(完整版)高中数学知识点精讲——极限和导数,推荐文档
极限和导数 -详细本
定理4.7(介值性定理)若函数 在闭区间 上连续,且 ,若 为 介于之间的任何实数( 或 ),则在开区间 内至少存在一点 ,使得 .
推论(根的存在定理)若函数 在闭区间 上连续,且 异号,则至少存在一点 使得 .即 在 内至少有一个实根.
当Δx→0时,Δy→0。 当Δx→0时,Δy不趋向于零。
定义:设函数y=f(x)在点x0及其近旁有定义,如果当自变量x在点x0处的增量Δx趋近于零时,函数y=f(x)相应的增量 也趋近于零,那么就叫做函数y=f(x)在点x0连续。用极限表示,就是
或
定义2:设函数y=f(x)在点x0及其左右近旁有定义,如果函数y=f(x)当x1→x0时的极限存在,且等于它在x0处的函数值f(x0),即
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
和差化积4个
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cosห้องสมุดไป่ตู้(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
⑷无穷小除以具有非零极限的函数所得的商仍为无穷小。
4无穷小的定理:
定理1:设
定理2: 设 , 且 存在,则
=
5 无穷小的比较
①无穷小量阶的定义,设 .
(1)若 ,则称 是比 高阶的无穷小量.
(2) .
(3) 是同阶无穷小量.
(4) ,记为 .
(5)
高中数学——2、极限、导数(研究函数最重要的工具)
极限、导数函数的极限1、0x x lim →f (x )=a ⇔左极限-0x x lim →f (x )=右极限+→0x x lim f (x )=a 例:0x lim →|x |=0,因为左极限-0x lim →|x |=右极限+→0x lim |x |=0 2、运算法则:0x x lim →f (x )=a ,0x x lim →g (x )=b 0x x lim →【f (x )+g (x )】=a+b ,0x x lim →【f (x )-g (x )】=a-b 0x x lim →【f (x )•g (x )】=ab ,0x x lim →【)()(x g x f 】=ba (b ≠0) 3、2个重要极限0x lim →x sinx =1,∞→x lim (1+x 1)x =e 或0x lim →x 1x 1)(+=e (e 为自然常数) 4、求极限的常用方法(1)直接代入:例:3x lim →(x 2-x )=9-3=6 (2)分解因式例:3x lim →3-x 9-x 2=3x lim →3-x 3-x 3x ))((+=3x lim →(x+3)=6 (3)化∞为无穷小例:∞→x lim cosx -x sinx x +=∞→x lim xcosx -1x sinx1+=∞→x lim 0-101+=1 (4)分子有理化 例:∞→x lim (x -x x 2+)=∞→x lim x x +++++222x x x x x -x x ))((=∞→x lim x x x x 2++=∞→x lim x 1x x x++)(=∞→x lim x x x +=21 (5)分母有理化例:0x lim →x -1-x 1x +=0x lim →))(()(x -1x 1x -1-x 1x -1x 1x +++++= 0x lim →x2x -1x 1x )(++=0x lim →2x -1x 1++=211+=1(6)利用重要极限例1:求极限0x lim →(x •tanx ) 原式=0x lim →(x •cosx sinx ),变形,利用重要极限,=0x lim →(xsinx •cosx x 2),根据极限乘法运算法则,=0x lim →x sinx •0x lim →cosx x 2=1×0cos 0=0 例2:求极限0x lim →x1x 2-1)( 变形,利用重要极限,原式=0x lim →2-x2-1x 2-1】)【(=e -2=e 1 导数1、可导必连续,连续未必可导函数y=f (x )在x=x 0处可导是函数y=f (x )在x=x 0处连续的充分不必要条件 例:y=|x|在x=0处连续,但不可导2、运算法则【f (x )+g (x )】´=f ´(x )+g ´(x )【f (x )-g (x )】´=f ´(x )-g ´(x )【f (x )•g (x )】´=f ´(x )•g (x )+f (x )•g ´(x ) 【)()(x g x f 】´=)(x g )x ′(g )x (f -)x (g )x ′(f 2⨯⨯(g (x )≠0) 3、常用导数公式常数C ´=0,(e x )´=e x ,(a x )´=a x lna ,(x n )´=nx n-1(lnx )´=x 1,(log a x )´=lnax 1⨯,(sinx )´=cosx ,(cosx )´=-sinx 4、复合函数求导先对整体求导,再对部分求导例:求函数y=x sinx 的导数两边取自然对数,lny=sinx •lnx ,由复合函数求导法则及常用导数公式,两边对x 求导,y 1•y ´=cosx •lnx+sinx •x 1,y ´=y (cosxlnx+sinx •x 1)=x sinx (cosxlnx+xsinx ) 5、利用导数研究函数(注:一般考一阶导数,如果一阶导数仍然复杂,再求二阶导数研究)(1)f(x)在x=x0处的导数f´(x0)即f(x)在点(x0,y0)处的切线斜率(2)取极值、最值处的导数一般=0,且左右的单调性相反例:研究三次函数f(x)=-x3+9x的单调性求导,f´(x)=-3x2+9=-3(x+3)(x-3),∵f´(x)在区间(-∞,-3)、(-3,3)、(3,+∞)上分别<0、>0、<0,∴f(x)分别递减、递增、递减,∵f´(x)在±3处均=0,∴根据极值左右的单调性,f(x)分别在-3、3处取得极小值、极大值6、根据导函数构造原函数例:已知函数f(x)(x>0),f´(x)为f(x)的导函数,f(x)<-xf´(x),解不等式f(x+1)>(x-1)f(x2-1)根据f(x)<-xf´(x)构造原函数g(x)=xf(x),∴g´(x)<0,g(x)(x>0)单调递减,为利用g(x),变形不等式,得到(x+1)f(x+1)>(x+1)(x-1)f(x2-1),即g(x+1)>g(x2-1),∴x2-1>0(满足定义域)、x+1<x2-1(单调递减),x∈(2,+∞)。
高中数学导数讲义之导数与极值、最值(P1-3)
导数应用三:求函数的极值、最值(一)函数极值的概念(二)函数极值的求法:(1)考虑函数的定义域并求f'(x);(2)解方程f'(x)=0,得方程的根x 0(可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x 0)是 极大值;反之,那么f(x 0)是极大值 题型一、 极值求法 1 求下列函数的极值(1)f(x)=x 3-3x 2-9x+5; (2)f(x)=ln x x (3)f(x)=1cos ()2x x x ππ+-<<2、设a 为实数,函数y=e x-2x+2a,求y 的单调区间与极值3、设函数f(x)=313x -+x 2+(m 2-1)x,其中m>0。
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率 (2)求函数f(x)的单调区间与极值4、若函数f(x)=21x a x ++,(1)若f(x)在点(1,f(1))处的切线的斜率为12,求实数a 的值(2)若f(x)在x=1处取得极值,求函数的单调区间5、函数f(x)=x 3+ax 2+3x-9已知f(x)在x=-3时取得极值,求a6、若函数y=-x 3+6x 2+m 的极大值为13,求m 的值7、已知函数f(x)=x 3+ax 2+bx+a 2在x=1处有极值10. (1)求a,b 的值; (2)f(x)的单调区间8、已知函数f(x)=ax 2+blnx 在x=1处有极值12(1)求a,b 的值;(2)判定函数的单调性,并求出单调区间 9、设函数f(x)=323a x bx cx d +++(a>0),且方程f'(x)-9x=0的两根分别为1,4,若f(x)在(,-∞+∞)内无极值点,求a 的取值范围(三)函数的最值与导数注:求函数f(x)在闭区间[a,b]内的最值步骤如下 (1)求函数y=f(x)在(a,b)内的极值(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个就是 最大值,最小的一个就是最小值 题型一 求闭区间上的最值1、设在区间[a,b]上函数f(x)的图像是一条连续不断的曲线,且在区间(a,b)上可导,下列命题正确的是 (1)若函数在[a,b]上有最大值,则这个最大值必是[a,b]上的极大值 (2)若函数在[a,b]上有最小值,则这个最小值必是[a,b]上的极小值 (3)若函数在[a,b]上有最值,则这个最值必在x=a 或x=b 处取得2、求函数f(x)=x 2-4x+6在区间[1,5]上的最值 3、求函数f(x)=x 3-3x 2+6x-10在区间[-1,1]上的最值 4、已知f(x)=x3+2x2-4x+5,求函数在[-3,1]上的最值题型二 有函数的最值确定参数的值1、已知函数f(x)=ax 3-6ax 2+b,x ∈[-3,1]的最大值为3,最小值为-29,求a,b 的值2、设213a <<,函数f(x)=x 3-32ax 2+b(-11x ≤≤)的最大值为1,最小值为2-,求a,b(四)导数综合应用1、已知函数f(x)=x 2+ax+blnx(x>0,a,b 为实数).(1)若a=1,b=-1,求函数f(x)的极值.(2)若 a+b=-2,讨论f(x)的单调性.2、设函数f(x)=ax-bx+lnx 。
高三数学重点难点函数的极限
第三节 函数的极限一、知识归纳 1、知识精讲:1)当x →∞时函数f(x)的极限:当自变量x 取正值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于正无穷大时, 函数f(x)的极限是a,记作a x f x =+∞→)(lim ,(或x →+∞时,f(x)→a)当自变量x 取负值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于负无穷大时, 函数f(x)的极限是a,记作a x f x =-∞→)(lim ,(或x →-∞时,f(x)→a)注:自变量x →+∞和x →-∞都是单方向的,而x →∞是双向的,故有以下等价命题=+∞→)(lim x f x a x f x =-∞→)(lim ⇔a x f x =∞→)(lim2)当x →x 0时函数f(x)的极限:当自变量x 无限趋近于常数x 0(但x ≠x 0)时,如果函数f(x)无限趋近于一个常数a ,就说当x 趋向于x 0时, 函数f(x)的极限是a,记作a x f x x =→)(lim 0,(或x →x 0时,f(x)→a)注:a x f x x =→)(lim 0与函数f (x )在点x 0处是否有定义及是否等于f (x 0)都无关。
3)函数f(x)的左、右极限:如果当x 从点x=x 0左侧(即x <x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的左极限,记作a x f x x =-→)(lim 0。
如果当x 从点x=x 0右侧(即x >x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的右极限,记作a x f x x =+→)(lim 0。
注:=-→)(lim 0x f x x a x f x x =+→)(lim 0⇔a x f x x =→)(lim 0。
并且可作为一个判断函数在一点处有无极限的重要工具。
注:极限不存在的三种形态:①左极限不等于右极限≠-→)(lim 0x f x x )(lim 0x f xx +→; ②0x x→时,()±∞→x f ,③0x x →时,()→x f 的值不唯一。
(完整)高中数学公式及知识点总结大全(精华版),推荐文档
高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
《导数与函数的极值、最值》 知识清单
《导数与函数的极值、最值》知识清单一、导数的概念导数是函数的变化率,它反映了函数在某一点处的瞬时变化情况。
如果函数 y = f(x) 在点 x = x₀处的导数存在,那么这个导数表示函数在 x₀点处的切线斜率。
对于函数 y = f(x),其在 x = x₀处的导数定义为:f'(x₀) =lim(Δx → 0) f(x₀+Δx) f(x₀) /Δx导数的几何意义是函数图像在某一点处的切线斜率,物理意义可以是瞬时速度等。
二、函数的极值1、极值的定义设函数 f(x) 在点 x₀及其附近有定义,如果在 x₀附近的左侧 f'(x) > 0 ,右侧 f'(x) < 0 ,那么 f(x₀) 是极大值;如果在 x₀附近的左侧f'(x) < 0 ,右侧 f'(x) > 0 ,那么 f(x₀) 是极小值。
2、求极值的步骤(1)求导数 f'(x) ;(2)解方程 f'(x) = 0 ,找出所有可能的极值点;(3)判断在每个极值点左右两侧导数的符号,确定是极大值还是极小值。
三、函数的最值1、最值的定义函数在某个区间上的最大值和最小值分别称为函数在该区间上的最值。
2、求最值的方法(1)如果函数在闭区间 a, b 上连续,那么先求出函数在开区间(a, b) 内的极值,再将极值与区间端点处的函数值 f(a) 、 f(b) 进行比较,其中最大的就是最大值,最小的就是最小值。
(2)如果函数在开区间内或无穷区间上,需要考虑函数的单调性、极限等情况来确定最值。
四、导数与函数单调性的关系设函数 y = f(x) 在某个区间内可导,如果 f'(x) > 0 ,则函数在该区间内单调递增;如果 f'(x) < 0 ,则函数在该区间内单调递减。
五、利用导数求函数极值和最值的例子例 1:求函数 f(x) = x³ 3x²+ 1 的极值。
解:首先求导数 f'(x) = 3x² 6x ,令 f'(x) = 0 ,即 3x² 6x = 0 ,解得 x = 0 或 x = 2 。
(完整)高中数学函数知识点总结(经典收藏),推荐文档
高中数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”女口:集合A x|y lg x, B y | y Ig x,C (x, y) | y Ig x,A、B、C 中元素各表示什么?A 表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
女口:集合A x|x2 2x 3 0 ,B x|ax 1若B A,则实数a的值构成的集合为____________(答:1, 0,-)3显然,这里很容易解出A={-1,3}.而B最多只有一个元素。
故B只能是-1 或者3。
根据条件,可以得到a=-1,a=1/3.但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。
3.注意下列性质:(1)集合a1,a2,,a n的所有子集的个数是2n;要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。
同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有2n种选择,即集合A有2n 个子集。
当然,我们也要注意到,这2n种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为2n1,非空真子集个数为2n2(2)若A B ABA,A B B;(3)德摩根定律:C u A B C U A C u B ,C U A B C U A C u B有些版本可能是这种写法,遇到后要能够看懂4•你会用补集思想解决问题吗?(排除法、间接法)的取值范围注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告 诉你函数f (x )=ax 2+bx+c (a>0)在(,1)上单调递减,在(1,)上单调递增, 就应该马上知道函数对称轴是 x=1.或者,我说在上,也应该马上可以想 到m n 实际上就是方程 的2个根5、 熟悉命题的几种形式、可以判断真假的语句叫做命题,逻辑连接词有 “或”(),“且”()和“非”).若p q 为真,当且仅当p 、q 均为真若p q 为真,当且仅当p 、q 至少有一个为真 若p 为真,当且仅当p 为假命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
极限与导数的基础知识与运用
极限与导数的基础知识与运用极限和导数是高等数学中重要的概念,也是计算机科学、物理学等多个领域中必不可少的数学工具。
本文旨在系统地介绍极限和导数的概念,以及它们的应用。
一、极限1.1 极限的定义极限是研究函数变化趋势的一种方法。
给定一个函数 $f(x)$,当自变量 $x$ 越来越接近某个特定的值 $a$ 时,如果函数值 $f(x)$ 也越来越接近某个常数 $L$,则称 $L$ 是函数 $f(x)$ 当 $x$ 趋近于 $a$ 时的极限,记作$$\lim_{x\rightarrow a}f(x)=L$$其中,$x$ 可以从左侧或右侧趋近于 $a$。
1.2 夹逼定理夹逼定理是极限的一个重要定理,它有助于我们判断一些函数的极限是否存在。
设 $f(x)\leq g(x)\leq h(x)$,当 $x\rightarrow a$ 时,$f(x)$ 和 $h(x)$ 的极限都等于 $L$,则 $g(x)$ 的极限也等于 $L$。
即$$\lim_{x\rightarrow a}f(x)=L=\lim_{x\rightarrow a}h(x)\Rightarrow \lim_{x\rightarrow a}g(x)=L$$1.3 极限的计算计算极限的方法有很多,以下是一些典型的极限计算方法:1.3.1 基本极限$$ \lim_{x\rightarrow 0}\frac{\sin x}{x}=1 $$$$ \lim_{x\rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e $$1.3.2 无穷小与无穷大当 $x\rightarrow 0$ 时,如果 $f(x)$ 满足 $\lim_{x\rightarrow0}f(x)=0$,则称 $f(x)$ 是一个无穷小。
当 $x\rightarrow \infty$ 时,如果 $f(x)$ 满足 $\lim_{x\rightarrow \infty}f(x)=\infty$,则称 $f(x)$ 是一个无穷大。
(完整版)高中数学导数与函数知识点归纳总结,推荐文档
高中导数与函数知识点总结归纳一、基本概念 1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。
()f x 在点0x 处的导数记作xx f x x f x f y x xx ∆-∆+='='→∆=)()(lim)(000002 导数的几何意义:(求函数在某点处的切线方程)函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();xxe e '= ⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f xg x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf=(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。
导数极限知识点总结
导数极限知识点总结一、导数1.导数的定义导数是函数在某一点的变化率,也可以理解为函数的斜率。
在数学上,导数可以用极限的概念来定义,即函数f(x)在点x=a处的导数为:f'(a) = lim┬(x→a)〖(f(x) - f(a))/(x - a)〗其中,f'(a)表示函数f(x)在点x=a处的导数。
2.导数的计算方法导数的计算方法有很多种,常见的有以下几种:(1)基本导数公式:如常数函数、幂函数、指数函数、对数函数、三角函数、和差积商等的导数公式。
(2)求导法则:如导数的四则运算法则、复合函数的导数、反函数的导数等。
(3)隐函数求导:当函数以隐式形式给出时,可以利用隐函数求导法则来求导数。
(4)参数方程求导:当函数以参数方程形式给出时,可以利用参数方程求导法则来求导数。
3.导数的几何意义导数在几何上有重要的意义,它表示函数图像在某一点的切线斜率。
具体来说,如果函数f(x)在点x=a处的导数为f'(a),则函数图像在点(x,f(x))处的切线斜率为f'(a)。
4.导数的应用导数在实际问题中有着广泛的应用,比如在物理学中,速度和加速度可以由位移函数的导数得到;在经济学中,生产函数的边际产出可以由边际生产率的导数得到;在生物学中,物种的增长率可以由种群增长函数的导数得到等等。
5.高阶导数高阶导数是指对函数的导数再求导数,可以用f''(a)、f'''(a)等来表示。
高阶导数在研究函数的凹凸性、拐点等方面有重要的应用。
6.导数的性质导数具有一系列的性质,包括导数的和、差、积、商法则、导函数的值、方向导数、导数的中值定理等。
二、极限1.极限的定义极限是函数在某一点或无穷远处的趋近状态,其定义为:设函数f(x)在点x=a的某个邻域内有定义,如果存在一个常数L,使得当x趋向于a时,f(x)无限接近L,那么就称函数f(x)在点x=a处的极限为L,记作lim┬(x→a)〖f(x) = L〗。
极限和导数拓展讲义
极限和导数并指导相对于本讲义编写的目的是对于高中物理中常用的微积分知识做一个相对体系的介绍,同学在实际的物理情景中应用。
讲义在内容上注重讲清数学知识的概念与思维方式, 野蛮的“摔公式”教学方法,同学们能一定程度上领略微积分的奇妙与美感。
本节知识提纲1数列极限:数列极限的定义,数列极限的计算2函数极限:函数极限的定义,物理中极限的使用3导数:导数扩展了物理量的定义。
掌握导数的几何意义,基本求导公式,求导运算法则最后我们一贯的反对学习数学只关心数学公式怎么使用的态度,这种情况在喜欢物理的同学中非常普遍,这种心态的学习在物理上一定也是走不远的。
本讲义实际讲解的是很不严密的,代替不了真正的数学课,建议有兴趣的同学课后阅读提升对于数学的理解。
第一部分数列极限©知识点睛先思考这个问题0.9999IH和1哪个大?纯洁而朴素的想法如下:0.9 <1,0.99 <1,0.999 < 1,所以无限循环小数0.9999川小于1。
然而事实并非如此。
令x =0.9999||],则有:10x 9.9999 川x =0. 9 9 9)9相减得到:9x=9所以x =1 =0.9999 川为了解释这样的事情,我们做如下分析,构造数列a n:內=0.99 (9)n显然数列里面的每一项都是小于1的。
但是0.99991 H并不在这个数列中。
因为数列里面每一项都是有限小数,0.9999川是无限小数。
当项数n不断增大的时候a n不断靠近0.9999川,却一直不等于0.9999川。
我们这样定义数列的极限:如果存在一个实数p使得:对于任意的实数;・0,都存在一个整数n,使得对于任意m・n , |a m-p|:::;,那么就叫p是数列a n的极限,记作p-lim a n。
否则叫数列a n没有极限。
可以这样形象地理解这个定义:当n很大的时候,a n与p要多靠近就有多靠近;n越大,a n与p就越靠近。
但是并不要求a n要等于p。
第64讲_极限和导数
极限和导数相关知识1.导数的有关概念。
(1)定义:函数y=f(x)的导数f /(x),就是当0→∆x 时,函数的增量y ∆与自变量的增量x ∆的比xy ∆∆的极限,即xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(limlim)(00/。
(2)实际背景:瞬时速度,加速度,角速度,电流等。
(3)几何意义:函数y=f(x)在点x 0处的导数的几何意义,就是曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率。
2. 求导的方法: (1)常用的导数公式:C /=0(C 为常数); (x m )/=mx m-1(m ∈Q); (sinx)/=cosx; (cosx)/= -sinx ; (e x )/=e x ; (a x )/=a xlnax x 1)(ln /=; e x x a a log 1)(log /=.(2)两个函数的四则运算的导数:).0(;)(;)(2/////////≠-=⎪⎭⎫⎝⎛+=±=±v v uv v u v u uv v u uv v u v u(3)复合函数的导数:x u xu y y ///⋅=3.导数的运用: (1)判断函数的单调性。
当函数y=f(x)在某个区域内可导时,如果f /(x)>0,则f(x)为增函数;如果f /(x)<0,则f(x)为减函数。
(2)极大值和极小值。
设函数f(x)在点x 0附近有定义,如果对x 0附近所有的点,都有f(x)<f(x 0)(或f(x)>f(x 0)),我们就说f(x 0)是函数f(x)的一个极大值(或极小值)。
(3)函数f(x)在[a,b]上的最大值和最小值的求法。
A 类例题例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx xy ω22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解 2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x x x x x x x x x x x x x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解 y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法一 设y =f (μ),μ=v ,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x=f ′(12+x )·21112+x ·2x=),1(122+'+x f x x解法二 y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1)21-·2x=12+x x f ′(12+x )说明 本题3个小题分别涉及了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法 这是导数中比较典型的求导类型 解答本题的关键点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错例2.观察1)(-='n n nxx ,x x cos )(sin =',x x sin )(cos -=',是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。
(完整版)高中数学知识点精讲——极限和导数,推荐文档
6.几个常用函数的导数:(1) (c)' 常数);(3)
(sin
x)'
cos
x; (4) (cos
x)'
sin
x
;(5) (a x )'
ax
ln a
;(6) (e x
)'
ex
;(7) (loga
x)'
1 x
log a
x
;
(8) (ln x)' 1 . x
δ,x0)时 f '(x) 0 ,当 x∈(x0,x0+δ)时 f '(x) 0 ,则 f(x)在 x0 处取得极小值;(2)若当
x∈(x0-δ,x0)时 f '(x) 0 ,当 x∈(x0,x0+δ)时 f '(x) 0 ,则 f(x)在 x0 处取得极大值。
12.极值的第二充分条件:设 f(x)在 x0 的某领域(x0-δ,x0+δ)内一阶可导,在 x=x0 处二阶可导,
是上凸的。通常称上凸函数为凸函数,下凸函数为凹函数。 16.琴生不等式:设 α1,α2,…,αn∈R+,α1+α2+…+αn=1。(1)若 f(x)是[a,b]上的凸函数,则 x1,x2,…,xn∈[a,b]有 f(a1x1+a2x2+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn).
y'
x
x0
或
dy dx
x0
,即
f
'(x0
)
lim
x x0
f
(x) x
f (x0 x0
)
高中数学《导数》讲义(全)
高中数学导数讲义完整版第一部分 导数的背景一、导入新课 1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? (221gt s =,其中g 是重力加速度).2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.3. 边际成本问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响. 二、小结:瞬时速度是平均速度ts∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程.6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.第二部分 导数的概念一、新课:1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限(即xy∆∆无限趋近于某个常数),我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/。
高二数学第五章导数知识点
高二数学第五章导数知识点导数是高中数学中的一个重要概念,在高二数学的第五章中,我们学习了一系列与导数相关的知识点。
本文将对这些知识点逐一进行介绍和解析。
1. 函数的导数函数的导数是描述函数变化率的重要工具。
对于函数f(x),其导数表示为f'(x)或dy/dx,定义为极限lim[h→0] [(f(x+h)-f(x))/h]。
导数的概念可以理解为函数在某点处的切线斜率。
2. 导数的几何意义导数的几何意义是函数曲线在某一点处的切线的斜率。
导数的正负表示曲线上升还是下降,导数的绝对值大小表示变化的速率。
3. 导数的基本性质导数具有一系列基本性质:常数函数的导数为0,函数与它的相反数的导数互为相反数,两个函数的和的导数等于两个函数的导数的和,函数与一个常数乘积的导数等于函数的导数乘以常数。
4. 基本导数公式高中数学中常用的函数的导数公式包括:常数函数的导数为0,幂函数的导数为幂次减一乘以系数,指数函数的导数为自身乘以常数,对数函数的导数为自身除以自变量。
5. 导数的运算法则导数的运算法则包括:和的导数等于各个函数的导数的和,差的导数等于各个函数的导数的差,积的导数等于函数的导数与另一个函数的值的乘积之和,商的导数等于分子函数的导数与分母函数的值的乘积减去分母函数的导数与分子函数的值的乘积之商。
6. 高阶导数高阶导数是指函数的导数再次求导得到的导数。
高阶导数的计算可以通过迭代运用导数的定义,也可以运用函数的导数公式和运算法则进行计算。
7. 隐函数求导隐函数求导是指对于一些由关系式所定义的函数,利用导数的求导法则求得其导函数。
隐函数求导与显式函数求导的区别在于在求导的过程中要将自变量视为关于另一个变量的函数来进行求导。
8. 参数方程求导参数方程求导是指对于由参数方程所定义的函数,利用导数的定义和性质来求其导数。
参数方程的求导需要将自变量表示为参数的函数,然后将参数看作自变量进行求导。
9. 函数的导数与函数的性质关系导数与函数的性质之间存在一系列的关系,比如函数在某点可导,则在该点连续;函数在某区间可导,则在该区间内连续;函数在某点可导,则在该点处的切线与曲线相切等。
极限与导数知识点总结
极限与导数知识点总结极限与导数是微积分学中非常重要的内容,它们是我们理解函数性质和计算函数变化率的基础。
在这篇总结中,我将从定义、性质和常见计算方法等方面对极限与导数进行详细的介绍和解析。
一、极限的概念与性质1. 极限的定义极限是描述函数在某一点附近的行为的概念。
如果一个函数$f(x)$在$x=a$附近的取值随着$x$的逼近$a$而无限接近某一值$A$,那么我们就说当$x$趋近$a$时$f(x)$的极限为$A$,记作$\lim_{x\to a}f(x)=A$。
2. 极限的性质(1)唯一性:若$\lim_{x\to a}f(x)$存在,则其极限唯一。
(2)局部有界性:如果$\lim_{x\to a}f(x)=A$存在,则存在一个$\delta>0$,使得当$0<|x-a|<\delta$时,$f(x)$有界。
(3)局部保号性:若$\lim_{x\to a}f(x)=A$存在且$A>0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)>0$;若$A<0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)<0$。
(4)局部保号性:若$\lim_{x\to a}f(x)=A>0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)>0$;若$\lim_{x\to a}f(x)=A<0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)<0$。
3. 极限存在的条件函数$f(x)$在$x=a$处的极限存在的条件有:(1)情况一:$\lim_{x\to a}f(x)$存在且有限。
(2)情况二:$\lim_{x\to a^+}f(x)$和$\lim_{x\to a^-}f(x)$均存在且相等。
高中数学知识点总结 第十三、四章极限与导数
高中数学第十三章-极 限考试内容:教学归纳法.数学归纳法应用. 数列的极限.函数的极限.根限的四则运算.函数的连续性. 考试要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则;会求某些数列与函数的极限.(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.§13. 极 限 知识要点1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立.⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立;②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞→lim②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞→lim (C 为常数)②),(01lim是常数k N k nkn ∈=∞→③对于任意实常数, 当1|| a 时,0lim =∞→n n a当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞→∞→不存在当1 a 时,n n a ∞→lim 不存在⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞→∞→lim ,lim ,那么①b a b a n n n ±=±∞→)(lim②b a b a n n n ⋅=⋅∞→)(lim③)0(lim≠=∞→b bab a n n n特别地,如果C 是常数,那么Ca a C a C n n n n n =⋅=⋅∞→∞→∞→lim lim )(lim .⑷数列极限的应用:求无穷数列的各项和,特别地,当1 q 时,无穷等比数列的各项和为)1(11q qa S -=. (化循环小数为分数方法同上式) 注:并不是每一个无穷数列都有极限. 3. 函数极限;⑴当自变量x 无限趋近于常数0x (但不等于0x )时,如果函数)(x f 无限趋进于一个常数a ,就是说当x 趋近于0x 时,函数)(x f 的极限为a .记作a x f x x =→)(lim 0或当0x x →时,a x f →)(.注:当0x x →时,)(x f 是否存在极限与)(x f 在0x 处是否定义无关,因为0x x →并不要求0x x =.(当然,)(x f 在0x 是否有定义也与)(x f 在0x 处是否存在极限无关.⇒函数)(x f 在0x 有定义是)(lim 0x f x x →存在的既不充分又不必要条件.)如⎩⎨⎧+--=1111)( x x x x x P 在1=x 处无定义,但)(lim 1x P x →存在,因为在1=x 处左右极限均等于零.⑵函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0,那么①b a x g x f x x ±=±→))()((lim 0②b a x g x f x x ⋅=⋅→))()((lim 0③)0()()(lim≠=→b bax g x f x x 特别地,如果C 是常数,那么)(lim ))((lim 0x f C x f C x x x x →→=⋅.n x x n x x x f x f )](lim [)]([lim 0→→=(+∈N n )注:①各个函数的极限都应存在.②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. ⑶几个常用极限:①01lim =∞→x n ②0lim =+∞→x x a (0<a <1);0lim =-∞→x x a (a >1)③1sin lim0=→x x x 1sin lim 0=⇒→xxx④e xx x =+∞→)11(lim ,e x x x =+→10)1(lim (71828183.2=e )4. 函数的连续性:⑴如果函数f (x ),g (x )在某一点0x x =连续,那么函数)0)(()()(),()(),()(≠⋅±x g x g x f x g x f x g x f 在点0x x =处都连续.⑵函数f (x )在点0x x =处连续必须满足三个条件:①函数f (x )在点0x x =处有定义;②)(lim 0x f x x →存在;③函数f (x )在点0x x =处的极限值等于该点的函数值,即)()(lim 00x f x f x x =→.⑶函数f (x )在点0x x =处不连续(间断)的判定:如果函数f (x )在点0x x =处有下列三种情况之一时,则称0x 为函数f (x )的不连续点. ①f (x )在点0x x =处没有定义,即)(0x f 不存在;②)(lim 0x f x x →不存在;③)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→.5. 零点定理,介值定理,夹逼定理: ⑴零点定理:设函数)(x f 在闭区间],[b a 上连续,且0)()( b f a f ⋅.那么在开区间),(b a 内至少有函数)(x f 的一个零点,即至少有一点ξ(a <ξ<b )使0)(=ξf .⑵介值定理:设函数)(x f 在闭区间],[b a 上连续,且在这区间的端点取不同函数值,B b f A a f ==)(,)(,那么对于B A ,之间任意的一个数C ,在开区间),(b a 内至少有一点ξ,使得C f =)(ξ(a <ξ<b ).⑶夹逼定理:设当δ ||00x x -时,有)(x g ≤)(x f ≤)(x h ,且A x h x g x x x x ==→→)(lim )(lim 0,则必有.)(lim 0A x f x x =→注:||0x x -:表示以0x 为的极限,则||0x x -就无限趋近于零.(ξ为最小整数) 6. 几个常用极限: ①1,0lim q q n n =+∞→②)0(0!lima n a nn =+∞→ ③k a an nk n ,1(0lim=+∞→为常数)④0ln lim =+∞→nnn⑤k n n k n ,0(0)(ln limεε=+∞→为常数)高中数学第十四章 导 数考试内容: 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值. 考试要求:(1)了解导数概念的某些实际背景. (2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.。
高数极限知识点
一、微积分基础知识1. 函数,导数与微分函数:自变量,因变量,定义域,值域等;函数的一些基本性质(如连续性,对称性,周期性,奇偶性等),(基本)初等函数等。
导数:设函数y=F(x )当自变量在点x 处有一增量△x 时,函数y 相应的有一改变量△y=F(x + △x )-F(x ),那么当△x 趋于零时,若比值△y/ △x 的极限存在(为一确定的有限值),则这个极限为函数y=F(x )在点x 处导数,记作:xx F x x F x y dx dy x F y x x ∆-∆+=∆∆=='='→∆→∆)()(lim lim )(00这时称函数y=F(x )在点x 处是可导的。
y=F(x )x x+△xy=F(x +△x )△y)(x F y =函数y=F(x )在x 处的导数等于曲线y=F(x )在点x 处的切线的斜率,即:导数的几何意义:αtan )('=x F 力学中质点的位置矢量对时间的一阶导数就是该质点的速度矢量;位置矢量对时间的二阶导数(也是:速度矢量对时间的一阶导数)是质点的加速度矢量,即:, ,22dt r d dt d a dt r d===υυy=F(x)注意:以下是易混淆的两个表示:'y 和y前者:只要是在上面加一点的,都是对时间的一阶导数,即:,当然加两点,则是对时间的二阶导数,即:dt dyy =∙22dty d dy dy dt d dt y d y =⎪⎪⎭⎫ ⎝⎛==∙∙∙后者:永远是函数对自变量的导数。
如对于函数y=y(x) ,则dxdy y ='要优先掌握的基本求导公式:xx 1)'(ln =)'(=C 1)'(-=n nnxx x x cos )'(sin =xx sin )'(cos -=xx e e =)'(;举例:1)'(-=+n n Anx C Ax tt 6)'103(2=+236)'52(x x =+;;;;;xx x 12)6()52(23='=''+函数的和、差、积、商的求导法则:(1) (u ±v )'=u '±v ',(2) (Cu )'=Cu '(C 是常数),(3) (uv )'=u 'v +u v ',(4) 2)(v v u v u v u '-'=' (v ≠0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调递减。
10. 极值的必要条件:若函数 f(x)在 x0 处可导,且在 x0 处取得极值,则 f '(x0 ) 0.
11.极值的第一充分条件:设 f(x)在 x0 处连续,在 x0 邻域(x0-δ,x0+δ)内可导,(1)若当
(1)[u(x) v(x)]' u'(x) v'(x) ;(2)[u(x)v(x)]' u'(x)v(x) u(x)v'(x) ;(3)
[cu(x)]' c u'(x) (c 为常数);(4)[ 1 ]' u'(x) ;(5)[u(x)]' u(x)v'(x) u'(x)v(x) 。
ξ∈(a,b),使 f '( ) 0.
2
[证明] 若当 x∈(a,b),f(x)≡f(a),则对任意 x∈(a,b), f '(x) 0 .若当 x∈(a,b)时,f(x)
≠f(a),因为 f(x)在[a,b]上连续,所以 f(x)在[a,b]上有最大值和最小值,必有一个不等于 f(a),
不妨设最大值 m>f(a)且 f(c)=m,则 c∈(a,b),且 f(c)为最大值,故 f '(c) 0 ,综上得证。
14. Lagrange 中值定理:若 f(x)在[a,b]上连续,在(a,b)上可导,则存在 ξ∈(a,b),使
f '( ) f (b) f (a) . b a
f (b) f (a)
[证明]
令 F(x)=f(x)-
b a
(x a) ,则 F(x)在[a,b]上连续,在(a,b)上可导,且 F(a) f (b) f (a)
x∈(x- δ,x0)时 f '(x) 0 ,当 x∈(x0,x0+δ)时 f '(x) 0 ,则 f(x)在 x0 处取得极小值;(2)
若当
x∈(x(x0,x0+δ)时 f '(x) 0 ,则 f(x)在 x0 处取得极大值。
12.极值的第二充分条件:设 f(x)在 x0 的某领域(x0-δ,x0+δ)内一阶可导,在 x=x0 处二阶可导,
1
因变量 y 也随之取得增量 Δy(Δy=f(x0+Δx)-f(x0)).若 lim y 存在,则称 f(x)在 x0 处可导,此 x0 x
dy
极限值称为 f(x)在点 x0 处的导数(或变化率),记作 f ' (x0)或 y'
x
x0 或
dx
,即
x0
f (x) f (x0 ) 。由定义知 f(x)在点 x
第十二章 极限和导数
第十四章 极限与导数
一、基础知识 1.极限定义:(1)若数列{un}满足,对任意给定的正数 ε,总存在正数 m,当 n>m 且 n∈N 时, 恒有|un-A|<ε 成立(A 为常数),则称 A 为数列 un 当 n 趋向于无穷大时的极限,记为
lim f (x), lim f (x) ,另外 lim f (x) =A 表示 x 大于 x0 且趋向于 x0 时 f(x)极限为 A,称右极限。
(sin x)' cos x; (4) (cos x)' sin x ;(5) (a x )' a x ln a ;(6) (ex )' ex ;(7) (log x)' 1 log x ;
(8) (ln x)' 1 .
a
xa
x
7. 导数的运算法则:若 u(x),v(x)在 x 处可导,且 u(x)≠0,则
3. 连续:如果函数 f(x)在 x=x0 处有定义,且 lim f(x)存在,并且 lim f(x)=f(x0),则称 f(x)在
x x0
x x0
x=x0 处连续。 4.最大值最小值定理:如果 f(x)是闭区间[a,b]上的连续函数,那么 f(x)在[a,b]上有最大值和最
小值。
5. 导数:若函数 f(x)在 x0 附近有定义,当自变量 x 在 x0 处取得一个增量 Δx 时(Δx 充分小),
x
x
x x0
类似地 lim f (x) 表示 x 小于 x0 且趋向于 x0 时 f(x)的左极限。 x x0
2 极限的四则运算:如果 lim f(x)=a, lim g(x)=b,那么 lim [f(x)±g(x)]=a±b, lim [f(x)
x x0
x x0
x x0
x x0
•g(x)]=ab, lim f (x) a (b 0). xx0 g(x) b
=F(b),所以由 13 知存在 ξ∈(a,b)使 F '( ) =0,即 f '( )
. b a
15. 曲线凸性的充分条件:设函数 f(x)在开区间 I 内具有二阶导数,(1)如果对任意 x∈I,
f ''(x) 0 ,则曲线 y=f(x)在 I 内是下凸的;(2)如果对任意 x∈I, f ''(x) 0 ,则 y=f(x)在 I 内
且 f '(x0 ) 0, f ''(x0 ) 0 。(1)若 f ''(x0 ) 0 ,则 f(x)在 x0 处取得极小值;(2)若
f ''(x0 ) 0 ,则 f(x)在 x0 处取得极大值。
13. 罗尔中值定理:若函数 f(x)在[a,b]上连续,在(a,b)上可导,且 f(a)=f(b),则存在
f '(x0 ) lim
0 连续是 f(x)在 x0 可导的必要条件。若 f(x)在
x x0
x x0
区间 I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点 x0 处导
数 f ' (x0)等于曲线 y=f(x)在点 P(x0,f(x0))处切线的斜率。
6.几个常用函数的导数:(1) (c)' =0(c 为常数);(2)(xa )' axa1 (a 为任意常数);(3)
u(x) u 2 (x)
u(x)
u 2 (x)
8.复合函数求导法:设函数 y=f(u),u= (x),已知 (x)在x 处可导,f(u)在对应的点 u(u= (x))处
可导,则复合函数 y=f[ (x)]在点 x 处可导,且(f[ (x)])' = f '[ (x)] '(x) .
9.导数与函数的性质:(1)若 f(x)在区间 I 上可导,则 f(x)在 I 上连续;(2)若对一切x∈(a,b)有