人教A版课标版必修探究与发现 祖暅原理与柱体椎体球体的体积25页PPT

合集下载

探究与发现祖暅原理与柱体、椎体、球体的体积

探究与发现祖暅原理与柱体、椎体、球体的体积
祖暅原理与柱体、锥体、球体的体 积公式
安徽省舒城中学 束观元
引入课题:
在小学,我们是如何推出圆锥体积
公式的?棱柱、棱锥?球体?


好大的西瓜,能不

能填饱我的肚子!






探究活动一:祖暅原理
取一堆书放在桌面上,然后让它如图改变一下 形状,请问:它的体积变了吗?
还有哪些量没有改变?
是不是等底等高的两个几何体体积就一定相等 呢?
夹在两个平行平面之间的两个几何体,被平行于 这两个平面的任意平面所截,如果截得的两个截 面面积总相等,那么这两个几何体的体积相等。
这个原理叫祖 理
探究活动二:柱体的体积公式
夹在两个平行平面之间的两个几何体,被平行于 这两个平面的任意平面所截,如果截得的两个截 面面积总相等,那么这两个几何体的体积相等。
V柱 Sh
探究活动三:锥体的体积公式
等底面积等高的两个锥体的体积相等
A1
C1
B1
A
C
B
1 V锥 3 Sh
探究活动四:球体体积
半径为R的半球 底面半径和高都为R的圆柱 挖 去 一 个 圆 锥
S圆= r 2 R2 l 2
S圆环= (R 2 l 2 )
S圆 S圆环
1 2 V球
R2
R

1 R2
3
R

2 R3
3
V球

4 R3
3
例1. 从一个正方体中,如图那样截去4个三棱锥后, 得到一个正三棱锥A-BCD,求它的体积是正方体体积 的几分之几?
例2 已知过球面上三点A、B、C的截面到球心O的距 离等于球半径的一半,且AB=BC=CA=2cm,求球的 表面积.

探究与发现祖暅原理与柱体锥体球体的体积

探究与发现祖暅原理与柱体锥体球体的体积

探究与发现祖暅原理与柱体锥体球体的体积祖暅原理是一种用来计算一些碰撞问题的方法。

它是由荷兰物理学家爱文·伽兹(Awe M. C. J. Gase)在1971年首次提出的。

祖暅原理可以应用于各种情况,包括碰撞、反弹、散射等。

这个原理的基本思想是,根据碰撞前后的动量守恒和能量守恒原理,可以推导出碰撞物体的质量、速度等参数。

柱体、锥体和球体是几何学中常见的三维几何体,它们的体积可以通过数学公式推导得到。

首先来讨论柱体。

柱体是一个具有平行的底面和均匀直径的圆柱形物体。

它的体积可以通过计算底面的面积乘以高度来获得。

具体地说,柱体的体积公式为:V=πr²h,其中r为底面半径,h为柱体的高度。

而锥体是一个具有底面是圆的三角锥形物体。

计算锥体的体积需要先求出底面的面积,再乘以高度的三分之一、锥体的体积公式为:
V=(1/3)πr²h,其中r为底面半径,h为锥体的高度。

最后,球体是一个具有球形的物体。

计算球体的体积需要先求出球的半径,再将半径的三次方乘以π的四分之三、具体地说,球体的体积公式为:V=(4/3)πr³,其中r为球的半径。

以上是关于柱体、锥体和球体的体积计算公式的一些基本介绍。

要具体计算一些物体的体积,需要提供它的底面半径、高度或半径等参数。

同时要注意单位的一致性,确保结果的准确性。

人教版高中数学必修二《祖暅原理与柱体、锥体、球体的体积》

人教版高中数学必修二《祖暅原理与柱体、锥体、球体的体积》
(3)注意展示点评任务,展示人书写要迅速。
在展示评价后,若你仍有补充, 我们奖励 20 分
2020/3/11
题 号 方式
自探一 板书 自探二 板书
展示分工
第五组 第一组
点评分工
展示要求:
1.书面展示要板书工整、规范、快速; 2.组长结合本组情况,适当选派代表; 3.非展示同学继续讨论,完成后结合展示点评,迅速记
积为____。
5,0
2020/3/11
总结本节课内容,重点,难点! 总结本节课同学们的表现!
2020/3/11
课后探究
利用祖暅原理探究台体的体积公式。 球、柱、台、锥体体积之间的关系。
课后作业:完成课时作业1。
2020/3/11
2020/3/11
学习目标:
(1)能够利用祖暅原理求柱体和锥体的体积。 (2)能够利用祖暅原理求球体的体积。
2020/3/11
祖暅原理 “幂势既同,则积不容异”
2020/3/11
探究一
如图,下面是底面积都等于S,,高都等于 h的任意棱柱,圆柱和长方体,你能用祖暅 原理推导柱体的体积公式吗?
V长方体 S底h
2020/3/11
2020/3/11
2020/3/11
结论 半径为R的球 的体积公式是
V球

4 3
R3
2020/3/11
质疑再探
2020/3/11
运用拓展
1.类比祖暅原理,如图所示,在平面直角坐标系中, 图1是一个形状不规则的封闭图形,图2是一个上 底为1的梯形,且当实数t取[0,3]上的任意值时,直 线y=t被图1和图2所截得的两线段长始终相等, 则图1的面积为___.
2020/3/11

高中数学人教A版必修2第一章1.3.1柱体、锥体、台体的体积课件(共21张PPT)

高中数学人教A版必修2第一章1.3.1柱体、锥体、台体的体积课件(共21张PPT)

柱体(棱柱、圆柱)的体积等于它的底两面个积柱S和体高的h体
的积,即
V柱体=Sh
积相等
h S
h
S
S
二、锥体的体积公式
设有面积都等于S,高都等于h的两个锥体,使它们
的底面在同一平面内。根据祖暅原理,可知它们的体
积相等。
即等底等高的
由圆锥体积公式可知
V锥体=
1 sh 3
两个锥体的体 积相等
h
h
S
S
探究:棱锥与同底等高的棱柱体积之间的关系.
所以螺帽的个数为 5.81000 (7.8 2.956) 252(个) 答:这堆螺帽大约有252个.
例2、从一个正方体中,如图那样截去4个 三棱锥后,得到一个三棱锥A-BCD,求它 的体积是正方体体积的几分之几?
A D
C A D
B
C B
课堂练习:
1.用一张长12cm,宽8cm的矩形围成圆 柱形的侧面,求这个圆柱的体积。
P
由于圆台(棱台)是由圆锥(棱锥) 截成的,因此可以利用两个锥体 的体积差.得到圆台(棱台)的体积 公式(过程看下一页).
A
V VPABCD VPABCD
1 (S SS S)h 3
A
D
S
C
B
h
D
S C
B
台体(棱台、圆台)的体积可以转化为锥体的 体积来计算。如果台体的上、下底面面积分别为 S‘, S,高是h,可以推得它的体积是
锥体中的比例问题
4、平行于圆锥底面的平面,把圆锥的高三等分,
则圆锥被分成三部分的体积之比为( )
(A)1∶2∶3 (B)1∶4∶9
(C)1∶7∶19 (D)1∶8∶27
V
V

高中数学新人教A版必修2 .1柱体、锥体、台体的表面积与体积课件

高中数学新人教A版必修2 .1柱体、锥体、台体的表面积与体积课件

练习 1 . 若一个圆柱的侧面展开图是一个正方形, 则这个圆柱的全面积与侧面积的比是( A )
1 2 A . 2
1 4
B . 4
1 2
C.
1 4 D . 2
2 . 已知圆锥的全面积是底面积的3倍,那么这个 圆锥的侧面积展开图----扇形的圆心角为____
__1_8_0__度

1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
V 总 m / 5 .8 10 7 .8 0 7 0 .5 4 c9 3 3m
S三角 1 212 2312363 V 棱柱 sh 63631 0216 3
h V 圆 柱 r2h3.1 4 52 1 078
12
V螺帽 21630785295
V总 /V螺帽 743.25.9526 ( 52个
思考:圆柱、圆锥、圆台的侧面积公 式间的联系与区别
S圆锥侧= πrl
r1=0 S圆台侧=π(r1+r2)l
r1=r2 S圆柱侧= 2πrl
例2 如下,图 一个圆台形花盆2直 0cm径 ,盆为底 直径1为5cm,底部渗水圆孔1直.5c径 m,盆 为壁长
15cm.那么花盆的表面多 积少 约平 是方厘 (取米
B
D
C
S4SSBC4
3a2 4
3a2
圆柱的展开图是一个矩形:
如果圆柱的底面半径为 r,母线为l,那么圆柱
的底面积为 r 2,侧面积为 2rl 。因此圆柱的
表面积为
S 2r2 2rl 2r(r l)
O`
l
Or
2r
圆锥的展开图是一个扇形:
如果圆柱的底面半径为 r,母线为 l

探究与发现祖暅原理与柱体锥体球体的体积

探究与发现祖暅原理与柱体锥体球体的体积

探究与发现祖暅原理与柱体锥体球体的体积祖暅原理是物理学中的一个基本原理,用于描述柱体、锥体和球体的体积关系。

根据祖暅原理,柱体和圆锥的底面积相等时,它们的体积与高度的比相等。

类似地,球体与柱体的底面积相等时,它们的体积与高度的比也相等。

首先,让我们研究一下柱体和锥体的体积关系。

考虑一个高度为h的柱体,底面积为A。

根据祖暅原理,柱体的体积可以用公式V1=A*h表示。

现在考虑一个相似的高度为h的圆锥,底面积为A。

根据祖暅原理,圆锥的体积可以用公式V2=(1/3)*A*h表示。

通过比较V1和V2,可以发现V2=(1/3)*V1、也就是说,圆锥的体积是柱体体积的三分之一、这个结论可以很容易地通过几何推导得出。

因此,我们可以得出结论:柱体和圆锥的体积比为3:1现在让我们来探究柱体和球体的体积关系。

考虑一个高度为h的柱体,底面积为A。

根据祖暅原理,柱体的体积可以用公式V1=A*h表示。

现在考虑一个半径为r的球体,底面积为A。

根据祖暅原理,球体的体积可以用公式V3=(4/3)*π*r^3表示。

通过比较V1和V3,可以发现V3=(4/3)*π*(r^3)=(π/3)*A*h。

也就是说,球体的体积是柱体体积的π/3倍。

这个结论可以通过解析几何方法或积分计算得出。

因此,我们可以得出结论:柱体和球体的体积比为π/3:1最后-柱体和圆锥的体积比为3:1;-柱体和球体的体积比为π/3:1在实际应用中,这些体积关系可以帮助我们计算各种形状的物体的体积。

例如,如果我们知道柱体的底面积和高度,我们可以用公式V=A*h计算其体积。

同样地,如果我们知道球体的半径,我们可以用公式V=(4/3)*π*r^3计算其体积。

这些公式都是根据祖暅原理得出的。

探究和发现祖暅原理与柱体、锥体和球体的体积关系是一个有趣的数学和几何问题。

通过对这些几何形状的体积进行研究,我们可以更好地理解它们之间的关系,并应用于实际问题中。

必修2 探究与发现 祖暅原理与柱体、椎体、球体的体积(共30张PPT)

必修2 探究与发现 祖暅原理与柱体、椎体、球体的体积(共30张PPT)

1 V圆台= 3 πh
(r r 1r 2 r 2 )
2 1
2
反思感悟
问题8:柱体、锥体、台体的体积公式之间有什么关系?
上底扩大 上底缩小
S 0 1 1 V Sh S S V ( S S S S )h V Sh 3 3 S为底面面积, S为底面面积, S,S’分别为上、下 h为柱体高 h为锥体高 底面面积,h 为台体 高
知道它们前后的体积相等的条件为:
1 .高度相同 2.同一层上每页纸大小(面积)一样 3.每层与放作业本的桌面平行
祖暅的介绍:
祖暅是南北朝时代著名数学家祖冲之的儿子。受家庭的 影响,尤其是父亲的影响,他从小对数学具有浓 厚的兴趣。祖冲之除了在计算圆周率方面的成就,还与 他的儿子祖暅一起,用巧妙的方法解决了柱体,锥体, 球体的体积计算。他们当时采用的原理,在西方被称为 “卡瓦列利”原理,但这是在祖氏父子以后一千多年才由 意大利数学家卡瓦列利发现的。为了纪念祖氏父子的 这一伟大发现,数学上也称这个原理为“祖暅原理”。
例1:如图,在长方体 ABCD ABC D 中, 截下一个棱锥 C ADD ,求棱锥的体积与剩 余部分的体积之比。 D'
解: 长方体可以看成直四棱柱 ADD' A' BCC ' B '
设它的底面 ADD A 面积为S,高为h, 则它的体积为V Sh 因为棱锥 C A' DD'
探究点二 锥体的体积计算公式
锥体体积公式及其探索思路?
锥体的体积公式V锥体=?
锥体的代表 ? 等底面积等高的 任意两个锥体的 体积相等
+
A’ B’
C’
问题6:三棱柱分割
成三个三棱锥,他们三个 的体积相等吗?为什么?

数学人教版高中一年级必修2 祖暅原理与柱体、锥体、球体的体积

数学人教版高中一年级必修2 祖暅原理与柱体、锥体、球体的体积
教材分析
祖暅原理与柱体、锥体、球体的体积
教学的重点和难点
重点:引导学生运用祖暅原理推出柱体、 锥体、球体的体积公式。
难点:运用祖暅原理探究球体体积公式 时,构造“等积体”。理解数学中割补 思维方法 。
教材分析
祖暅原理与柱体、锥体、球体的体积
二、学情分析
我校是省级重点中学,学生思维活跃, 知识面广,好奇心和求知欲强,乐于接受 挑战,但部分学生缺乏探究意识和钻研精 神。为适应学生这一特点,调动学生的学 习积极性,满足其学习愿望,本节课采用 以教师为引导,学生为主体的探究学习形 式。
1 2
V球
= R2
R
1
3
R2 R
=
2 3
R3
R 所以
V球 = 34
3
祖暅原理与柱体、锥体、球体的体积
回顾小结
说说这节课你有什么收获 和体会?
设计意图
通过学生自 己谈体会谈 收获,发挥 了学生主体 作用。学生 对本节课思 路重新梳理, 进一步巩固
了知识
祖暅原理与柱体、锥体、球体的体积
七、教学评价
2. 以感性、直观、突出重点为主,分层设置 问题,突破难点。
3.鼓励学生独立思考,引导学生自主探索、合 作交流。
祖暅原理与柱体、锥体、球体的体积
一、创设情境 引入新课
1、把一叠摆放不整齐的作业本放在讲台上。
设计意图
设置问题
提问:你能求出这叠作业本的体积吗? 情 境 , 激 发
提问:能不能把这叠作业本摆放整齐 后再求其体积呢?
祖暅原理与柱体、锥体、球体的体积
三、教材处理
根据新课程标准精神,教师可以 对教材进行恰当处理。依照认识规律, 我把本节探究内容调整至体积公式运 用之前,以帮助学生重建先探究再应 用的认知结构。

探究与发现祖暅原理与柱体、椎体、球体的体积

探究与发现祖暅原理与柱体、椎体、球体的体积
在西方,球体的体积计算方法虽然早已由希腊数学家 阿基米德发现,但“祖暅原理”是在独立研究的基础上得出 的,且比阿基米德的内容要丰富,涉及的问题要复杂。二 者有异曲同工之妙。这一原理主要应用于计算一些复杂几 何体的体积上面。
在西方,直到17世纪,才由意大利数学家卡瓦列里 (Cavalieri.B,1589-1647)发现。于1635年出版的《连续不 可分几何》中,提出了等积原理,所以西方人把它称之为 "卡瓦列里原理"。其实,他的发现要比我国的祖暅晚 1100多年。
球是圆的旋转体,而椭圆、双曲线、 抛物线与圆同属于圆锥曲线,那么椭 圆、双曲线、抛物线绕其对称轴旋转 所得到的几何体,体积又如何求呢?
我们能不能将球的体积的推导方法 迁移到旋转椭球体,旋转双曲体和 旋转抛物体的求法中去?
祖暅原理运用
椭球的体积
将椭圆
x2 a2

y2 b2
1 绕y轴旋转一周所得到的几何体称之
2. 计算如图半球在高度h处的截面面积 R h R
祖暅原理运用
球的体积的推导在中学教材中是构造性证 明的典范,也是我国古代数学的杰出成就之一。 在中学教材中对其有详细的推导过程,但如果 我们只停留在球的体积推导上面,那么这种构 造性证明对思维的锻炼价值就不能得到充分发 挥。所以请思考如下问题:
祖暅原理运用
祖暅原理运用
祖暅原理运用
小结:上述推导方法其实是球的体积推导方法的“重演”。这实 质上是一种同化性迁移。它是在不改变原有知识结构的前提下, 直接将原有的经验应用到本质相同的一类事物中去,从而直接完 成迁移。在这里主要依赖于事物之间的本质特征的相似性,从而 在实质认同的基础上实现本质类化。
祖暅原理运用
锥的体积事实上对于一个任意的锥体设它的底面积为s高为h那么锥体的体积等于三分之一的底乘高球的体积我们不妨研究半球半径为r的体积用平行于底面且与底面的距离为l的平面截半球所得的圆面半径为r球的体积我们取一个底面半径和高都为r的圆柱从圆柱中间挖去一个圆锥圆锥的顶点为圆柱下底面的圆心底面为圆柱的上底面

高中数学 第一章 空间几何体 探究与发现 祖暅原理与柱体、锥体、球体的体积素材 新人教A版必修2(2

高中数学 第一章 空间几何体 探究与发现 祖暅原理与柱体、锥体、球体的体积素材 新人教A版必修2(2

高中数学第一章空间几何体探究与发现祖暅原理与柱体、锥体、球体的体积素材新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章空间几何体探究与发现祖暅原理与柱体、锥体、球体的体积素材新人教A版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章空间几何体探究与发现祖暅原理与柱体、锥体、球体的体积素材新人教A版必修2的全部内容。

祖暅原理与柱体、锥体、球体的体积一、祖暅原理为了求一般柱体、锥体的体积,我们简要介绍一下祖暅(gèng)原理.祖暅,字景烁,祖冲之之子,范阳郡蓟县(今河北省涞源县)人,南北朝时代的伟大科学家.祖暅在数学上有突出贡献,他在实践的基础上,于5世纪末提出下面的体积计算原理:祖暅原理:“幂势既同,则积不容异”.“势”即是高,“幂”是面积。

意思是,如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等。

祖暅原理:夹在两个平行平面之间的几何体,被平行于这两个屏幕的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。

如图1,夹在平行平面间的两个几何体(它们的形状可以不同),被平行于这两个平面的任何一个平面所截,如果截面(阴影部分)的面积都相等,那么这两个几何体的体积一定相等。

这个原理是非常浅显易懂的。

例如,取一摞纸堆放在桌面上组成一个几何体(图2),将她改变一下形状,这个几何体形状发生了改变,得到了另一个几何体,但两个几何体的高度没有改变,每页纸的面积也没有改变,因而两个几何体的体积相等.利用这个原理和长方体体积公式,我们能够求出柱体、锥体、台体和球体的体积.祖暅提出上面的原理,要比其他国家的数学家早一千多年。

探究与发现祖暅原理与柱体锥体球体的体积

探究与发现祖暅原理与柱体锥体球体的体积

研究与发现祖暅原理与柱体、锥体、球体的体积[教课内容、地位]在学生已经初步学习了柱体、锥体、球体的体积公式的基础之上对体积公式的由来的进一步研究,主要内容为用祖暅原理推导柱体、锥体、球体的体积公式;经过模型演示,利用祖暅原理,推行到柱、锥、球体的体积计算 . 经过学习,使学生感觉几何体体积的求解过程,初步认识解决空间几何体问题的思想方法 , 逐渐提升解决空间几何体问题的能力。

[教课编排依照]主假如从学生获取知识按照“从特别到一般,由浅入深,由易到难,顺序渐进”的原则出发,切合学生的认知水平易接受能力 . 教课目的确实定(1)理解祖暅原理的含义,理解利用祖暅原理计算几何体体积的方法;(2)在发现祖暅原理的过程中,领会从“平面”到“空间”的类比、猜想、论证的数学思想方法;领会祖暅原理中由“面积都相等”推出“体积相等”的辩证法的思想;(3)在推导棱柱体积公式的过程中,理解从特别到一般,从一般到特别的概括演绎的数学思想方法是学习数学观点的基本方法;掌握棱柱、棱锥、球体的体积公式;(4)经过介绍我国古代数学家对几何体体积研究的成就,激发学生的民族骄傲感,提升学生学习数学的兴趣 . 拓展爱国主义感情教育,3、教课的要点、难点(1)柱体、锥体、球体的体积公式的研究(2)学生研究能力的培育二、说教法和几何画板和PPT课件导入与学法,研究实质事例。

教法:1、为了培育学生自主学习的能力以及使得不一样层次的学生都能获取相应的知足 . 所以本节课采纳研究性教课 .2、依据本节课的特色也为了给学生的数学研究与数学思想供给支持.学法:为了发挥学生的主观能动性,提升学生的综合能力,确立了研究性学习法:经过剖析、研究得出柱体、锥体、球体的体积公式;四、教课过程1、教课思路由祖暅原理推导柱、锥以及球的体积.其构造图以下:体积观点祖暅原理长方体的体积转化根据柱的体积三棱柱锥为分解为化为柱代表锥锥之差球的体积锥的体积2、事例设计Ⅰ导入课题回首已经学习的柱体、锥体、球体的体积公式,并提问:这些公式怎么来的?(设计企图:让学生产生疑问,带着疑问主动的研究柱体、锥体、球体的体积公式的由来)Ⅱ研究新知1、祖暅原理的引入经过小实验引入祖暅原理,让学生直观感知祖暅原理的正确性,为接下来的应用祖暅原理推导公式供给理论基础课件名称:祖暅原理.课件运转环境:几何画板 4.0 以上版本.课件主要功能:配合教科书“研究与发现祖暅原理与柱体、锥体、球体的体积”的教课,说明几何体等体积变换的依照.课件制作过程:( 1)新建画板窗口.如图1,按住 Shift 键,用【画直线】画 4 条直线 AB, CD ,EF ,GH(分别是直线j, k, l , m).图 1(2)在直线 j 上画两点 I, J.(3)在直线上画一点 K,在直线 l 上画两点 L , M,在直线 m 上画两点 N,O.(4)画线段 KL, LN, NO,OM , MK .( 5)在直线 k,l 之间画一条直线PQ(直线 r).在直线 l ,m 之间画直线RS(直线 s).( 6)作出线段 KL 与直线 r 的交点 T.相同作出线段 KM 与直线 r 的交点 U,线段 LN 与直线s 的交点 V,线段 OM 与直线 s 的交点 W.(7)在直线 k, r ,l , s, m 上分别画一点 X,Y, Z,A1, B1.(8)标志向量TU.依向量TU平移点Y获取Y.相同,标志向量LM,依向量LM平移点 Z 获取 Z ;标志向量VW,依向量VW平移点A1获取 A1;标志向量NO ,依向量VW 平移点 B1获取B1.( 9)挨次选择点K,L,N,O,M,按Ctrl+P ,填补五边形KLNOM ,实时单击【 Measure】(胸怀)菜单中的【Area】,胸怀出它的面积,如“面积p1 3.93cm2”.( 10)近似于上一步,用【选择】工具按序选择点X,Y,Z,A1,B1,B1, A1, Z,Y,按 Ctrl+L ,获取一个凹九边形.(11)用【选择】工具按序选择点 X,Y, Z,A1,B1,B1,A1,Z,Y,并单击【Construct 】(作图)菜单中的【 Polygon Interior 】(多边形内部)给这个凹九边形内部填补,实时单击【 Measure】菜单中的【 Area 】,胸怀出凹九边形的面积,如“面积p2 3.93cm2”.( 12)如图 2,用【画点】工具在直线j 上画一点C1(位于点J 的左侧).过点C1作出直线 j 的垂线(直线a).用【选择】工具作出直线 a 与直线 k 的交点D1.图 2( 13)双击点I,把点I 标志为缩放中心.选中五边形KLNOM (边与极点)及其内部,并单击【Transform 】(变换)菜单中的【Dilate 】(缩放),弹出对话框,把缩放改为1: 3,单击【Dilate 】,获取一个小的五边形KLNOM.选择它的内部,并单击【Measure】菜单中的【Area】,胸怀出它的面积,“面积p10.44cm2”.(14)用【选择】工具双击点 J,把点 J 标志为缩放中心.选中凹九边形(边与极点)及其内部,并单击【 Transform 】菜单中的【 Dilate 】.相同,以 1:3 缩放获取一个小的凹九边形,胸怀出它的面积“面积 p20.44 cm2”.( 15)画直线K X,获取直线b,作出直线 b 与直线 a 的交点E1.(16)用【画线段】工具把点E1和D1用线段连接起来.(17)在线段E1D1上画点F1,用【画线段】工具作出线段F1C1(线段 c),C1E1(线段 d).(18)先后选择线段 c,d,并单击【 Transform 】菜单中的【 Mark Segment Ratio 】(标志线段比)标志为 c/d.( 19)用【选择】工具双击点I ,把点 I 标志为缩放中心.选择五边形KLNOM (边与极点)及其内部,并单击【Transform 】菜单中的【Dilate 】,弹出对话框,单击【Dilate 】,如图3,获取一个小的五边形K LNOM.选择它的内部,并单击【Measure】菜单中的【Area 】,胸怀出它的面积,“面积p1 1.70cm2”.图 3( 20)近似地,也把凹九边形及其内部按相同的缩放比对于中心点J 缩放,胸怀缩放后的对象的面积“面积p2 1.70cm2”.( 21)画线段KK , LL , NN , OO , MM,作出一个五棱台.( 22)画线段XX , YY ,...,作出右侧的凹九棱台.2.研究柱体的体积公式III. 拓展爱国主义感情教育祖暅,祖冲之之子,同其父祖冲之一同圆满解决了球面积的计算问题,获取正确的体积公式。

人教A版数学必修二《柱体、锥体、台体的表面积与体积》实用课件

人教A版数学必修二《柱体、锥体、台体的表面积与体积》实用课件
面积:平面图形所占平面的大小
体积:几何体所占空间的大小
表面积:几何体表面面积的大小
最新
3
棱柱 棱锥 棱台的表面积
怎样理解棱柱、棱锥、棱台的表面积?
一般地,多面体的表面积就是各个面的面积之和
表面积=侧面积+底面积
最新
4
提出问题
在初中已经学过了正方体和长方体的表面积,你 知道正方体和长方体的展开图与其表面积的关系吗?
问这堆螺帽大约有多少个( 取3.14)?
解:六角螺帽的体积是六棱柱 的体积与圆柱体积之差,即:
V 3 122 610 3.14 (10 )2 10
4
2
2956 (mm3)
2.956 (cm3 )
所以螺帽的个数为 5.81000 (7.8 2.956) 252(个)
答:这堆螺帽大约有252个.
最新
22
柱体、锥体、台体的体积
思考:取一些书堆放在桌面上(如图所示) , 并改变它们的放置方法,观察改变前后的体 积是否发生变化?
从以上事实中你得到什么启发?
最新
23
问题:两个底面积相等、高也相等的 柱体的体积如何?
思考 关于体积有如下几个原理: (1)相同的几何体的体积相等; (2)一个几何体的体积等于它的各部分 体积之和; (3)等底面积等高的两个同类几何体的 体积相等; (4)体积相等的两个几何体叫做等积体.
这样,求它们的表面积的问题就可转化为求平行 四边形、三角形、梯形的面积问题。
最新
10
棱柱、棱锥、棱台的表面积
h'
h'
棱柱、棱锥、棱台都是由多个平面图形围成的几何 体,它们的侧面展开图还是平面图形,计算它们的表面 积就是计算它的各个侧面面积和底面面积之和.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档