2.3近世代数

2.3近世代数
2.3近世代数

§2.3循环群和生成群、群的同构 §2.3.1 循环群和生成群

设G 是群,,令 G a ∈ H ={ | }

k a Z k ∈此时,称H 为由a 在G 中生成的子群。

注:1°易验证H 确实为G 的子群,1

2

1()k k a a H ?∈。

2°记H =< a >,a 称为它的生成元;若G =< a >,则称群G 为循环群。

定义1 (生成子群)设S 是群G 中的一个非空子集,G 的含有S

的最小子群称为由S 生成的子群,记为< S >,S 称为它的生成元集。

注:1°< S >可表示为

< S >={ …| 2

1

21ε

εa a k

k a εZ S a i i ∈∈ε,, k=1,2,3…}

这个表达式是合理的:设右式为H ,易见H ?S ,并且H ≤G ;要证明任何包含S 的子群K 必然包含H 。由于S K ,而K 为群G 的子群,所以;这也就是说H =< S >。

?K a k

i i i

∈∏=1

ε 2)如果群G =< S >,且K S ??,>≠

小生成元集。特别,当|S|<+∞,元素个数最少的生成元集被称为最小生成元集。 若干例子:

(1) K lein 四元群可表为K=,它的极

小生成元集为{a , b }。

(2) (Z ,+)=<1>=<-1>,它是可由1或-1生成的无限阶的循

环群。

(3) (,+)≌,它们都为n 阶循环群。

n Z n U (,+)=< [1] >;= < n Z n U ξ >。 (4) 二面体群>=<0,πρn D

???????1...22110n ???

??????11 (2211)

0n n n n=6时:

不难证明,()2k i k n i π=+? (mod n )

k π, 上下均模n 。

l k l ?=ρπ较复杂的例子: P56 例1、设??????=?∈?

?

????=1,,,,)(2bc ad Z d c b a d b c a Z SL

证明: >??

?

?????????=<1011,1101)(2Z SL 证明: , ??????=1101A ??

?

???=1011B 有: ,,??????=101k A k

??

????=101k B k

Z k ∈

?

?

?????=??????????????=????????????????????==??011010110111101111011011

11AB B Q

。 ????????=100

12Q 易见,B A ,)(2Z SL ?,下面证明

)(2Z SL d b c a X ∈??

?

???=?,detX=1,都可由A,B 生成。 情形1:当a,b,c,d 中有一个元素为0时,不妨设c =0,则必有a=d=1或a=d=-1,于是有

b A b X =??????=101,或。 b A Q b X ?=????????=210

1(其它情形,即当,而有一元0≠c {}d b a x ,,∈,x =0,总能通过Q 左乘或右乘X ,使得将c 位置变成0。)

易见,B A X ,∈。

情形2:当,必有(a ,c )=1,否则|X|0≠abcd ≠1。 不妨设 |a| < |c|,并令c=q ·a + r ,0≤r<|a| ,于是有

,左上角元素的绝对值变小;利用A ,B 和Q ,Q ??

?????=?**a r

X QB q

2总能经过有限次运算,可将左上角元素变为0,转换成情形1。所以B A X ,∈,从而B A Z SL ,)(2?。

综上知:B A Z SL ,)(2=。

§2.3.2群的同构

有些群在代数结构意义下是一致的,称为同构,精确地刻划为:

定义2 设(G ,·)与(G ′,。)为两个群,若存在一个从G 到

G ′之上的1-1映射,满足关系

f

f(a ·b)=f(a )of(b) G b a ∈?,

则称为从G 到G ′之上的一个同构映射或同构,并称G 与G ′

同构,记为G ≌G ′。 f 注:1)所谓1-1映上的映射也称之为双射。 2)通常把条件f(a ·b)=f(a)of(b)称为保持群的运算关系。 f

3)同构映射使两个群的所有代数性质都1-1对应:f 把

G 中单位元e 映成G ′中的单位元e ′;把G 中任意元素a 的逆元映成G ′中对应元素的逆元;把群G 中的子群H 映成中的子群(H);f 保持元素的阶不变,保持元素的所有代数性质。 f f

例子1 R 为实数的集合,

+R 为正实数的集合,若设G =(+R ,? ),G’=(R ,+),求证:G ≌G ′ 。

证明:作G 到G ′的对应关系: (),

f x x l

g →R R →+易见,由2121lg lg x x x x =?=,),(21G x x ∈?,所以为单射;又因为

,可取,有f(x)=,所以还为满射。另一方面,有

f 'G b ∈?b x 10=b b =)10lg(f G x x ∈?21,

)()(lg lg )(212121x f x f x x x x f +=+=?

所以 G ≌G ′ 。

例子2 设{

}

1,,2,1,02????==?n k e

U i

n

k n π是复数域上所有n 次单位根的

集合,关于复数乘法构成群。设n U ),(+>

:f []i

n

k e

k ?π2a k=0,1,2,…n-1

易证,为f ),(+>

n U

§2.3.3循环群的性质

循环群G=< a >有完满的对称性,它是由一个元素生成的,在同构

的意义下,循环群可完全确定。

定理1 设G=< a >是由a 生成的循环群,则

(1) 当o(a)=+∞时,G ≌(Z ,+),G 称为无限循环群。 (2) 当o(a)=n 时,G ≌(Z n ,+<>),G 称为n 阶循环群,记为。 n C 注:证明此定理时容易的,关键要会做表示。

(1) 当o(a)=+∞时,群G 表示为G ={}Z k a k ∈;

建立从G 到(Z ,+)之上的映射?:。

Z k k a k ∈,a 然后再验证?为1-1映上,且保持运算关系不变。 (2) 当o(a)=n 时,群G 表示为

{}

120,,,,1????==n a a a a G

建立从G 到),(+>

由于所有循环群在同构意义下只有二类:(Z ,+)和),(+>

定理2 关于循环群的生成元,我们有

(1) (Z ,+)的生成元只能为1或-1;

(2) ),(+>

证明:(1)设(Z ,+)=< a >,也即+Z =< a >,因为1∈+Z ,

故必有k 使得,而k 为整数,a 也为整数,所以a =1或a =-1。显然有1=?=a k a k +Z =< 1 >=< -1 >。

(2)设>=<><][a n Z ,因为[1]∈>,所以必然有k ∈Z ,使得k ?[a ]=[1],即k ?a ≡1(mod n),此时,k a =1+s ?n ,也就是k ?a +(-s)?n=1,说明(a ,n)=1,并且只要使(a’,n)=1,同样有>,所以>

定理3 循环群的子群仍然是循环群,并且 (1) (Z ,+)的全部子群为>=

(2) ),(+>,这里d|n ,并且< [d] >为>

证明:(1)设H ≤+Z ,若H ≠{0},令

M ={ x | x ∈H ,且x > 0},由x ∈H ,必有-x ∈H ,易见M ≠Φ。

由自然数集的良序性,知M 中有最小元,设为m 。于是,

有x=p ·m+r ,0≤r=。说明M x ∈?m H +Z 中的全部子群都为循环群,且为,m=0,1,2,… 。

>=

M x ∈?由于[r]=[x]-p ?[d]∈H ,若[r]≠[0],则r ∈M ,与d 为M 中的最小

元矛盾,故r=0,所以有M={k ?d |k ∈{0,1,2,…}};进一步有

H={k[d] | k=0,1,2,…}={[k ?d] | k=0,1,2,…}={[0],[d],…,[(m-1)d] | m=n/d}。易见,H 为n/d 阶子群且是循环群,H =<[d]>。

再证唯一性:设K =<[k]>也是一个m=n/d 阶子群,则有m ?k ≡0(mod n),于是存在正式r 使m ?k=r ?n=r ?m ?d ,有k=r ?d

d|k ,故[k]∈<[d]>,即,而|K|=|H|=m ,所

以K =H 。 #

?H

K ?

定理4(有限循环群判定定理)G 是任意n 阶群,如果

对于任意d|n ,G 内至多有一个d 阶子群,则G 是n 阶循环群。

证明:首先注意,G 中任意元素的周期定是n 的约数。

(简述原因:,若G a ∈?t a =)(π,知为G 的t 阶循环子群,记=H 。取c ,b ∈G ,则a H={a h | h ∈H}与bH={bh | h ∈H}之间,如果a H ≠bH ,则必有a H ∩bH=Φ;若不然,取g ∈a H ∩bH ,必有g=21bh ah =,其中H

h h ∈21,?112?=h bh a ,

说明a ∈bH ,于是a H=bH ;由此得出G =U ,说明|H|||G|,即t|n )。

1

=i i H a 将G 中的全部元素按元素的周期进行分类:

ψ(d)≡G 中周期为d 的元素的个数,则因为G 中最多只含

有一个d 阶子群,我们有

ψ(d)=

???)

(0d φ阶元

中有阶元中无d d G G

)(d φ 表示小于d 而与d 互素的正整数的个数。

于是ψ(d)≤)(d φ,注意n d n

d =∑|)(φ,有结果

,说明展开式中的每一项

0(d)]-(d)[n

|d =∑ψφ [φ(d)-ψ(d)]=0,从而推出φ(n)=ψ(n)。证明G 内含有n 阶元g ,于是G =,所以G 为循环群。

#

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

近世代数学习系列一 学习方法

近世代数学习方法 “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。 当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法: 例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。 对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数之我见

一对课程的看法: 1作用与意义 近世代数的理论和方法不仅在数学理论本身中占有及其重要的地位,而且在其他学科中也有着广泛的应用,如理论物理、计算机科学等。其研究的方法和观点,对这些学科产生了越来越大的影响。 本课程旨在使学生对近世代数的基础理论和基本的思想、方法有一个初步的了解,为学生进一步的学习打下必要的基础。要求学生能熟练掌握群、环、域的基本理论,包括其定义和基本的性质,并对模的概念有所理解。要求学生对数学中的公理化思想有初步认识。 2.本课程的主要内容 本课程讲授四类典型的代数系统:集合与运算、群、环和域。其内容包括: 群的各种定义,循环群,n阶对称群,变换群,子群与陪集,Lagrange定理,不变子群的定义及其性质,群同态和同构基本定理,能够计算群元素的阶; 环、域、理想、唯一分解环的定义,环中的可逆元,零因子、素元的定义,判别唯一分解环的方法。 3.教学重点与难点 重点:群、正规子群、环、理想、同态基本原理。 难点:商群、商环。 二、对教法的看法: “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法:

近世代数习题与答案

近世代数习题与答案 Prepared on 22 November 2020

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

代数表示论简介

代数表示论简介 在数学研究中,我们随处可见表示的思想。例如,复数可以用实平面上的点(或数对)表示;有限维复向量空间上的线性变换可以用它的Jordan标准形表达。狭义的表示是指一个代数系统(如群,结合环,李代数等)在某个向量空间上的作用,这些作用常常自然地出现在数学和物理的研究中。比如,分子的对称性可以用某个群刻画,利用这个群的表示理论可以大大简化分子振动微分方程的求解问题。20世纪30年代,德国女数学家Noether系统地发挥了表示的思想,她把表示解释为模,由此奠定了现代表示论的基础。 有限维(结合)代数是抽象代数中的一个古老的分支。它的起点是Hamilton在1843年发现的有名的四元数代数。此后,历经许多大数学家之手,终于由Wedderburn在20世纪初建立了半单代数的表示理论。目前人们研究的主要是各种各样的非半单代数的表示理论。代数表示论的主要目标是研究有限维代数上的不可分解模以及它们之间的同态映射。一个有限维代数A通常可以用一个箭图Q(即有向图)及某种关系表示, 研究代数A上的模相当于研究箭图Q上的表示。给定一个域k, 所谓箭图Q的一个表示,是指如下的要素:在Q的每个顶点处放一个(有限维)k-向量空间,在Q的每条边上放一个k-线性映射。对于Q的两个表示,可以建立它们之间的同态映射。我们关心的是表示的同构类。把箭图Q的全体表示放在一起,就构成了表示的范畴。这是代数表示论的最基本的研究对象。 例如,不难看出,在复数域上如下箭图的表示的同构类与复数矩阵的Jordan标准形一一对应: 上世纪70年代初,瑞士数学家Gabriel证明了如下的著名结果:箭图Q是表示有限型的(即Q的不可分解表示的同构类只有有限多个)当且仅当Q的底图是有限多个如下形式的图的不交并: A (n≥1):??…?? n 1 2 n-1 n ? 2 D (n≥4):??…?? n 1 3 n-1 n ? 3 E (n=6,7,8):????…?? n 1 2 4 5 n-1 n

近世代数的发展历史

近世代数的发展历史 代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科.简单地说,代数学是研究代数结构的,而近世代数--抽象代数是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性. 19世纪中叶以后,各种形形色色的几何学象雨后春笋般涌现出来,需要进行总结分类,而这时群论又是一个热门话题,其影响渗透到数学的各个领域,使数学家们感到,全部数学不过是群论的某个方面,而不是什么别的东西.在这种情况下,出现了克莱因的“爱尔兰纲领”. 克莱因(1849-1925)是德国数学家.他在自己和李关于群论方面研究工作的基础上,着手寻找刻划各种几何特征,其基本观点是每种几何都由变换群所刻划,并且每种几何所要做的实际就是研究变换群下的不变量.或者,一个几何的子几何是在原来变换群的子群下的一族不变量,在此定义下相当于给定变换群的几个的所有定理仍然是子群几何中的定理.克莱因用变换群的观点对几何学进行分类,在这种观点下,几何学被看作是研究图形(某种元素的集合)对某种变换群的不变性之数学分支,克莱因这种研究几何的方法,完全避开直观图形而诉诸代数结果,确实是一项伟大的转折.当克莱因发表这种见解时,遭到其老师普吕克的反对,斥其大胆妄为.克莱因因此离开哥廷根大学,而到爱尔兰根大学,按照惯例他向大学的哲学教授会和评议会作了专业就职演说.这个演说通常称为“爱尔兰根纲领”,在讲演中克莱因阐述了自己的观点,对后世几何有深远的影响. 对五次和五次以上方程寻求根号群的长期失败,最终引导到19世纪20年代群论的诞生.其创立者是法国青年数学家伽罗华.群论的出现使代数学从古典代数方程论为中心转变为以研究各种代数结果的性质为中心,向着代数数论、超复数系、线性代数、环论、域论等方面发展. 伽罗华,1829年3月第一篇数学论文在《纯粹与应用数学年鉴》上发表,同时开始研究高次方程根号解问题,他提出制定一个已知方程解是否可用根式表示的判别原则.伽罗华为研究方程论而发展起来的方法很可能比他在方程论中的发现更引人注目.他的研究导师了群论理论的诞生. 伽罗华在爱情纠纷引起的一场荒谬战斗中丧了命.在进行决斗前夕,伽罗华曾写信给其朋友,写道:“我请求我的爱国朋友不要责备我不是为自己的祖国而献出生命.……苍天做证,我曾用尽办法试图拒绝这场战斗,只是出于迫不得已才接受了挑战.”“别了,我为公共福利已经献出了自己的大部分生命.”伽罗华在信中还请求朋友将自己的研究成果向德国数学家高斯和雅可比求教,“但不谈论定理正确与否;而是就这些定理的重要性发表他们自己的见解.此后我希望某些人将会发现清理这种一团混乱的状况是有益的.” 伽罗华实质上创立了群的研究,他是最先(1832年)在严格定义下用“群”(group)这个字的. 阿贝尔,在克里斯蒂大学当学生时,他认为他已经发现了如何用代数方法解一般五次方程,但不久自己纠正了这种想法,1824年发表了小册子谈及此事,阿贝尔在其早年论文中证明了用根式解一般五次方程的不可能性,于是这个曾困绕从邦别利到韦达等数学家的难题最终被解决了,在抽象代数中,交换群现在被称为阿贝尔群. 戴德金是德国数学家,就学与哥廷根大学,是高斯和狄利克雷学生.他的成就主要在代数理论方面,他研究了任意域、环、群、结构及模等问题.特别是引入环的概念,并给理论子环下了一般性的定义.代数数域中的戴德金函数,实数论中的戴德金分割,与韦伯合著的代数函数理论,自然数理论都是其著名的贡献. 庞加莱在一个研究领域中从未停留很长时间,并且喜欢敏捷地从一个领域跳到另一个领域,他论述微分方程的博士论文涉及存在定理.这一著作引导他去发展自守函数理论,尤其是所谓Zeta-Fuchsian函数:庞加莱证明,他能用来解带有代数系数的二阶线性

近世代数学习系列二十二 群论与魔方

群论与魔方:群论基础知识 要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。 群的基本定义 设有一个集合G和G上的「二元运算」(Binary Operation)「?」。如果G 的元素和「?」满足以下「公理」(Axiom),我们便说(G, ?)构成一个「群」(为了行文方便,有时可以把「群(G, ?)」径直称为「群G」): 1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a ? b ∈ G。 2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a ? b) ? c = a ? (b ? c)。 3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e ? a = a ? e = a。 4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a?1 (称为a的「逆元」),使得a ? a?1 = a?1? a = e。 请注意由于「?」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a ? b ? c。如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a ? a ? a写成a3。我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a?n= (a?1)n。另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a?1也是唯一的。根据「封闭性」,若a和b是G的元素,则(a ? b)也是G 的元素,因此我们也可以谈论(a ? b)的逆元,而且这个逆元满足 (a ? b)?1 = b?1? a?1(1)

《近世代数》模拟试题及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213, ,0101c d cd ?? ??== ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

抽象代数

近世代数练习题 一、填空题 1、设集合A={1,2,3,?,m},B={1,2,3,?,n},是正整数n m ,,集合B A ?含有 个元素。 2、设集合{},,,A e f m n =,{}ργβα,,,=B ,则集合A 到B 之间可以建立 个映射。 3、设集合A 含有m 个元素,则A 上的变换共有 个 4、n 次对称群n S 的阶是 。 5、在模5的剩余类加群的子集{}]1[=A 生成的子群是 。 6、设R 是模2 n (N N n ,∈为自然数集)的剩余类环,[]x R 中的多项式2 x 在R 里有 个根。 7、由13 =x 的三个根对于普通乘法构成的群里,阶数大于2的元的个数是 。 8、一个 环是域。 9、设μ一个环R 的一个不等于R 的理想,如果除了R 和μ以外,没有包含μ的理想,那么μ叫作一个 。 10、若域F 的一个扩域E 的每一个元都是F 上的一个代数元,那么E 叫做F 的 。 二、选择题 1、设集合{}3,2,1=A ,则下列集合A 上的变换不是一一映射的是( ) 。 332211:→→→τA 133221:→→→ρB 233221:→→→δC 132231:→→→σD 2、下列说法错误的是( ) 域是除环A 域是整环B 可交换除环是域C 可交换整环是域D 3、在一个有限群里,阶数大于2的元的个数一定是( )。 奇数A 偶数B 0C 整数D 4、下列环中不是除环的是( ) 整数集A 有理数集B 实数集C 复数集D 5、设有理数域Q 上的一元多项式环[]x Q ,理想()()() =+++11 35 2 x x x ( ) 。

()1A ()12 +x B ()135 ++x x C () 2235 +++x x x D 6、对于实数的普通乘法,以下实数域R 的变换中同态满射的是( ) αασ→:A 2:αατ→B ααρ-→:C ααδ→:D 7、设2 2?R 是数域R 上的一切22?矩阵构成的集合,它对于矩阵的加法和乘法做成一个环,则 以下矩阵可作为环2 2?R 的零因子的是( )。 ???? ??0000A ???? ??0001B ???? ??0111C ??? ? ??1101D 8、整数环Z 中,可逆元的个数是( )。 1A 2A 3C 4A 9、剩余类加群Z 18的子群有( )。 个3A 个4B 个5C 个6D 10、设有理数域Q 上的一元多项式环[]x Q ,理想()()() =+++11 35 2x x x ( ) 。 ()1A ()12 +x B ()135 ++x x C () 2235 +++x x x D 三、计算题 1、设集合{}1174,1,,=A ,{}642,,=B ,求A ?B , A ? B ,B A ?。 2、设集合{}864,2,,=A ,{}963,,=B ,求A ?B , A ? B , B A ?。 3、试举出一个由正实数集+ R 到实数集R 的一一映射。 4、设6元置换 ???? ??=???? ??=???? ??=254613654321;456132654321;245316654321 ρτπ (1)求1 -π ,τρ (2)求π, τ和ρ的循环置换表达式,并求||π, τ, ρ。 5、求出3次对称群3S 的所有子群。 6、求出剩余类加群8Z 的所有子群。 7、设{} Q Q b a b a R ,,2∈+=是有理数集,问R 对于普通加法和乘法能否构成一个域。

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

近世代数习题与答案

近世代数习题与答案 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

近世代数

1.1集合 1、B 包含于A ,但B 不是A 的真子集,这个情况什么时候能出现? 解 由题设及真子集定义得,A 的每一个元都属于B ,因此A 属于B ,B 属于A ,得A=B 。所以上述情形在A=B 的情况下出现。 2、假设A 包含于B,A ∩B=? A ∪B=? 解 (i )由于A 包含于B ,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的公共元,因而由交集的定义得 A 包 含于A ∩B ,但显然有A ∩B 包含于A ,所以A ∩B=A (ii )由并集的定义,A ∪B 的每一个元都属于A 和B 之一,但A 包含于B ,所以A ∪B 的每一元都属于B :A ∪B 包含于B 。 另一方面B 包含于A ∪B ,所以A ∪B=B 。 1.2映射 1、A={1,2,……,100}。找一个AxA 到A 的映射。 解 用(a ,b )表示AxA 的任意元素,a 和b 都属于A 。按照定义做一个满足要求的映射即可,例如 Ф: (a ,b )→a 就 是这样的一个,因为Ф替AxA 的任何元素(a ,b )规定了一个唯一的象a ,而a ∈A 。 2、习题1的映射下是不是每一个元都是AxA 的一个元的象? 解 映射Ф之下,A 的每一个元素都是AxA 的一个元的象,因为(a ,b )中的a 可以是A 的任一元素。 1.3 代数运算 1、A={所有不等于零的偶数}。找一个集合D ,使得普通乘法是AxA 到D 的代数运算。是不是找得到一个这样的D ? 解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数。所以取 D={所有不等于零的有理数}, 普通除法就是一个AxA 到D 的代数运算。 2、A={a,b,c}. 规定A 的两个不同的代数运算。 解 (i )用运算表给出A 的一个代数运算: o 按照这个表,通过o ,对于A 的人和两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A 。所以o 是A 的一个代数运算。 这个代数运算也可以用一下方式来加以描述o : (x ,y )→a=x o y 对一切x ,y ∈A (ii)同理o : (x ,y )→x=x o y 对一切x ,y ∈A 也是A 的一个代数运算。(列表亦可) 1.4 结合律 1、A={所有不等于零的实数}。O 是普通除法: a o b=a / b 这个代数运算适不适合结合律? 解 这个代数运算o 不适合结合律。例如,当 a = 4, b = c = 2 时 ( a o b )o c = (4o2)o2 =4/2 o2=2/2=1 a o(b o c) = 4o(2o2) =4 o(2/2)=4/1=4 所以 当a ,b 和c 取上述值时 ( a o b )o c ≠ a o(b o c)。 2、A={所有实数}。代数运算o :(a ,b)→a+2b= a o b 适不适合结合律? 解 略 3、A={a,b,c}. 由表 给出的代数运算适不适合结合律? 解 所给代数运算o 适合结合律。为得出结论,需对元素a ,b ,c 的27(=33)种排列(元素允许重复出现)加以验证。

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则 3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。

近世代数学习系列三 环

环 简介 一个具有两种二元运算的代数系统。在抽象代数产生的19世纪,数学家们开始研究满足所有合成律(即加法交换律、结合律,乘法交换律、结合律,以及乘法对加法的分配律等等)或者满足其中的一部分的集合。倘若一个集合具有加法、乘法和相应的运算性质,它就称为环。整数集Z就构成一个(数)环。 在20世纪,数学家们开始研究一种新型结构叫“环”。环是一个集合,其中的元素能通过一种类似加法运算按下面的方式结合起来: 1. 若a和b都是环中的元素,那么a+b也是环中的元素; 2. 加法符合结合律:若a、b和c都属于这个环,那么a+(b+c)=(a+b)+c; 3. 在环中存在一个类似于0的元素--甚至也可以称它为0--具有性质:对于环中的任一元素a,有0+a=a; 4. 对于环中的每个元素a和b,a+b=b+a都成立。 在环中,还对这些元素定义了另一个类似于乘法的运算,它具有下面两个性质: 1. 若a和b属于环,那么它们的乘积ab也属于环; 2. 若a、b和c属于环,那么结合律成立:a(bc)=(ab)c。 环的乘法通常不满足交换律(ab=ba 一般不成立),而且并不是环中的每个元素都有一个乘法的逆元。各种n×n矩阵的集合连同运算选出来,就形成一个具体的环的例子。 在20世纪的前30多年中,由于德国数学家诺特(Emmy Noether,1882-1935年)的工作,环的结构的研究变得非常重要。 环论往往相当抽象。虽然许多对环论感兴趣的数学家常常用字母表示环中的元素,但是由于他们对矩阵的理解非常深刻,给出了许多卓有成效的解释,所以有时把一个特殊的环表示成一个n×n矩阵的集合。这类矩阵表示,不仅能使数学家们把环理解成具体的,甚至是可以计算的问题,而且能使数学家们去运用数学理论家的那种非常抽象的思想。这种用矩阵集合表示环或群的方法,已经成为

韩士安 近世代数 课后习题解答

习题1-1(参考解答) 1. (1)姊妹关系 (2)()(),P S ? (3) (),{1},1a b Z a b ∈?≠,.例如(2 ,6 )2,(3 ,6 )3,==但()2,31=. 2. 若b 不存在,则上述推理有误.例如{}{~~~~}S a b c R b c c b b b c c =,,,:,,,. 3. (1)自反性:,(),,n A M E GL R A EAE ?∈?∈=~A A ∴ 对称性: 1111,,~,,(),,,,().~.n n A B M A B P Q GL R A PBQ B P AQ P Q GL R B A ?????∈?∈==∈∴ 传递性: 12211221212,,~,~,,,,(),,,,n A BC M A B B C P Q P Q GL R A PBQ B P CQ A PP CQ Q ?∈?∈===1212,(),~.n PP Q Q GL R A C ∈∴ (2) 自反性:1,(),,~.n A M E GL R A E AE A A ??∈?∈=∴ 对称性: ()11,,~,(),,,(),~.T T n n A B M ifA B T GL R A T BT B T BT T GL R B A ???∈?∈=∴=∈∴ 传递性: 121122,,,~,~,,(),,,T T n A B C M ifA B B C T T GL R A T BT B T CT ?∈?∈== ()12211221,T T T A T T CT T TT CT T ∴==12(),~.n TT GL R A C ∈∴ (3) 自反性:()1,,,~.n n A GL E GL R A E AE A A ??∈?∈=∴ 对称性: 1,(),~,(),,n n A B GL R ifA B T GL R A T BT ??∈?∈= () 1 1 111,(),~n B TAT T AT T GL R B A ?????∴==∈∴. 传递性: 11121122,,(),~,~,,(),,,n n A B C GL R A B B C T T GL R A T BT B T CT ???∈?∈== ()()1 1112212121,A T T CT T T T C T T ???∴==21(),~.n T T GL R A C ∈∴ 4. 证明: (1) 反身性:,()(),~a A a a a a φφ?∈=∴Q (2)对称性: ,,~,()(),()(),.a b A ifa b a b b a b a φφφφ∈=∴==

近世代数习题解答(张禾瑞)一章

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? 解? d d c = , a c d = a b c a a b c b b c a c c a b

张禾瑞 近世代数基础(复习要点·定理)

定理 同态满射保持运算律(包括结合律、交换律) P21 左右逆元的统一性 P33-34 左右逆元的唯一性 P36 (由此可称为幺元而省掉“左右”) 群的两个定义的等价性 P33 群满足消去律(由逆元的存在性) P38 仅限有限集合的群判定:封闭+结合律+消去律 P39 群的几个分类标准: 1、 有限 / 无限 ——元素个数 2、 交换 / 非交换 ——运算是否满足交换律 3、 循环 / 非循环 ——是否有一元可以遍历其他元 P35 n a : 次n n a aa a ≡ n 是正整数 (由结合律知其有意义) a 的阶: 对群G 中的元a ,若存在最小正整数m ,使得e a =m , 则m 称为 a 的阶;否则我们称a 是无限阶的 P37 群中幂形式的元的运算法则: 若规定:e a =0, n n a a )(1--= 则对任意整数m,n 有:m n m n a a a +=, nm m n a a =)( (由结合律易得) 两种循环群: 整数加群 与 剩余类加群 同构定理: 任何一个群 有一个变换群与之同构 任何一个有限群 有一个置换群与之同构 任何一个无限循环群 与整数加群同构 任何一个有限循环群 与剩余类加群同构 子群的左陪集和右陪集的个数,或都为无限,或相等 P68

子群陪集(左或右算一边)的个数叫做子群的指数 群的阶: 群中元素的个数 对有限群G 而言: G 的子群的阶,与子群陪集的个数(指数),其乘积即为群G 的阶 (即都整除群G 的阶) G 中任意元的阶,都整除群G 的阶(因为任意元可生成循环子群) 子群充要条件: H ab H b a ∈?∈?-1, P63 定理2 子群正规充要条件: N ana N n G a ∈?∈∈?-1, P72 定理2 (首先N 须得是一个子群,然后再有…)

近世代数试题及答案

内蒙古广播电视大学2008—2009年度第二学期期末 《近世代数》试题 一、(16分)叙述概念或命题 1.正规子群; 2.唯一分解环; 3.代数数; 4.鲁非尼-阿贝尔定理 二、(12分)填空题 1.设有限域F 的阶为81,则的特征=p 。 2.已知群G 中的元素a 的阶等于50,则4a 的阶等于 。 3.一个有单位元的无零因子 称为整环。 4.如果710002601a 是一个国际标准书号,那么=a 。 三、(10分)设G 是群。证明:如果对任意的G x ∈,有e x =2,则G 是交换群。 四、(10分)证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。 五、(15分)设}R ,,,|{H ∈+++=d c b a dk cj bi a 是四元数体,对H 中任意元 dk cj bi a x +++=, 定义其共轭 dk cj bi a x ---=。 1.证明:x x x x =是一个非负实数; 2.对k j i x 221-+-=,k j i y -+-=22,求xy ,yx 和1-x 。 六、(15分)设)6(1=I ,)15(2=I 是整数环的理想,试求下列各理想,并简述理由。 1.21I I +; 2.21I I ?; 3.21I I ?

七、(10分)设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。 1.求στ和στ-1; 3.确定置换στ和στ-1的奇偶性。 八、(12分)求剩余类加群Z 12中每个元素的阶。

《近世代数》试卷答案 一、1.若H 是群G 的子群,且对每个G a ∈,有Ha aH =,那么H 称为是G 的正规子群。 2.设R 是个整环,若对于R 中每个非零非单位的元都有唯一分解,则称R 为唯一分解环。 3.有理数域上的代数元称为代数数。 4.如果5≥n (特征为0),那么n 次的一般方程没有根式解。 二、1.3 2.25 3.交换环 4.6 三、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。 四、设A 是任意方阵,令)(21A A B '+= ,)(2 1 A A C '-=,则 B 是对称矩阵,而 C 是反对称矩阵,且C B A +=。若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:1B B =,1C C =,所以,表示法唯一。 五、1.02222≥+++==d c b a x x x x 2.k j i xy 8424-+--=,k j i yx 2484-+--=,)221(10 1 1k i i x +-+=- 六、1.)3(21=+I I ; 2.)30(21=?I I ; 3.)90(21=?I I 七、1.)56)(1243(=στ,)16524(1=στ-; 2.两个都是偶置换。 八、

相关文档
最新文档