西师版小学三年级下册数学总复习资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学三年级下册数学总复习资料(西师版)
第一单元两位数乘两位数的乘法
一、知识要点
1、整十整百数的乘法的口算方法:先把因数末尾的0放在一边,再用0前面的数字相乘,然后在积的末尾添上0。(记住:必须方便口算。最后所添0的个数=放在一边的0的总个数。)
2、两位数乘两位数的笔算方法:相同数位对齐,先用第二个因数个位上的数分别去乘第一个因数每一位上的数,再用第二个因数十位上的数分别去乘第一个因数每一位上的数,最后一把两次乘得积相加。哪一位上乘得的积满几十,就向前一位进几,用哪一位上的数去乘,乘得的积的末位就和那一位对齐。
3、积的变化的规律:(1)一个因数扩大A倍,另一个因数不变,积就扩大A倍。(2)一个因数扩大A倍,另一个因数扩大B倍,积扩大A×B倍。(3)积不变的规律: 一个因数扩大A倍,加一个因数缩小1/A倍,积不变。
4、数字的排列规律:如果题中的数字越来越大,可能是由乘法或加法算出的。如果题中的数字越来越小,可能是由除法或减法算出的。
5、解决问题:(1)用两步乘法计算解决问题,可先算出每一份的数量,再乘以总份数;也可以先算出总份数,再乘每份的数量。(2)“归一”问题:解题时需先根据已知条件求出一个单位量的数值,如:单位面积的产量、单位时间的工作量、单位物品的价格、单位时间的路程等,然后再根据已知条件和问题求出结果。
6、0乘任何数都得0。
二、典型例题
1、口算:50×12积的末尾有()个0;26×40积的末尾有()个0;30×80积的末尾有()个0;50×80积的末尾有()个0。
2、口算43×10时,可以这样算:43个()是();也可以这样算:在43的后面添()个0。
3、 4 6
× 3 5
2 3 0 ……()×()的积
1 3 8 ……()×()的积
1 6 1 0 ……()+()的和
4、21个14连续相加的和是();35个20的和是();24的32倍是()。27个50相加的和与50的()相等。
5、小明在计算完37×62后,想验算结果是否正确,可以用()×(),或者是用()÷()=()来进行检验。
6、最大的两位数是(),最小的两位数是(),它们的积是(),它们的差是()。
7、小花今年10岁,奶奶的年龄比她的7倍多3岁,奶奶今年(
8、2 42,当)时,这个算式的积是三位数。要使积是四位数,里可以填()。
9、一个坏了的水龙头每分要白白流掉65克水,1时要浪费水()克。
10、根据规律填数。
(1)2,3,5,8,12,17,(),()。
(2)1,20,3,15,5,10,(),(),(),()。
(3)1,4,9,16,25,(),(),()。
(4)1,1,2,3,5,8,13,21,(),(),89。
11、两位数乘两位数的积可能是()位数和()位数。
12、两个因数的末尾都有一个0,所得积的末尾()。
13、同学们乘船参加夏令营活动,这艘船四等舱有15个房间,每间有12个床位。同学们住满了11个四等舱房间后,还剩9人。共有多少人参加夏令营活动?
注意:这道题中“四等舱有15个房间”是无用的条件。
(1)同学们住满11个四等舱房间有多少人?
12×11=132(人)
(2)共有多少人参加夏令营活动?
132+9=141(人)
答:共有141人参加夏令营活动。
14、有22所学校参加体育训练,每所学校的同学都站
了4列,每列18人,参加训练的同学共有多少人?
方法一:(1)1所学校参加训练的同学有多少人?
18×4=72(人)
(2)参加训练的同学共有多少人?
72×22=1584(人)
答:参加训练的同学共有1584人。方法二:(1)22所学校共站了多少列?
4×22=88(列)
(2)参加训练的同学共有多少人?
18×88=1584(人)
答:参加训练的同学共有1584人。
15、3箱矿泉水共有36瓶,24箱共有多少瓶矿泉水?方法一:(1)每箱有多少瓶矿泉水?
36÷3=12(瓶)
(2)24箱共有多少瓶矿泉水?
12×24=288(瓶)
答:24箱共有288瓶矿泉水。
“归一”法先用除法求出单一量,再用乘法求出总量。方法二:(1)24箱是3箱的多少倍?
24÷3=8
(2)24箱共有多少瓶矿泉水?
36×8=288(瓶)
答:24箱共有288瓶矿泉水。
16、全团有23人到西山景区旅游,索道观光车限坐4人,零售票价15元/人,团体票价12元/人。(10人及以上可购团体票。)(1)全团上山至少要坐几辆观光车?(2)全团人购票至少要多少元?
(1)全团上山至少要坐几辆观光车?
23÷4=5(辆)……3(人)5+1=6(辆)
答:全团上山至少要坐6辆观光车。
(2)全团人购票至少要多少元?
23÷10=2(倍)……3(人)10×2=20(人)
20×12=240(元)240+15×3=285(元)
答:全团人购票至少要285元。
第二单元长方形和正方形的面积
一、知识要点
1、长方形的周长和面积的比较:
2、正方形的周长和面积的比较:
3、物体表面或平面图形的大小叫做它们的面积。
4、平方厘米、平方分米、平方米是常用的面积单位;
厘米、分米、米、千米是常用的长度单位。表示物体表面、地面或平面图形的大小,要用面积单位;表示物体高矮长短或线段的长短,要用长度单位。
5、边长1厘米的正方形,面积是1平方厘米,可以写成1厘米²,还可以写成1cm²。(如橡皮、邮票、硬币等。)边长1分米的正方形,面积是1平方分米,可以写成1分米²,还可以写成1dm²。(如课本面、书桌面等。)边长1米的正方形,面积是1平方米,可以写成1米²,还可以写成1m²。(如黑板面、教室地面、操场等。)
6、1m²=100dm²1dm²=100cm²1m²=10000cm²平方厘米、平方分米、平方米这三个面积单位,相邻两个单位之间的进率是100。
1千米=1000米 1米=10分米 1分米=10 厘米 1厘米=10毫米
米、分米、厘米、毫米这四个长度单位,相邻两个单位间的进率是10。
高级单位前面的数×进率
7、高级单位低级单位,
低级单位前面的数÷进率
8、周长相等的长方形和正方形,正方形的面积最大。
面积相等的长方形和正方形,正方形的周长最短。
三、典型例题
1、一个正方形的周长是16厘米,它的边长是(),它的面积是()。
2、把两个长是10分米,宽是5分米的长方形拼成一个大正方形,拼成的大正方形的周长是( ),面积为()。
3、正方形的面积256平方分米,它的边长一定是()。
4、至少要()个完全一样的正方形才能拼成一个新的正方形。
5、面积相等的两个长方形,它们周长(不一定相等)。
6、边长是4厘米的正方形,它的周长和面积(无法比较)。
7、从一个长是10厘米,宽是7厘米的长方形纸片中,裁出一个最大的正方形,最大正方形的面积是()平方厘米,剩下的长方形的面积是()平方厘米。8、方桌桌面的边长是80厘米。要配上一张和桌面同样
大小的玻璃,玻璃1平方分米需要6角钱。这块玻璃要
多少钱?
80×80=6400(cm²) 6400cm²=64dm²
64×6=384(角)384角=38.4元
答:这块玻璃要38.4元。
9、张大爷家有一块长方形菜地,长16米,宽8米。如
果每平方米收白菜4千克,每千克可卖3元。这块菜地
的白菜一共可卖多少钱?
16×8=128(m²)128×4=512(kg)
16×8=128(m²)128×=512(kg)512×3=1536(元)答:这块菜地的白菜一共可卖1536元。
10、一辆洒水车每分行驶75千米,洒水的宽度是10米,
洒水车行驶8分钟后,被洒水的地面面积约是多少平方米?
方法一:(1)洒水车每分钟洒水多少平方米?
75×10=750(m²)
(2)洒水车行驶8分钟后,被洒水的地面面积约是多少平方米?750×8=6000(m²)
答:被洒水的地面面积约是6000平方米。方法二:(1)洒水车8分钟行驶多少米?
75×8=600(m)
(2)洒水车行驶8分钟后,被洒水的地面面积约是多少平方米?600×10=6000(m²)
答:被洒水的地面面积约是6000平方米。
11、有一根绳子可以围成一个长6分米,宽4分米的长
方形。用这根绳子围成一个正方形,这个正方形的面积
是多大?
(6+4)×2=20(m)20÷4=5(m)5×5=25(m²)答:这个正方形的面积是25平方米。
第三单元三位数除一位数的除法
一、知识要点
1、0除以任何不是0的数都得0。0不能作除数和分母。