高中数学讲义 第四章 平面向量与复数(超级详细)
高考数学一轮复习 第四章 平面向量、数系的扩充与复数的引入 4-4 平面向量的应用课件 文
【跟踪训练】
1.[2015·沈阳一模]在△ABC 中,|A→B+A→C|=|A→B-A→C|,AB=2,AC=1,E,F 为 BC 的三等分点,
则A→E·A→F=( )
8
10
A.9
B. 9
25
26
C. 9
D. 9
解析 由|A→B+A→C|=|A→B-A→C|,化简得A→B·A→C=0,又因为 AB 和 AC 为三角形的两条边,不可能为 0, 所以A→B与A→C垂直,所以△ABC 为直角三角形.以 AC 为 x 轴,以 AB 为 y 轴建立平面直角坐标系,如图 所示,则 A(0,0),B(0,2),C(1,0),由 E,F 为 BC 的三等分点知 E23,23,F31,34,所以A→E=32,32,A→F=13,43, 所以A→E·A→F=23×13+23×43=190.
2.[2016·兰州诊断]已知向量 a,b 满足 a·b=0,|a|=1,|b|=2,则|a-b|=( )A.0B来自1C.2D. 5
解析 因为|a-b|2=a2-2a·b+b2=1-0+22=5,所以|a-b|= 5,故选 D.
3.在△ABC 中,A→B=(cos18°,cos72°),B→C=(2cos63°,2cos27°),则角 B 等于( )
考点多维探究
考点 1 向量在平面几何中的应用
典例1
(1)[2014·天津高考]已知菱形 ABCD 的边长为 2,∠BAD=120°,点 E,F 分别在边 BC,DC
上,BE=λBC,DF=μDC.若A→E·A→F=1,C→E·C→F=-23,则 λ+μ=(
)
1
2
A.2
B.3
5
7
C.6
D.12
(2)已知 O 是平面上的一定点,A,B,C 是平面上不共线的三个动点,若动点 P 满足O→P=O→A+λ(A→B+
高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第1课时 平面向量的概念与线性运算.pdf
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第四章 平面向量与复数第1课时 平面向量的概念与线性运算 考情分析考点新知① 了解向量的实际背景;理解平面向量的基本概念和几何表示;理解向量相等的含义. 掌握向量加、减法和数乘运算理解其几何意义;理解向量共线定理. 了解向量的线性运算性质及其几何意义. 掌握向量加、减法、数乘的运算以及两个向. 1. (必修4练习第1题改编)ABCD中为DC边的中点且=a=b则=________. 答案:b-解析:=++=-a+b+=b-(必修4例4改编)在△ABC中=c=b.若点D满足=2则=________.(用b、c表示)答案:+解析:因为=2所以-=2(-)即3=+2=c+2b故=+(必修4练习第6题改编设四边形ABCD中有=且|=则这个四边形是________.答案:等腰梯形解析:=∥,且|=|,∴ ABCD为梯形.又|=|,∴ 四边形ABCD的形状为等腰梯形.(必修4练习第2题改编)a、b是两个不共线向量=2a+pb=a+b=a-2b.若A、B、D三点共线则实数p=________.答案:-1解析:∵ =+=2a-b又A、B、D三点共线存在实数λ使=λ即=-1. 1. 向量的有关概念(1) 向量:既有大小又有方向的量叫做向量向量的大小叫做向量的长度(或模)记作|. (2) 零向量:长度为0的向量叫做零向量其方向是任意的.(3) 单位向量:长度等于1个单位长度的向量叫做单位向量.4) 平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.(5) 相等向量:长度相等且方向相同的向量叫做相等向量.(6) 相反向量:与向量a长度相等且方向相反的向量叫做a的相反向量.规定零向量的相反向量仍是零向量.向量加法与减法运算(1) 向量的加法定义:求两个向量和的运算叫做向量的加法.法则:三角形法则;平行四边形法则.运算律:a+b=b+a;(a+b)+c=a+b+c).(2) 向量的减法定义:求两个向量差的运算叫做向量的减法.法则:三角形法则.向量的数乘运算及其几何意义(1) 实数λ与向量a的积是一个向量记作λa它的长度与方向规定如下:=|λ||a|;当λ>0时与a的方向相同;当λ<0时与a的方向相反;当λ=0时=0.(2) 运算律:设λ、μ∈R则:①λ(μa)=(λμ)a;(λ+μ)a=λa+μa;③ λ(a+b)=λa+λb.向量共线定理向量b与a(a≠0)共线的充要条件是有且只有一个实数λ使得b=λa.[备课札记] 题型1 平面向量的基本概念 给出下列六个命题:两个向量相等则它们的起点相同终点相同;若|a|=|b|则a=b;若=则A、B、C、D四点构成平行四边形;在中一定有=;若m=n=p则m=p;若a∥bb∥c,则a∥c.其中错误的命题有________(填序号)答案:①②③⑥解析:两向量起点相同终点相同则两向量相等;但两相等向量不一定有相同的起点和终点故①不正确;|a|=|b|由于a与b方a、b不一定相等故②不正确;=可能有A、B、C、D在一条直线上的情况所以③不正确;零向量与任一向量平行故a∥b时若b=0则a与c不一定平行故⑥不正确. 设a为单位向量若a为平面内的某个向量则a=|a|·a;②若a与a平行则a=|a|·a;③若a与a平行且|a|=1则a=a上述命题中假命题个数是________.答案:3解析:向量是既有大小又有方向的量与|a|a模相同但方向不一定相同故①是假命题;若a与a平行则a与a方向有两种情况:一是同向二是反向反向时a=-|a|a故②、③也是假命题填3.题型2 向量的线性表示例2 平行四边形OADB的对角线交点为C===a=b用a、b表示、、 解:=a-b==-=+=+=a+b=+=+==+=-=- 在△ABC中、F分别为AC、AB的中点与CF相交于G点设=a=b试用a表示 解:=+=+λ=+(+)=+(-)=(1-λ)+=(1-λ)a+又=+=+m=+(+)=(1-m)+=+(1-m)b解得λ=m==+. 题型3 共线向量例3 设两个非零向量a与b不共线.(1) 若=a+b=2a+8b=3(a-b).求证:A、B、D三点共线;(2) 试确定实数k使ka+b和a+kb共线.(1) 证明:∵=a+b=2a+8b=3(a-b)=+=2a+8b+3(a-b)=5(a+b)=5,共线.又它们有公共点B、B、D三点共线.(2) 解:∵ ka+b与a+kb共线存在实数ka+b=λ(a+kb)即(k-λ)a=(λk-1)b.又a、b是两不共线的非零向量-λ=λk-1=0.-1=0.∴ k=±1. 已知a、b是不共线的向量=λa+b=a+μb(λ、μ∈R)当A、B、C三点共线时λ、μ满足的条件为________答案:λμ=1解析:由=λa+b=a+μb(λ、μ∈R)及A、B、C三点共线得=t所以λa+b=t(a+μb)=ta+tμb即可得所以λμ=1.题型4 向量共线的应用例4 如图所示设O是△ABC内部一点且+=-2则△AOB与△AOC的面积之比为________. 答案: 解析:如图所示设M是AC的中点则+=2又+=-2=-即O是BM的中点=S==. 如图中在AC上取一点N使AN=;在AB上取一点M使得AM=;在BN的延长线上取点P使得NP=;在CM的延长线上取点Q使得=时=试确定λ的值. 解:∵=-=(-)=(+)==-=+λ又∵=+λ=即λ== 1. 如图在四边形ABCD中和BD相交于点O设=a=b若=2则=________.(用向量a和b表示) 答案:+解析:因为=+=+=a+又=2所以===+(2013·四川)如图在平行四边形ABCD中对角线AC与BD交于点O+=λ则λ=________. 答案:2解析:+==2则λ=2.(2013·江苏)设D、E分别是△ABC的边AB、BC上的点AB,BE=若=λ+λ(λ1、λ为实数)则λ+λ=________.答案:解析:=+=+=+(-)=-+=λ+λ,故λ=-=则λ+λ=已知点P在△ABC所在的平面内若2+3+=3则△PAB与△PBC的面积的比值为__________.答案:解析:由2+3+4=3得+4=3+,∴ 2+4=,即4=5===1. 在平行四边形ABCD中对角线AC与BD交于点O+=λ则λ=________答案:2 解析:ABCD为平行四边形对角线AC与BD交于点O所以+=又O为AC的中点所以=2所以+=2因为+=λ所以λ=2. 已知平面内O四点其中A三点共线且=x+y则x+y=________答案:1解析:∵ A三点共线=λ即-=λ-λ=(1-λ)+λ即x=1-λ=λ+y=1.设D分别是△ABC的边AB上的点==若=λ+λ(λ1,λ2为实数)则+=________答案:解析:易知DE=+=+(-)=-+所以λ+λ=已知点G是△ABO的重心是AB边的中点.(1) 求++;(2) 若PQ过△ABO的重心G且=a=b=ma=nb求证:+=3.(1) 解:因为+=2又2=-所以++=-+=(2) 证明:因为=(a+b)且G是△ABO的重心所以==(a+b由P、G、Q三点共线得,所以有且只有一个实数λ使=λ又=-=(a+b)-ma=+=-=nb-(a+b)=-+所以+=. 又a、b不共线所以消去λ整理得3mn=m+n故+=3. 1. 解决与平面向量的概念有关的命题真假的判定问题其关键在于透彻理解平面向量的概念还应注意零向量的特殊性以及两个向量相等必须满足:①模相等;②方向相同.在进行向量线性运算时要尽可平行向量定理的条件和结论是充要条件关系既可以证明向量共线也可以由向量共线求参数.利用两向量共线证明三点共线要强调有一个公共点. [备课札记]。
新课程高考数学一轮复习第四章平面向量与复数第2讲平面向量基本定理及坐标表示课件
角度 2 向量共线综合问题 2.(2019·山东德州一模)已知△ABC 的三边分别是 a,b,c,设向量 m= (sinB-sinA, 3a+c),n=(sinC,a+b),且 m∥n,则 B 的大小是( )
π 5π π 2π A.6 B. 6 C.3 D. 3
答案 B
解析 因为 m∥n,
所以(a+b)(sinB-sinA)=sinC( 3a+c).
由正弦定理得,(a+b)(b-a)=c( 3a+c),
整理得 a2+c2-b2=- 3ac,
由余弦定理得
a2+c2-b2 - 3ac cosB= 2ac = 2ac =-
3 2.
又 0<B<π,所以 B=56π.
1.平面向量共线的充要条件的两种形式 (1)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件是 x1y2-x2y1=0.如 举例说明 1(1). (2)若 a∥b(b≠0),则 a=λb. 2.利用向量共线求参数值 向量共线的坐标表示既可以判定两向量平行,也可以由向量平行求参 数值.当两向量的坐标均非零时,可以利用坐标对应成比例来求解.
解析 解法一:假设 λ≠0,则由 λe1+μe2=0 得 e1=-μλe2,则 e1,e2 共 线,与 e1,e2 不共线矛盾,所以 λ=0,同理可得 μ=0,所以 λ2+μ2=0.
解法二:因为 0e1+0e2=0,e1,e2 不共线,又因为 λe1+μe2=0,所以 由平面向量基本定理得 λ=μ量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有 向线段两端点的坐标,则应先求向量的坐标. (2)解题过程中要注意方程思想的运用及正确使用运算法则.
1.(2019·厦门外国语学校模拟)已知点 A(-1,1),B(0,2),若向量A→C=(-
高中数学平面向量、复数(解析版)
热点04 平面向量、复数复数及其运算是新高考的一个必考点,内容比较简单,主要是考查共轭复数,复平面以及复数之间的一些运算。
一般出现在填空题的第二或者是第三题。
平面向量也是新高考的一个重要考点,主要涉及到向量的代数运算以及线性运算。
本专题也是学生必会的知识点。
通过选取了高考出现频率较高的复数、向量知识点采用不同的题型加以训练,题型与高考题型相似并猜测一部分题型,希望通过本专题的学习,学生能够彻底掌握复数与平面向量。
【满分技巧】复数一般考查共轭复数以及复平面的意义比较多,中间夹杂着复数之间的运算法则,这类题目相对比较简单,属于送分题目。
牵涉到知识点也是比较少,主要注重基本运算;特别会求复数类题目可采取答案带入式运算。
平面向量代数运算类题目一般采用基本运算法则,只要简单记住向量的坐标运算以及模长运算即可。
平面向量的线性运算一般采用三角形法则,应掌握一些常识性结论,如三点共线问题,重心问题等,在解决此类题目中记住三角形法则核心即可。
平面向量综合性的题目一般是代数运算与线性运算相结合。
此类题目简便解法是采用数形结合的方式去求解。
【考查题型】选择题,填空,解答题【常考知识】复数的概念和几何意义、复数的运算、向量的概念和意义、平面向量的线性运算、平面向量的数量积【限时检测】(建议用时:90分钟)一、单选题1.(2020·上海大学附属中学高三三模)已知O是正三角形ABC内部的一点,230OA OB OC++=,则OAC∆的面积与OAB∆的面积之比是A.32B.23C.2D.1【答案】B试题分析:如下图所示,D 、E 分别是BC 、AC 中点,由230OA OB OC ++=得()2OA OC OB OC +=-+即2OE OD =-,所以2OE OD =,设正三角形的边长为23a ,则OAC ∆底边AC 上的高为13AC h BE a ==,OAB ∆底边AB 上的高为1322AB h BE a ==,所以123221332322ACOACOABAB AC h S a a S AB h a a ∆∆⋅⨯===⋅⨯,故选B .考点:1.向量的几何运算;2.数乘向量的几何意义;3.三角形的面积. 2.(2020·上海高三二模)设12,z z 是复数,则下列命题中的假命题是() A .若120z z -=,则12z z = B .若12z z =,则12z z = C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =【答案】D试题分析:对(A ),若120z z -=,则12120,z z z z -==,所以为真;对(B )若12z z =,则1z 和2z 互为共轭复数,所以12z z =为真; 对(C )设111222,z a b z a i b i =+=+,若12=z z 22221122a b a b +=+,222211112222,z z a b z z a b ⋅=+⋅=+,所以1122z z z z ⋅=⋅为真;对(D )若121,z z i ==,则12=z z 为真,而22121,1z z ==-,所以2212z z =为假.故选D .考点:1.复数求模;2.命题的真假判断与应用.3.(2020·上海杨浦区·高三二模)设z 是复数,则“z 是虚数”是“3z 是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】B【分析】根据充分必要条件的定义及复数的概念进行判断.可取特例说明一个命题为假.【详解】充分性:取12z =-+,故31z =是实数,故充分性不成立;必要性:假设z 是实数,则3z 也是实数,与3z 是虚数矛盾,∴z 是虚数,故必要性成立. 故选:B ..【点睛】本题考查充分必要条件的判断,考查复数的概念,属于基础题. 4.(2020·上海松江区·高三其他模拟)若复数z =52i-,则|z |=( )A .1 BC .5D .【答案】B【分析】利用复数的模的运算性质,化简为对复数2i -求模可得结果【详解】|z |=5||2i -=5|2i|- 故选:B.【点睛】此题考查的是求复数的模,属于基础题5.(2020·上海高三一模)设12,z z 为复数,则下列命题中一定成立的是( ) A .如果120z z ->,那么12z z > B .如果12=z z ,那么12=±z zC .如果121z z >,那么12z z > D .如果22120z z +=,那么12 0z z == 【答案】C【分析】根据复数定义,逐项判断,即可求得答案.【详解】对于A,取13z i =+,21z i =+时,120z z ->,即31i i +>+,但虚数不能比较大小, ,故A 错误; 对于B,由12=z z ,可得2222+=+a b c d ,不能得到12=±z z ,故B 错误;对于C ,因为121z z >,所以12z z >,故C 正确; 对于D ,取11z =,2z i =,满足22120z z +=,但是12 0z z ≠≠,故D 错误.故选:C.【点睛】本题解题关键是掌握复数定义,在判断时可采用特殊值法检验,考查了分析能力,属于基础题. 6.(2020·上海高三二模)关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是( ) A .{}5 B .{}1- C .()0,1 D .(){}0,11-【答案】D【分析】根据条件分别设四个不同的解所对应的点为ABCD ,讨论根的判别式,根据圆的对称性得到相应判断.【详解】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B , 得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m , 故此圆的圆心为(﹣m ,0),半径122x x r -====,又圆心O 1到A 的距离O 1A =, 解得m =﹣1,综上:m ∈(0,1)∪{﹣1}. 故选:D.【点睛】本题考查方程根的个数与坐标系内点坐标的对应,考查一元二次方程根的判别式,属于难题.二、填空题7.(2020•上海卷)已知复数z 满足12z i =-(i 为虚数单位),则z =_______8.(2019·上海高考真题)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ⋅≤,则1F P 与2F Q 的夹角范围为____________【答案】1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【分析】通过坐标表示和121F P F P ⋅≤得到[]21,2y ∈;利用向量数量积运算得到所求向量夹角的余弦值为:222238cos 322y y y θ-==-+++;利用2y 的范围得到cos θ的范围,从而得到角的范围.【详解】由题意:()1F,)2F设(),P x y ,(),Q x y -,因为121F P F P ⋅≤,则2221x y -+≤ 与22142x y +=结合 224221y y ⇒--+≤,又y ⎡∈⎣ []21,2y ⇒∈(22221212cos F P F Q F P F Qθ⋅===⋅与22142x y +=结合,消去x ,可得:2222381cos 31,223y y y θ-⎡⎤==-+∈--⎢⎥++⎣⎦所以1arccos ,3θππ⎡⎤∈-⎢⎥⎣⎦本题正确结果:1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量坐标运算、向量夹角公式应用,关键在于能够通过坐标运算得到变量的取值范围,将问题转化为函数值域的求解.9.(2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】-3 【分析】据题意可设E (0,a ),F (0,b ),从而得出|a ﹣b|=2,即a=b +2,或b=a +2,并可求得2AE BF ab ⋅=-+,将a=b +2带入上式即可求出AE BF ⋅的最小值,同理将b=a +2带入,也可求出AE BF ⋅的最小值. 【详解】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a +2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b +2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.【点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.10.(2020·上海高三三模)设点O 为ABC 的外心,且3A π=,若(),R AO AB AC αβαβ=+∈,则αβ+的最大值为_________. 【答案】23【分析】利用平面向量线性运算整理可得()1OA OB OC αβαβ+-=+,由此得到1αβ+<;由3A π=可求得cos BOC ∠,设外接圆半径为R ,将所得式子平方后整理可得()213αβαβ+=+,利用基本不等式构造不等关系,即可求得所求最大值. 【详解】()()AO AB AC OB OA OC OA αβαβ=+=-+-()1OA OB OC αβαβ∴+-=+ 10αβ∴+-<,即1αβ+<,1cos 2A =1cos cos 22BOC A ∴∠==-, 设ABC 外接圆半径为R ,则()22222222222212cos R R R R BOC R R R αβαβαβαβαβ+-=++∠=+-,整理可得:()()22321313124αβαβαβαβ+⎛⎫+=+≤+⨯=++ ⎪⎝⎭, 解得:23αβ+≤或2αβ+≥(舍),当且仅当13时,等号成立, αβ∴+的最大值为23.故答案为:23.【点睛】本题考查利用基本不等式求解最值的问题,关键是能够利用平面向量线性运算和平方运算将已知等式化为与外接圆半径有关的形式,进而消去外接圆半径得到变量之间的关系.11.(2020·上海高三一模)已知非零向量a 、b 、c 两两不平行,且()a b c //+,()//b a c +,设c xa yb =+,,x y ∈R ,则2x y +=______.【答案】- 3【分析】先根据向量共线把c 用a 和b 表示出来,再结合平面向量基本定理即可求解. 【详解】解:因为非零向量a 、b 、c 两两不平行,且()//a b c +,()//b a c +,(),0a m b c m ∴=+≠, 1c a b m∴=- (),0b n a c n ∴=+≠ 1c b a n∴=-1111m n ⎧=-⎪⎪∴⎨⎪-=⎪⎩,解得11m n =-⎧⎨=-⎩c xa yb =+1x y ∴==- 23x y ∴+=-故答案为:3-.【点睛】本题考查平面向量基本定理以及向量共线的合理运用.解题时要认真审题, 属于基础题.12.(2020·上海高三一模)已知向量12AB ⎛= ⎝⎭,3122AC ⎛⎫= ⎪ ⎪⎝⎭,则BAC ∠=________. 【答案】6π【分析】利用平面向量数量积的坐标运算计算出AB 、AC 的夹角的余弦值,进而可求得BAC ∠的大小.【详解】由平面向量的数量积的坐标运算可得3442AB AC ⋅=+=,1AB AC ==, 3cos 2AB AC BAC AB AC⋅∴∠==⋅ 0BAC π≤∠≤,6BAC π∴∠=.故答案为:6π 【点评】本题考查了向量坐标的数量积运算,根据向量的坐标求向量长度的方法,向量夹角的余弦公式,考查了计算能力,属于基础题.13.(2020·上海崇明区·高三二模)在ABC 中,()()3cos ,cos ,cos ,sin AB x x AC x x ==,则ABC面积的最大值是____________ 【答案】34【分析】计算113sin 22624ABC S x π⎛⎫=--≤ ⎪⎝⎭△,得到答案. 【详解】()22211sin ,1cos,22ABC S AB AC AB AC AB ACAB AC=⋅=⋅-△()2221AB AC AB AC=⋅-⋅=211133cos sin cos sin 222624x x x x π⎛⎫=-=--≤ ⎪⎝⎭, 当sin 216x π⎛⎫-=- ⎪⎝⎭时等号成立.此时262x ππ-=-,即6x π=-时,满足题意. 故答案为:34. 【点睛】本题考查了三角形面积的最值,向量运算,意在考查学生的计算能力和综合应用能力.14.(2020·上海高三其他模拟)已知ABC 的面积为1,点P 满足324AB BC CA AP ++=,则PBC 的面积等于__________. 【答案】12【分析】取BC 的中点D ,根据向量共线定理可得,,A P D 共线,从而得到1122PBC ABC S S ∆∆==. 【详解】取BC 的中点D ,1()2AD AC AB ∴=+. 432()()AP AB BC CA AB BC CA AB BC AB AC AB =++=+++++=+,1()4AP AC AB ∴=+∴12AP AD =,即,,A P D 共线.1122PBC ABC S S ∆∆==.故答案为:12.【点睛】本题主要考查向量共线定理,中点公式的向量式的应用以及三角形面积的计算,属于基础题.15.(2020·上海大学附属中学高三三模)设11(,)x y 、22(,)x y 、33(,)x y 是平面曲线2226x y x y +=-上任意三点,则12A x y =-212332x y x y x y +-的最小值为________【答案】-40【分析】依题意看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,根据点所在曲线及向量数量积的几何意义计算可得;【详解】解:因为2226x y x y +=-,所以()()221310x y -++=,该曲线表示以()1,3-为圆心,以10为半径的圆.12212332A x y x y x y x y =-+-,可以看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,因为点22(,)x y 在2226x y x y +=-上,点()33,y x -在2226x y y x +=+,点()11,y x -在2226x y y x +=--上,结合向量的几何意义,可知最小值为()()210102101040-+-=-,即()()()()2,64,22,62,440--+-=-故答案为:40-【点睛】本题考查向量数量积的几何意义的应用,属于中档题.16.(2020·上海浦东新区·华师大二附中高三月考)若复数z 满足i 1i z ⋅=-+,则复数z 的虚部为________ 【答案】1【分析】求解z 再得出虚部即可. 【详解】因为i 1i z ⋅=-+,故1111i iz i i i i i-+-==+=+=+,故虚部为1. 故答案为:1【点睛】本题主要考查了复数的运算与虚部的概念,属于基础题. 17.(2020·上海高三一模)复数52i -的共轭复数是___________. 【答案】2i -+【分析】由复数代数形式的除法运算化简复数52i -,求出z 即可. 【详解】解:55(2)5(2)22(2)(2)5i i i i i i ----===----+--, ∴复数52i -的共轭复数是2i -+ 故答案为2i -+【点睛】本题考查了复数代数形式的除法运算,是基础题.18.(2020·上海大学附属中学高三三模)已知复数22(13)(3)(12)i i z i +-=-,则||z =______【答案】【分析】根据复数乘法与除法运算法则化简,再根据共轭复数概念以及模的定义求解.【详解】22(13)(3)(13)(68)26(12)34i i i i z i i i +-++===-----|||26|z i ∴=-+==故答案为:【点睛】本题考查复数乘法与除法运算、共轭复数概念以及模的定义关系,考查基本分析求解能力,属基础题.19.(2020·上海高三其他模拟)若复数z 满足i 12i01z+=,其中i 是虚数单位,则z 的虚部为________【答案】1-【分析】根据行列式得到(12)0iz i -+=,化简得到复数的虚部.【详解】i 12i 01z +=即12(12)0,2iiz i z i i+-+===-,z 的虚部为1-故答案为1-【点睛】本题考查了行列式的计算,复数的虚部,意在考查学生的计算能力.20.(2020·上海市建平中学高三月考)设复数z 满足||1z =,使得关于x 的方程2220zx zx ++=有实根,则这样的复数z 的和为________ 【答案】32-【分析】设z a bi =+,(,a b ∈R 且221a b +=),将原方程变为()()222220ax ax bx bx i +++-=,则2220ax ax ++=①且220bx bx -=②;再对b 分类讨论可得;【详解】解:设z a bi =+,(,a b ∈R 且221a b +=)则原方程2220zx zx ++=变为()()222220ax ax bx bx i +++-= 所以2220ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去; 从而1a =-,此时13x =-±,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得14a =-,154b =± 所以11544z =-±综上满足条件的所以复数的和为1151153144442⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故答案为:32- 【点睛】本题考查复数的运算,复数相等的充要条件的应用,属于中档题.21.(2020·上海高三其他模拟)从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,使得关于x 的方程2220x ax b ++=有两个虚根,则不同的选取方法有________种 【答案】3【分析】关于x 的方程x 2+2ax +b 2=0有两个虚根,即△<0,即a <b .用列举法求得结果即可. 【详解】∵关于x 的方程x 2+2ax +b 2=0有两个虚根,∴△=4a 2﹣4b 2<0,∴a <b . 所有的(a ,b )中满足a <b 的(a ,b )共有(1,2)、(1,3)、(2,3),共计3个, 故答案为3.【点睛】本题考查列举法表示满足条件的事件,考查了实系数方程虚根的问题,属于中档题.22.(2020·上海市七宝中学高三其他模拟)已知复数13z i =-+(i 是虚数单位)是实系数一元二次方程20ax bx c ++=的一个虚根,则::a b c =________.【答案】1:2:10【分析】利用求根公式可知,一个根为13i -+,另一个根为13i --,利用韦达定理即可求出a 、b 、c 的关系,从而可得 ::a b c【详解】利用求根公式可知,一个根为13i -+,另一个根为13i --,由韦达定理可得()()()13131313b i i ac i i a ⎧-++--=-⎪⎪⎨⎪-+--=⎪⎩ ,整理得:210ba c a⎧=⎪⎪⎨⎪=⎪⎩ 所以2b a =,10c a =,所以:::2:101:2:10a b c a a a == 故答案为:1:2:10【点睛】本题主要考查了实系数一元二次方程的虚根成对的原理,互为共轭复数,考查了韦达定理,属于基础题.23.(2020·上海高三其他模拟)设复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,则pq =________【答案】20-【分析】由题意复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,利用一元二次方程根与系数的关系求出p q 、的值,可得答案.【详解】解:由复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,故2-i 是实系数一元二次方程20x px q ++=的一个虚数根,故2+2i i p +-=-,(2+)(2)i i q -=, 故4p =-,5q =,故20pq =-, 故答案为:20-. 【点睛】本题主要考查实系数的一元二次方程虚根成对定理,一元二次方程根与系数的关系,属于基础题型.三、解答题24.(2018·上海市建平中学高三月考)如图所示,PAQ ∠是某海湾旅游区的一角,其中120PAQ ∠=,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸AP 和AQ 上分别修建观光长廊AB 和AC ,其中AB 是宽长廊,造价是800元/米,AC 是窄长廊,造价是400元/米,两段长廊的总造价为120万元,同时在线段BC 上靠近点B 的三等分点D 处建一个观光平台,并建水上直线通道AD (平台大小忽略不计),水上通道的造价是1000元/米.(1) 若规划在三角形ABC 区域内开发水上游乐项目,要求ABC 的面积最大,那么AB 和AC 的长度分别为多少米?(2) 在(1)的条件下,建直线通道AD 还需要多少钱?【答案】(1)AB 和AC 的长度分别为750米和1500米(2)50万元试题分析:(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=,即23000x y +=,表示面积,利用基本不等式可得结论;(2)利用向量方法,将AD 表示为2133AD AB AC =+,根据向量的数量积与模长的关系可得结果.试题解析:(1)设AB 长为x 米,AC 长为y 米,依题意得8004001200000x y +=, 即23000x y +=,1sin1202ABC S x y ∆=⋅⋅ 34x y =⋅⋅ 32x y =⋅ 23282x y +⎫≤⎪⎝⎭=28125032m 当且仅当2x y =,即750,1500x y ==时等号成立,所以当ABC 的面积最大时,AB 和AC 的长度分别为750米和1500米 (2)在(1)的条件下,因为750,1500AB m AC m ==. 由2133AD AB AC =+ 得222133AD AB AC ⎛⎫=+ ⎪⎝⎭22441999AB AB AC AC =+⋅+224411750750150015009929⎛⎫=⨯+⨯⨯⨯-+⨯ ⎪⎝⎭ 250000= 500AD ∴=,1000500500000⨯=元所以,建水上通道AD 还需要50万元. 解法二:在ABC ∆中,cos120BC =1500cos120== 在ABD ∆中,222cos 2AB BC AC BAB AC+-=⋅2227501500+-=7=在ABD ∆中,AD=500 1000500500000⨯=元所以,建水上通道AD 还需要50万元.解法三:以A 为原点,以AB 为x 轴建立平面直角坐标系,则()0,0A ,()750,0B()1500cos120,1500sin120C ,即(C -,设()00,D x y由2CD DB =,求得00250{x y == 所以(D所以,AD =500=1000500500000⨯=元所以,建水上通道AD 还需要50万元.25.(2020·上海高三一模)在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位. (1)112z i =+,234z i =-,计算12z z ⋅与12OZ OZ ⋅;(2)设1z a bi =+,2z c di =+(,,,a b c d ∈R ),求证:1212OZ OZ z z ⋅≤⋅,并指出向量1OZ 、2OZ 满足什么条件时该不等式取等号.【答案】(1)12112z z i ⋅=+,125OZ OZ ⋅=-;(2)证明详见解析,当ab cd =时.【分析】(1)根据复数的乘法运算法则进行运算即可求出12z z ⋅,可知()11,2OZ =,()23,4OZ =-,然后进行数量积的坐标运算即可;(2)根据复数的乘法运算法则进行运算即可求出12z z ⋅,以及复数的几何意义表示出1OZ 、2OZ 计算其数量积,利用作差法比较221212,||z z OZ OZ ⋅⋅的大小,并得出何时取等号. 【详解】解:(1)()()121234112z z i i i ⋅=+⋅-=+()11,2OZ =,()23,4OZ =-所以125OZ OZ ⋅=- 证明(2)1z a bi =+,2z c di =+()()12ac bd ad z i z bc =-++∴⋅()()22212z z ac bd ad bc ∴⋅=-++()1,OZ a b =,()2,OZ c d =12OZ OZ ac bd ∴⋅=+,()2212OZ OZ ac bd ⋅=+()()()222221212||z z OZ OZ ac bd ad bc ac bd ∴-⋅-⋅=-+++ ()()2240ad bc ac bd ad cb =--=+⋅≥所以1212OZ OZ z z ⋅≤⋅,当且仅当ad cb =时取“=”,此时12OZ OZ .【点睛】本题考查了复数的乘法运算法则,向量坐标的数量积运算,复数的模长的计算公式,考查了计算能力,属于基础题.26.(2020·上海市建平中学高三月考)已知曲线22:136x y C -=,Q 为曲线C 上一动点,过Q 作两条渐近线的垂线,垂足分别是1P 和2P .(1)当Q 运动到(3,时,求12QP QP ⋅的值;(2)设直线l (不与x 轴垂直)与曲线C 交于M 、N 两点,与x 轴正半轴交于T 点,与y 轴交于S 点,若SM MT λ=,SN NT μ=,且1λμ+=,求证T 为定点. 【答案】(1)23;(2)证明见解析; 【分析】(1)确定两条渐近线方程,求出点Q 到两条渐近线的距离,再计算1QP 与2QP 夹角的余弦值,应用向量的数量积公式,即可求得结论.(2)设而不解,联立直线与双曲线方程得到根与系数的关系,再利用向量式SM MT λ=,SN NT μ=,将,λμ表示出来,代入1λμ+=化简即可证得T 为定点. 【详解】解:(1)由曲线22:136x y C -=,得渐近线方程为20x y ±-=,作示意图如图所示:设1POx θ∠=,tan 2θ=2222cos sin cos 2cos sin θθθθθ-=+221tan 1tan θθ-=+13=- 则121cos cos 23PQP θ∠=-= , 又1QP =|3223|3-32233-=,2QP =|3223|3--32233+=12QP QP ⋅1212cos QP QP PQP =⋅⋅∠181212333-=⋅=. (2)设1122(,),(,)M x y N x y ,(,0),(0,)T m S n ,0m >,设直线l 的斜率为k ,则:()l y k x m =-,又22136x y -=,得22222(2)260k x k mx k m -+--=得212222k m x x k +=--,2212262k m x x k+=-- 由SM MT λ=,则1111(,)(,)x y n m x y λ-=--,即1111()()x m x y n y λλ=-⎧⎨-=-⎩,得11x m x λ=- ,同理,由22x SN NT m x μμ=⇒=-,则1212x x m x m x λμ+=+--121221212()21()m x x x x m x x m x x +-==-++得212122()3m x x x x m +-=,则222222223(6)22m k m k m m k k⋅⋅+-+=--, 得29m =,又0m >,得3m =,即T 为定点(3,0).【点睛】本题考查了直线与双曲线的位置关系,向量数量积的定义,设而不解,根与系数的关系,学生的计算能力,是一道综合应用能力较强的题目.27.(2020·上海高三其他模拟)已知ABC 的角ABC 的对边分别为a 、b 、c ,设向量(),m a b =,()sin ,sin n B A =,()2,2p b a =--.(1)若//m n ,判断ABC 的形状;(2)若m p ⊥,边长2c =,60C ︒∠=,求ABC 的面积. 【答案】(1)等腰三角形;(2【分析】(1)根据//m n ,利用向量平行的坐标表示,可直接根据边的关系,判断三角形的形状; (2)根据向量垂直的数量积的坐标表示可得ab a b =+,再根据余弦定理()22243a b ab a b ab =+-=+-,两式联立可直接求得ab ,并求得三角形的面积.【详解】 (1)若//m n ,则sin sin 0a A b B -=,即220a b -=, 解得:a b =,ABC ∆是等腰三角形.(2)若m p ⊥,则()()220a b b a -+-=, 解得:ab a b =+,根据余弦定理可得:2222cos60c a b ab =+-, 即()22243a b ab a b ab =+-=+-, 即()2340ab ab --=()()140ab ab +-=解得:1ab =-(舍)或4ab = ,113sin 43222ABC S ab C ∆==⨯⨯=, 所以ABC ∆的面积是3.【点睛】本题考查向量和解三角形的综合问题,意在考查转化与化归和计算能力,属于中档题型.28.(2020·上海高三二模)在平面直角坐标系中,A 、B 分别为椭圆22:12x y Γ+=的上、下顶点,若动直线l 过点()()0,1P b b >,且与椭圆Γ相交于C 、D 两个不同点(直线l 与y 轴不重合,且C 、D 两点在y 轴右侧,C 在D 的上方),直线AD 与BC 相交于点Q .(1)设Γ的两焦点为1F 、2F ,求12F AF ∠的值; (2)若3b =,且32PD PC =,求点Q 的横坐标; (3)是否存在这样的点P ,使得点Q 的纵坐标恒为13?若存在,求出点P 的坐标,若不存在,请说明理由. 【答案】(1)2π(2)23Q x =;(3)(0,3)P 【分析】(1)由椭圆方程易知∠OAF 2=45°,结合对称性可得∠F 1AF 2=90°;(2)设C (x 1,y 1),D (x 2,y 2),根据已知条件可求得直线BC 的方程为y =2x ﹣1,直线AD 的方程为y =﹣x +1,联立两直线方程即可得到点Q 的横坐标;(3)设直线l 的方程为y =kx +b (k <0,b >1),与椭圆方程联立,可得()2121212b kx x x x b-=+,直线BC的方程为1111y y x x +=-,直线AD 的方程为2211y y x x -=+,进而得到点Q 的纵坐标,由此建立方程化简即可得出结论. 【详解】解:(1)由椭圆Γ的方程知,F 1(﹣1,0),F 2(1,0),A (0,1), 则∠OAF 2=45°, ∴∠F 1AF 2=90°;(2)若b =3,设C 、D 的两点坐标为C (x 1,y 1),D (x 2,y 2), ∵32PD PC =, ∴()()22113,3,32x y x y -=-,即2121333,222x x y y ==-, 而C (x 1,y 1),D (x 2,y 2)均在2212x y +=上,代入得()2211221122991242x y x y ⎧+=⎪⎨+-=⎪⎩,解得179y =, ∴213y =-,分别代入Γ解得,1284,93x x ==, ∴直线BC 的方程为y =2x ﹣1,直线AD 的方程为y =﹣x +1, 联立211y x y x =-⎧⎨=-+⎩,解得23x =,∴Q 点的横坐标为23; (3)假设存在这样的点P ,设直线l 的方程为y =kx +b (k <0,b >1), 点C ,D 的坐标为C (x 1,y 1),D (x 2,y 2), 联立2222y kx bx y =+⎧⎨+=⎩,得(2k 2+1)x 2+4kbx +2b 2﹣2=0, 由△=16k 2b 2﹣8(2k 2+1)(b 2﹣1)>0,得2212b k ->,由12221224212221kb x x k b x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,可得()2121212b kx x x x b -=+, 直线BC 的方程为1111y y x x +=-,直线AD 的方程为2211y y x x -=+, 而x 1y 2=kx 1x 2+bx 1,x 2y 1=kx 1x 2+bx 2,联立11221111y y x x y y x x +⎧=-⎪⎪⎨-⎪=+⎪⎩,得()()()()()()()()12212112122121121221122x y x y x x kx x b x x x x y x y x y x x b x x x x ++-+++-==-++-++=()()()()122122112113x x b x x b x x b x x b ++-==-++, 则b =3>1,因此,存在点P (0,3),使得点Q 的纵坐标恒为13. 【点睛】本题考查椭圆方程及其性质,考查直线与椭圆的位置关系,考查圆锥曲线中的定点定值问题,考查化简运算能力,属于较难题目.29.(2020·上海杨浦区·高三二模)已知双曲线222:1(0)y H x b b-=>,经过点(2,0)D 的直线l 与该双曲线交于M N 、两点.(1)若l 与x 轴垂直,且||6MN =,求b 的值; (2)若b =M N 、的横坐标之和为4-,证明:90MON ∠=︒.(3)设直线l 与y 轴交于点,,E EM MD EN ND λμ==,求证:λμ+为定值. 【答案】(1)b =2)证明见解析;(3)证明见解析; 【分析】(1)把2x =代入双曲线方程求得,M N 坐标,由6MN =可求得b ; (2)设()()1122,,,M x y N x y ,设直线方程为(2)y k x =-,代入双曲线方程应用韦达定理得1212,x x x x +,由124x x +=-可求得k ,再由数量积的坐标运算计算出OM ON ⋅可得结论;(3)设方程为(2)y k x =-,且(0,2)E k -,由,EM MD λ=可用,λμ表示出11,x y ,代入双曲线方程得222223240b b k b λλ---=,同理222223240b b k b μμ---=.故λμ、是方程222223240b x b x k b ---=的两根.由韦达定理可得结论.【详解】(1):2l x =,2241y b-=,y =,∴),(2,),6M N MN b ==⇒=(2)22:12y H x -=,设()()1122,,,M x y N x y ,显然直线斜率存在,设方程为(2)y k x =-,并与H 联立得()222224420k x k x k -+--=,由124x x +=-得224412kk k-=-⇒=±-,此时126x x ⋅=-. ()()()12121212121222224OM ON x x y y x x x x x x x x ⋅=+=+--=-++ 122(4)40=--⨯-+=.(3)有题意可知直线l 斜率必存在,设方程为(2)y k x =-,且(0,2)E k -.由,EM MD EN ND λμ==得()()()()11112222,22,,22,x y k x y x y k x y λλ⎧+=--⎪⎨+=--⎪⎩,所以121x λλ=+,121k y λ-=+,又由于点M 在双曲线H 上,故22221122221111k y x b b λλλ-⎛⎫⎪+⎛⎫⎝⎭-=⇒-= ⎪+⎝⎭化简得222223240b b k b λλ---=,同理222223240b b k b μμ---=.故λμ、是方程222223240b x b x k b ---=的两根.则222233b b λμ+==为定值.【点睛】本题考查直线与双曲线相交问题,考查韦达定理的应用.在直线与双曲线相交时常常设交点坐标为1122(,),(,)x y x y ,由直线方程与双曲线方程联立方程组消元后应用韦达定理得出1212,x x x x +,然后代入其他条件求解.30.(2020·上海高三二模)已知直线l :y kx m =+和椭圆Γ:22142x y+=相交于点()11,A x y ,()22,B x y(1)当直线l 过椭圆Γ的左焦点和上顶点时,求直线l 的方程 (2)点)2,1C在Γ上,若0m =,求ABC 面积的最大值:(3)如果原点O 到直线l 23AOB 为直角三角形. 【答案】(1) 2y x =+ (2)22(3)证明见解析 【分析】(1)由椭圆方程得左焦点和上顶点坐标,代入直线方程可得结果;(2)联立直线与椭圆方程可得,A B 的坐标,可得弦长||AB ,求出点C 到直线AB 的距离。
高三数学专题复习之平面向量与复数
平面向量与复数
高考分析及预测
从内容上看:向量的基本概念(共线、垂直)及其运算(加法、减法、数乘和数量积)是高考的必考内容;从题型上看,平面向量的考题比较灵活,多以向量的运算为主,平面几何图形作为载体,考查向量加减法的几何意义,考查学生分析问题、解决问题的能力和运算能力,填空题、解答题都有可能出现,可能是容易题,也可能是中档题。
复数题在高考中主要以小题形式呈现,难度不大,主要考查复数的运算。
高考能级要求:
知识梳理:
重点及易错点回顾:
典例精研:
目标达成反馈:
课堂小结:
学教反思:。
2015年高考数学(理)一轮总复习课件:第四章+平面向量与复数 第2节 平面向量的基本定理及坐标运算
变式训练 3 (1)(2013·皖南八校高三第三次联考)已知向
量 a=(-1,2),b=(2,0)、c=(1,-1),若向量(λa+b)∥c,
则实数 λ 为( )
A.-2
B.-1
C.-13
D.-23
(2)若平面向量 a,b 满足|a+b|=1,a+b 平行于 x 轴,
-3)=- 3×(-1, 3),故向量 c 可以是(-1, 3)
【答案】 D
第二十二页,编辑于星期五:十一点 五十七分。
考向 3 平面向量共线的坐标表示
【例 3】 (1)已知向量O→A=(3,-4),O→B=(6,-3),O→C
=(m,m+1),若A→B∥O→C,则实数 m 的值为( )
A.-32
4.(2013·辽宁高考)已知点 A(1,3),B(4,-1),则与向量
A→B同方向的单位向量为( )
A.35,-45
B.45,-35
C.-35,45
D.-45,35
【解析】 A→B=(3,-4),则与其同方向的单位向量 e
=|AA→→BB|=15(3,-4)=35,-45. 【答案】 A
第二十九页,编辑于星期五:十一点 五十七分。
三个结论 1.若 a 与 b 不共线,λa+μb=0,则 λ=μ=0. 2.已知O→A=λO→B+μO→C(λ,μ 为常数),则 A,B,C 三 点共线的充要条件是 λ+μ=1. 3.平面向量的基底中一定不含零向量.
B.-14
1 C.2
3 D.2
(2)(2012·重庆高考改编)设 x,y∈R,向量 a=(x,1),b=
(1,y),c=(2,-4),且 a⊥c,b∥c,则|a+b|=________.
超实用高考数学专题复习(北师大版):第四章平面向量与复数 第一节平面向量的概念及线性运算
(2)给出下列命题:
①两个具有公共终点的向量,一定是共线向量.
②两个向量不能比较大小,但它们的模能比较大小.
③λa=0(λ 为实数),则 λ 必为零.
④λ,μ 为实数,若 λa=μb,则 a 与 b 共线.
其中错误的命题的个数为( )
A.1
B.2
C.3
D.4
[解析] ①错误.两向量共线要看其方向而不是起点与终点. ②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为 实数,故可以比较大小. ③错误.当 a=0 时,不论 λ 为何值,λa=0.
[四基自测]
1.(基础点:向量共线与三点共线)已知A→B=(-m,-5n),B→C=(-2m,8n),C→D=
(3m,-3n),则( )
A.A,B,D 三点共线
B.A,B,C 三点共线
C.B,C,D 三点共线 答案:A
D.A,C,D 三点不共线
2.(基础点:向量减法的坐标运算)已知向量 a=(2,3),b=(3,2),则|a-b|=( )
第四章 平面向量与复数
第一节 平面向量的概念及线性运算
距离高考还有一段时间,不少有经验的老师都会提醒考生,愈是临近高考
,能否咬紧牙关、学会自我调节,态度是否主动积极,安排是否科学合理,能 不能保持良好的心态、以饱满的情绪迎接挑战,其效果往往大不一样。以下是 本人从事10多年教学经验总结出的超实用新高考数学专题复习讲义希望可以帮 助大家提高答题的正确率,希望对你有所帮助,有志者事竟成!
(1) _λ_(_μ_a_)_____=(λμ)a;
实数 λ 与向量 a 的积 方向___相__同_____; 数乘
(2)(λ+μ)a=_λ_a_+__μ_a____;
高中数学专题通关(4)——平面向量与复数
A.1D→A 2
B.1D→A 3
C.1D→A 4
D.0
解析:因为 D,E,F 分别为△ABC 三边 BC,CA,AB 的中点,所以D→A+E→B+F→C=1(B→A 2
+C→A)+1(A→B+C→B)+1(A→C+B→C)=1(B→A+A→B)+1(C→B+B→C)+1(C→A+A→C)=0,故选 D.
2
2
2
2
2
答案:D
3.在△ABC 中,P,Q 分别是边 AB,BC 上的点,且 AP=1AB,BQ=1BC.若A→B=a,A→C
3
3
=b,则P→Q=( )
A.1a+1b 33
B.-1a+1b 33
C.1a-1b 33
D.-1a-1b 33
解析:P→Q=P→B+B→Q=2A→B+1B→C=2A→B+1(A→C-A→B)=1A→B+1A→C=1a+1b,故选 A.
答案:C 3.给出下列命题: ①若 a=b,b=c,则 a=c; ②若 A,B,C,D 是不共线的四点,则A→B=D→C是四边形 ABCD 为平行四边形的充要条 件; ③a=b 的充要条件是|a|=|b|且 a∥b; 其中正确命题的序号是________. 解析:①正确.∵a=b,∴a,b 的长度相等且方向相同, 又 b=c,∴b,c 的长度相等且方向相同, ∴a,c 的长度相等且方向相同,故 a=c. ②正确.∵A→B=D→C,∴|A→B|=|D→C|且A→B∥D→C, 又 A,B,C,D 是不共线的四点, ∴四边形 ABCD 为平行四边形; 反之,若四边形 ABCD 为平行四边形, 则A→B∥D→C且|A→B|=|D→C|,因此,A→B=D→C. ③不正确.当 a∥b 且方向相反时,即使|a|=|b|,也不能得到 a=b,故|a|=|b|且 a∥b 不 是 a=b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是①②. 答案:①②
2019-2020年高中数学复习讲义 第四章 平面向量与复数
2019-2020年高中数学复习讲义第四章平面向量与复数【知识图解】Ⅰ.平面向量知识结构表Ⅱ.复数的知识结构表【方法点拨】由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。
所以,向量成为了“在知识网络交汇处设计试题”的很好载体。
从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。
复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。
1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问题时注意用数形结合思想的应用.2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向量都可以表示为其他两个不共线向量的线性组合.3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决.4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.第1课 向量的概念及基本运算【考点导读】1. 理解平面向量和向量相等的含义,理解向量的几何表示.2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义.3. 了解平面向量基本定理及其意义. 【基础练习】1.出下列命题:①若,则;②若A 、B 、C 、D 是不共线的四点,则是四边形为平行四边形的充要条件;③若,则;④的充要条件是且;⑤若,,则。
其中,正确命题材的序号是②③2. 化简得3.在四边形ABCD 中,=a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形4.如图,设点P 、Q 是线段AB 的三等分点, 若=a ,=b ,则=,= (用a 、b 表示)【范例导析】例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:.分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由和可得, (1) 由和可得, (2)(1)+(2)得, 2EA ED AB DC EF FB FC +++=++ (3) ∵E 、F 分别为AD 和BC 的中点,∴,, 代入(3)式得,点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形.例2.已知不共线,,求证:A,P,B 三点共线的充要条件是 分析:证明三点共线可以通过向量共线来证明.解:先证必要性:若A,P,B 三点共线,则存在实数,使得,即,∴∵,∴,∴ 再证充分性:若则=()()1a OA bOB b OB OA -+=-=,∴例1与共线,∴A,P,B 三点共线.点拨:向量共线定理是向量知识中的一个基本定理,通常可以证明三点共线、直线平行等问题. 【反馈练习】1.已知向量a 和b 反向,则下列等式成立的是(C )A. |a |-|b |=|a -b |B. |a |-|b |=|a +b |C.|a |+|b |=|a -b |D. |a |+|b |=|a +b |2.设四边形ABCD 中,有则这个四边形是(C )A.平行四边形B.矩形C.等腰梯形D.菱形 3.设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①, ②, ③。
江苏省南京市2010届高三应知应会讲义:平面向量与复数
平面向量与复数序号 内容要求 A B C 1 平面向量的概念√ 2 平面向量的加法、减法及数乘运算 √ 3 平面向量的坐标表示 √ 4 平面向量的数量积 √ 5 平面向量的平行与垂直 √ 6 平面向量的应用 √ 7 复数的概念 √ 8 复数的四则运算 √ 9复数的几何意义√二、应知应会知识和方法:1.(1)在四面体O ABC -中,OA OB OC D ===u u u r u u u r u u u r,,,a b c 为BC 的中点,E 为AD 的中点,则OE =u u u r(用,,a b c 表示).答案:111244a b c ++r r r .(2)在ABC ∆中,BD u u u r 2DC =u u u r ,AD mAB nAC =+u u u r u u u r u u u r ,则mn= .答案:12.说明:考查向量的几何运算,掌握向量的加法、减法、实数与向量积、向量数量积的定义及其运算律,理解用一组基底向量表示其他向量的方法.2.(1)设−→AB =(2,3),且点A 的坐标为(2,3),则点B 的坐标为 . 答案:(4,6) .(2)已知向量a =(2,3),b =(x ,6),且a ∥b ,则x = . 答案:4.(3)已知向量a =(x -5,3),b =(2,x ),且a ⊥b ,则由x 的值是 . 答案:2.(4)设向量a =(-1,2),b =(2,-1),则(a ⋅b )(a +b )等于 . 答案:(-4,-4) .(5)已知a =(5,4)与b =(3,2),则与2a -3b 平行的单位向量为 .答案:(55±. 说明:考查向量的坐标表示及其运算用坐标表示的形式,提高坐标运算的能力.3.(1)若|a |=3,| b |=2,且a 与b 的夹角为60°,则|a -b |= .(2)已知向量a 与b 的夹角为120o,且4==a b ,那么(2)+g b a b 的值为 .答案:0. (3)若|a |=1,| b |=2,a 与b 的夹角为60°,若(3 a +5 b )⊥(m a -b ),则实数m 的值为 . 答案:238(4)已知平面上三点A ,B ,C 满足|AB |=5,|BC |=6,|CA |=7,则−→AB ⋅−→BC +−→BC ⋅−→CA +−→CA ⋅−→AB 的值等于 . 答案:-55.(5)在△ABC 中,O 为中线AM 上一个动点,若AM =2,则−→OA ⋅(−→OB +−→OC )的最小值是__________. 答案:-2.说明:考查向量的模、夹角、平行、垂直的坐标表示方法,要记准公式,确保运算结果正确.平面向量的模的问题常常用=22|a |a 来转化;两个平面向量的夹角常常通过cos ||||a b a b θ=v v g v v 来求解.4.(1)已知2OA =u u u r ,2OB =u u u r,0=⋅,点C 在线段AB 上,且60AOC ∠=o ,则⋅的值是________________. 答案:(2)如图,AB 是半圆O 的直径,C ,D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.若OA =6,则⋅的 值是 . 答案:26.(3)已知△ABC 中,AB =3,AC =2,D 是BC 边上的中点,则AD BC ⋅=u u u r u u u r.答案:52-. (4)已知△ABC 中,AB =3,AC =2,O 是△ABC 外接圆的圆心,则AO BC ⋅=u u u r u u u r.答案:52-. 说明:着重考查向量数量积.两向量的数量积常常通过以下三种途径加以计算:(1)利用定义,即求出两个向量的模及其夹角;(2)建立适当的坐标系利用坐标;(3)利用平面向量基本定理转A BCDM N O化为基底之间的运算.三角形中的有关性质要能进行熟练转换. 5.(1)复数43i1+2i+的实部是 . 答案:2. (2)复数ii i )1)(1(+-在复平面内对应点到原点的距离为 . 答案:2.(3)i 是虚数单位,238i 2i 3i 8i ++++=L .(用i a b +的形式表示,a b ∈R ,) 答案:44i -.(4)若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b = .答案:2.说明:考查复数的有关概念:复数、虚数、纯虚数、实数、虚部、实部等;掌握复数的四则运算;了解复数的几何意义.。
高考总复习数学人教A版文科第4单元 平面向量与复数 第二节向量基本定理及坐标表示 课件
解:(1)∵O(0,0),A(1,2),B(4,5), ∴OA=(1,2),AB=(3,3), ∴OP=OA+tAB=(1+3t,2+3t). 2 若P在x轴上,则2+3t=0,解得t=- 3 ; 若P在第二象限,则 解得2 1 <t<3 3
1 3t 0 2 3t 0
.
(2)∵OA=(1,2),PB=PO+OB=(3-3t,3-3t), 若四边形OABP为平行四边形,则OA=PB,
而
3 3t 1 3 3t 2
无解,
∴四边形OABP不能构成平行四边形.
变式2-1 已知A(-2,4),B(3,-1),C(-3,-4),且CM=3CA,CN=2CB,求M、 N及MN的坐标. 解: ∵A(-2,4),B(3,-1),C(-3,-4),∴CA=(1,8),CB=(6,3), ∴CM=3CA=(3,24),CN=2CB=(12,6). 设M(x,y),则CM=(x+3,y+4)=(3,24),
x33 ∴ y 4 24
∴
x0 y 20
,∴M(0,20).
同理可求N(9,2),因此MN=(9,-18). 综上,M(0,20),N(9,2),MN=(9,-18). 题型三 平面向量共线的坐标表示 【例3】(2011· 大连模拟)平面内给定三个向量 a=(3,2),b=(-1,2),c=(4,1),回答下列问题: (1)求满足a=mb+nc的实数m,n; (2)当k为何实数时,(a+kc)∥(2b-a),它们是 同向还是反向?
sin cos 3 4
,∴tan α=
3 4
5.解析:由题意得 BD AD AB BC AB
平面向量与复数
平面向量与复数平面向量是数学中的重要概念,它与复数之间存在着紧密的联系和相互转化的关系。
本文将介绍平面向量和复数的基本概念,并探讨它们之间的关联。
一、平面向量的基本概念1. 平面向量的定义:平面向量是具有大小和方向的有向线段,通常用有序数对表示。
设有平面上两个点A和B,用→AB表示从点A指向点B的有向线段,这条有向线段便是平面向量。
2. 平面向量的表示:平面向量的表示通常有三种方式,即坐标表示、模长与方向角表示、分解成单位向量表示。
a. 坐标表示:如果平面向量→AB的起点坐标为A(x₁, y₁),终点坐标为B(x₂, y₂),则向量的坐标表示为(x₂-x₁, y₂-y₁)。
b. 模长与方向角表示:平面向量→AB的模长记作|→AB|,方向角表示为θ,这样,向量的模长与方向角表示为(|→AB|,θ)。
c. 分解成单位向量表示:平面向量→AB可以表示为它在两个单位向量上的投影和,即→AB = |→AB|cosθ·→i + |→AB|sinθ·→j,其中→i和→j分别为横轴和纵轴上单位长度的向量。
二、复数的基本概念1. 复数的定义:复数是由实数和虚数构成的数,记作a+bi,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
2. 复数的表示:复数可以用代数形式和三角形式表示。
代数形式为a+bi,三角形式为r(cosθ+isinθ),其中r为模长,θ为辐角。
3. 复数的运算:复数的运算包括加法、减法、乘法和除法。
具体的运算规则与实数的运算类似,只是需要注意虚数单位i的运算规律。
三、平面向量与复数的关系1. 平面向量的表示与复数的表示:平面向量可以通过复数的模长与方向角表示。
设平面向量→AB的表示为(|→AB|,θ),则可以将→AB对应的复数记作z=|→AB|cosθ+|→AB|sinθ·i。
2. 复数的运算与平面向量的运算:复数的加法、减法和乘法可以直接对应到平面向量的加法、减法和数量乘法上,这是因为复数运算与平面向量的运算都遵循平行四边形法则和数量乘法的分配律。
高考数学专题讲义:平面向量与复数
高考数学专题讲义:平面向量与复数【考向解读】1。
命题角度:复数的四则运算和几何意义;以平面图形为背景,考查平面向量的线性运算、平面向量的数量积。
2。
题目难度:复数题目为低档难度,平面向量题目为中低档难度。
【命题热点突破一】平面向量的线性运算(1)在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化;(2)在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量. 例1、(全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( ) A 。
34AB →-14AC → B 。
14AB →-34AC → C 。
34AB →+14AC → D 。
14AB →+34AC→ 答案 A解析 作出示意图如图所示。
EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →。
故选A 。
【方法技巧】(1)向量加法的平行四边形法则:共起点;三角形法则:首尾相连;向量减法的三角形法则:共起点连终点,指向被减。
(2)已知O 为平面上任意一点,则A ,B ,C 三点共线的充要条件是存在s ,t ,使得OC →=sOA →+tOB →,且s +t =1,s ,t ∈R 。
(3)证明三点共线问题,可转化为向量共线解决。
【变式探究】【课标1,理13】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= 。
【答案】23【解析】利用如下图形,可以判断出2a b 的模长是以2为边长的菱形对角线的长度,所以。
【变式探究】如图,在△ABC 中,N 是AC 边上一点,且AN→=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A 。
2020版高考数学一轮复习第4章平面向量、数系的扩充与复数的引入第2节平面向量的基本定理及坐标表示课件文
[规律方法] 平面向量共线的坐标表示问题的常见类型及解题 策略
(1)利用两向量共线求参数,如果已知两向量共线,求某些参数
的取值时,利用“若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件
是 x1y2=x2y1”解题比较方便. (2)利用两向量共线的条件求向量坐标.一般地,在求与一个已
B.-2e1-4e2 D.3e1-e2
C [根据向量的减法和加法的三角形法则知 a-b=e1-3e2,故 选 C.]
解析答案
[规律方法] 平面向量基本定理应用的实质和一般思路 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法 则或三角形法则进行向量的加、减或数乘运算. (2)用向量基本定理解决问题的一般思路是先选择一组基底,并 运用该基底将条件和结论表示成向量的形式,再通过向量的运算来 解决. 易错警示:在基底未给出的情况下,合理地选取基底会给解题 带来方便.另外,要熟练运用平面几何的一些性质定理.
平面向量共线的坐标表示
【例 2】 已知 a=(1,0),b=(2,1). (1)当 k 为何值时,ka-b 与 a+2b 共线? (2)若A→B=2a+3b,B→C=a+mb 且 A,B,C 三点共线,求 m 的 值.
[解] (1)ka-b=k(1,0)-(2,1)=(k-2,-1), a+2b=(1,0)+2(2,1)=(5,2). ∵ka-b 与 a+2b 共线,∴2(k-2)-(-1)×5=0,即 2k-4+5 =0,得 k=-12.
答案
3.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设 a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) ,
高中数学讲义第四章平面向量与复数(超级详细)
⾼中数学讲义第四章平⾯向量与复数(超级详细)⾼中数学复习讲义第四章平⾯向量与复数【知识图解】Ⅰ.平⾯向量知识结构表Ⅱ.复数的知识结构表【⽅法点拨】由于向量融形、数于⼀体,具有⼏何形式与代数形式的“双重⾝份”,使它成为了中学数学知识的⼀个重要交汇点,成为联系众多知识内容的媒介。
所以,向量成为了“在知识⽹络交汇处设计试题”的很好载体。
从⾼考新课程卷来看,对向量的考查⼒度在逐年加⼤,除了直接考查平⾯向量外,将向量与解析⼏何、向量与三⾓等内容相结合,在知识交汇点处命题,既是当今⾼考的热点,⼜是重点。
复习巩固相关的平⾯向量知识,既要注重回顾和梳理基础知识,⼜要注意平⾯向量与其他知识的综合运⽤,渗透⽤向量解决问题的思想⽅法,从⽽提⾼分析问题与综合运⽤知识解决问题的能⼒,站在新的⾼度来认识和理解向量。
1.向量是具有⼤⼩和和⽅向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问题时注意⽤数形结合思想的应⽤.2.平⾯向量基本定理是处理向量问题的基础,也是平⾯向量坐标表⽰的基础,它表明同⼀平⾯内任意向量都可以表⽰为其他两个不共线向量的线性组合.3.向量的坐标表⽰实际上是向量的代数形式,引⼊坐标表⽰,可以把⼏何问题转化为代数问题解决.4.要了解向量的⼯具作⽤,熟悉利⽤向量只是解决平⾯⼏何及解析⼏何中的简单问题的⽅法.第1课向量的概念及基本运算【考点导读】1. 理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰.2. 掌握向量的加法、减法、数乘的运算,并理解其⼏何意义.3. 了解平⾯向量基本定理及其意义. 【基础练习】1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平⾏四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b ,//b c ,则//a c 。
其中,正确命题材的序号是②③2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r得03.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形4.如图,设点P 、Q 是线段AB 的三等分点,若OA u u u r =a ,OB u u u r =b ,则OP u u u r =2133+a b ,OQ u u u r =1233+a b (⽤a 、b 表⽰)【范例导析】例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F ,求证:2AB DC EF +=u u u r u u u r u u u r.分析:构造三⾓形,利⽤向量的三⾓形法则证明. 证明:如图,连接EB 和EC ,由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r (1)由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r(2)(1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r(3)∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r,代⼊(3)式得,2AB DC EF +=u u u r u u u r u u u r点拨:运⽤向量加减法解决⼏何问题时,需要发现或构造三⾓形或平⾏四边形.例1例2.已知,OA OB u u u r u u u r不共线,OP aOA bOB =+u u u r u u u r u u u r ,求证:A,P ,B 三点共线的充要条件是1a b +=分析:证明三点共线可以通过向量共线来证明.解:先证必要性:若A,P ,B 三点共线,则存在实数λ,使得AP AB λ=u u u r u u u r ,即()OP OA OB OA λ-=-u u u r u u u r u u u r u u u r,∴()1,OP OA OB λλ=-+u u u r u u u r u u u r ∵OP aOA bOB =+u u ur u u u r u u u r ,∴1,a b λλ=-=,∴ 1.a b +=再证充分性:若 1.a b +=则AP OP OA =-u u u r u u u r u u u r =()()1a OA bOB b OB OA -+=-u u u r u u u r u u u r u u u r=bAB u u u r ,∴AP u u u r 与AB u u u r共线,∴A,P,B 三点共线.点拨:向量共线定理是向量知识中的⼀个基本定理,通常可以证明三点共线、直线平⾏等问题. 【反馈练习】1.已知向量a 和b 反向,则下列等式成⽴的是(C )A. |a |-|b |=|a -b |B. |a |-|b |=|a +b |C.|a |+|b |=|a -b |D. |a |+|b |=|a +b |2.设四边形ABCD 中,有1,2DC AB AD BC ==u u u r u u u r u u u r u u u r则这个四边形是(C )A.平⾏四边形B.矩形C.等腰梯形D.菱形 3.设A 、B 、C 、D 、O 是平⾯上的任意五点,试化简:①AB BC CD ++u u u r u u u r u u u r ,②DB AC BD ++u u u r u u u r u u u r ,③OA OC OB CO --+-u u u r u u u r u u u r u u u r 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习讲义第四章平面向量与复数【知识图解】Ⅰ.平面向量知识结构表Ⅱ.复数的知识结构表【方法点拨】由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。
所以,向量成为了“在知识网络交汇处设计试题”的很好载体。
从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。
复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。
1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问题时注意用数形结合思想的应用.2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向量都可以表示为其他两个不共线向量的线性组合.3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决.4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.第1课 向量的概念及基本运算【考点导读】1. 理解平面向量和向量相等的含义,理解向量的几何表示.2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义.3. 了解平面向量基本定理及其意义. 【基础练习】1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b ,//b c ,则//a c 。
其中,正确命题材的序号是②③2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r得03.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形4.如图,设点P 、Q 是线段AB 的三等分点,若OA u u u r =a ,OB u u u r =b ,则OP u u u r =2133+a b ,OQ u u u r =1233+a b (用a 、b 表示)【范例导析】例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=u u u r u u u r u u u r.分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC ,由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r(1)由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r(2) (1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r(3) ∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r,代入(3)式得,2AB DC EF +=u u u r u u u r u u u r点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形.例1例2.已知,OA OB u u u r u u u r不共线,OP aOA bOB =+u u u r u u u r u u u r ,求证:A,P ,B 三点共线的充要条件是1a b +=分析:证明三点共线可以通过向量共线来证明.解:先证必要性:若A,P ,B 三点共线,则存在实数λ,使得AP AB λ=u u u r u u u r ,即()OP OA OB OA λ-=-u u u r u u u r u u u r u u u r,∴()1,OP OA OB λλ=-+u u u r u u u r u u u r ∵OP aOA bOB =+u u ur u u u r u u u r ,∴1,a b λλ=-=,∴ 1.a b +=再证充分性:若 1.a b +=则AP OP OA =-u u u r u u u r u u u r =()()1a OA bOB b OB OA -+=-u u u r u u u r u u u r u u u r=bAB u u u r ,∴AP u u u r 与AB u u u r共线,∴A,P,B 三点共线.点拨:向量共线定理是向量知识中的一个基本定理,通常可以证明三点共线、直线平行等问题. 【反馈练习】1.已知向量a 和b 反向,则下列等式成立的是(C )A. |a |-|b |=|a -b |B. |a |-|b |=|a +b |C.|a |+|b |=|a -b |D. |a |+|b |=|a +b |2.设四边形ABCD 中,有1,2DC AB AD BC ==u u u r u u u r u u u r u u u r则这个四边形是(C )A.平行四边形B.矩形C.等腰梯形D.菱形 3.设A 、B 、C 、D 、O 是平面上的任意五点,试化简:①AB BC CD ++u u u r u u u r u u u r , ②DB AC BD ++u u u r u u u r u u u r , ③OA OC OB CO --+-u u u r u u u r u u u r u u u r 。
解析:①原式= ()AB BC CD AC CD AD ++=+=u u u r u u u r u u u r u u u r u u u r u u u r; ②原式= ()0DB BD AC AC AC ++=+=u u u r u u u r u u u r r u u u r u u u r;③原式= ()()()0OB OA OC CO AB OC CO AB AB -+--=-+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r。
4.设x 为未知向量, a 、b 为已知向量,x 满足方程2x -(5a +3x -4b )+21a -3b =0, 则x =92a b -+(用a 、b 表示) 5.在四面体O-ABC 中,OA ,OB ,OC ,D a b c ===u u u r u u u r u u u r 为BC 的中点,E 为AD 的中点,则OE =111244a b c++(用a ,b ,c 表示)6如图平行四边形OADB 的对角线OD,AB 相交于点C ,线段BC 上有一点M 满足BC=3BM,线段CD 上有一点N 满足CD =3CN,设OA ,OB ,,OM,ON,MN a b a b ==u u u r u u u r u u u u r u u u r u u u u r试用表示解:()()11111BM=BC=BA,BM=BA=OA-OB =36666a b ∴-u u u u r u u u r u u u r u u u r Q15OM=OB+BM 66a b ∴=+u u u u r u u u r u u u u r . OD CD ON CD CN 3234,31==∴=Θ()()222ON=OD=OA+OB 333a b ∴=+u u u r u u u r u u u r u u u r 11MN=ON-OM 26a b ∴=-u u u u r u u u r u u u u r第6题第2课 向量的数量积【考点导读】1. 理解平面向量数量积的含义及几何意义.2. 掌握平面向量数量积的性质及运算律.3. 掌握平面向量数量积的坐标表达式.4. 能用平面向量数量积处理有关垂直、角度、长度的问题.【基础练习】1.已知,a b 均为单位向量,它们的夹角为060,那么3+=a b 132.在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2=+u u u rAB i j ,3=+u u u rAC i kj ,则k 的可能值个数为2个3. 若1=a ,2=b ,a 与b 的夹角为060,若(3+5)⊥a b ()-ma b ,则m 的值为2384.若||1,||2,===+a b c a b ,且⊥c a ,则向量a 与b 的夹角为 120° 【范例导析】例1.已知两单位向量a 与b 的夹角为0120,若2,3=-=-c a b d b a ,试求c 与d 的夹角的余弦值。
分析:利用22=aa 及cos θ⋅=⋅a ba b求解. 解:由题意,1==a b ,且a 与b 的夹角为0120,所以,1cos1202⋅=︒=-a b a b ,()()22222447=⋅=-⋅-=-⋅+=Q c c c a b a b a a b b ∴=c ,同理可得∴=而⋅=c d 2217(2)(3)7322-⋅-=⋅--=-a b b a a b b a ,设θ为c 与d 的夹角,则cos182θ==-点评:向量的模的求法和向量间的乘法计算可见一斑。
例2.已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, (1)求证:()-a b ⊥c ;(2)若||1++>ka b c )(R k ∈,求k 的取值范围.分析:问题(1)通过证明()0-⋅=a b c 证明()-⊥a b c ,问题(2)可以利用()22||++=++ka b c ka b c 解:(1)∵ ||||||1===a b c ,且a 、b 、c 之间的夹角均为120°,∴ 00()||||cos120||||cos1200-⋅=⋅-⋅=-=a b c a c b c a c b c∴ ()0-⋅=a b c(2)∵ ||1++>ka b c ,即2||1++>ka b c也就是22222221+++⋅+⋅+⋅>k a b c ka b ka c b c ∵ 12⋅=⋅=⋅=-a b b c a c ,∴022>-k k 所以 0<k 或2>k .解:对于有关向量的长度、夹角的求解以及垂直关系的判断通常是运用平面向量的数量积解决.例3.如图,在直角△ABC 中,已知BC a =,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与的夹角θ取 何值时CQ BP ⋅的值最大?并求出这个最大值分析:本题涉及向量较多,可通过向量的加减法则得()()BP CQ AP AB AQ AC ⋅=-⋅-u u u r u u u r u u u r u u u r u u u r u u u r,再结合直角三角形和各线段长度特征法解决问题解:,0.AB AC AB AC ⊥∴⋅=u u u r u u u r u u u r u u u rQ,,,()()AP AQ BP AP AB CQ AQ AC BP CQ AP AB AQ AC =-=-=-∴⋅=-⋅-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r Q u u u r u u u r u u u r u u u r u u u r u u u r222222()1212cos .AP AQ AP AC AB AQ AB ACa AP AC AB APa AP AB AC a PQ BCa PQ BCa a θ=⋅-⋅-⋅+⋅=--⋅+⋅=--⋅-=--⋅=--⋅=--u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2cos 0,(),..2PQ BC BP CQ a πθθ==⋅-u u u r u u u r u u u r u u u r故当即与方向相同时最大其最大值为点拨:运用向量的方法解决几何问题,充分体现了向量的工具性,对于大量几何问题,不仅可以用向量语言加以叙述,而且完全可以借助向量的方法予以证明和求解,从而把抽象的问题转化为具体的向量运算. 【反馈练习】1.已知向量a,b 满足14,2a =,b a b ==g 且,则a 与b 的夹角为3π2.如图,在四边形ABCD 中,||||||4,AB BD DC →→→++=0,AB BD BD DC →→→→⋅=⋅=→→→→=⋅+⋅4||||||||DC BD BD AB ,则→→→⋅+AC DC AB )(的值为43.若向量a,b 满足=1a =b ,a,b 的夹角为60°,则a a +a b g g =324.若向量12,2a =,b a b ==且-,则a b =+6例3第2题5.已知| a |=4,|b |=5,|a +b |=21 ,求:① a ·b ;②(2a -b ) ·(a +3b )解:(1)|a +b |2=(a +b )2=a 2+2a b +b 2=|a |2+2a ·b +|b |2,∴222102a b a ba b +--==-g(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5a ·b -3|b |2=2×42+5×(-10)-3×52=-93. 6.已知a 与b 都是非零向量,且a +3b 与7a-5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角. 解:∵且a +3b 与7a-5b 垂直,a -4b 与7a -2b 垂直,∴(a +3b )·(7a-5b )=0,(a -4b )·(7a -2b )=0 ∴7a 2+16 a ·b -15 b 2=0,7a 2-30 a ·b +8 b 2=0, ∴b 2=2 a ·b ,|a |=|b | ∴1cos 2a b a b θ⋅==⋅ ∴60θ=o第3课 向量的坐标运算【考点导读】1. 掌握平面向量的正交分解及坐标表示.2. 会用坐标表示平面向量的加减及数乘、数量积运算.3.掌握平面向量平行的充要条件的坐标表示,并利用它解决向量平行的有关问题. 【基础练习】1若=)8,2(,=)2,7(-,则31=(3,2)-- 2平面向量,a b 中,若(4,3)=-a ,b =1,且5⋅=a b ,则向量b =43(,)55-3.已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r ,且A 、B 、C 三点共线,则k=23-4.已知平面向量(3,1)=a ,(,3)=-b x ,且⊥a b ,则x =1 【范例导析】例1.平面内给定三个向量()()()3,2,1,2,4,1==-=a b c ,回答下列问题: (1)求满足=+a mb nc 的实数m ,n ; (2)若()()//2+-a kc b a ,求实数k ;(3)若d 满足()()//-+d c a b ,且-=d c ,求d分析:本题主要考察向量及向量模的坐标表示和向量共线的充要条件.解:(1)由题意得()()()1,42,12,3n m +-=所以⎩⎨⎧=+=+-2234n m n m ,得⎪⎩⎪⎨⎧==9895n m (2)()()2,52,2,43-=-++=+a b k k c k a()()()1316,025432-=∴=+--+⨯∴k k k (3)设(),d x y =u r,则()()4,2,1,4=+--=-b a y x c d由题意得()()()()⎩⎨⎧=-+-=---5140124422y x y x 得⎩⎨⎧-==13y x 或⎩⎨⎧==35y x ∴()()3,153d =-ur 或,点拨:根据向量的坐标运算法则及两个向量平等行的充要条件、模的计算公式,建立方程组求解。