函数的奇偶性(讲义).docx

合集下载

专题:函数的奇偶性讲义(教师用)

专题:函数的奇偶性讲义(教师用)

函数的奇偶性一、函数奇偶性设函数y =)(x f 的定义域为D ,如果对于D 任意一个x ,都有D x ∈-,且)(x f -=-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 任意一个x ,都有D x ∈-,且)(x g -=)(x g ,那么这个函数叫做偶函数.奇函数)(x f 的图象关于原点成中心对称图形. 偶函数)(x g 的图象关于y 轴成轴对称图形. 二、方法归纳1.函数的定义域D 是关于原点的对称点集(即对x ∈D 就有-x ∈D ),是其具有奇偶性的必要条件.2.在公共定义域:两个偶函数的和、差、积、商均为偶函数;两个奇函数的和、差是奇函数,积、 商是偶函数; 偶函数与奇函数的积、商是奇函数.3.判断函数的奇偶性应把握:① 若为具体函数,严格按照定义判断,注意定义域D 的对称性和变换中的等价性. ② 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性和合理性.4.定义在关于原点的对称点集D 上的任意函数)(x f ,总可以表示成一个偶函数与一个奇函数的和. 即)(x f =)(x F +)(x G ,其中)(x F =2)()(x f x f -+为偶函数, )(x G =2)()(x f x f --为奇函数.5.奇(偶)函数性质的推广:若函数)(x f 的图象关于直线a x =对称,则)2()(a x f x f +=-; 若函数)(x f 的图象关于点)0,(a 对称,则)2()(a x f x f +-=-; 三、典型例题精讲[例1](1)函数)(x f =111122+++-++x x x x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =1对称解析:由=-)(x f 111122+-+--+x x x x , ∴ =-)(x f =11111122+++-++xx xx =)1(1)1(122x x x x +++++- =-)(x f∴ )(x f 是奇函数,图象关于原点对称. 答案:C【技巧提示】 用定义判定函数的奇偶性需要对函数解析式进行恒等变形,不要轻易断定是非奇非偶函数. (2)分段函数奇偶性的判定又例:函数⎩⎨⎧>-+-<++=0,320,32)(22x x x x x x x f 的奇偶性. 解析:当0>x 时,0<-x3)(2)()(2+-+-=-x x x f =322+-x x =)(x f -;当0<x 时,0>-x3)(2)()(2--+--=-x x x f =322---x x =)(x f -∴)(x f 是奇函数.[例2]已知)(x f 是偶函数而且在(0,+∞)上是减函数,判断)(x f 在(-∞,0)上的增减性并加以证明. 解析:函数)(x f 在(-∞,0)上是增函数.设x 1<x 2<0,因为)(x f 是偶函数,所以)(1x f -=)(1x f ,)(2x f -=)(2x f ,由假设可知-x 1>-x 2>0,又已知)(x f 在(0,+∞)上是减函数,于是有)(1x f -<)(2x f -, 即)(1x f <)(2x f ,由此可知,函数)(x f 在(-∞,0)上是增函数.【技巧提示】 具有奇偶性的函数,其定义域D 关于原点的对称性,使得函数在互为对称的区间的单调性具有对应性.“偶函数半增半减,奇函数一增全增”.[例3]定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在区间[0,+∞)上的图象与)(x f 的图象重合,设a >b >0,给出下列不等式:(1)f (b )-f (-a )>g (a )-g (-b ); (2)f (b )-f (-a )<g (a )-g (-b ); (3)f (a )-f (-b )>g (b )-g (-a ); (4)f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( )A . (1)与(4)B . (2)与(3)C . (1)与(3)D . (2)与(4) 解析:根据函数)(x f 、)(x g 的奇偶性将四个不等式化简,得: (1)f (b )+f (a )>g (a )-g (b ); (2)f (b )+f (a )<g (a )-g (b ); (3)f (a )+f (b )>g (b )-g (a ); (4)f (a )+f (b )<g (b )-g (a ).再由题义,有 )(a f =)(a g >)(b f =)(b g >0)0()0(==g f .显然(1)、(3)正确,故选C .【技巧提示】 具有奇偶性的函数可以根据某个区间的单调性判定其对称的区间的单调性,因而往往与不等式联系紧密.又例:偶函数)(x f 在定义域为R ,且在(-∞,0]上单调递减,求满足)3(+x f >)1(-x f 的x 的集合. 解析:偶函数)(x f 在(-∞,0]上单调递减,在[0,+∞)上单调递增.根据图象的对称性,)3(+x f >)1(-x f 等价于|3|+x >|1|-x .解之,1->x ,∴ 满足条件的x 的集合为(-1,+∞).[例4]设)(x f 是(-∞,+∞)上的奇函数,)2(+x f =-)(x f ,当0≤x ≤1时,)(x f =x ,x 则)5.7(f 等于( )A .0.5B . -0.5C . 1.5D . -1.5解析:)5.7(f =)25.5(+f =-)5.5(f =-)25.3(+f =)5.3(f =)25.1(+f =-)5.1(f =-)25.0(+-f =)5.0(-f =-)5.0(f =-0.5.答案:B【技巧提示】 这里反复利用了)(x f =-)(x f 和)2(+x f =-)(x f ,后 面的学习我们会知道这样的函数具有周期性.又例:如果函数)(x f 在R 上为奇函数,且在(-1,0)上是增函数,试比较)31(f ,)32(f ,)1(f 的大小关系_________. 解析:∵)(x f 为R 上的奇函数,∴ )31(f =-)31(-f ,)32(f =-)32(-f ,)1(f =-)1(-f ,又)(x f 在(-1,0)上是增函数且-31>-32>-1. ∴ )31(-f >)32(-f >)1(-f ,∴ )31(f <)32(f <)1(f .答案:)31(f <)32(f <)1(f .[例5]函数)(x f 的定义域为D ={}0≠∈x R x ,且满足对于任意D x x ∈21,,有1212()()()f x x f x f x ⋅=+ (1)求(1)f 的值; (2)判断函数)(x f 的奇偶性,并证明;解:(1)令121x x ==,得()10f =;(2)令121x x ==-,得()10f -=,令121,x x x =-=,得()()()1f x f f x -=-+∴ ()()f x f x -=,即)(x f 为偶函数.【技巧提示】 赋值法是解决抽象函数问题的切入点.常赋值有0,1,―1,2,―2,等等.[例6]已知函数)(x f 在(-1,1)上有定义,)21(f =-1,当且仅当0<x <1时)(x f <0,且对任意x 、y ∈(-1,1)都有)(x f +)(y f =)1(xyyx f ++,试证明: (1) )(x f 为奇函数;(2) )(x f 在(-1,1)上单调递减. 证明:(1) 由)(x f +)(y f =)1(xyyx f ++,令x =y =0,得)0(f =0, 令y =-x ,得)(x f +)(x f -=)1(2x xx f --=)0(f =0,∴ )(x f =-)(x f -, ∴)(x f 为奇函数. (2)先证)(x f 在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<21121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴ )(x f 在(0,1)上为减函数,又)(x f 为奇函数且f (0)=0.∴)(x f 在(-1,1)上为减函数.【技巧提示】 这种抽象函数问题,往往需要赋值后求特殊的函数值,如(0),(1),(2)f f f ±±等等,一般(0)f 的求解最为常见.赋值技巧常为令0==y x 或y x -=等。

函数的奇偶性(精辟讲解)精品PPT课件

函数的奇偶性(精辟讲解)精品PPT课件
f(x)=-f(-x). (2)可用定义法,也可以用特殊值代入,如 f(1)=f(-1), 再验证. (3)可考虑 f(x)在[-2,2]上的单调性.
解 (1)∵f(x)是定义在 R 上的奇函数, ∴f(0)=0,当 x<0 时,-x>0, 由已知 f(-x)=(-x)2-(-x)-1=x2+x-1=-f(x). ∴f(x)=-x2-x+1.
所以 f(x)在(0,+∞)内单调递增.
故|lg x|>1,即 lg x>1 或 lg x<-1,
解得
x>10

1 0<x<10.
点评 解决本题的关键在于利用函数的奇偶性把不等
式两边的函数值转化到同一个单调区间上,然后利用函
数的单调性脱掉符号“f”.
题型三 函数的奇偶性与周期性 例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,
域是否关于原点对称.若对称,再验证 f(-x)=±f(x)或
其等价形式 f(-x)±f(x)=0 是否成立.
解 (1)由x32--x32≥≥0
,得 x=±3.∴f(x)的定义域为{-3,3}.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.即 f(x)=±f(-x).
∴f(x)既是奇函数,又是偶函数.
基础自测
1.下列函数中,所有奇函数的序号是__②__③____.
①f(x)=2x4+3x2;②f(x)=x3-2x; ③f(x)=x2+x 1;④f(x)=x3+1. 解析 由奇偶函数的定义知:①为偶函数;②③为奇函
数;④既不是偶函数,也不是奇函数. 2.若函数 f(x)=2x+2 1+m 为奇函数,则实数 m=_-__1__.
f (x) 0x2 x 1

函数奇偶性讲义

函数奇偶性讲义

函数的性质要求层次重点难点单调性C①概念和图象特征 ②熟知函数的性质和图象①函数单调性的证明和判断②简单函数单调区间的求法奇偶性 B简单函数奇偶性的判断和证明①复合函数的奇偶性判断与证明*②抽象函数的奇偶性周期性 B简单函数周期性的判断和证明①复合函数的周期性判断与证明*②抽象函数的周期性板块一:函数的单调性 (一)知识内容1.函数单调性的定义:①如果函数()f x 对区间D 内的任意12,x x ,当12x x <时都有()()12f x f x <,则称()f x 在D 内是增函数;当12x x <时都有()()12f x f x >,则()f x 在D 内时减函数.②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数.2.单调性的定义①的等价形式:设[]12,,x x a b ∈,那么()()()12120f x f x f x x x ->⇔-在[],a b 是增函数; ()()()12120f x f x f x x x -<⇔-在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数.3.复合函数单调性的判断:“同增异减”4.函数单调性的应用.利用定义都是充要性命题.高考要求函数的基本性质知识精讲即若()f x 在区间D 上递增(递减)且1212()()f x f x x x <⇔<(1x 2,x D ∈); 若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等(二)主要方法1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2.判断函数的单调性的方法有: ⑴用定义用定义法证明函数单调性的一般步骤:①取值:即设1x ,2x 是该区间内的任意两个值,且12x x <②作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形.③定号:确定差12()()f x f x -(或21()()f x f x -)的符号,若符号不确定,可以进行分类讨论. ④下结论:即根据定义得出结论,注意下结论时不要忘记说明区间. ⑵用已知函数的单调性; ⑶利用函数的导数;⑷如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数; ⑸图象法;⑹复合函数的单调性结论:“同增异减” ; 复合函数的概念:如果y 是u 的函数,记作()y f u =,u 是x 的函数,记为()u g x =,且()g x 的值域与()f u 的定义域的交集非空,则通过u 确定了y 是x 的函数[()]y f g x =,这时y 叫做x 的复合函数,其中u 叫做中间变量,()u f u =叫做外层函数,()u g x =叫做内层函数.注意:只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数[()]f g x . ⑺在公共定义域内,增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数;增函数()f x -减函数()g x 是增函数;减函数()f x -增函数()g x 是减函数.⑻函数(0,0)by ax a b x =+>>在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减.(三)典例分析【例1】根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数.【例2】证明函数()f x x =-在定义域上是减函数.【例3】讨论函数2()23f x x ax =-+在(2,2)-内的单调性.【例4】函数21x y x =-(x ∈R ,1x ≠)的递增区间是( )A .2x ≥B .0x ≤或2x ≥C .0x ≤D .12x -≤或2x ≥【例5】求下列函数的单调区间:⑴ |1|y x =-;⑵ 1y x x=+(0x >).【例6】作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【例7】若()f x 是R 上的减函数,且()f x 的图象经过点(03)A ,和点(31)B -,,则不等式|(1)1|2f x +-<的解集为( ) A .(3)-∞,B .(2)-∞,C .(03),D .(12)-,【例8】求函数1()f x x x=+,0x >的最小值.【例9】已知()f x 是定义在+R 上的增函数,且()()()x f f x f y y=-.⑴求证:(1)0f =,()()()f xy f x f y =+; ⑵若(2)1f =,解不等式1()()23f x f x -≤-.【例10】已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()f x ≠0,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.板块二:函数的奇偶性 (一) 主要知识:1.奇函数:如果对于函数()y f x =的定义域D 内任意一个x ,都有x D -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数;2.偶函数:如果对于函数()y g x =的定义域D 内任意一个x ,都有x D -∈,都有()()g x g x -=,那么函数()g x 就叫做偶函数.3.图象特征:如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形,反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数; 如果一个函数是偶函数,则它的的图象是以y 轴为对称轴的轴对称图形,反之,如果一个函数的图象关于y 轴对称,则这个函数是偶函数.4.奇偶函数的性质: ⑴函数具有奇偶性的必要条件是其定义域关于原点对称;⑵()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称;⑶奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. ⑷()f x 为偶函数()()(||)f x f x f x ⇔=-=. ⑸若奇函数()f x 的定义域包含0,则(0)0f =.(二)主要方法:1.判断函数的奇偶性的方法:⑴定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式; ⑵图象法; ⑶性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇; ②若某奇函数若存在反函数,则其反函数必是奇函数;2.判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-. (三)典例分析:【例11】判断下列函数的奇偶性:1()(1)1xf x x x+=--【例12】⑴ 若()f x 是定义在R 上的奇函数,则(0)f =__________;⑵若()f x 是定义在R 上的奇函数,(3)2f =,且对一切实数x 都有(4)()f x f x +=,则(25)f =__________;⑶设函数()y f x =(R x ∈且0x ≠)对任意非零实数12,x x 满足1212()()()f x x f x f x ⋅=+,则函数()y f x =是___________(指明函数的奇偶性)【例13】设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,3()(1)f x x x =+,那么当(,0)x ∈-∞时,()f x =_________.【例14】()y f x =图象关于1x =对称,当1x ≤时,2()1f x x =+,求当1x >时()f x 的表达式.【例15】已知()f x是奇函数,()g x是偶函数,且1()()1f xg xx-=+,求()f x、()g x.【例16】设函数322||2()2||x x x xf xx x+++=+的最大值为M,最小值为m,则M与m满足().A.2M m+=B.4M m+= C.2M m-=D.4M m-=【例17】函数22()||a xf xx a a-=+-为奇函数,则a的取值范围是().A.10a-<≤或01a<≤B.1a-≤或1a≥C.0a>D.0a<【例18】已知()y f x=为()-∞+∞,上的奇函数,且在(0)+∞,上是增函数.⑴求证:()y f x=在(0)-∞,上也是增函数;⑵若1()12f=,解不等式41(log)0f x-<≤,习题1. 试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.习题2. 判断下列函数的奇偶性并说明理由:⑴()11f x x x =-+-;⑵2()5||f x x x =+.习题3. 已知函数()f x 为R 上的奇函数,且当0x >时()(1)f x x x =-.求函数()f x 的解析式.习题4. 已知()f x 是奇函数,()g x 是偶函数并且()()1f x g x x +=+,则求()f x 与()g x 的表达式.习题5. 设函数()y f x =(x ∈R 且0)x ≠对任意非零实数12,x x ,恒有1212()()()f x x f x f x =+,⑴求证:(1)(1)0f f =-=;家庭作业⑵求证:()y f x =是偶函数;⑶已知()y f x =为(0,)+∞上的增函数,求适合1()()02f x f x +-≤的x 的取值范围.一、抽象函数例题由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

2.2.2函数的奇偶性(老师版)

2.2.2函数的奇偶性(老师版)

创一教育学科教师辅导讲义知识梳理一、函数奇偶性的概念【问题导思】1.对于函数f(x)=x2,f(x)=|x|,以-x代替x.函数值发生变化吗?其图象有何特征?【提示】以-x代x各自的函数值不变,即f(-x)=f(x);图象关于y轴对称.2.对于函数f(x)=x3,f(x)=1x,以-x代替x,函数值发生变化吗?其图象有何特征?【提示】以-x代替x各自的函数值互为相反数,即f(-x)=-f(x);图象关于原点对称.1.偶函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.2.奇函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.3.奇偶性如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性.4.奇、偶函数的图象性质偶函数的图象关于y轴对称,奇函数的图象关于原点对称.例题精讲例1:函数奇偶性的判定判断下列函数的奇偶性.(1)f (x )=x 2-1+1-x 2;(2)f (x )=4-x 2|x +3|-3; (3)f (x )=x 2+1x2. 【思路探究】 首先判断函数的定义域是否关于原点对称,在定义域关于原点对称的情况下,判断f (x )与f (-x )之间的关系.【自主解答】 (1)由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x 2=1,∴x =±1, 即函数的定义域为{-1,1},关于原点对称.∵f (-1)=0=f (1),且f (-1)=-f (1)=0,∴f (x )既是奇函数又是偶函数.(2)由⎩⎪⎨⎪⎧ 4-x 2≥0,|x +3|-3≠0,得⎩⎪⎨⎪⎧x 2≤4,x ≠0,且x ≠-6, ∴-2≤x ≤2且x ≠0,关于原点对称,∴f (x )=4-x 2|x +3|-3=4-x 2x +3-3=4-x 2x , ∵f (-x )=4-x 2-x=-f (x ),∴f (x )是奇函数. (3)函数的定义域为(-∞,0)∪(0,+∞)关于原点对称.∵f (-x )=(-x )2+1(-x )2=x 2+1x 2=f (x ), ∴f (x )是偶函数.【规律方法】1.判断函数的奇偶性要遵循定义域优先的原则,如果定义域不关于原点对称,则该函数必为非奇非偶函数.2.用定义判断函数奇偶性的步骤:【变式训练】判断下列函数的奇偶性:(1)f (x )=x -1x;(2)f (x )=|x +2|+|x -2|; (3)f (x )=⎩⎪⎨⎪⎧x 2+x (x <0),-x 2+x (x >0). 【解】 (1)f (x )的定义域(-∞,0)∪(0,+∞),关于原点对称.∵f (-x )=(-x )-1-x=-(x -1x )=-f (x ), ∴f (x )是奇函数.(2)f (x )的定义域为R .f (-x )=|-x +2|+|-x -2|=|x +2|+|x -2|=f (x ),∴f (x )是偶函数.(3)当x <0时,-x >0,则f (-x )=-(-x )2-x=-(x 2+x )=-f (x ),当x >0时,-x <0,则f (-x )=(-x )2-x=-(-x 2+x )=-f (x ),综上所述,对任意x ∈(-∞,0)∪(0,+∞).都有f (-x )=-f (x ),∴f (x )为奇函数.例2:奇偶函数的图象及应用已知函数f (x )=1x 2+1在区间[0,+∞)上的图象如图2-2-4所示,请据此在该坐标系中补全函数f (x )在定义域内的图象,请说明你的作图依据.【思路探究】 先证明f (x )是偶函数,依据其图象关于y 轴对称作图.【自主解答】 ∵f (x )=1x 2+1,∴f (x )的定义域为R .又对任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), ∴f (x )为偶函数.则f (x )的图象关于y 轴对称,其图象如图所示:【规律方法】1.利用函数的奇偶性作用,其依据是奇函数图象关于原点对称,偶函数图象关于y 轴对称,画图象时,一般先找出一些关键点的对称点,然后连点成线.2.由于奇函数、偶函数图象的对称性,我们可以由此得到作函数图象的简便方法,如作出函数y =|x |的图象.因为该函数为偶函数,故只需作出x ≥0时的图象,对x ≤0时的图象,关于y 轴对称即可.【变式训练】设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图2-2-5所示,则不等式f (x )<0的解集是________.图2-2-5【解析】 注意到奇函数的图象关于原点成中心对称,用对称的思想方法画全函数f (x )在[-5,5]上的图象(如图),数形结合,得f (x )<0的解集为{x |-2<x <0或2<x ≤5}.【答案】 (-2,0)∪(2,5]课堂小测1.函数y =f (x )在区间[2a -3,a ]上具有奇偶性,则a =________.【解析】 由题意知,区间[2a -3,a ]关于原点对称,∴2a -3=-a ,∴a =1.【答案】 12.函数f (x )=x 4+1x 2+1的奇偶性为________. 【解析】 ∵x ∈R ,又f (-x )=(-x )4+1(-x )2+1=x 4+1x 2+1=f (x ), ∴f (x )是偶函数.【答案】 偶函数3.(2013·抚顺高一检测)已知函数y =f (x )是R 上的奇函数,且当x >0时,f (x )=1,则f (-2)的值为________.【解析】 ∵当x >0时,f (x )=1,∴f (2)=1,又f (x )是奇函数,∴f (-2)=-f (2)=-1.【答案】 -14.(2013·常州高一检测)已知函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式;(2)画出函数f (x )的图象.【解】 (1)①由于函数f (x )是定义域为R 的奇函数,则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧ x 2-2x x >0,0 x =0,-x 2-2x x <0.(2)图象如图:师生小结课后作业一、填空题1.函数f (x )=-x +1x的奇偶性是________. 【解析】 ∵f (x )的定义域为{x |x ≠0},关于原点对称.又f (-x )=x -1x=-f (x ).故f (x )为奇函数. 【答案】 奇函数2.(2013·黄山高一检测)已知函数f (x )=a -2x为奇函数,则a =________. 【解析】 ∵函数f (x )为奇函数,∴f (-x )+f (x )=0,即a +2x +a -2x=0, ∴2a =0,即a =0.【答案】 03.若函数f (x )=x 3-bx +a +2是定义在[a ,b ]上的奇函数,则b -a =________.【解析】 f (x )=x 3-bx +a +2是定义在[a ,b ]上的奇函数,有f (-x )=-f (x ),即-x 3+bx +a +2=-x 3+bx -a亲爱的同学们,这节课我们学了哪些内容? 1.利用奇偶函数图象的对称性,我们可以作出函数的大致图象,然后观察图象得出结论. 2.已知奇偶函数在某个区间上的解析式,我们利用对称性可求出这个区间的对称区间上的解析式.要注意“求谁设谁”. 3.解含“f ”的不等式,应具备两个方面:一是能转化为f (x 1)<f (x 2)或f (x 1)>f (x 2)的形式,二是f (x )的单调性已知.特别是f (x )为偶函数时,应把不等式f (x 1)<f (x 2)转化为f (|x 1|)<f (|x 2|)的形式,利用x ∈[0,+∞)的单调性求解.-2可得⎩⎪⎨⎪⎧ a +2=0,a =-b ,解得⎩⎪⎨⎪⎧a =-2,b =2, 所以b -a =4.【答案】 44.下列说法中正确的是________.①函数y =3x 2,x ∈(-2,2]是偶函数;②函数f (x )=⎩⎪⎨⎪⎧x 2,x <0,x 3,x ≥0,是奇函数; ③函数f (x )=x +1既不是奇函数也不是偶函数;④f (x )=x 2+1是偶函数.【解析】 ①不正确,因为定义域不关于原点对称,故①不正确;②不正确,当x >0时,-x <0,∴f (-x )=(-x )2=x 2≠x 3且x 2≠-x 3,故②不正确;③正确,∵f (-x )=-x +1≠x +1,f (-x )=-x +1≠-x -1,故f (x )=x +1是非奇非偶函数,故③正确. ④正确,∵f (-x )=(-x )2+1=x 2+1=f (x ),故④正确.【答案】 ③④5.图2-2-6已知f (x )是定义在[-2,0)∪(0,2]上的奇函数,当x >0时,f (x )的图象如图2-2-6所示,那么f (x )的值域是________.【解析】 ∵x ∈(0,2]时,f (x )的值域为(2,3],由于奇函数的图象关于原点对称,故当x ∈[-2,0)时,f (x )∈[-3,-2),∴f (x )的值域为[-3,-2)∪(2,3].【答案】 [-3,-2)∪(2,3]6.设函数f (x )=ax 3+cx +5,已知f (-3)=3,则f (3)=________.【解析】 设g (x )=ax 3+cx ,则g (x )为奇函数,∴g (-3)=-g (3).∵f (-3)=g (-3)+5=3,∴g (-3)=-2,∴g (3)=2,∴f (3)=g (3)+5=7.【答案】 77.(2013·青岛高一检测)定义在R 上的奇函数f (x ),若当x >0时,f (x )=x 2-2x ,则x <0时f (x )=________.【解析】 设x <0,则-x >0,又f (x )是奇函数,∴f (x )=-f (-x )=-[(-x )2-2·(-x )]=-x 2-2x .【答案】 -x 2-2x创一教育11 / 11创造奇迹,只做第一!。

函数的奇偶性讲义

函数的奇偶性讲义

函数的奇偶性爱护环境,从我做起,提倡使用电子讲义~ 第 1页 ~第四讲 函数的奇偶性【知识要点归纳】 1.定义 2.性质:3.判断函数的奇偶性的方法: (1)定义法 (2)图象法 (3)性质法 【经典例题】例1:判断下列函数的奇偶性、①x x x x f −+−=11)1()( ②22)1lg()(22−−−=x x x f ③⎩⎨⎧>+−<+=)0()0()(22x x x x x x x f ④33)(22−+−=x x x f ⑤2)(2+−−=a x x x f ⑥22)(+−−=x x x f例2:定义在实数集上的函数f (x ),对任意x ,y ∈R ,有f (x +y )+f (x -y )=2f (x )·f(y )且f (0)≠0①求证:f (0)=1 ②求证:y =f (x )是偶函数例3:已知函数f (x ),当x <0时,f (x )=x 2+2x -1①若f (x )为R 上的奇函数,能否确定其解析式?请说明理由. ②若f (x )为R 上的偶函数,能否确定其解析式?请说明理由. 例4:(2010山东文数)设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则(1)f −=A .-3B .-1C .1D .3例5:设奇函数f (x )的定义域是[-5,5].当x ∈[]05,时,f (x )的图象如图1,则不等式f (x)<0的解是______________.变式:已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. 第 2页例6:已知f (x )是定义在R上的偶函数,且在),0[+∞上为减函数,若)12()2(2−>−−a f a a f ,求实数a 的取值范围. 【课堂练习】1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的 条件.2.设函数f (x )=(x +1)(x +a )为偶函数,则a = .3.已知函数y =f(x )是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号). ①y =f (|x |);②y =f(-x );③y =x ·f (x );④y =f (x )+x .4.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)= .5.(09辽宁文)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x −<1()3f 的x 取值范围是6.(09陕西卷文)定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x −<−.则f (3),f (-2),f (1)三者大小的关系为7.(2010天津文数)下列命题中,真命题是 A .m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 B .m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 C .m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数D .m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数8.(2010北京文数)若a ,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅−是 A .一次函数且是奇函数 B .一次函数但不是奇函数C .二次函数且是偶函数D .二次函数但不是偶函数 9.(2010广东文数)若函数xxx f −+=33)(与xxx g −−=33)(的定义域均为R ,则A .)(x f 与)(x g 与均为偶函数B .)(x f 为奇函数,)(x g 为偶函数C .)(x f 与)(x g 与均为奇函数D .)(x f 为偶函数,)(x g 为奇函数10.已知g (x )是奇函数,815)3(2)()1(log )(22=−++−+=f x g x x x f x 且,求f (3)答案1、充分不必要2、-13、②④4、-15、32,31( 6、(3)(2)(1)f f f <−< 7、A 8、A 9、D10、简解:⎪⎩⎪⎨⎧+−++=−++−+=−x x x g x x x f x g x x x f 2)()1(log )(2)()1(log )(2222相加得:)(22)(x f x f x x −−+=−3)3(22)3(33=−−+=∴−f f。

函数的奇偶性课件(公开课中职班)

函数的奇偶性课件(公开课中职班)

物理学中的应用
电磁学
奇偶性在电磁学中有着广泛的应用, 例如在研究电磁波的传播、电磁场的 分布以及电磁力的作用时,常常需要 利用函数的奇偶性进行分析和计算。
波动方程
在研究波动现象时,如声波、水波等 ,函数的奇偶性可以帮助我们更好地 理解波的传播规律和特性。
经济学中的应用
金融分析
在金融数据分析中,奇偶性可以帮助我们更好地理解和预测股票、债券等金融 产品的价格走势。例如,股票价格的波动可能呈现出一定的周期性,而函数的 奇偶性可以帮助我们判断这种周期性的规律。
非奇非偶函数的定义
既不是奇函数也不是偶函数的函数称为非奇非偶函数。
非奇非偶函数的特性
非奇非偶函数的图像既不关于原点对称,也不关于y轴对称。
非奇非偶函数的例子
正切函数、正弦函数等。
02 奇偶性的判断方法
定义法
判断步骤包括:首先确定函数定义域是否关于原点对 称,然后计算$f(-x)$并与$f(x)$比较,最后根据定义 判断$f(-x)$与$f(x)$的关系得出结论。
函数的奇偶性课件(公开课中职班)
目录
• 函数奇偶性的定义 • 奇偶性的判断方法 • 奇偶性在生活中的应用 • 奇偶性的扩展知识 • 习题与解答
01 函数奇偶性的定义
奇函数
01
02
03
奇函数的定义
如果对于函数$f(x)$的定 义域内任意一个$x$,都 有$f(-x)=-f(x)$,则称 $f(x)$为奇函数。
统计学
在统计学中,数据的分布和变化规律常常可以用函数来描述,而函数的奇偶性 可以帮助我们更好地分析这些数据,例如判断数据的对称性、偏态等。
计算机科学中的应用
图像处理
在图像处理中,奇偶性可以帮助我们分析和处理图像的对称性、翻转等操作。例 如,在图像识别和计算机视觉中,可以利用函数的奇偶性进行特征提取和匹配。

奇偶性讲义

奇偶性讲义

1.奇偶性(1)定义。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f (-x )与f (x )的关系;○3 作出相应结论。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;定义在R 上的奇函数必过(0,0)点。

②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇1. 若2()(0)f x a x b x c a =++≠是偶函数,则32()(0)f x ax bx cx a =++≠是( ) A. 奇函数 B. 偶函数 C. 非奇非偶函数 D.既是奇函数又是偶函数。

2. 若函数(1)()y x x a =+-为偶函数,则a 等于__________。

3. 判断下列函数的奇偶性:(1)()f x = (2)()f x =(3)()|2|2f x x =+- (4)323231,0()31,0x x x f x x x x ⎧-+>=⎨+-<⎩(5)1,0()1,01,0x x f x x x x +>⎧⎪==⎨⎪-+<⎩4. 已知()f x 是定义在{|0}x x ≠上的偶函数,当0x >时,2()f x x x =-,则当0x <是()f x =__. 5. 已知()f x 是定义在R 上的奇函数且当0x >时,3()1f x x x =++,则()f x =_______。

6. 函数(),()f x g x 都是定义在(,1)(1,1)(1,)-∞-⋃-⋃+∞上,()f x 是偶函数,()g x 是奇函数且1()()1f xg x x +=-,求(),()f x g x 。

函数的奇偶性讲义

函数的奇偶性讲义
[-1,1]关于原点的对称区间为[-1,1]
二、奇函数与偶函数
(一)奇函数的定义:对于任意函数f(x)在其对称区间(关于原点对称)内,对于x∈A,都有f(-x)=-f(x),则f(x)为奇函数。
(二)偶函数的定义:对于任意函数f(x)在其对称区间(关于原点对称)内,对于x∈A,都有f(-x)=f(x),则f(x)为偶函数。
如果函数f(x)是奇函数或是偶函数,则我们就说函数f(x)具有奇偶性。
(三)判断函数奇偶性的步骤:
(1)求函数f(x)的定义域;
(2)若函数的定义域不关于原点对称,则该函数不具备奇偶性,此时函数既不是奇函数,也不偶函数;若函数f(x)的定义域关于原点对称,再进行下一步;
(3)求f(-x);
(4)根据f(-x)与f(x)之间的关系,判断函数f(x)的奇偶性;①若f(-x)=-f(x),函数是奇函数;②若f(-x)=f(x),函数f(x)是偶函数;③若f(-x)≠±f(x),则f(x)既不是奇函数,也不是偶函数;④若f(-x)=-f(x),且f(-x)=f(x),则f(x)既是奇函数,也是偶函数。【即f(x)=0,即定义域关于原点对称的常数函数f(x)= ;当 ≠0时,常数函数是偶函数;当 =0时,常数函数既是奇函数,也是偶函数。】
【解析】:f(2)=-26
变式练习5:已知函数f(x)= ,则f( )+f( )=__________。
【解析】:令f(x)= ,g(x)是奇函数,故f(-x)= ,f(-x)= ,故f(x)+f(-x)=6
例6:已知f(x)是定义在(-1,1)上的奇函数且是减函数,满足f(1- )+f(1-2 )>0,求 的取值范围。
【解析】:f(x)=
变式练习:已知f(x)是定义在R上的奇函数,,当x>0时,f(x)=x2-2x-3,求f(x)的解析式。

《函数奇偶性》教学案例,邓金香.docx

《函数奇偶性》教学案例,邓金香.docx
握所学知识。
四、教学策略选择和设计
1、策略和方法:为了实现木节课的教学口标,采取的教学策略是学生的观察学习、讨论 和教师导学这两条主线互相交叉进行,采用适度的重复,琢步深入,螺旋上升的方式;教师 应根据学生的尝试学习和学习效率加以引导,将建立在学的基础上,以达到预定的教学目标。
根据木节教材教学目标内容特点,学牛的程度,在教法上我采取了:
限并题Q嗓?然◎啄r?・瞬Sr问刚爪劄總期刑削 卅然应側個傀谢脚/個3 11折疔利 ? 折號初 ? 上象相对的形点对的形点 其昭 纸形图特纸形啓特 在数 将图限么将图限么 ,函 痕内彖仆应内象什X答财飙>—韓册桃三啓 蟒一可 鮒一 一的轴一 一附 哪 取 一y第 第 上 対第第上 实IHI以出屮象以出中象2.任回①画系图后画系图
2、过程与方法
通过留给学生观察、探析、讨论归纳、动手实践的时间以及动脑思考的空间,自主建构 奇函数、偶函数等概念,教师通过设置问题情境培养学生判断、推断的能力,充分发挥学生 学习的积极性和主动性,使学生真正成为学习的主人。
3、情感态度与价值观
1让学生感受数学的对称美;
2培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力;
•) 「士•
U ■ J:Байду номын сангаас①解
S::看
断 完 到断 判 成 达判
T - YMtn疋O定的 住解 上八丿答 用数 学的 过用作 会函 让整 通会并
「I「L•9//\y性附系 心/ 帅刖关-/)+制则的仑0--X b口-Ar-、諭⑻/(应/(或' 慚钗与相或Q^7八处zo>仪啲 一+"-/宀SL/(\/J-利芝定据x)x)确确根一- 岛® ②©+/(-/(

函数的单调性与奇偶性讲义

函数的单调性与奇偶性讲义

地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)函数的单调性与奇偶性讲义【一】基础知识1.函数的单调性(1) 定义:(2)判定方法(i )定义法 (ii )图象法 (iii )根据已知函数的单调性 (iv )导数法(3)复合函数的单调性2. 函数的奇偶性(1) 定义(2)性质:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称。

(2) 判断方法:(i )定义法 (ii )图象法(iii)若两个函数的定义域相同,则a. 两个偶函数的和为偶函数;b. 两个奇函数的和为奇函数;c. 两个奇函数的积为偶函数;d. 两个偶函数的积为偶函数;e. 一个奇函数和一个偶函数的积是奇函数。

(3) 定义域关于原点对称是一个函数为偶函数或奇函数的必要条件。

【二】例题讲析例1.判断下列函数的奇偶性(1)11log )(2+-=x x x f (2)11)(-+-=x x x f (3)11)(22-+-=x x x f (4))21121()(+-=x x x f例2.已知函数是偶函数,其图象与x 轴有四个交点,则方程的所有实根之和是 ( )(A) 4 (B) 2 (C) 6 (D)0例3.(1)设f(x)是偶函数,且在[)+∞,0上为增函数,则其在(]0,∞-上单调性如地址:凤凰路中段468号鑫苑小区2栋2单元2号(柏杨小学旁)何?奇函数呢?(2)设)(x f 为偶函数,且在[)+∞,0上存在最大值,则在(]0,∞-上有最大值吗?奇函数呢?例4.设f(x)在R 上是偶函数,在区间)0,(-∞上递增,且)12(2++a a f ),123(2+-<a a f 求a 的取值范围。

例5.已知)(x f 是奇函数,且0>x 当时,),2()(-=x x x f 求0<x 时,)(x f 的表达式。

例6.求函数)34(log 221+-=x x y 的单调递增区间。

例7.求函数5223++-=x x x y 的单调区间。

函数的单调性和奇偶性精品讲义

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。

〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。

概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)第一篇:函数的奇偶性说课稿 -函数的奇偶性说课稿各位评委老师好:我今天说课的题目是《函数的奇偶性》接下来我从以下几个环节进行说课。

教材分析、学情分析、目标分析、教学目标、教学方法、教学设计、板书设计。

一.教材分析《函数奇偶性》是选自人教版中等职业教育课程改革国家规划新教材,数学基础模块上册第三章第四节的内容。

它的主要内容是函数奇偶性的概念,判断函数奇偶性的方法与步骤。

在此之前,学生已经学习了函数的概念、函数的表示方法、函数的单调性,为这一节的学习起到了铺垫作用,同时又是后面学习具体函数的基础。

《函数的奇偶性》是高中数学的一个重要内容,它不仅与现实生活中对称性密切相关联,而且是历年高考的热点,重点和必考点,它是函数概念的深化,学习函数奇偶性,能使学生再次体会数型结合思想,初步学会用数学的眼光去看待事物,感受数学的对称美。

二.学情分析认知水平与能力:高一学生具备了一定的观察、类比、分析、归纳能力,已初步具有数形结合思维能力,能在教师的引导下解决问题。

任教班级特点:这个班是医护班,学生数学基础较薄弱,上课注意力不够集中,理解能力不够强,可利用数形结合解决简单问题,但归纳转化的能力与观察讨论能力有待加强。

改进与提高:让学生利用图形直观感受;让学生“归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思多说多练,使认识得到深化。

三、教学目标根据对教学大纲、教材内容的分析,结合学生已有的认识能力,心理特征及知识水平,我制定教学目标如下。

知识和技能:使学生从形与数两方面理解函数奇偶性的定义,初步掌握利用函数图象和奇偶性定义判断函数奇偶性的方法。

过程与方法:通过对函数奇偶性定义的探究,渗透数形结合思想方法,培养学生的直观想象素养与数学抽象素养;提高学生的逻辑推理素养与运算素养。

情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点与难点重点:函数奇偶性的概念及判断。

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性知识讲解一、函数奇偶性的定义1.奇函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=-,则这个函数叫做奇函数.2.偶函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=,则这个函数叫做偶函数.二、奇偶函数的图象特征1.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;2.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.三、判断函数奇偶性的方法1.定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否为恒等式.定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.2.图象法3.性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;四、奇偶函数的性质1.函数具有奇偶性⇒其定义域关于原点对称;2.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;3.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.4.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.5.若奇函数()y f x =的定义域包含0,则(0)0f =.五、常见函数的奇偶性1.正比例函数(0)y kx k =≠是奇函数;2.反比例函数(0)k y k x=≠是奇函数;3.函数(00)y kx b k b =+≠≠,是非奇非偶函数;4.函数2(0)y ax c a =+≠是偶函数;5.常函数y c =是偶函数;6.对勾函数(0)k y x k x=+≠是奇函数;经典例题一.填空题(共12小题)1.给定四个函数:①y=x3+3;②y=1(x>0);③y=x3+1;④y=2+1.其中是奇函数的有①④(填序号).【解答】解::①函数的定义域为R,则f(﹣x)=﹣(x3+3)=﹣f(x),则函数f(x)是奇函数;②函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;③函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;④函数的定义域为(﹣∞,0)∪(0,+∞),f(﹣x)=2+1−=﹣2+1=﹣f (x),则函数f(x)是奇函数,故答案为:①④2.f(x)是定义在R上的奇函数,当x<0时,f(x)=x2﹣3x,则当x>0时,f(x)=﹣x2﹣3x.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),若x>0,则﹣x<0,∵x<0时,f(x)=x2﹣3x,∴当﹣x<0时,f(﹣x)=x2+3x=﹣f(x),∴f(x)=﹣x2﹣3x,故答案为:x2﹣3x,3.已知f(x)是R上偶函数,且在[0,+∞)上递减,比较o−34)与f(1+a+a2)的大小关系为f(1+a+a2)≤f(﹣34).【解答】解:根据题意,1+a+a2=(14+a+a2)+34=(a+12)2+34≥34,则又由f (x )在[0,+∞)上递减,则有f (1+a +a 2)≤f (34),又由f (x )是R 上偶函数,则有f (1+a +a 2)≤f (﹣34),故答案为:f (1+a +a 2)≤f (﹣34).4.已知f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数,若f (a ﹣2)<f (4﹣a 2),求a 2).【解答】解:因为f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数.所以f (a ﹣2)<f (4﹣a 2)等价于−1<−2<1−1<4−2<1−2<4−2,化简可得1<<33<2<5−3<<2解可得3<a <2.故答案为(3,2).5.设函数f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,且f (2a 2+a +1)<f (2a 2﹣2a +3),则a 的取值范围=(23,+∞).【解答】解:根据题意,2a 2+a +1=2(a 2+12a +116)+78=2(a +12)2+78≥78,而2a 2﹣2a +3=2(a 2﹣a +14)+52=2(a ﹣12)2+52≥52;由f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,可知f (x )在(0,+∞)上递减.若f (2a 2+a +1)<f (2a 2﹣2a +3),则2a 2+a +1>2a 2﹣2a +3,即3a ﹣2>0,解可得a >23,则a 的取值范围(23,+∞);故答案为:23,+∞).6.已知定义在R上的奇函数f(x)满足f(x)=x2+2x(x≥0),若f(3﹣a2)>f(2a﹣a2),则实数a的取值范围是a<32.【解答】解:∵函数f(x)=x2+2x(x≥0)是增函数,且f(0)=0,f(x)是奇函数∴f(x)是R上的增函数.由f(3﹣a2)>f(2a﹣a2),于是3﹣a2>2a﹣a2,因此,解得a<32.故答案为:a<32.7.若f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,则a+b= 3.【解答】解:∵f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,∴﹣4+a+a=0,f(0)=0.解得a=2,b=1.∴a+b=3.故答案为:3.8.若f(a+b)=f(a)•f(b)且f(1)=2.则o2)o1)+o3)o2)+…+o2012)o2011)=4022.【解答】解:令b=1.∴f(a+1)=f(a)f(1)or1)op=f(1)=2o2)o1)=2.o3)o2)=2. (2012)o2011)=2o2)o1)+o3)o2)+…+o2012)o2011)=2011×2=4022.答案:4022.9.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=3p+2q.【解答】解:由题意可知:f(6)=f(2)+f(3)=p+q∴f(18)=f(6)+f(3)=p+q+q=p+2q∴f(36)=f(18)+f(2)=p+2q+p=2p+2q∴f(72)=f(36)+f(2)=2p+2q+p=3p+2q故答案为:3p+2q.10.已知函数f(x)的定义域D=(0,+∞),且对于任意x1,x2∈D,均有f(x1•x2)=f(x1)+f(x2)﹣1,且当x>1时,f(x)>1(1)求f(1)的值;(2)求证:f(x)在(0,+∞)上是增函数;(3)若f(16)=3,解不等式f(3x+1)≤2.【解答】解:(1)令x1=x2=1,∴f(1)=f(1)+f(1)﹣1∴f(1)=1,(2):设令0<x1<x2,21>1,当x>1时,f(x)>1∴f(21)>1,∴f(21•x1)=f(x2)=f(21)+f(x1)﹣1>f(x1),∴f(x)在(0,+∞)上是增函数;(3)令x1=x2=4,∴f(16)=f(4)+f(4)﹣1=3∴f(4)=2,∴f(3x+1)≤2=f(4),∵f(x)在(0,+∞)上是增函数;∴3+1>03+1≤4,解得−13<x≤1,故不等式f(3x+1)≤2的解集为(−13,1].11.已知f(x)是定义域在(0,+∞)上的单调递增函数.且满足f(6)=1.f(x)﹣f(y)=f()(x>0,y>0).则不等式f(x+3)<f(12的解集是(0,−3+3172).【解答】解:∵f(x)﹣f(y)=f()(x>0,y>0),令x=36,y=6,得f(36)﹣f(6)=f(6)∴f(36)=2f(6)=2,∵f(x+3)<f(1)+2,∴f(x+3)﹣f(1)=f(x(x+3))<2=f(36),∵f(x)是定义域在(0,+∞)上的单调递增函数,+3>0>0o+3)<36∴0<x−3+3172故不等式f(x+3)<f(1)+2的解集是(0,−3+3172),故答案为:(0−3+3172),12.已知函数f(x),对任意实数x1,x2都有f(x1+x2)=f(x1)+f(x2),且当x>0时f(x)>0,f(2)=1.解不等式f(2x2﹣1)<2的解集为[﹣102,102].【解答】解:∵f(x1+x2)=f(x1)+f(x2),设x1=x2=0,可得f(0)=2f(0),解得f(0)=0,令x1+x2=0,可得f(0)=f(x1)+f(x2),即有f(﹣x)=﹣f(x),即f(x)为奇函数;令x1<x2,即有x2﹣x1>0,f(x2﹣x1)>0,即为f(x2)=f(x1+x2﹣x1)=f(x1)+f(x2﹣x1)>f(x1),即有f(x)在R上为增函数;令x1=x2=2,可得f(4)=2f(2),解得f(4)=2,∵不等式f(2x2﹣1)<2=f(4)∴2x2﹣1<4,102<x<102102,102].102,102].二.解答题(共6小题)13.设函数y=f(x)(x∈R)对任意实数均满足f(x+y)=f(x)+f(y),求证f(x)是奇函数.【解答】证明:定义域关于原点对称,令x=y=0,代入f(x+y)=f(x)+f(y)得f(0)=0,令y=﹣x得:f(0)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.14.判断并证明下列函数的奇偶性.(Ⅰ)f(x)=|x|+12;(Ⅱ)f(x)=x2+2x;(Ⅲ)f(x)=x+1.【解答】解:(Ⅰ)可得x≠0f(﹣x)=|﹣x|+1(−p2=f(x),故函数为偶函数;(Ⅱ)函数的定义域为R,且f (x )=x 2+2x 的图象为抛物线,对称轴为x=﹣1,不关于y 轴对称,也不关于原点对称,故函数非奇非偶;(Ⅲ)可得x ≠0,f (﹣x )=﹣x ﹣1=﹣f (x ),故函数为奇函数.15.判断下列函数的奇偶性:(1)f (x )=3,x ∈R ;(2)f (x )=5x 4﹣4x 2+7,x ∈[﹣3,3];(3)f (x )=|2x ﹣1|﹣|2x +1|;(4)f (x )=1−2,>00,=02−1,<0.【解答】解:(1)由f (﹣x )=3=f (x ),x ∈R ,可得函数f (x )为偶函数;(2)f (﹣x )=5(﹣x )4﹣4(﹣x )2+7=5x 4﹣4x 2+7=f (x ),x ∈[﹣3,3],可得函数f (x )为偶函数;(3)定义域为R ,f (﹣x )=|﹣2x ﹣1|﹣|﹣2x +1|=|2x +1|﹣|2x ﹣1|=﹣f (x ),可得f (x )为奇函数;(4)f (x )=1−2,>00,=02−1,<0,定义域为R ,当x >0时,﹣x <0,可得f (﹣x )=(﹣x )2﹣1=x 2﹣1=﹣f (x ),当x=0可得f (0)=0;当x <0时,﹣x >0,可得f (﹣x )=1﹣(﹣x )2=1﹣x 2=﹣f (x ),即有f(﹣x)=﹣f(x),可得f(x)为奇函数.16.判断下列函数的奇偶性(1)f(x)=a(a∈R)(2)f(x)=(1+x)3﹣3(1+x2)+2(3)f(x)=o1−p,<0o1+p,>0.【解答】解:(1)由奇偶性定义当a=0时,f(x)=0既是奇函数又是偶函数,当a≠0时,f(x)=f(﹣x)=a,故是偶函数;(2)f(x)=(1+x)3﹣3(1+x2)+2=x3+3x,由于f(x)+f(﹣x)=x3+3x+(﹣x)3+3(﹣x)=0,故f(x)=(1+x)3﹣3(1+x2)+2是奇函数.(3)当x<0时,﹣x>0,f(﹣x)=﹣x(1﹣x)=﹣f(x);当x>0时,﹣x<0,f(﹣x)=﹣x(1+x)=﹣f(x);由上证知,在定义域上总有f(﹣x)=﹣f(x);故函数f(x)=o1−p,<0o1+p,>0是奇函数.17.已知函数op=B2+23r是奇函数,且o2)=53.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并加以证明.【解答】解:(1)函数op=B2+23r是奇函数,且o2)=53,可得f(﹣x)=﹣f(x),B2+2−3r=﹣B2+23r,可得﹣3x+b=﹣3x﹣b,解得b=0;4r26=53,解得a=2;(2)函数f(x)=22+23在(﹣∞,﹣1]上单调递增;理由:设x1<x2≤﹣1,则f(x1)﹣f(x2)=23(x1+11)﹣23(x2+12)=23(x1﹣x2)(1﹣112),由x1<x2≤﹣1,可得x1﹣x2<0,x1x2>1,即有1﹣112>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则f(x)在(﹣∞,﹣1]上单调递增.18.已知f(x)=1+.(1)求f(x)+f(1)的值;(2)求f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)的值.【解答】解:(1)∵f(x)=1+.∴f(x)+f(1)=1++11+1=1++11+=1,(2)由(1)得:f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)=7.。

高一上册数学第一章4《函数的奇偶性》讲义

高一上册数学第一章4《函数的奇偶性》讲义

知识点一:函数奇偶性的定义1、函数奇偶性的定义(1)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=,则函数()f x 就叫做偶函数;(2)如果对于函数()f x 定义域内任意一个x ,都有()()f x f x -=-,则函数()f x 就叫做奇函数;(3)如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性。

2、具有奇偶性的函数图象特点:一般地,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称, 那么这个函数是奇函数;偶函数的图象关于y 轴对称,反过来,如果一个函数的图象关于y 轴对称,那么这个函数 是偶函数。

【题型一】概念应用例1、已知函数2()3f x ax bx a b =+++为偶函数,其定义域为[2,1]a a -,则函数的值域为 。

变式:已知函数()f x 为偶函数,且其图象与x 轴有四个交点,则方程()0f x =的所有实根之和为 。

【题型二】判断奇偶性例2、下列函数是否具有奇偶性.(1) 3()35f x x x =- (2) 2()3||1f x x x =--(3) 22()22f x x x =-+-; (4) 2|2|2()1x f x x --=-(5) 22230()230x x x f x x x x ⎧++<=⎨-+->⎩ (6)1()(1)1x f x x x +=--例3、已知函数()y f x =是定义在R 上的奇函数,则下列函数中是奇函数的是 . ① ()||y f x =; ②()y f x =-; ③()·y x f x =; ④()y f x x =+.【题型三】利用奇偶性求值例4、若函数3()7f x ax bx =++,有(5)3f =,则(5)f -= 。

变式1:(),()f x g x 都是定义在R 上的奇函数,且()()()35g 2F x f x x =++,若()F a b =,则()F a -= 。

函数的奇偶性(讲义)

函数的奇偶性(讲义)

函数的奇偶性【知识要点】1.函数奇偶性的定义:一般地,对于函数f(x)定义域内的任意一个X,都有/(-A)= /U), 那么函数.f(x)叫偶函数(even function).如果对于函数定义域内的任意一个x,都有/(-A)=-f(x),那么函数f(x)叫奇函数(odd function).2.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之亦真•由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象.3.判别方法:先考察定义域是否关于原点对称,再用比较法'计算和差、比商法等判别与f(x)的关系;(1)奇函数o /(-x) = -f(x) o f(-x) + f(x) = 0<=> 丄匚卫=—1(/3 H 0);JW⑵偶函数。

心)小)。

心)w罟=5)呦4.函数奇偶性的几个性质:(1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;(3)若奇函数/(x)在原点有意义,则/(0)= 0;(4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数;(5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数;(6)函数/(x)与函数沽有相同的奇偶性.5.奇偶性与单调性:(1)奇函数在两个关于原点对称的区间上有相同的单调性;(2)偶函数在两个关于原点对称的区间[-方.上有相反的单调性.【典例精讲】类型一函数奇偶性的判断例1判断下列函数的奇偶性:(1) /(x) = y/x-2 + y/2-X;(3) /(X)= + /彳一• Z? 0);(2) /(x) = Vl-x2 +J,_1 ;⑷/W = 彳丄+4-x2 +x + l,x > 0T ⑸fM = \ .jr+x-l, x < 0:x2 + 2x + 3, x < 0, ⑹ /(x) = jo, X = 0,—+ 2x — 3, A* > 0.变式判断下列函数的奇偶性:(1金“;⑵心“;(5) /(X)= X3-2X(7) y = ax + —(a > 0,b > 0)x (3ycg+丄;JT(6) fM = 2x4 + 4(4g#・例2已知/(x)是R上的奇函数,且当x>0时, /(X)=P+2F—I,求/(X)的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性
【知识要点】
1.函数奇偶性的定义:一般地,对于函数 f (x) 定义域内的任意一个x,都有 f (x) f (x),
那么函数f ( x)f (x)
f ( x)
叫偶函数(,
那么函数
even function).如果对于函数定义域内的任意一个
f ( x) 叫奇函数( odd function).
x,都有
2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象.
3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别 f (x)与 f ( x) 的关系;
(1)奇函数
f (x)
1( f (x) 0) ;
f ( x)f (x)f ( x) f (x) 0
f (x)
(2)偶函数
f x
f x f xf x f x 0 1 f x 0 .
f x
4.函数奇偶性的几个性质:
(1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立;
(3)若奇函数 f x在原点有意义,则 f 00 ;
(4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数;
(5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数;
(6)函数 f x与函数
1
有相同的奇偶性 .
f x
5.奇偶性与单调性:
(1)奇函数在两个关于原点对称的区间
b, a , a, b 上有相同的单调性;
(2)偶函数在两个关于原点对称的区间
b, a , a, b 上有相反的单调性 .
【典例精讲】
类型一
函数奇偶性的判断
例 1
判断下列函数的奇偶性:
(1) f
x x 2 2 x ;
(2) f x
1
x
2
x 2 1 ;
(3) f x
ax b ax b a b 0 ;
1
1 (4) f x x

2 x 1
2
x 2
x 1, x x 2 2x
3,
x 0,
(5) f ( x)
0, x 0,
2
x 1,
x
( 6) f ( x)0,
x
0;
2x 3, x 0.
x 2
变式 判断下列函数的奇偶性:
4
5
1
1
(1) f ( x )= x ; (2)
f ( x )= x ;
(3)f ( x )= x +
x 2
;(4)
f ( x )=
x 2 .
( 5) f ( x )
x
3
2 x
( 6) f ( x) 2 x 4
4 x 2
( ) y ax
b
( a
0, b
0)
( 8) y
x
( k
0)
7
x
k
x 2
例 2已知 f x是R上的奇函数,且当x 0 时, f x x 32x 21,求 f x 的表达式。

类型二函数奇偶性的简单应用
例 3 ( 1)设函数 f(x)= ( x 1)( x a)
为奇函数,求实数 a 的值;
x
(2)设函数 y=f(x) 是奇函数,若f( - 2)+f( - 1) - 3=f(1)+f(2)+3,求 f(1)+f(2)的值;
(3)已知 f x是奇函数,g(x)是偶函数,且f ( x) g (x)1, 求f x与g( x)的解析式。

x 1
变式(1)设f ( x)是定义在R 上的奇函数,当 x≤0时,f ( x) = 2x2x ,则 f (1).
(2)已知 f (x) 为奇函数,g ( x) f (x) 9, g( 2) 3,则 f (2).
(3)已知y f ( x) x 2是奇函数,且 f (1) 1 ,若 g (x) f (x) 2 ,则 g( 1)。

类型三函数性质的综合应用
例 4 (1)奇函数 f ( x)在[ b ,a] 上为增函数,试分析它在( a, b] 上的单调性( a 0) 。

(2) 已知奇函数 f ( x) 在单调区间7, 3 上有最大值 f ( 5) 2 ,则 f ( x) 在 3,7 上的最
值是。

(3) 已知偶函数 f ( x) 在单调区间7, 3 上有最大值 f ( 5) 2 ,则 f ( x) 在 3,7 上的最
值是。

例 5定义在R上的函数 f x 满足 f x y f x f y ,且对任意 x, y R ,都成立。

(1)证明 : 函数f x是奇函数;
(2) 如果x R , f (x) 0, 并且 f (1)1
, 试求 f ( x) 在区间2,6 上的最值。

2
【课堂练习】
1.函数y x | x | px , x R 是()
A.偶函数B.奇函数C.不具有奇偶函数D.与p有关
2.若奇函数 f (x) 在 [3, 7]上是增函数,且最小值是1,则它在 [ 7, 3] 上是()
A. 增函数且最小值是-1
B.增函数且最大值是-1
C. 减函数且最大值是-1
D.减函数且最小值是-1
3.若函数f xx 1 x a 为偶函数,则a( )
( A)2( B)1( C)1( D)2
4. 已知f x 1 是偶函数,则函数 y f 2x的图象的对称轴是 ( )
A.x 1
B. x 1
C.x 1
x
1
D.
2 2
5. 设奇函数 f(x)的定义域为 [ - 5, 5],若当 x∈[0, 5]时 , f(x)的图象如图所示 ,则不等式 f(x)< 0的解是.
6.已知函数 f (x) ax5bx3cx 1 , f (2) 1 ,求 f ( 2) 。

【思维拓展】
1.定义在1,1 上的函数f x 满足 f x y f x f y ,且对任意 x, y1,1 ,当
x y 0
f x f y。

时 , 都有0
x y
(1)证明 : 函数f x是奇函数;
(2) 用函数的单调性定义判断并证明函数 f x 在1,1 上的单调性。

【课外作业】
1.已知函数 f (x) 是奇函数,当 x 0 时, f ( x) x(1 x) ;当 x 0 时, f (x) 等于( )
A.
x(1 x)
B.
x(1 x)
C.
x(1 x) D.
x(1 x)
2. 对于定义域是 R 的任意奇函数 f (x) 都有(

A. f (x) f ( x) 0
B. f ( x) f ( x) 0
C. f ( x) f ( x) 0
D. f (x) f ( x) 0
3.若 f ( x)
m 2 1 x 2
m 1 x n 2 为奇函数,则 m, n 的值为( )
A. m 1, n 2
B. m 1, n 2
C. m 1, n 2
D. m 1, n R
4. 已知 f (x) 的定义域为
x R x 0 ,且满足
2 f ( x) f ( 1
) x ,则 f (x) 的表达式为
x
________.
5. 若 f ( x)
m 1 x 2 6mx 2 是偶函数,则 f (0), f (1), f ( 2) 的大小顺序是
__________.
6. 已知 f ( x) 是定义在 R 上的奇函数,在 (0,
) 是增函数,且 f (1) 0 ,则 f (x
1) 0 的解
集为
.
7.若对于一切实数 x, y ,都有 f (x y)
f ( x) f ( y) .
( 1)求 f (0) ,并证明 f (x) 为奇函数;
( 2)若 f (1) 3 ,求 f ( 3) 。

8. 已知函数 f ( x) 是定义在 R 上的偶函数,已知 x 0 时, f ( x)
x 2 2x .
(1)画出偶函数 f ( x)的图象;
(2)根据图象,写出 f ( x)的单调区间;同时写出函数的值
y
x。

相关文档
最新文档