三、解答题(本题有8小题,共80分)
17.(本题10分)
(1)计算:
(2)先化简,再求值:(m-n)(m+n)+(m+n)2- 2m2,其中
18.(本题8分)如图,A、D、F、B在同一直线上AE=BC,且AE∥BC,AD=BF.
(1)求证: ;
(2)连ED,CF,可以判断四边形EDCF的形状是哪种特殊
解得
答:纸盒装共包装了35箱.(2分)
②b=9.(2分)
24.(本题14分)
(1)令 ,得 ,(2分)
∴A(-1,0)代入 ,得b=-1
∴ (2分)
(2)∵NP=
MN=
∴MP=NP-NM
=
= (3分)
m的取值范围是 (1分)
(3)作CE⊥AB于点E,则
S=△AMP面积+△CMP面积
= MP×AN+ MP×NE= MP×AE= (2分)
(1)
(2)
(3)
22.(本题10分)
(1)
(2)
23.(本题12分)
(1)
(2)①
②答:.
24.(14分)
(1)
(2)
(3)
(4)答:.
参考答案
一、选择题(每小题4分,共40分)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
B
D
C
A
B
B
A
A

二、填空题(每小题5分,共30分)
11.(a+4)(a-4)12.110°13.514.(4 ,3)15.0.95
16.
三.解答题(8小题共80分)

2015年初三一模数学试卷及答案

2015年初三一模数学试卷及答案

2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。

分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。

2015年九年级阶段检测(一模)数学试题附答案

2015年九年级阶段检测(一模)数学试题附答案

2015年九年级阶段检测(一模)数学试题本试题分第I 卷(选择题)和第II 卷(非选择题)两部分,共6页,满分120分。

考试用时120分钟。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考号填写在答题卡和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2 B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡上各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题 共45分)一、单项选择题(本大题共15小题,每小题3分,共45分) 1.5的相反数是A .5B .-5C .51D .51- 2.下列各运算中,计算正确的是A.x 2y÷y=x 2B.(2x 2)3=6x 5C.(-π)0=0D.a 6÷a 3=a 2 3.如右图,已知AB ∥CD ,与∠1是同位角的角是A .∠2B .∠3C .∠4D .∠54.化简(2x-3y)-3(4x-2y)结果为A.-10x-3yB.-10x+3yC.10x-9yD.10x+9y5.如右图,△ABC 与△DEF 关于y 轴对称,已知A (-4,6),B (-6,2),E (2,1),则点D 的坐标为A .(4,6)B .(-4,6)C .(-2,1)D .(6,2)6.一元二次方程022=--x x 的解是A. 11-=x ,22=xB. 11=x ,22-=xC. 11-=x ,22-=xD. 11=x ,22=x5题图3题图7.不等式组⎩⎨⎧≥-<-048213x x 的解集在数轴上表示为A. B. C. D. 8.已知⊙1O 的半径是5cm,⊙2O 的半径是3cm,21O O =2cm,则⊙1O 和⊙2O 的位置关系是A .外离B .外切C .内切D .相交9.关于二次函数y=-(x+2)2-3,下列说法正确的是A.抛物线开口向上B.抛物线的对称轴是x=2C.当x =-2时,有最大值-3D.抛物线的顶点坐标是(2,-3)10.右图是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B 在围成的正方体 的距离是 A .0B .1C .2D .311.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,矩形ABCD 内的一个动点P 落在阴影部分的概率是 A .103B .31 C .41 D .5112.如图,AB 是⊙O 的直径,AC 、BC 是⊙O 的弦,PC 是⊙O 的 切线,切点为C ,若∠ACP =55°,那么∠BAC 等于A.35°B.45°C.55°D.65°13.如图,在△ABC 中,AC=BC ,有一动点P 从点A 出发,沿A→C→B→A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是A. B. C. D.14.已知⊙O 的半径r=3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的 个数为m ,给出下列命题:10题图11题图12题图①若d >5,则m=0;②若d=5,则m=1;③若1<d <5,则m=2;④若d=1,则m=3;⑤若d <1,则m=4.其中正确命题的个数是A.5B.4C.3D.215.定义新运算:a ⊕b=例如:4⊕5=,4⊕(-5)=.则函数y=2⊕x(x≠0)的图象大致是A.B. C. D.第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分) 16. 因式分解:329x xy -= .17. 据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市接受义务教育,这个数字用科学记数法表示为 . 18. 如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm.19.如图,点D(0,3),O(0,0),C(4,0),B 在⊙A 上,BD 是⊙A 的一条弦.则sin ∠OBD= . 20.分式方程xx 321=-的解是. 21.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2015次,点P 依次落在点P 1,P 2,P 3,P 4,…,P 2015的 位置,则P 2015的横坐标x 2015=18题图 19题图 20题图三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤) 22.(本小题满分7分)(1)化简:()()()2122x x x +-+-(2)计算:+1)21(--+(﹣5)0﹣cos30°.23.(本小题满分7分) (1)如图,已知:在△AFD 和△CEB 中,点A 、E 、F 、C 在同一直线上,AE=CF ,∠B=∠D ,AD ∥BC .求证:AD=BC .(2)如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,求EB′的长24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜 共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字﹣1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p 的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q 值,两次结果记为(p ,q ).(1)请你帮他们用树状图或列表法表示(p ,q )所有可能出现的结果; (2)求满足关于x 的方程x2+px+q=0没有实数解的概率.23题 1小题图23题 2小题图26.(本小题满分9分)如图,一次函数y=kx+b 的图象与反比例函数xmy(x >0)的图象交于点P (4,2),与x 轴交于点A (﹣4,0),与y 轴交于点C ,PB ⊥x 轴于点B . (1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.27.(本小题满分9分)在一个边长为6cm 的正方形ABCD 中,点E 、M 分别是线段AC ,CD 上的动点,连结DE 并延长交正方形的边于点F ,过点M 作MN ⊥DF 于H ,交AD 于N . (1)如图1,当点M 与点C 重合,求证:DF=MN ;(2)如图2,假设点M 从点C 出发,以1cm/s 的速度沿CD 向点D 运动,点E 同时从点A 出发,以2cm/s 速度沿AC 向点C 运动,运动时间为t (t >0);①当点F 是边AB 中点时,求CM 的长度.②在点E ,M 的运动过程中,除正方形的边长外,图中是否还存在始终相等的线段,若存在,请找出来,并加以证明;若不存在,请说明理由。

普陀区2015学年度第一学期初三质量调研数学试卷含答案

普陀区2015学年度第一学期初三质量调研数学试卷含答案

BCBAC普陀区2015学年度第一学期初三质量调研数学试卷一、选择题1. 如图1,BD 、CE 相交于点A ,下列条件中,能推得DE ∥BC 的条件是( A ) (A)AE:EC=AD:DB ; (B)AD:AB=DE:BC ; (C)AD:DE=AB:BC ; (D)BD:AB=AC:EC .2. 在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE ∥BC ,如果△ADE 的面积等于3,那么△ABC 的面积等于( C ) (A)6;(B)9;(C)12;(D)15.3. 如图2,在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,下列线段的比值不等于cos A 的值的是( C )(A)ADAC ; (B)ACAB ; (C)BD BC;(D) CD BC.4. 如果a 、b 同号,那么二次函数的大致图像是( D )5. 下列命题中,正确的是( D )(A)圆心角相等,所对的弦的弦心距相等; (B)三点确定一个圆;(C)平分弦的直径垂直于弦,并且平分弦所对的弧; (D)弦的垂直平分线必经过圆心。

6. 已知在平行四边形ABCD 中,点M 、N 分别是边BC 、CD 的中点,如果,那图1图2OB么向量关于的分解式是( B ) (A); (B); (C); (D) (B).二、填空题7. 如果x:y=2:5,那么y xx y-+=__________; 8. 计算:2()+()=;9. 计算:2sin 45cot 30tan 60︒+︒⋅︒=___;10. 已知点P 把线段分割成AP 和PB (AP>PB )两段,如果AP 是AB 和PB 的比例中项,那么AP:AB 的值等于__;11. 在函数①,②,③,④中,y 关于x 的二次函数是___④___(12. 二次函数的图像有最__低___点;(填“高”或“低”) 13. 如果抛物线的顶点坐标为(1,3),那么m+n 的值等于__1__; 14. 如图3,点G 为△ABC 的重心,DE 经过点G ,DE ∥AC ,EF ∥AB ,如果DE 长是4,那么CF 的长是___2___;15. 如图4,半圆形纸片的半径长是1cm ,用如图所示的方法将纸片对折,使对折后半圆的中点M 与圆心O 重合,那么折痕CD 的长是_____cm ;16. 已知在Rt △ABC 中,∠C=90°,点P 、Q 分别在边AB 、AC 上,AC=4,BC=AQ=3,如果△APQ 与△ABC 相似,那么AP 的长等于__or__;17. 某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB ,调整为坡度i=的新传送带AC (如图5所示),已知原传送带AB 的长是米。

第三教育协作片2015届九年级上第一次质量调研数学试题

第三教育协作片2015届九年级上第一次质量调研数学试题
-5-
第三教育协作片 2014秋季第一次质量检测 九年级数学试卷
(总分:120分,时间:100分钟)
一、看一看,选一选(每题 3 分,共 30分)
题号 1
2
3
4
5
6
答案
1. 32 的算术平方根是 (

1
A. 3
B. 3
2.化简| 1 2 | 1的结果是 (

1 C. 6
7
8
D. 6
9
10
A. 2 2 B. 2 2 C. 2
25.(6 分) 如图,在矩形 ABCD中,AB=6cm,BC=3cm。点 P 沿边 AB从点 A 开始向点 B 以 2cm/s的速度移动,点 Q 沿边 DA从点 D 开始向点 A 以 1cm/s的速度移动。如果 P、Q 同时 出发,用 t(s)表示移动的时间(0≤t≤3)。那么,当 t 为何值时,△QAP的面积等于
8.若 x 2 4x p (x q)2 ,则 p、q 的值分别是(
)
A. 4 、2
B. 4、-2
C. -4、-2
D、 -4、2
x 2x 3 9.要使代数式 2 x 1 的值等于 0,则 x 等于( )
A. 1
B2. -1
C. 3
D. 3 或-1
10. 某厂一月份生产某机器 100台,计划二、三月份共生产 280台。设二三月份每月的平
2cm 2 ?
-3-
D
C
Q
A
P
B
26.(8 分) 某批发商以每件 50元的价格购进 800件 T 恤,第一个月以单价 80元销售,售
出了 200件;第二个月如果单价不变,预计仍可售出 200件,批发商为增加销售量,决定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三教育协作片2014秋季第一次质量检测
九年级数学试卷
(总分:120分,时间:100分钟)
32的算术平方根是
(
2.化简|1 - 2 | 1的结果是
A . 2 -2
B . 2
2
3.正方形ABCD 中, AC=4,则正方形ABCD 面积为 (
7.下列方程中,没有实数根的方程式(
10. 某厂一月份生产某机器 100台,计划二、三月份共
生产
280台。

设二三月份每月的平均增长率为
1.
B. 3
C.
D. 6
A. 4
B.8
C.16
D.32
4.等腰三角形的一个内角是 75o , 它的顶角是
(
5.
6. A . 30o B .750 .30o 或 750
.105。

F 列方程是一元二次方程的是
A . 1
-x 2
+5=0
x
B.x
2
(x+1) =x -3
C.3x
2
+y-1=0
D.
2x 2 1 3x-1
x 2 -4x 1=(
A.(x-2)2
3
B.
(x-2)2 -3
C.
(x 2)2+3
D.
(x 2)2 -3
2 -
A. x =9 2
B.4x =3(4x-1)
C.x(x+1)=1
D.2y
2
+6y+7=0
8.若 x 2 -4x
^(x q)2,则p 、q 的值分别是(
A. 4 2
B. 4
、-2 C. -4 、-2 D -4 、2
9.要使代数式
2
X :2x 7的值等于0,则x 等于( x 2
-1 A . 1 B. -1 C. 3 D. 3
或-1
根据题意列出的方程是( )
A.100 (1+x) +100 ( 1+x) 2=280
B.100 ( 1+x) 2=280
C.100+100 (1+x) +100 ( 1+x) 2=280
D.100 ( 1-x ) 2=280
二、想一想,填一填(每题3分,共30分)
11. 已知P点坐标为(2a+1 , a-3 )①点P在x轴上,则a= _____________ ;②点P在y轴上,则a= ___________
③点P在第三象限内,则a的取值范围是_________________ ;
12. 直线y=2x-1与x轴的交点坐标是_____________ ,与y轴的交点坐标是 ___________ ;直线y = x + 1与直线
y = 2x - 2的交点坐标是_____________ .
2
13. 已知关于x的方程(m—3x m』*+(2m+1X—m=0是一元二次方程,则m= ____________ 。

14. 方程x (4x+3) =3x+1化为一般形式为 ____________________________ ,它的二次项系数是 ________ , 一次项系数是 _____ ,常数项是________ .
15. 已知y = x2—2x -3,当x= __________ 时,y的值是-3。

2
16. 若关于x的一元二次方程mx-2x+1=0有两个相等的实数根,则m满足___________ .
17. 已知关于x的一元二次方程x2 +2x -k = 0没有实数根,则k的取值范围 _______________
18. 两个连续自然数的积为30,则这两个数是____________________________ .
19. 三角形的每条边的长都是方程x2 -6x+8 = 0的根,则这个三角形的周长是_______________
20. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。

调查表明:这种台灯的售价每
上涨2元,其销售量就将减少10个。

为了实现平均每月10000元的销售利润。

设这种台灯的售价为x元,
则可列方程 _______________________________ .
三、算一算,答一答(共60分)
21. 解下列方程(4 X 4=16分)
(1) 2x2 -5x-1 =0 (2) X2-8X-10=0(配方法)
⑶ 3(x -3)2 x(x -3) =0 (4) 2x2二3(x 1)
22. (6分)如图,在△ ABD中,/ A是直角,AB=3, AD=4, BC=12, DC=13求四边形ABCD勺面积.
23. ( 6分)关于x 的一元二次方程x 2 - x - p =0有两实数根x 1、x 2. (1) 求p 的取值范围;
(2) 若[2 x,1 —xj][2 x 2(1 -x 2)] =9,求p 的值.
24. (6分)某商店将进价为 8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减 少销售量的办法增 加利润,如果这种商品每件的销售价每提高 0.5元其销售量就减少10件,问应将每件
售价定为多少元时,才能使每天利润为
640元?
25. ( 6分) 如图,在矩形 ABCD 中, AB=6cm BC=3cm 点P 沿边AB 从点A 开始向点B 以2cm/s 的速度移 动,点Q 沿边DA 从点D 开始向点A 以1cm/s 的速度移动。

如果 P 、Q 同时出发,用t (s )表示移动的时 间(0w t <3)。

那么,当t 为何值时,△ QAP 的面积等于2cm 2?
26. ( 8分)某批发商以每件 50元的价格购 进800件T 恤,第一个月以单价 80元销售,售出了 200件; 第二个月如果单价不变,预计仍可售出 200件,批发商为增加销售量,决定降价销售,根据市场调查,单
价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的
T
恤一次性清仓销售,清仓是单价为
40元,设第二个月单价降低 x 元.
C
B
27. ( 12分)在Rt△ ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移
动过程中始终保持DE // BC, DF // AC.
(1)试写出四边形DFCE的面积S (cm2)与时间t ( s)之间的函数关系式并写出自变量t的取值范围.
(2)试求出当t为何值时四边形DFCE的面积为20m2?
(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由。

(4)四边形DFCE的面积S (cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值。

C
九年级数学参考答案
1 2 3 4 5 6 7 8 9 10 A C
A
C
D
B
D
B
C
A
21、⑴为一⑵⑶⑷
1 1 11、3
a ::- 2 2
12、( - , ) ( 0,1) (3, 4)
2
13、m = -2
14、4x 2 -1 =0
4 0 -1
15、0或 2
16、m - -2 17、 k :: 一1 18、(-5, -6 )或(5, 6) 19、10
20、(x-30)(600
―40
10 =
10000
彳上处皿处“仟处#火畸心彳了笔# -遴彳鱼
*• A.
>血址"・3・-;Ac
° 4.C .匚》异."乩0 “小
• ®。

)co.H-)—“)“•
W • 4%*-| x
(于•#)r・
b)
7 '°・s(归・)一严
刃%•} g 鼻 S 4^60 二%
”力严辛 內严平
绍.池讪彳竝汐又(曲)(”-舒• “7二华
4j|* 久* P
”-1•叨、尸 二叙* 巧.心£=-仔:
wc 3住心 山丫讥・力乙・
-i | = I ii 1® > z
沐山
"込
4。

相关文档
最新文档