剪力图和弯矩图(史上最全面)
梁的剪力和弯矩剪力图和弯矩图
2、计算1-1 截面旳内力 FA
3、计算2-2 截面旳内力
M2
F=8kN
FS1
M1 FS1 FA F 7kN M1 FA 2 F (2 1.5) 26kN m
q=12kN/m
FS2
FB
FS2 q 1.5 FB 11kN
M2
FB
1.5 q 1.5 1.5 2
30kN m
2
1
例题
求下图所示简支梁1-1与2-2截面旳剪力和弯矩。
F=8kN
q=12kN/m
A 2m
FA 1.5m
1 1 1.5m
2
B
2
1.5m
3m
FB
解: 1、求支反力
3 M B 0 FA 6 F 4.5 q 3 2 0 FA 15kN
Fy 0 FA FB F q 3 0 FB 29kN
梁任意横截面上旳剪力,等于作用在该截面左边 (或右边)梁上全部横向外力旳代数和。截面左 边向上旳外力(右边向下旳外力)使截面产生正旳 剪力,反之相反。【左上右下为正,反之为负】 梁任意横截面上旳弯矩,等于作用在该截面左 边(或右边)全部外力(涉及外力偶)对该截面 形心之矩旳代数和。截面左边(或右边)向上旳 外力使截面产生正弯矩,反之相反。【左顺右逆 为正,反之为负】
一、梁平面弯曲旳概念
1、平面弯曲旳概念
弯曲变形:作用于杆件上旳外力垂直于杆件旳轴线,使 杆旳轴线由直线变为曲线。
平面弯曲:梁旳外载荷都作用在纵向对称面内时,则梁旳轴 线在纵向对称面内弯曲成一条平面曲线。
q F
Me 纵 向
对称面
B
A
x
y FAy
FBy
以弯曲变形为主旳直杆称为直梁,简称梁。 平面弯曲是弯曲变形旳一种特殊形式。
工程力学弯曲强度1(剪力图与弯矩图
05 剪力图与弯矩图的计算与分析
CHAPTER
剪力与弯矩的计算方法
要点一
剪力计算
根据受力分析,通过力的平衡原理计算剪力。在梁的截面 上,剪力方向与梁的轴线垂直,大小等于通过截面形心的 剪切面上的剪力。
要点二
弯矩计算
弯矩是描述梁弯曲变形的量,其计算方法包括截面法、力 矩分配法等。弯矩的计算需要考虑梁的长度、截面尺寸、 材料属性以及外力分布等因素。
在工程实践中,许多结构和设备都需 要承受弯曲负荷,如桥梁、建筑、车 辆等,因此弯曲强度的研究具有重要 意义。
弯曲强度的基本原理
弯曲强度的基本原理包括剪力和弯矩 的分析。剪力是指在弯曲过程中垂直 于轴线的力,而弯矩则是指弯曲过程 中产生的力矩。
剪力和弯矩的分析是确定结构在弯曲 负荷下的应力和变形的重要手段,也 是进行结构设计和优化的基础。
谢谢
THANKS
剪力图与弯矩图的受力分析
剪力图
通过绘制剪力随梁长度变化的曲线图,可以直观地表示 出梁在不同位置受到的剪力大小和方向。根据剪力图, 可以分析梁在受力过程中的稳定性以及剪切破坏的可能 性。
弯矩图
弯矩图表示弯矩随梁长度变化的曲线图,可以用来分析 梁在不同位置的弯曲变形程度以及弯曲应力分布情况。 通过弯矩图,可以判断梁在受力过程中是否会发生弯曲 失稳或弯曲破坏。
CHAPTER
剪力图与弯矩图在结构设计中的应用
结构设计是工程中非常重要的环节,剪力图 与弯矩图是进行结构设计的关键工具。通过 分析剪力和弯矩的分布和大小,可以确定结 构的受力情况和变形趋势,从而优化结构设 计,提高结构的稳定性和安全性。
在进行结构设计时,需要综合考虑多种因素 ,如载荷、材料属性、连接方式等。剪力图 与弯矩图可以帮助工程师更好地理解和分析
梁弯矩图梁内力图(剪力图和弯矩图)
注:表中的K为轴向力变形影响的修正系数。
(1)无拉杆双铰拱
1)在竖向荷载作用下的轴向力变形修正系数
式中 Ic——拱顶截面惯性矩;
Ac——拱顶截面面积;
A——拱上任意点截面面积。
当为矩形等宽度实腹式变截面拱时,公式I=Ic/cosθ所代表的截面惯性矩变化规律相当于下列的截面面积变化公式:
简单载荷梁力图(剪力图与弯矩图)
梁的简图
剪力Fs图
弯矩M图
1
2
3
4
5
6
7
8
9
10
ቤተ መጻሕፍቲ ባይዱ注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁
表2 各种载荷下剪力图与弯矩图的特征
某一段梁上的外力情况
剪力图的特征
弯矩图的特征
无载荷
水平直线
斜直线
集中力
突变
转折
集中力偶
无变化
突变
均布载荷
斜直线
抛物线
零点
极值
表3 各种约束类型对应的边界条件
2)三跨等跨梁的力和挠度系数 表2-12
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
3)四跨等跨连续梁力和挠度系数 表2-13
注:同三跨等跨连续梁。
4)五跨等跨连续梁力和挠度系数 表2-14
注:同三跨等跨连续梁。
注:1.在均布荷载作用下:M=表中系数×ql2;V=表中系数×ql; 。
2.在集中荷载作用下:M=表中系数×Fl;V=表中系数×F; 。
[例1] 已知二跨等跨梁l=5m,均布荷载q=11.76kN/m,每跨各有一集中荷载F=29.4kN,求中间支座的最大弯矩和剪力。
2.3.2剪力图和弯矩图
二、剪力图和弯矩图的绘制方法
如图所示,坐标原点对应梁的左端点截面。
x轴对应梁的杆轴线,从梁左端点开始;y轴对应剪力
值或弯矩值:(注意:箭头可以省略不画)
剪力正值画在x轴上方,负值画在x轴下方,并标出正
3、弯矩极值点:剪力为0的点,对应弯矩值取极值
4、集中力作用点:剪力图发生突变,突变方向和集中力方 向一致,突变值等于集中力的值,弯矩图有转折
5、集中力偶作用点:剪力图不受影响,弯矩图有突变,突 变方向和集中力偶符号相反,突变值等于集中力偶矩的值。
四、剪力图和弯矩图的绘图步骤
1、求支座反力 2、荷载图、剪力图、弯矩图三图上下对齐 3、分段定性 4、根据荷载走向作出Fs图 5、根据Fs图作出M图
A
B
FAy=ql/2
l
q
FBy=ql/2 M中=ql2/8
A
B
(3)计算可得出:
FAy=ql
l
MA=ql2/2
M1
A
B (4)计算可得出:
FAy=FBy=0
l
M=-M1
1、无荷载区段:剪力图是水平线,弯矩图是斜直线(如剪 力图为0,弯矩图为水平线)
2、向下的均布荷载区段:剪力图是下斜直线,弯矩图是下 凸的抛物线
第二章 静定结构内力分析
第三节 单跨静定梁的内力分析 (剪力图和弯矩图)
授课教师:工计会组 靳玉红
一、剪力图和弯矩图的定义
在一般情况下,梁各个截面上的剪力值和弯矩值是不 同的,它们随着截面位置的不同而变化。
由于在进行梁的强度计算时,需要知道梁在外力作用 下所产生的最大内力及最大内力所在的截面位置,以及全 梁的内力随截面位置变化的情况。通常用相应的图形来表 示内力沿梁长度方向的变化规律,这种表示剪力和弯矩变 化规律的图形称为剪力图和弯矩图。
剪力、弯矩方程与剪力、弯矩图
截面位置对剪力和弯矩的影响
总结词
截面位置对剪力和弯矩具有显著影响。不同的截面位置会导致剪力和弯矩的大小和方向发生变化。
详细描述
在结构分析中,截面位置是影响剪力和弯矩的重要因素之一。不同的截面位置会导致剪力和弯矩的大小和方向发 生变化,从而影响结构的整体受力性能。例如,在梁中选取不同的截面位置进行支撑或固定,会对梁的剪力和弯 矩产生显著影响。
05 剪力、弯矩与材料力学性 能的关系
材料弹性对剪力和弯矩的影响
弹性材料在剪力和弯矩作用下会发生弹性变形,变形量与外力成正比,当外力去 除后,材料能够恢复原状。
弹性材料的剪切模量和弯曲刚度决定了剪力和弯矩的大小,剪切模量越大,材料 抵抗剪切变形的能力越强;弯曲刚度越大,材料抵抗弯曲变形的能力越强。
根据绕顺时针方向观察确定,使上侧 纤维受拉时为正。
02 剪力方程与弯矩方程
剪力图与弯矩图的绘制
1
剪力图和弯矩图是表示梁上剪力和弯矩随截面位 置变化的图形。
2
这些图的绘制基于剪力方程和弯矩方程的计算结 果,通过将计算得到的剪力和弯矩值标在图中相 应的位置上,并连接成线。
3
剪力图和弯矩图的绘制有助于直观地了解梁在不 同截面位置的受力状态和应力分布情况。
弯矩
在梁或结构中,由于弯曲而产生 的力矩,表示弯曲变形的大小。
剪力与弯矩在力学中的作用
剪力
主要影响结构的剪切变形,对梁的剪切承载能力有重要影响 。
弯矩
主要影响结构的弯曲变形,对梁的弯曲承载能力有重要影响 。
剪力与弯矩的符号规定
剪力正方向
根据右手定则确定,从杆件的受压一 侧指向受拉一侧。
弯矩正方向
02
材料强度越高,抵抗剪力和弯矩等外力的能力越强, 所能承受的剪力和弯矩越大。
剪力以及弯矩剪力图以及弯矩图
剪力图和弯矩图在工程管理中的应用
结构设计:用于计 算结构受力确定结 构尺寸和材料
施工管理:用于 指导施工确保施 工质量和安全
维护管理:用于 评估结构状态制 定维护计划
优化设计:用于 优化结构设计降 低成本和能耗
剪力图和弯矩图的注意 事项
绘制剪力图和弯矩图时应注意的事项
确保数据准确无误 注意单位换算确保单位一致 绘制过程中注意比例尺和坐标轴的设置 绘制完成后检查图例、标题、标注等是否清晰明确
添加副标题
剪力和弯矩剪力图以及弯矩 图
汇报人:
目录
CONTENTS
01 添加目录标题
02 剪力和弯矩的基本 概念
03 剪力图和弯矩图的 绘制
04 剪力图和弯矩图的 解读
05 剪力图和弯矩图的 应用
06 剪力图和弯矩图的 注意事项
添加章节标题
剪力和弯矩的基本概念
剪力和弯矩的定义
剪力:作用在物体表面上的力使物体发生剪切变形 弯矩:作用在物体表面上的力使物体发生弯曲变形 剪力图:表示剪力在物体表面上的分布情况 弯矩图:表示弯矩在物体表面上的分布情况
剪力和弯矩的计算方法
剪力:作用在物体上的力使物体发生剪切变形 弯矩:作用在物体上的力使物体发生弯曲变形 剪力计算方法:根据力的平衡原理利用剪力公式进行计算 弯矩计算方法:根据力的平衡原理利用弯矩公式进行计算
剪力和弯矩的单位和符号
剪力:单位为牛顿(N) 符号为F
弯矩:单位为牛顿·米 (N·m)符号为M
证结构安全
剪力图和弯矩图在施工中的应用
确定结构受力情况: 通过剪力图和弯矩图 可以了解结构的受力 情况为施工提供依据。
优化施工方案:根据 剪力图和弯矩图可以 优化施工方案提高施 工效率和质量。
剪力图和弯矩图
悬臂梁的剪力图和弯矩图如下:内力规律图如下1当剪力图与x轴平行时,弯矩图在空载区是倾斜的。
当剪力图为正时,弯矩图向下倾斜。
当剪切图为负时,弯矩图向上倾斜。
均布荷载的规律是:荷载向下,剪力向下,凹弯矩向上。
三。
当施加集中力时,剪切图突然变化,突变的绝对值等于集中力的大小,弯矩图旋转。
4集中联轴器动作时,转矩图发生突变,突变的绝对值等于集中联轴器的耦合转矩。
剪切图像没有更改。
5在零剪力作用下,存在一个弯矩极值弯矩图汇总规则如下:1在梁的某一截面上,如果没有分布荷载,即Q(x)=0,则D?看。
M(x)/DX?2=q(x)=0,其中m(x)是x的函数,弯矩图是对角线。
2在梁的某一截面上,如果施加分布荷载,即Q(x)=常数,则d≥d.2m(x)/DX?2=q(x)=常数可以得出m(x)是x的二次函数,力矩图是抛物线。
三。
如果在梁的某个部分fs(x)=DM(x)/DX=0,则该部分的弯矩存在极值(最大值或最小值)。
也就是说,弯矩的极值出现在剪力为零的截面上。
根据上述绘图规则,可准确绘制集中荷载和均布荷载作用下悬臂梁的剪力图和弯矩图。
扩展数据弯矩叠加原理相同的梁AB承受Q和M0荷载,只有Q和M0。
当Q和M0一起工作时,VA=QL/2+M0/L 和=QL/2+M0/L从计算结果可以看出,梁的反力和弯矩是荷载的一阶函数(Q,M0),即反力或弯矩与荷载呈线性关系。
在这种情况下,G和M0共同作用产生的反作用力或弯矩等于G 和M0单独作用产生的反作用力或弯矩的代数和。
这种关系不仅存在于本例中,也存在于其他机械计算中。
也就是说,只要反作用力、弯矩(或其他量)和荷载是线性的,则由多个荷载引起的反作用力和弯矩(或其他量)分别等于每个荷载的反作用力和弯矩(或其他量)。
这种关系叫做叠加原理。
应用叠加原理的前提是构件处于小变形状态,各荷载对构件的影响是独立的。
剪力图和弯矩图(史上最全面)解析
三、 叠加原理: 多个载荷同时作用于结构而引起的内力等于每个载荷单
独作用于结构而引起的内力的代数和。
Q(P1P2 Pn) Q1(P1) Q2(P2) Qn(Pn)
M(P1P2 Pn) M1(P1) M2(P2) Mn(Pn)
M (P1P2 Pn) M1(P1) M2(P2) Mn(Pn)
适用条件:所求参数(内力、应力、位移)必然与荷载满 足线性关系。即在弹性限度内满足虎克定律。
27
二、材料力学构件小变形、线性范围内必遵守此原理 ——叠加方法
步骤: ①分别作出各项荷载单独作用下梁的弯矩图; ②将其相应的纵坐标叠加即可(注意:不是图形的简单
四、对称性与反对称性的应用: 对称结构在对称载荷作用下,Q图反对称,M图对称;对称
结构在反对称载荷作用下,Q图对称,M图反对称。
M 的驻点: Q 0 ; M 3 qa2 2
x
右端点: Q 0; M 3 qa2 2
22
[例5] 用简易作图法画下列各图示梁的内力图。AB=BC=CD=a
q AB
RA qa Q qa/2
+ – qa/2
qa2 CD
RD
– qa/2
M
qa2/2
+
–
3qa2/8 qa2/2
qa2/2
RB
Pa l
Y
0,
YA
P(l a) l
XA A YA
P B
P B
RB
11
②求内力——截面法
Y
0,
Q YA
P(l a) l
mC 0 , M YA x
m XA A
梁的剪力和弯矩.剪力图和弯矩图
M2 M1
F x2
x1 S
x dx
q
A
C
D
B
FA
a
c
l
FA
b
FB
FB
FAa
FBb
突 变 规 律(从左向右画)
1、集中力作用处,FS图突变,方
向、大小与力同;M图斜率突 变,突变成的尖角与集中力F的 箭头是同向。
2、集中力偶作用处,M图发生
突变,顺下逆上,大小与M 同,FS图不发生变化。
0
dM dx
FS
d 2M dx2 q
dFs q dx
dM dx
FS
d 2M dx2
q
dFs 0
FS C 剪力图是水平直线.
dx
dM C 弯矩图是斜直线.
C0
C0
dx
dM 0
M C 弯矩图是水平直线.
dx
dFs q dx
剪力图是斜直线. 弯矩图是二次抛物线.
截开后取右边为示力对象:
向上的外力引起负剪力,向下的外力引起正剪力; 向上的外力引起正弯矩,向下的外力引起负弯矩; 顺时针引起负弯矩,逆时针引起正弯矩。
4.3 求图示外伸梁中的A、B、C、D、E、
例题
F、G各截面上的内力。
3kN
C A
2kN m
1kN m
6kN m
D EF BG
FA
FB
1m 1m 1m 1m 1m 1m 1m 1m
MB
q
MA
B
l
B
+ MA
+
M0
+ MA M0
例题 4.15
轴力剪力弯矩图优秀ppt
q
qa
例:作图示刚架的弯矩图。 例:作图示刚架的弯矩图。
a
a
例:作图示刚架的弯矩图。
例:作图示刚架的弯矩图。
例:作图示刚架的轴力图、剪力图、弯矩图。
例:作图示刚架的轴力图、剪力图、弯矩图。
a
CL7TU18
q
qa
a
a
a
qa 2
2
2qa qa
N图 2qa
qa Q图
qa2 / 2 M图 qa 2
qa 2 C2L7TU18
轴力剪力弯矩图剪力图和弯矩图剪力与弯矩图剪力图和弯矩图例题剪力弯矩图剪力图和弯矩图习题剪力弯矩剪力与弯矩的关系剪力和弯矩剪力与弯矩
轴力剪力弯矩图
q 3qa
2qa a Q
2qa
a q qa qa
qa
2qa
M
3qa2 / 2
CL7TU15
qa
q
a
a
Q
qa M qa2 / 2
CL7TU16
qa 2
2q
q
a
a
Q
qa
qa2 / 2 qa M
qa 2
qa 2
qa 2
CL7TU16
2
4
2
例:作图示刚架的轴力图、剪力图、弯矩图。
q
2a a 2qa a
CL7TU17
q 2a
a 2qa 2qa
a 2qa 2qa
Q图 2qa
N图
2qa 2
M图
2qa 2
CL7TU17
例:作图示刚架的轴力图、剪力图、弯矩图。
例:作图示刚架的弯矩图。
q
a 例:作图示刚架的弯矩图。
例:作图示刚架的弯矩图。
剪力图和弯矩图-课件(PPT-精)
02 剪力图和弯矩图的绘制
绘制步骤
确定受力点
首先确定梁的受力点,通常为 梁的两端或支撑点。
分析受力
分析梁所受的剪力和弯矩,确 定剪力和弯矩的大小和方向。
绘制剪力图和弯矩图
根据分析结果,在梁上标出剪 力和弯矩的大小和方向,并绘 制剪力图和弯矩图。
标注数据
在剪力图和弯矩图上标注相关 数据,如剪力和弯矩的大小、
3
优化施工图设计
通过分析剪力图和弯矩图,可以发现施工图设计 中的不足之处,并进行优化改进,提高施工图设 计的合理性和可行性。
在施工过程中的应用
监控施工过程
在施工过程中,通过实时监测剪 力图和弯矩图的动态变化,可以 及时发现施工中的问题,采取相
应的措施进行调整和处理。
评估施工效果
根据剪力图和弯矩图的监测结果, 可以对施工效果进行评估,判断 施工是否符合设计要求和质量标
计算公式
剪力Q=F*sin(a),其中F为外力,a为 外力与杆件轴线的夹角;弯矩M=F*d, 其中F为外力,d为外力作用点到杆件 固定端的距离。
计算步骤
注意事项
在计算过程中应注意单位的统一,并 考虑杆件的固定端约束条件。
先确定杆件上各点的外力大小和方向, 然后根据公式计算各点的剪力和弯矩, 最后绘制剪力图和弯矩图。
THANKS FOR WATCHING
感谢您的观看
实例3
一斜梁在水平载荷作用下的剪力图 和弯矩图解读。
04 剪力图和弯矩图的应用
在结构设计中的应用
评估结构的承载能力
通过分析剪力图和弯矩图,可以确定结构在不同受力情况下的承 载能力,从而确保结构的安全性和稳定性。
优化结构设计
通过调整剪力图和弯矩图的分布和大小,可以优化结构设计,降低 材料消耗,提高结构的经济性和环保性。
剪力图和弯矩图
梁在弯曲变形时,沿长度方向的纤维中有一层既不伸长也 不缩短者,称为中性层。早在1620年荷兰物理学家和力学家 比克门(Beeckman I)发现,梁弯曲时一侧纤维伸长、另一 侧纤维缩短,必然存在既不伸长也不缩短的中性层。英国科学 家胡克(Hooke R)于1678年也阐述了同样的现象,但他们 都没有述及中性层位置问题。首先论及中性层位置的是法国科 学家马略特(Mariotte E, 1680年)。其后莱布尼兹 (Leibniz G W)、雅科布·伯努利(Jakob Bernoulli, 1694)、伐里农(Varignon D, 1702年)等人及其他学者 的研究工作尽管都涉及了这一问题,但都没有得出正确的结论。 18世纪初,法国学者帕伦(Parent A)对这一问题的研究取 得了突破性的进展。直到1826年纳维(Navier,C. -L. - M. -H)才在他的材料力学讲义中给出正确的结论:中性层 过横截面的形心。
2KN
A
12
3B4
12
3
4
2m
FA
2m
M4
2m
FB
4
2KN
FS4 4
F S 3 4 K( N ),M 3 4 K .m N ( )
求 4-4 横截面上的内力(假设剪力和弯矩为正)。
F S 4 2 KN ( ),M 4 4 K .m N ( )
12KN.m
2KN
剪力方程和弯矩方程 :以梁的左端点为坐标原点,x 轴与梁的 轴线重合, 找出横截面上剪力和弯矩与横截面位置的关系 , 这种 关系称为剪力方程和弯矩方程。
即
Fs = Fs (x )
M = M(x)
剪力图和弯矩图
剪力 : 正值剪力画在 x 轴上侧,负值剪力画在 x 轴下侧。
剪力图和弯矩图(史上最全面)
1.25 1
q=2kN/m
+
x
_
1
26
§4–5 按叠加原理作弯矩图
一、叠加原理: 多个载荷同时作用于结构而引起的内力等于每个载荷单独
作用于结构而引起的内力的代数和。
Q ( P 1 P 2 P n ) Q 1 ( P 1 ) Q 2 ( P 2 ) Q n ( P n )
9
[例1]贮液罐如图示,罐长L=5m,内径 D=1m,壁厚t =10mm,
钢的密度为: 7.8g/cm³,液体的密度为:1g/cm³,液面高 0.8m,外伸端长 1m,试求贮液罐的计算简图。
解:
q — 均布力
10
§4–2 梁的剪力和弯矩
一、弯曲内力:
a
[举例]已知:如图,P,a,l。 A
求:距A端x处截面上内力。 l
Q Q(x) M M (x)
剪力方程 弯矩方程
2. 剪力图和弯矩图:
剪力图
Q Q(x) 的图线表示
弯矩图
M M (x) 的图线表示
16
[例2] 求下列各图示梁的内力方程并画出内力图。
MO
YO YO
MO
L
P
解:①求支反力
Q(x) M(x)
x
YOP; M OPL ②写出内力方程
Q(x) M(x)
利用内力和外力的关系及特殊点的内力值来作图的方法。
38
三、 叠加原理: 多个载荷同时作用于结构而引起的内力等于每个载荷单
独作用于结构而引起的内力的代数和。
Q ( P 1 P 2 P n ) Q 1 ( P 1 ) Q 2 ( P 2 ) Q n ( P n )
M ( P 1 P 2 P n ) M 1 ( P 1 ) M 2 ( P 2 ) M n ( P n )
材料力学课件:剪力图与弯矩图
y
O
x
x
dx
y
考察 dx 微段的受力与平衡 O
Mz(x)
FQ x
q
Mz(x)+d Mz(x)
x
FQ+d FQ dx
剪力、弯矩与载荷集度之间的微分关系的证明
考察 dx 微段的受力与平衡
q
y
Mz(x)
Mz(x)+d Mz(x)
O
x
FQ
FQ+d FQ
x
dx
ΣFy=0: FQ+q dx- FQ-d FQ =0
为了建立剪力方程和弯矩方程,必须首先建立 Oxy坐标系,其中O坐标原点,x坐标轴与梁的轴线 一致,坐标原点O一般取在梁的左端,x坐标轴的 正方向自左至右,y坐标轴铅垂向上。
剪力图与弯矩图
剪力方程与弯矩方程
建立剪力方程和弯矩方程时,需要根据梁上的 外力(包括载荷和约束力)作用状况,确定控制面, 从而确定要不要分段,以及分几段建立剪力方程 和弯矩方程。
如果一段梁上作用有均布载荷,即q=常数,这一段 梁上剪力的一阶导数等于常数,弯矩的一阶导数为x的线性函
数,因此,这一段梁的剪力图为斜直线;弯矩图为二次抛物线 。
弯矩图二次抛物线的凸凹性,与载荷集度q的正负有 关:当q为正(向上)时,抛物线为凹曲线,凹的方向与M坐标正 方向一致,:当q为负(向下)时,抛物线为凸曲线,凸的方向 与M坐标正方向一致。
ΣMC=0: (M+dM) +q dx ·dx /2 -M- FQ dx=0
剪力、弯矩与载荷集度之间的微分关系的证明
q
y
Mz(x)
O
Mz(x)+d Mz(x)
x
ΣFy=0:
剪力图和弯矩图(史上全面)剪刀图弯矩图特征
2
2
右端点D: Q
1 2
qa
;M
0
23
1、练习直接画内力图 P129 4、4-d、j(对称载荷)、m(反对称载荷)
同时可以提前讲内力图的对称关系 2、改错
见下页PPT 3、由Q图作M图和载荷图P135 4.16(b)
由M图作Q图和载荷图P135 4.17(a) 4、讲解组合梁的内力图P130 4.6(a)
P q
Pa 2
qa2 2
A
BM
x x
+ P
=
=+
A
B M1
Pa 2
+
+
q
qa2
A
B M2
2 +
x
29
三、对称性与反对称性的应用: 对称结构在对称载荷作用下,Q图反对称,M图对称;对称
结构在反对称载荷作用下,Q图对称,M图反对称。
30
[例8] 作下列图示梁的内力图。
P
PL
Q
x
0L 0.5P L 0.5P L
Q
特
征
x
x
x
C
x
Q2
x
C x
Q>0 Q<0 增函数 降函数 Q1–
M
斜直线
曲线
自左Q2向=P右折角 自左向右突变
图
x
x
x
x
x 与 M1 x
特
m
征M
M
M
M
M
反 M M2
增函数 降函数 碗状 馒头状 折向与P反向 M1 M220 m
简易作图法: 利用内力和外力的关系及特殊点的内力值来作 图的方法。
[例4] 用简易作图法画下列各图示梁的内力图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q2 q(x2 a L)
y
mB(Fi) 0 ,
qL
qLx2
M2
1 2
q(x2
a)2
0
M2
1 2
q(x2
a)2
qLx2
2q 1
1a
2b
x
图(a)
B M2
x2
Q2
图(c)
15
§4–3 剪力方程和弯矩方程 ·剪力图和弯矩图
1. 内力方程:内力与截面位置坐标(x)间的函数关系式。
Q Q(x) M M (x)
y M(x) Q(x)
q(x) Q(x)+d Q(x) A dx M(x)+d M(x)
弯矩与荷载集度的关系是:
dM 2(x) dx2
q(x)
19
二、剪力、弯矩与外力间的关系
无外力段 外 力
q=0
均布载荷段
q>0
q<0
集中力
P C
集中力偶
m
C
水平直线
斜直线
自左向右突变 无变化
Q 图
Q
Q
Q
Q
Q Q1
M — 集中力偶
②悬臂梁 ③外伸梁
q(x)— 分布力
q — 均布力
P — 集中力
8
5. 静定梁与超静定梁 静定梁:由静力学方程可求出支反力,如上述三种基本 形式的静定梁。 超静定梁:由静力学方程不可求出支反力或不能求出全 部支反力。
9
[例1]贮液罐如图示,罐长L=5m,内径 D=1m,壁厚t =10mm,
3. 支座简化
6
3. 支座简化 ①固定铰支座
2个约束,1个自由度。如:桥梁 下的固定支座,止推滚珠轴承等。
②可动铰支座 1个约束,2个自由度。
如:桥梁下的辊轴支座,滚珠轴承等。
③固定端
3个约束,0个自由度。如:游泳池 XA
MA
的跳水板支座,木桩下端的支座等。 7
YA
4. 梁的三种基本形式 ①简支梁
qL 1
2q
解:截面法求内力。 1--1截面处截取的分离体
1a
2b
如图(b)示。
y x
qL A
图(a)
Y qL Q1 0 Q1 qL
x1Q1
M1 图(b)
mA(Fi) qLx1 M1 0 M1 qLx1
14
2--2截面处截取的分离体如图(c) qL
Y qL Q2 q( x2 a ) 0
1
第四章 弯曲内力
§4–1 平面弯曲的概念及梁的计算简图 §4–2 梁的剪力和弯矩 §4–3 剪力方程和弯矩方程 ·剪力图和弯矩图 §4–4 剪力、弯矩与分布荷载集度间的关系及应用 §4–5 按叠加原理作弯矩图 §4–6 平面刚架和曲杆的内力图
弯曲内力习题课
2
§4–1 平面弯曲的概念及梁的计算简图
qa
q
A
解: 利用内力和外力的关系及 特殊点的内力值来作图。
a
a
特殊点:
端点、分区点(外力变化点)和
驻点等。
21
qa
q
A
a
a
Q
–
qa M
– qa2
左端点:Q qa; M 0
线形:根据
dQx
dx
qx
;
Y
0,
YA
P(l a) l
XA A YA
P B
P B
RB
11Байду номын сангаас
②求内力——截面法
Y
0,
Q YA
P(l a) l
mC 0 , M YA x
m XA A
YA
x
m
P B
RB
∴ 弯曲构件内力
剪力 弯矩
Q A
C
1. 弯矩:M
YA
Q
构件受弯时,横截面上其作
MC
用面垂直于截面的内力偶矩。
一、弯曲的概念 1. 弯曲: 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴 线变成了曲线,这种变形称为弯曲。 2. 梁:以弯曲变形为主的 构件通常称为梁。
3
3. 工程实例
4
4. 对称弯曲:
横截面对称的杆件发生弯曲变形后,轴线仍然和外力在同一平面内。
P
q
P
1
2
M 纵向对 称面
非对称弯曲—— 若梁不具有纵对称面,或者,梁虽具有纵 对称面但外力并不作用在对称面内,这种 弯曲则统称为非对称弯曲。
q(x) Q(x)+d Q(x) A dx M(x)+d M(x)
q( x )dx dQ( x )
dQx
dx
qx
剪力图上某点处的切线斜率等
于该点处荷载集度的大小。
18
mA(Fi) 0 ,
Q(x)dx
1 2
q( x)(d x)2
M
(x)
[M
(x)
dM
(x)]
0
dM (x) dx
Q(x)
弯矩图上某点处的切线斜率等于该点处剪力的大小。
剪力方程 弯矩方程
2. 剪力图和弯矩图:
剪力图
Q Q(x) 的图线表示
弯矩图
M M (x) 的图线表示
16
[例2] 求下列各图示梁的内力方程并画出内力图。
MO
YO YO
MO
L
P
解:①求支反力
Q(x) M(x)
x
YO P ; MO PL
②写出内力方程
Q(x) M(x)
–PL
P
Q( x ) YO P
M P
RB
12
2. 剪力:Q 构件受弯时,横截面上其作用线平行于截面的内力。
3.内力的正负规定: ①剪力Q: 绕研究对象顺时针转为正剪力;反之为负。
Q(+)
Q(–)
Q(+)
Q(–)
②弯矩M:使梁变成凹形的为正弯矩;使梁变成凸形的为负弯矩。
M(+)
M(+)
M(–)
M(–)
13
二、例题
[例2]:求图(a)所示梁1--1、2--2截面处的内力。
x M( x ) YOx MO
x
P( x L )
③根据方程画内力图
17
§4–4 剪力、弯矩与分布荷载集度间的关系及应用
一、 剪力、弯矩与分布荷载间的关系
q(x)
对dx 段进行平衡分析,有:
Y 0
Q( x ) q( x )dx Q( x ) dQ( x ) 0
x
dx
y
M(x) Q(x)
Q
特
征
x
x
x
C
x
Q2
x
C x
Q>0 Q<0 增函数 降函数 Q1–
M
斜直线
曲线
自左Q2向=P右折角 自左向右突变
图
x
x
x
x
x 与 M1 x
特
m
征M
M
M
M
M
反 M M2
增函数 降函数 碗状 馒头状 折向与P反向 M1 M220 m
简易作图法: 利用内力和外力的关系及特殊点的内力值来作 图的方法。
[例4] 用简易作图法画下列各图示梁的内力图。
下面几章中,将以对称弯曲为主,讨论梁的应力和变形计算5。
二、梁的计算简图 梁的支承条件与载荷情况一般都比较复杂,为了便于
分析计算,应进行必要的简化,抽象出计算简图。 1. 构件本身的简化
通常取梁的轴线来代替梁。
2. 载荷简化 作用于梁上的载荷(包括支座反力)可简化为三种类型:
集中力、集中力偶和分布载荷。
钢的密度为: 7.8g/cm³,液体的密度为:1g/cm³,液面高 0.8m,外伸端长 1m,试求贮液罐的计算简图。
解:
q — 均布力
10
§4–2 梁的剪力和弯矩
一、弯曲内力:
a
[举例]已知:如图,P,a,l。 A
求:距A端x处截面上内力。 l
解:①求外力
X 0, XA 0
mA 0 ,
RB
Pa l