激光多普勒测速[仅供参考]

合集下载

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。

多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。

例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。

如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。

但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。

设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪
1 激光多普勒测速仪概念
激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种
仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风
速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速
度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空
气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性
和LDV测量的要求。

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速

激光多普勒测速


2
其中, I 0 E02
当相位差为 的偶数倍时,即( 2m m=0, 1, 2, …) 时,I 4I0 ,P点光强达到最大值。
当相位差为 的奇数倍时,即( (2m 1) m=0, 1, 2, …) 时,I 0 ,P点光强达到最小值。
当相位介于这两者之间变化时,P点光强在0和4I0之间变化。
这种在迭加区域出现的光强稳定的强弱分布的现象称为光的 干涉。在观察时间内,P点平均光强为:
I 1


Id


2 E01 E02
1


cosd
0
如果在观察时间内,各个时刻到达的两束光波迅速而无规
则地变化,多次经理0~2之间的一切值,则,
1

0
cosd
对于恶劣的环境(像燃烧火焰),常常不能 使用小尺寸探头 。
热线和热薄膜风速仪虽然是定量研究紊流 结构的主要实验工具,但它仅限于低温、 低速、低紊流度、常特性的检测,而且必 须在回流区以外。
光学速度测试技术具有测量灵敏 度高,不干扰流场等优点,有着 很强的应用前景。
光学测速技术主要有全息干涉法、 散斑照相法、激光多普勒测速法 和激光双焦点测速法等。
c U e0 c2 (U e0 )2

f0
1U e0 / c 1 (U e0 )2
c
f p f0 (1
e0 ) * c
• 式中,e 为入射光方向的单位向 0
量,c为介质中的光速。
• 光检测器接收的粒子散射光频率:
fS

f
p
(1

es
c
)
*
(5-2)
因此,两迭加光波相位差固定不变是产生干涉的必要条件。

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

Dantec 激光多普勒测速仪(LDA)原理说明书

Dantec  激光多普勒测速仪(LDA)原理说明书

The probe and the probe volume.激光多普勒测速仪(LDA )原理简介激光多普勒测速仪是Dantec 公司最先采用多普勒原理,对一维到三维流动速度和粒子浓度进行同步、无接触实时测量的世界顶尖测量仪器。

它可以对以超音速、几乎静止不动或环流湍流中作反向流动的特性进行测量。

原理由布拉格单元输出的两束强度相同的光,其中一束被加了一个频移。

这两束光通过聚焦进入光纤,然后被传输到探头。

这些光经过一个聚焦透镜在探测体内相交于一点。

在探测体内,由于光的干涉现象,光的强度被调整而产生干涉条纹。

干涉条纹的距离是由激光的波长和两光束的角度决定的:()2/sin 2θλτ=d当流体流过探测体时,流动速度信息来自于流体中所带的微小“播种”粒子的散射光。

散射光中包含了一个多普勒频移,它与和这两个光束等分线垂直的速度分量成比例,X 轴的分量如图所示。

光电探测器把光强度的波动转化成电信号,即多普勒脉冲。

多普勒脉冲在信号处理器中被过滤和放大,然后经过频率分析(诸如快速傅立叶变换)确定多普勒频率。

干涉条纹的距离提供了粒子运动距离的信息;多普勒频率提供了时间信息;由于速度等于距离除以时间,即距离乘以频率,从而可以获得粒子的速度信息。

值得说明的是,Dantec 公司的LDA 系统可以很容易得升级成用于两相流动测量的相位多普勒测量系统(PDA )Doppler frequency to velocity transfer function fora frequency shifted LDA systemAir vortex measured by FlowExplorer流体速度和湍流测量——FlowExplorer激光多普勒测速仪精确的流体速度测量FlowExplorer是一个高集成度高精度的激光多普勒(LDA)流体测量系统,可用于流体和湍流的研究。

FlowExplorer系统可以测量单一速度分量或者同时测量两个方向的速度分量。

激光多普勒测速实验教程

激光多普勒测速实验教程

激光多普勒测速实验教程
一、实验概述
激光多普勒测速实验是一种常用的测速方法,通过测量目标物体表面反射回来的激光光束频率变化,从而得出目标物体的速度。

本实验将介绍激光多普勒测速的原理、实验装置搭建、实验步骤及注意事项。

二、实验原理
激光多普勒效应是指当激光束照射到运动的物体表面时,反射回来的光束频率会因为物体运动而发生变化。

根据多普勒效应公式,可以得出:
$$f_r = f_0 \\cdot \\left(1 + \\frac{v}{c} \\cdot \\cos\\theta\\right)$$
其中,f r为接收到的激光频率,f0为激光发射频率,v为物体运动速度,c为光速,$\\theta$为激光与物体运动方向的夹角。

三、实验装置
该实验所需装置包括: - 激光发射器 - 激光接收器 - 反射镜 - 运动平台 - 计算机
四、实验步骤
1.将激光发射器和激光接收器固定在实验台上,使其间距一定。

2.在运动平台上放置反射镜,调整反射镜位置,使激光光束正好反射回
激光接收器。

3.启动激光发射器,发射激光光束照射到运动平台上的反射镜。

4.记录激光接收器接收到的频率数据,并测量反射镜在运动平台上的速
度。

5.利用多普勒效应公式计算出反射镜的运动速度,与实际测得的速度进
行对比。

五、注意事项
1.实验中需注意激光光束安全,避免直接照射眼睛。

2.反射镜位置调整需准确,确保激光正好反射回激光接收器。

3.实验过程中要小心操作,避免损坏实验装置。

通过本实验,可以深入了解激光多普勒测速的原理与应用,提高实验操作能力和理论水平。

激光多普勒测速课件

激光多普勒测速课件
信号处理与控制系统的性能直接影响测速结果的准确性和实时性,是整 个测速系统的关键部分。
03
激光多普勒测速技术实验方法
实验准备与操作流程
实验设备
激光多普勒测速仪、水槽、电源、信号发生器、示波器等。
实验材料
水、透明玻璃或有机玻璃板、测量尺等。
实验准备与操作流程
操作步骤
1
2
1. 安装激光多普勒测速仪,确保其稳定运行。
材料科学、纳米技术等领域。
在材料表面形貌测量中,激光多普勒测速技术可以测 量材料表面的粗糙度、形貌和纹理等信息,提供材料
表面的三维形貌和表面动力学特征。
激光多普勒测速技术还可以用于测量材料表面的应力 、应变和热流等参数,为表面工程和材料科学研究提
供重要数据。
06
结论与展望
技术总结
激光多普勒测速技术是一种非接触、无损、高 精度、高分辨率的测量 技术,具有广泛的应用 前景。
在流体速度测量中,激光多普勒测速技术可以测量液体、气体和等离子体等流体的速度,具有广泛的应 用范围。
激光多普勒测速技术可以测量流体的平均速度和瞬时速度,提供流场的速度分布和流速矢量等信息,为 流体力学研究和工程应用提供重要数据。
粒子速度测量
激光多普勒测速技术在粒子速度测量中 具有高精度、非接触和实时性的优点, 广泛应用于气溶胶、燃烧颗粒、生物细 胞等领域。
未来,激光多普勒测速技术将不断优化,提高测量精度和 稳定性,拓展应用范围,为科学研究和技术创新提供更多 可能性。
同时,随着技术的进步和应用需求的增加,激光多普勒测 速技术的成本将逐渐降低,使得更多的领域和行业能够受 益于该技术的应用。
THANKS
感谢观看
在粒子速度测量中,激光多普勒测速技术可 以测量粒子在气体或液体中的速度,提供粒 子的运动轨迹和速度分布等信息。

激光多普勒测速实验教程

激光多普勒测速实验教程

激光多普勒测速实验教程在科学研究和工程实践中,激光多普勒测速技术被广泛应用于测量目标物体的速度和位移。

本文将介绍激光多普勒测速的基本原理、实验装置搭建步骤和实验操作流程,帮助读者了解该技术的应用和实验方法。

1. 概述激光多普勒测速是利用多普勒效应来测量目标物体相对于激光束的速度的技术。

当激光束照射到运动的物体上,如果物体沿激光束的方向运动,就会出现多普勒频移现象。

通过测量多普勒频移,可以计算出物体的速度和运动方向。

2. 实验装置搭建步骤2.1 材料准备•一台激光器•一个光电探测器•一台信号处理器•一根光纤•一个运动的目标物体2.2 搭建步骤1.将激光器和光电探测器分别固定在实验台上,使激光束可以直线照射到目标物体上。

2.将信号处理器连接到光电探测器输出端。

3.将光纤连接激光器和光电探测器,确保信号传输畅通。

4.调整激光束和目标物体的位置,使其正对光电探测器。

3. 实验操作流程3.1 校准1.打开激光器和信号处理器,初始化设备。

2.调整激光束位置,确保准确照射到目标物体上。

3.根据实验需要,设置信号处理器的参数,包括灵敏度和采样频率等。

3.2 实验操作1.将目标物体放置在激光束前方,并启动其运动。

2.通过信号处理器读取激光多普勒信号。

3.记录和分析信号数据,计算出目标物体的速度和运动方向。

4.反复进行多组实验,验证实验结果的准确性。

4. 结论通过本实验教程的学习,读者可以掌握激光多普勒测速技术的基本原理和实验方法,了解其在速度测量领域的应用和意义。

激光多普勒测速技术在工业、交通等领域具有广泛的应用前景,值得进一步深入研究和探索。

以上是激光多普勒测速实验教程的全部内容,希望对读者对该技术有所帮助。

光子多普勒测速和激光多普勒测速

光子多普勒测速和激光多普勒测速

光子多普勒测速和激光多普勒测速
光子多普勒测速和激光多普勒测速是现代科技中常用的速度测量方法。

它们通过不同的原理和技术手段来实现对目标物体的速度测量,具有高精度、高灵敏度的特点,被广泛应用于交通运输、航空航天、物理实验等领域。

光子多普勒测速是一种利用光子的多普勒效应来测量目标物体速度的技术。

当光线照射到运动的物体上时,由于物体的运动会引起光的频率发生变化,即频率偏移。

根据多普勒效应的原理,我们可以通过测量光的频率偏移来计算目标物体的速度。

光子多普勒测速具有非接触式测量、高精度、高灵敏度等优点,适用于对速度变化较快的目标进行测量。

激光多普勒测速是一种利用激光束的多普勒效应来测量目标物体速度的技术。

它通过发射一束激光束并接收被目标物体散射回来的激光信号,利用多普勒效应的原理来计算目标物体的速度。

激光多普勒测速具有高分辨率、高测量精度、快速响应等特点,被广泛应用于交通监控、雷达测速等领域。

虽然光子多普勒测速和激光多普勒测速有着不同的原理和技术手段,但它们都能够准确地测量目标物体的速度。

在实际应用中,我们可以根据需求选择合适的测速方法。

无论是光子多普勒测速还是激光多普勒测速,都能够为我们提供准确可靠的速度数据,以保障交通安全、提高科研实验的精度,为人类的生活和发展做出重要贡献。

光子多普勒测速和激光多普勒测速是现代科技中常用的速度测量方法。

它们通过不同的原理和技术手段来实现对目标物体的速度测量,具有高精度、高灵敏度的特点,被广泛应用于交通运输、航空航天、物理实验等领域。

无论是光子多普勒测速还是激光多普勒测速,都能够为我们提供准确可靠的速度数据,以推动人类社会的发展。

激光多普勒测速实验的研究分析

激光多普勒测速实验的研究分析

不 可避 免 的存 在与实 验结 果之 中 。
4 结

在 实验 中可 以发 现虽 然从 分光 元件 出来 的两
束 光 的光强 已经 基 本接 近 , 是 示 波 器 中 显示 的 但 调 制信 号 的对 比度 不 是 太好 , 外 发 现 当 斩 波器 另 速 度 较 慢 时 , 比度 就好 , 对 分析 其原 因 , 该是 应 斩 波器 速度 . 大 , 即模 拟 粒子 转 动 过 快 , 致 光 导
续表 1 V / - 0 ms 1
7 4 . 3 7 6 .2 7 7 . 9
V0/
∞ O 0 0 0 O O O 0 ∞ ∞ ∞ ∞ 加
根 据拟 合 曲线 , 知实 验 测得 的多 普 勒 频 率 可 计 算得 出的速度 值 与 由斩 波器 显示 的频 率计 算得
t |
将 ( ) ( ) 达式 代入 ( ) 理 可得 到 : 1和 2表 5整
I ,) 2- 。 +2 c { ( ( 一l l 2 壹 ・ o j k x 4蔗 sE
・ 一
是 ) ( 一声) ) ( ) 2・ 一 1 z] , 6
一 (1 2 ・ 。 志 一是 )
激光器其波长 为 65m , 3 高压 电源在 1 0 ̄300 0 0 0 V 范 围, 电倍增 管 应在 高频 灵 敏 , 内部 电路 选 择 光 其
J, 一 ( ) (y , ( ) lI z + z) t z E , D ,3 d
( 4)
在对 T》 积 分可 得 到 :
出的速 度值 基本 一致 , 实验所 得 的结 果可 靠 。 此
9 . 0 7 7
9 .5 7 4 9 . 6 7 6
实验 中通 过 直 尺 的多 次 测 量取 平 均 值 , 可 尽

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术(LDV)1.引言多普勒效应是19世纪奥地利物理科学家多普勒.克里斯琴.约翰(Doppler,Christian Johann)发现的声学效应。

在声源和接收器之间发生相对运动时,接收器收到的声音频率不会等于声源发出的原频率,于是称这一频率差为多普勒频差或频移。

1905年,爱因斯坦在狭义相对论中指出,光波也具有类似的多普勒效应。

只要物体产生散射光,就可利用多普勒效应测量其运动速度。

所谓光学多普勒效应就是:当光源与光接收器之间发生相对运动时,发射光波与接收光波之间会产生频率偏移,其大小与光源和光接收器之间的相对速度有关。

二十世纪六十年代,激光器得以发明。

激光的出现大力地促进了各个学科的发展。

由于激光具有优异的相干性、良好的方向性等特点,因此在精密计量,远距离测量等方面获得了广泛的应用。

伴随着激光在光学领域的应用,一门崭新的技术诞生了,这就是多普勒频移测量技术。

1964年,杨(Yeh)和古明斯(Cummins首次证实了可利用激光多普勒频移技术来测量确定流体的速度,激光多普勒测速仪(LDV)以其测速精度高、测速范围广、空间分辨率高、动态响应快、非接触测量等优点在航空、航天、机械、生物学、医学、燃烧学以及工业生产等领域得到了广泛应用和快速发展。

激光多普勒测速仪是利用运动微粒散射光的多普勒频移来获得速度信息的。

2. 激光多普勒测速原理激光多普勒测速原理即为激光多普勒效应:当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度、入射光和速度方向的夹角都有关系。

图1. 激光多普勒效应的示意图激光多普勒效应的示意图如图1所示,其中,o为光源,p为运动物体,s为观察者的位置。

激光的频率为f ,运动物体的速度为V ,那么物体运动产生的多普勒频移量可表示为:()D s o f f V e e c=⋅- (1) 式中:e o 为入射光单位向量,e s 是散射光的单位向量,c 是光速。

新版激光多普勒测速实验

新版激光多普勒测速实验

实验4.2 激光多普勒测速1842年奥地利人多普勒(J.C.Doppler)指出:当波源和观察者彼此接近时,收到的频率变高;而当波源和观察者彼此远离时,收到的频率变低。

这种现象称为多普勒效应,可用于声学、光学、雷达等与波动有关的学科。

不过,应该指出,声学多普勒效应与光学多普勒效应是有区别的。

在声波中,决定频率变化的不仅是声源与观察者的相对运动,还要看两者哪一个在运动。

声速与传播介质有关,而光速不需要传播介质,不论光源与观察者彼此相对运动如何,光相对于光源或观察者的速率相同。

因此,光学多普勒效应有更好的实用价值。

1960年代初激光技术兴起,由于激光优良的单色性和定向性及高强度,激光多普勒效应可以用来进行精密测量。

1964年两个英国人Yeh和Cummins用激光流速计测量了层流管流分布,开创激光多普勒测速技术。

激光多普勒测速仪(laser Doppler velocimeter,LDV),是利用激光多普勒效应来测量流体或固体速度的一种仪器。

由于它大多用于流体测量方面,因此也被称为激光多普勒风速仪(laser Doppler anemometer,LDA)。

也有称做激光测速仪或激光流速仪(laser velocimeter,LV)的。

1970年代便有产品上市,1980年代中期随着微机的出现,电子技术的发展,技术日趋成熟。

在剪切流、内流、两相流、分离流、燃烧、棒束间流等各复杂流动领域取得了丰硕的成果。

激光测速在涉及流体测量方面,已成为产品研发不可或缺的手段。

实验目的【1】了解激光多普勒测速基本原理。

【2】了解双光束激光多普勒测速仪的工作原理。

【3】掌握一维流场流速测量技术。

实验原理1. 多普勒信号的产生如图4.2-1所示,由光源S发出频率为f的单色光,被速度为v的粒子(如空气中的一粒细小的粉尘)P散射,其散射光由Q点的探测器接收。

由于多普勒效应,粒子P接收到的光频率为 )cos 1(1122'θc v c v f f +−= (4-9) 其中c 为光速。

激光多普勒测速实验报告

激光多普勒测速实验报告

一、实验目的1. 了解激光多普勒测速的原理和基本方法;2. 掌握激光多普勒测速仪的使用和操作;3. 学会分析实验数据,验证实验结果。

二、实验原理激光多普勒测速(Laser Doppler Velocimetry,LDV)是一种非接触式、高精度的速度测量技术。

其原理基于多普勒效应,当激光束照射到运动物体上时,反射光或散射光的频率会发生变化,这种变化与物体运动速度成正比。

实验中,激光多普勒测速仪发射一束激光,经透镜聚焦后照射到被测流体上。

被测流体中的微小颗粒对激光产生散射,散射光经过透镜聚焦到光电探测器上,光电探测器将散射光转换成电信号。

通过比较散射光与发射光的频率差异,即可计算出被测流体的速度。

三、实验仪器与设备1. 激光多普勒测速仪(LDV);2. 透镜;3. 光电探测器;4. 计算机及数据采集软件;5. 实验用流体(如水);6. 实验用颗粒(如尘埃、气泡等)。

四、实验步骤1. 将激光多普勒测速仪安装好,确保仪器稳定;2. 在实验容器中注入实验用流体,并加入实验用颗粒;3. 调整透镜和光电探测器的位置,使激光束能够照射到流体中的颗粒上;4. 打开激光多普勒测速仪,设置测量参数,如测量频率、采样频率等;5. 启动实验,观察数据采集软件显示的实验数据;6. 记录实验数据,包括测量时间、颗粒速度等;7. 关闭实验,整理实验器材。

五、实验结果与分析1. 实验数据记录:测量时间:2023年3月15日测量频率:1MHz采样频率:10kHz颗粒速度:v1 = 0.3m/s,v2 = 0.5m/s,v3 = 0.7m/s2. 实验结果分析:(1)实验结果显示,颗粒速度与测量频率、采样频率等参数密切相关。

通过调整测量参数,可以实现对不同速度范围颗粒的测量。

(2)实验数据表明,激光多普勒测速技术具有较高的测量精度。

在实验条件下,颗粒速度的测量误差小于±0.1m/s。

(3)实验过程中,激光多普勒测速仪表现稳定,无故障现象。

激光多普勒测速技术在风洞实验中的应用研究

激光多普勒测速技术在风洞实验中的应用研究

激光多普勒测速技术在风洞实验中的应用研究随着科技的不断发展,激光多普勒测速技术被广泛应用于风洞试验中。

激光多普勒测速技术能够以非接触式的方式对流体进行测量,并在实验中起到了举足轻重的作用。

一、激光多普勒测速技术介绍激光多普勒测速技术,是指利用激光束从流体中反射回来的光子,来判断流体的流动速度、方向和湍流程度的一种技术。

其原理是根据多普勒效应来测量流体中的速度,即利用激光束入射流体后,光子回传时会出现频率的改变,通过拆分光子频率,并利用计算机进行处理,即可获取流体中某一点的速度信息。

激光多普勒测速技术采用了非接触式测量的方式,不仅能减少试验与被测试物体之间的干扰,也可以提高测试精度,从而充分保证了实验数据的真实可靠性。

同时,在测试过程中可以保持试验环境的封闭性和纯净性,从而有效地避免试验产生干扰和误差。

二、激光多普勒测速技术在风洞实验中的应用激光多普勒测速技术在风洞试验中的应用主要集中在以下几个方面:1. 测量气动力学参数风洞试验中的流体是模拟真实气体的流动状态,因此可以通过激光多普勒测速技术来获取并分析气动力学参数,如气动力、升力、阻力、气动不稳定和压力波等。

2. 研究风洞试验中的流动特性通过激光多普勒测速技术可以对风洞实验中的流动状态进行研究和分析,可帮助实验人员进行实验室与实际应用之间的转化。

3. 研究风描和气流噪声在飞行器设计中,风洞实验中的气流噪声和风描是非常重要的指标,可以通过激光多普勒测速技术来进行测量和研究,以提高飞行器的安全性和稳定性。

4. 测量流血和轮廓线激光多普勒测速技术还可以用来测量风洞实验中的流血和模型的轮廓线,从而实现高精度的数据分析和建模。

三、总结激光多普勒测速技术在风洞试验中的应用是相当广泛的,通过此项技术,我们可以获取到实验数据的精确性和可靠性。

在未来的研究中,激光多普勒测速技术将继续发挥着重要的作用,并为实验室和车间等场所的使用提供更加高效、精确而可靠的技术手段。

激光多普勒测速实验报告

激光多普勒测速实验报告

.研究生专业实验报告实验项目名称:LDV激光多普勒测速实验学号:20141002042姓名:张薇指导教师:唐经文动力工程学院LDV激光多普勒测速实验一、实验目的应用激光测量流体的流速,是六十年代迅速发展起来的一种新的测速方法。

它和过去应用的传统的测速仪器,如皮托管、旋浆式流速仪、热线式风速仪等相比,有如下几个主要优点:无接触测量,不干扰流场;测速范围广(4秒104米105-⨯-);空间分辨率高;动态响应快。

特别是对高速流体、恶性(如:酸性、碱性、高温等)流体、狭窄流场、湍流、紊流边界层等的测量方面,显示出传统方法无法比拟的优点。

本实验要求在熟悉激光测速光学系统和信号处理基本原理的基础上,应用实验室的频移型二维激光测速仪测量一个具有分离、再附、旋涡和高湍流度的复杂流场,了解这种流场中平均速度、速度直方图、湍流度和雷诺应力等湍流参数在主流区、回流区、剪切层和边界层等区域的不同特征,以及激光测速在测量复杂湍流流动方面的功能和优点有着重要的实验意义。

二、实验设备图1:激光多普勒测速仪图2:实验模型结构尺寸图3:实验系统图三、实验原理和方法激光多普勒测速仪,英文缩写是流体流速测量的光学方法之一,是利用光学多普勒效应。

即当激光照射运动着的流体时,激光被跟随流体运动的粒子所散射,散射光的频率将发生变化,它和入射激光的频率之差称为多普勒频差或多普勒拍频。

这个频差正比于流速,所以测出多普勒频差,就测得了流体的速度。

实际接收到的多普勒信号,是包含有各种各样噪声的信号。

例如光电倍增管带来的信号散粒噪声,暗电流散粒噪声,背景光噪声,热噪声,以及其他测量仪器带来的噪声等。

同时,多普勒信号还是一个调制信号,由于各种原因,使多普勒频带加宽。

例如,振幅调制,散射粒子受布朗运动影响,散射粒子通过探测体积所需要的渡越时间,多粒子进入探测体积初位相的不同,激光束的角扩散及速度梯度等原因,都会引起多普勒频带的加宽。

为了尽量减小噪声和带宽,以及从具有一定的噪声和带宽的信号中,取出反映流速的“有用”信号,必须选择合适的信号处理装置,对多普勒信号进行处理。

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医疗模板
3
激光在工程中的应用
激光得到越来越广泛的应用。例如,在工艺制 造方面,微孔的加工,激光切割,焊接,精密 测长、定位等等。在计量科学方面,激光用于 测长基准、激光测速、测距、测扭、测压、测 角、测温等。在国防科学方面,激光雷达、激 光制导、激光通讯、引爆、致盲、激光炮、激 光枪等。在全息摄影、光学信号处理、流场显
通过双曝光将两幅粒子场记录在同一 块胶片或干版上,
再利用逐点分析或全场分析求出粒子 对的位移场,最后转换成速度场。
医疗模板
12
当流速很快时,可用连续片光照 明,用高速摄影机拍摄一系列粒 子图。
再通过相关运算求出位移场,进 而求出各粒子场的速度。
散斑法只能记录一个平面内的粒 子场速度信息。
医疗模板
13
医疗模板
8
光学速度测试技术具有测量灵敏 度高,不干扰流场等优点,有着 很强的应用前景。
光学测速技术主要有全息干涉法、 散斑照相法、激光多普勒测速法 和激光双焦点测速法等。
医疗模板
9
2. 全息干涉测速法
在被测流体中掺粒子示踪剂,通常用 双脉冲激光作光源,通过双曝光拍摄 相隔t的两幅粒子图于同一块干版上。 利用再现粒子场的实像图,求出粒子 对间的位移大小和方向,再由 v=s/t求出速度场。
§8.2 激光多普勒测速法(LDV)
60年第一台氦-氖激光器诞生,64年 世界上就出现了激光多普勒测速仪。 20多年来,激光多普勒测速技术有了 很大的发展,这是测量技术上的一个 重大突破。
医疗模板
14
多普勒测速是通过检测流体中运动微粒 散射光的多普勒频移来测定速度的。
激光多普勒测速属于非接触测量,激光 作为测量探头不干扰流场。
16
但激光多普勒测速也有其局限性, 例如:
1> 需要示踪粒子; 2> 示踪粒子要与流体一起运动; 3> 对介质和实验通道有光学要求,
要求光能透过流动等。
医疗模板
17
5-9-1 激光多普勒测速的原理
1.激光多普勒效应
激光多普勒测速的基本原理:
是依据激光多普勒效应,利用运动粒 子散射光的频移来测量速度. 因为散射光的频移中包含有粒子速度 的信息。
医疗模板
18
声学中的多普勒现象
当你站在火车站台上鸣笛的火车进站时, 你感到笛声变得尖了,即笛声频率变高;
相反,火车鸣笛离开站台,你会感到笛 声变得低沉,即笛声频率变低。
这种因波源和观察者相对于传播介质的 运动而使观察者接收到的波源频率发生 变化的现象叫多普勒效应。
医疗模板
19
如果运动发生在波源和观察者的连线上,假设 波源相对于 介质的运动速度为u,波源的波长为,观察者相对介质的运 动速度为v,波源原来的频率为f0,波源在介质中的传播速 度V,对下述四种情况可分别求得观察者接收到的频率f。
(1)波源和观察者相对于介质是静止的(u=0,v=0), 观察者接收到的频率即为波源原有的频率,即f= f0
(2)波源不动,观察者以速度v相对于介质运动
(u=0,v 0),观察者接收到的频率为 观察者背离波源取负号。
f
V v


(1

v V
)
f
0
(3)观察者不动,波源以速度u相对于介质运动(
和静止光检测器S三者之间相对
观察者接收到的频率f为:
V
f
V
u
f0
波源背着观察者运动时取负号。
,u v=00),
医疗模板
20
(4)波源和观察者同时相对于介质运动( 观察u 者 0接收v 到0 的频率f为:
f
V v V u
f0
电磁波也存在多普勒效应,
, ),
对静止光源来说,运动着的观察者接收到的光波频率为
v
1
示、医疗、受控热核反应等方面。
医疗模板
4
激光在热物理测量方面应用
如激光测燃烧雾化颗粒大小和分布 (PDA),
用于传热传质研究,测量燃烧动力及流 场温度,对高能点火中能量释放,研究 点火机理,加力燃烧室流场和温度场, 等离子射流的浓度场、温度场和速度场 等等(LIF)。
激光测速仪(LDV)
医疗模板
5
激光多普勒测速应用很广: 可用于燃烧 混合物、火焰、旋转机械、窄通道、化 学反应流动、风洞或循环水洞中流动速 度的测量等。
医疗模板
15
激光多普勒测速有其突出的优点: 1>如不需要流动校正; 2>不取决于温度、密度和流体成份,仅
对速度敏感; 3>取出量与速度成线性关系; 4>动态响应快,等等。
医疗模板
医疗模板
1
医疗模板
2
5-9 激光多普勒流速仪测速
1.概述-激光特性与应用
激光是完全新颖的光源,它以高亮度(比 太阳光亮1010倍)、高纯度(单色性,比 氪灯纯上万倍)、高方向性(既相干性) 而著称。因为普通光源向4立体角发散, 而激光的发散角只有10-6rad,因而单位立 体角单位面积的输出功率就特别大。
如对回流区的测量,机械探头会扰动 回流图形;对于小尺寸管道中的流动, 机械探头会造成堵塞。
像燃烧火焰),常常不能 使用小尺寸探头 。
热线和热薄膜风速仪虽然是定量研究紊流 结构的主要实验工具,但它仅限于低温、 低速、低紊流度、常特性的检测,而且必 须在回流区以外。
医疗模板
10
若流速不快,也可使用功率较大的连 续激光,通过双曝光记录粒子图。
粒子稀少,可用显微镜搜索粒子对, 并确定粒子对间的位移;
粒子很多,可用干版插入再现粒子实 像场中欲测剖面,记录粒子对,通过 逐点扫描或全场分析求出位移场。
医疗模板
11
3. 散斑测速法
对于具有较多粒子的流场,可用频闪 片光照明粒子场的某一剖面,
常见的测量速度方法与技术
总压探针与静压探针相结合的皮托 管一直是平均速度的主要测量方法。
热线和热薄膜风速仪是测量流体瞬 时速度、平均速度、均方根速度和 速度相关量的主要方法。
医疗模板
6
无疑,机械探头将继续是实验流体力 学的重要方法。
但接触测量法干扰流场,不可避免地 带有方法本身的误差,具有局限性。
f
c 1 v2
f0
c2
观察者背离波源取负号。
医疗模板
21
当一单色频率为f0的激光, 照射到运 动速度为v的微粒上时,运动微粒接 收到的频率不等于f0,发生了一次多 普勒效应。
若用一个静止的光检测器,接收运动 微粒的散射光,则接收到的频率又经 过了一次多普勒效应。
医疗模板
22
• 下图为静止光源O、运动微粒P
相关文档
最新文档