定量资料数据的统计描述

合集下载

(精选)定量资料统计描述

(精选)定量资料统计描述
当数据分布对称时,理论上中位数等于算术均数,当数 据经对数转换后分布对称时,理论上中位数等于几何均数。
因此,中位数可用于任何分布的定量资料。 但对于能用算术均数或几何均数描述集中趋势的资料, 应尽量使用算术均数或几何均数。
24
百分位数常用于确定医范围指特定健康人群的解剖、生理、 生化等指标的波动范围。
56.5 58.5
3. 频数分布表的用途 1) 揭示资料的分布类型 2) 反映频数分布的两个重要特征
集中趋势(Central tendency) 离散趋势(Tendency of dispersion)
9
3) 利于发现某些特大或特小的可疑值 4) 便于进一步进行统计分析
10
4. 频数分布图 以观测变量为横轴,频数(或频率)为纵轴
累计频数等于该组段及前面各组段的频数 之和;累计频率等于累计频数除以总例数。 累计频率描述了累计频数在总例数中所占比 重。
6
2. 频数分布的类型
① 对称分布:集中位置在正中,左右两侧大体对称。
② 偏态分布:集中位置偏向一侧,频数分布不对称。
正偏态分布
负偏态分布
频数分布类型不同,统计描述的方法不同。
适用于原始数据分布不对称,但经对数转换后对 称分布的资料;或各观察值之间呈倍数变化(等比关 系)的资料。
Gn X1X2Xn
Glg1(
lgX )
n
18
当资料中有相同观察值时,也可用加权 法计算几何均数
Glg1(
f lgX )
n
19
几何均数的应用 ① 常用于对数正态分布资料或等比资料:
如抗体平均滴度和平均效价、卫生事业 平均发展速度、人口几何增长的资料等。 ② 观察值不能有 0,不等同时有正有负。

定量资料的统计描述

定量资料的统计描述

•定量资料的统计分析定量资料的统计描述主要内容•频数分布表•集中趋势指标•离散趋势指标•频数/频率分布表(frequency distribution table•频数:将定量资料的变量值进行分组,则某组段所包含的变量值的个数称为频数,以f表示。

频率是频数在总例数中所占的百分比。

•频数表(频率表):表示各组段及它们对应的频数(频率)的表格称为频数表或频数分布表。

频数分布表格•编制频数表的步骤1.求全距(R)。

R=最大值-最小值=84.3-64.3=20(g/L)2.确定组数和组距。

频数表一般设8-15组。

各组段的起点和终点分别称为下限和上限。

组距为相邻两组段的下限差。

组距i=R/组数≈R/10.本例w=20/10=2(g/L)3.确定组段值。

原始数据表第一组段应包含最小值,最末组段应包含最大值并写出其下限和上限值。

4.列出频数表。

采用划记法或计算机汇总。

•编制频数表的意义:•⑴由频数表可以看出频数分布的两个重要特征:集中趋势和离散趋势。

•⑵可以根据频数分布的不同类型,选择适当的统计方法,进行计算与分析。

频数分布的两个特征:①集中趋势(central tendency):变量值集中位置。

②离散(/中)趋势(tendency of dispersion):变量值围绕集中位置的分布情况。

离“中心”位置越远,频数越小;且围绕“中心”左右对称。

频数分布的类型:对称分布例题直方图偏态分布(集中位置偏向小的一侧叫正偏态,偏向大的一侧叫负偏态)。

偏态分布图示频数表的用途:1. 揭示资料的分布特征和分布类型2. 发现特大值和特小值3. 由组中值近似代表原始数据,便于手工计算集中趋势指标与离散趋势指标。

•集中趋势指标•平均数(average)•描述一组性质相同的观察值的集中趋势、中心位置或平均水平的指标•平均数是一组数据典型或有代表性的值。

•常用平均数的种类有:•算术均数•几何均数•中位数• 众数*• 调和均数*• 一、算术均数(arithmetic mean )1.适用资料:算术均数简称为均数(mean ),适用于正态分布或近似正态分布资料。

【统计学】04 第二章 定量资料的统计描述

【统计学】04 第二章 定量资料的统计描述

频率(%)
30
25
直条图
20
15
10
5
0
0
1
2
3
4
5
>5
产前检查次数
图2-1 1998年某地96名孕妇产前检查次数频率分布
8
二、连续型定量变量的频率分布
例2-2 抽样调查某地120名18~35岁健康男性居民血清铁含量(μmmo/L),数 据如下。试编制血清铁含量的频率分布表。
首先,分析资料类型? 定量数据---连续型
表211998年某地96名孕妇产前检查次数频率分布检查次数检查次数11频数频数22频率频率33累计频数累计频数44累计频率累计频率11132623124273115135271240125112235618496421152293656358751000合计961000图211998年某地96名孕妇产前检查次数频率分布1015202530离散型定量变量的频率分布图可用直条图表达以等宽直条的高度表示各组频率的多少直条图二连续型定量变量的频率分布例22抽样调查某地120名1835岁健康男性居民血清铁含量mmol数据如下
频数
25 20 15 10
5 0
0
20
40
60
80
100
120
140
滴度倒数
25
20
15
f 10
5
0
0
0.5
1
1.5
2
2.5
lgX
23
3、计算公式:直接法和频数表法。
(1)直接法 公式:
G n X1 X2 X3 Xn
对数的形式为
G lg 1 lg X1 lg X 2 lg X n lg 1 lg X

定量资料的统计描述

定量资料的统计描述

例:求下表中血清铁含量的5%、 95%位数
从表2-2可判断出5%位于“10~”这个 组段:
px = L +
i n( x%
fx
f
)
L
= 10 + 21(20×5% 4 =)10.67
6
该组血清铁资料的5%位数为10.67 (μmol/L)。
从表2-2可判断出95%位于“24~”这 个组段:
px = L +
n为奇数时: M = X n + 1
2
n为偶数时:M =
1 2
X
+
n 2
X n+ 1 2
式中X*表示将n例数据按升序排列 后的第i个数据。
上式中n为一组观察值的总个数,
n +1
n
n +1
2
2
2
均为下标,表示有序数列中观察值 的位次。
例:某药厂观察9只小鼠口服高山红 景天醇提物(RSAE)后在乏氧条件 下的生存时间(分钟)如下:
一般设10~15个组段,每个组段的 起点称“下限”,终点称“上限”;第 一组段含最小值,最末组段含最 大值。
(4) 列表
频数分布的类型:
对称分布—集中位置在正中、左右 两侧频数分布大体对称
偏态分布
正偏峰分布-集中位 置偏向数值小的一侧
负偏峰分布-集中位 置偏向数值大的一侧
定量变量的特征数
= 119.75
52例慢性肝炎患者的HBsAg滴度 的平均水平为1:119.75。
3. 中位数(median, M)
将一组观察值从小到大按顺序排 列,位次居中的观察值就称中位数。 用M表示。
中位数适用于任何一种分布的定量 资料,一般多用于描述偏态分布或 数据一端无界资料的集中趋势。

定量资料的统计描述

定量资料的统计描述

中位数
各种分布类型的资料,特别是偏峰分布资料; 分布一端或两端无确切数值的资料; 分布类型不明
百分位数 各种分布类型的资料
离散趋势
指标
应用条件
极差
对资料类型没有要求
四分位数 间距
方差与标 准差
变异系数
各种分布类型的资料,特别是偏峰分布资料
对称分布,特别是正态或近似正态分布 观察指标单位不同时变异程度的比较; 均数相差较大时变异程度的比较
输出结果
探索分析(Explore )
探索分析(Explore )主要可以分为两个部分 1.未知分布类型数据的统计描述 2.对数据的分布形态进行检验
探索分析(Explore )
统计指标 正态性检验
正态性检验
探索分析(Explore )
四分位数间距
探索分析(Explore )
探索分析(Explore )
End Thanks
写出组段
输出结果
输出结果
如果只需获得频数分布图,且对组段与组距没有什么特殊要求,可以通过如下操作 来完成。
输出结果
描述性统计指标
集中趋势:描述定量变量的平均水平 离散趋势:描述定量变量的变异情况
集中趋势
指标
应用条件
算术均数 对称分布,特别是正态或近似正态分布
几何均数 对数正态分布 等比数据资料(如抗体滴度资料)
打开SPSS软件自带的数据demo.sav,找到car,这是一组 私家车价格的资料,我们将结合这组数据学习连续型定量资料 频数分布表和频数分布图的绘制。
变量视图
一般步骤
1.求极差 2.确定组段数和组距 3.根据组距写出组段 4.制作频数表和频数图
求极差
求极差

《定量资料数据的统计描述》教案

《定量资料数据的统计描述》教案

《定量资料数据的统计描述》教案标题:定量资料数据的统计描述教案一、教学目标1.理解什么是定量资料数据的统计描述。

2.掌握常见的统计描述方法:集中趋势与离散程度。

3.能够应用统计描述方法对实际问题进行分析和讨论。

二、教学内容1.定量资料数据的统计描述的定义和意义。

2.集中趋势的统计描述方法:平均数、中位数、众数。

3.离散程度的统计描述方法:极差、四分位数、方差、标准差。

4.实例分析和练习。

三、教学步骤步骤一:导入(10分钟)1.向学生介绍定量资料数据的统计描述的概念和意义。

2.引导学生思考:为什么我们需要对数据进行统计描述?步骤二:集中趋势的统计描述(20分钟)1.介绍平均数的概念和计算方法。

2.分享实际应用平均数的例子,并提示其局限性。

3.介绍中位数的概念和计算方法。

4.引导学生分析什么情况下使用中位数比平均数更合适。

5.介绍众数的概念和计算方法,并解释其应用场景。

步骤三:离散程度的统计描述(25分钟)1.介绍极差的概念和计算方法。

2.引导学生思考四分位数的意义和计算方法,并分享实际应用的例子。

3.介绍方差的概念和计算方法。

4.介绍标准差的概念和计算方法,并解释其在数据分析中的重要性。

5.引导学生讨论方差和标准差的应用场景。

步骤四:综合分析和应用(25分钟)1.提供实际问题或案例,并引导学生运用所学内容进行分析和讨论。

2.给予学生时间思考和解答问题。

3.分享学生的分析和答案,并引导学生进行互动讨论。

步骤五:总结和拓展(10分钟)1.回顾本节课学习的内容和重点,确保学生对定量资料数据的统计描述有所掌握。

2.提示学生可以进一步了解其他统计描述方法,如箱线图等。

3.激发学生对数据分析和统计描述的兴趣,引导学生向实际问题应用所学方法。

四、教学评估1.教师针对学生的学习情况进行同步评估,包括学生积极参与讨论、能够正确运用统计描述方法等。

2.可以布置课后作业,要求学生分析和描述给定的数据集。

五、教学资源1.PPT或黑板/白板2.实际数据案例3.学生练习题和课后作业六、教学延伸1.引导学生自行寻找相关的应用案例进行研究和分析。

定量资料的统计描述

定量资料的统计描述
定量资料的统计描述
1.集中趋势 (算术)平均数: 几何均数: 中位数:
2.离散趋势 全距: 四分位数间距: 离均差平方和: 方差: 标准差: 变异系数:
3.正态分布 特征: (P16) 应用 估计频率分布
确定医学参考值范围
4.t 分布
(正态近似法和百分位数法)
质量控制 理论基础 特征: (P22) 应用 区间估计 假设检验
(P42)
Ni N
p NNi pi
标准组选取方法 有代表性的
(P42)
两组合并 择其一
定量资料(计量资料)统计推断
一、定量资料的参数估计 (P23)
1.点估计: X
2.区间估计 σ未知,n较小: Xt.SX
σ已知: Xu.X
σ未知但n足够大:
Xu.SX
二、定量资料的假设检验 (P26)
t
检验
单个样本t检验:
3. yˆ 的含义( P138或见讲义) 。
4.回归与相关的区别和联系(见讲义) 5.等级相关的适用范围(P147)。 6.直线回归的应用(P142~ P143 )。
统计表与统计图
1.统计表的分类(P255) 2.统计表的编制要求(P253) 3.统计表的改错(P255)
4.常用统计图的适用条件及要求
(P256 ~ P259 )
基本概念(见讲义)
1.总体和样本(P3) 2.参数和统计量(见讲义)
3.变异(见讲义)
4.抽样误差(见讲义) 5.概率(P4) 6.样本含量(P3) 7.定量资料(P4) 8.定性资料(P4)
9.正偏态分布(P8) 10.负偏态分布(P8) 11.中位数(P11) 12.百分位数(P13) 13. 医学参考值范围(P18) 14.统计推断(P20) 15. 标准误(P22) 16.参数估计(P23)

定量资料的统计描述

定量资料的统计描述

编制频数分布表的步骤
第一组段包括最小值,最后 一组段包括最大值,除最后 一组段可同时标出上下限, 其他组段只标出下限。
一般 8- 15 之间 求出极差 确定组段数 确定组距
列出各个组段
确定每一组段频数 选 根据变量值大小 把各观察单位归 入各个组段
极差即最大值 与最小值之差
组距=R/组段数, 但一般取一方便 计算的数字
常用的平均数有: 算术平均数(均数)(mean) 几何平均数(geometric mean)
中位数 (median)与百分位数(percentile)
众数(mode)
一、算术平均数
算术平均数:简称均数(mean)
可用于反映一组呈对称分布的变量值
在数量上的平均水平或者说是集中位置
的指标值。
1、算术平均数的计算方法
M X 9 1 X 5 15
2
பைடு நூலகம்
如果只调查了8家外企,则
2 14 15 2 14.5 M X X 8 8 1 2 2
频数分布表资料的中位数
M 所在组段下限值 (n 50% 至该下限值的累计频数) 组距 所在组段下限值至上限值间的频数 (n 50% f L ) M L i fm
i , fm
下限值L
中位数M
上限值U
例1 频数表中位数的计算
N=∑f
中位数=71+3x[(130x50%-59)/26]=71.69
2、中位数的应用
各种分布类型的资料
特别适合大样本偏态分布资料或者 分布末端无确切数值的资料。
第二节 描述集中趋势的统计指标
统计上使用平均数(average)这一指标体系来描述 一组变量值或观察值的集中位置或平均水平。

定量资料的统计描述

定量资料的统计描述

四分位数 间距
方差与标 准差 变异系数
频数分析(Frequencies )
下面我们结合人群的年龄(age)数据学习如何使用SPSS计算统计指 标。
部分中英文对照:
描述统计(Descriptives )
对于近似正态分布的资料,我们还可以通过Descriptives获取统计指 标。这是一组使用某法多次测定某水样中碳酸钙含量的数据,符从正态分 布,下面我们用Descriptives的方法计算这组数据的统计指标。
打开SPSS软件自带的数据demo.sav,找到car,这是一组 私家车价格的资料,我们将结合这组数据学习连续型定量资料 频数分布表和频数分布图的绘制。
变量视图
一般步骤
1.求极差 2.确定组段数和组距 3.根据组距写出组段 4.制作频数表和频数图
求极差
求极差
确定组段数和组距
1.极差:R=95.7≈100
定量资料统计描述
定量变量
定量变量可以分为两种类型: 1.离散型变量:只能取整数值,例如,一个月中的
手术病人数,一年里的新生儿数。
2.连续型变量:可以取实数轴上的任何数值,例如, 血压,身高,体重等。
统计描述
统计描述是通过绘制统计表、统计图 或计算相应的统计指标来说明资料的分布 规律及其数量特征,是进一步统计推断的
输出结果
探索分析(Explore )
探索分析(Explore )主要可以分为两个部分
1.未知分布类型数据的统计描述 2.对数据的分布形态进行检验
探索分析(Explore )
统计指标 正态性检验
正态性检验
探索分析(Explore )
四分位数间距
探索分析(Explore )
探索分析(Explore )

定量资料的统计描述指标

定量资料的统计描述指标

第二节 描述集中趋势的统计指标
描述定量资料的分布特征的指标有两 类,一类是描述分布集中趋势的,另一 类是描述分布的离散趋势的。
今介绍描述定量资料分布集中趋势的 指标平均数(average)。平均数包括算 术均数、几何均数、中位数、众数、调 和均数。
一、算术均数:简称均数
(mean,x ) x 总体均数用希腊字母μ,样本均数
27
22.50
20~
18
15.00
22~
12
10.00
24~
8
6.67
26~
4
3.33
28~30 合计
1
0.83
120
100.00
三、频数分布表的用途
1、揭示资料的分布类型
频数分布可分为对称分布和偏态分布两种 类型。对称分布是指集中位置在中间,左 右两侧频数大体对称的,对称分布包括正 态分布,如第14页图2-2所示。
1:32
7
32
1.50515 10.53605
1:64
11
64
1.80618 19.86798
1:128
13
128
2.10721 27.39373
1:256
12
256
2.40824 28.89888
1:512
7
合计
52
512
2.70927 18.96489
108.06977
G' lg 1(
f lg X )
2、几何均数的计算方法:
直接法(用于小样本) G lg 1(
lg x )
n
式中:log 对数符号,log-1反对数符号
例如 7名慢性迁延性肝炎的HBsAg滴度 资料为1:16,1:32,1:32,1:64, 1:64,1:128,1:512。计算其几 何均数,即求平均滴度。

定量资料统计描述

定量资料统计描述

定量资料统计描述概述定量资料是指数据以数字形式呈现的资料,与定性资料(如文字、图片等)不同,定量资料的数据具有明确的数值意义,常常需要进行统计分析。

在众多的数据分析方法中,统计是最为基础和重要的一种。

在统计分析中,描述统计是对搜集的数据进行基本的描述和概括,为进一步分析打下基础。

本文将从以下几个方面介绍定量资料的统计描述:1.定量资料的类型2.定量资料的统计描述方法3.定量资料的图表展示定量资料的类型定量资料通常可分为连续型和离散型两种。

具体来说,连续型数据是指在一定区间范围内可以取任意值的数据,如身高、体重等。

而离散型数据则是指一个变量只能取有限个取值的数据,例如血型、班级人数等。

定量资料的统计描述方法1. 集中趋势集中趋势是描述一组数据中心位置的统计指标,常用来表征该组数据的一般水平。

主要指标包括均值、中位数及众数。

其中,均值是指某组数据所有数据之和除以数据的个数,中位数是在一组数据中,数值按照从小到大排列,处于中间位置的数据,众数则是指整个数据中出现最频繁的那个数据。

2. 离散程度离散程度是描述一组数据分散程度的统计指标,常用来表征该组数据的分布情况。

主要指标包括极差、方差和标准差。

其中,极差是指一组数据最大值与最小值的差,方差是各数据偏离它们算术平均数的平方和的平均数,标准差则是方差的非负平方根。

3. 偏态与峰态偏态和峰态是描述一组数据偏离正态分布情况的统计指标。

偏态是指一组数据分布的不对称程度,主要指标包括偏态系数。

而峰态是指一组数据分布峰值的高低程度,主要指标包括峰态系数。

定量资料的图表展示图表展示是定量资料描述的一种重要手段。

常用的图表形式包括直方图、折线图、箱线图等。

1. 直方图直方图是一种对连续性定量数据分布情况的图形表示。

在直方图中,数据被划分为几个区间,每个区间的数据频数用柱形的高度来表示。

直方图能够反映数据的集中趋势和分散程度。

2. 折线图折线图是一种用折线表示数据值的图形,常用来描述离散型定量数据的变化趋势。

【精品】定量资料的统计描述

【精品】定量资料的统计描述

【精品】定量资料的统计描述定量资料的统计描述是指通过定量数据分布的一系列统计量来描述一个样本或总体的特征。

常用的统计量包括中心位置、离散程度、分布形态和相关性等。

中心位置中心位置是指数据分布的平均水平。

常用的中心位置统计量包括平均数、中位数和众数。

平均数是所有数据值的总和除以数据个数。

它具有良好的代表性,但受极端值的影响较大,因此需要谨慎使用。

中位数是将数据按大小排序后位于中间的数值,当数据存在极端值时,中位数比平均数更能正确反映数据的中心位置。

众数是数据中出现次数最多的数值,适用于分布具有明显峰值的情况。

离散程度离散程度是指数据分布的距离平均值的大小。

常用的离散程度统计量包括标准差、方差、极差和四分位数差等。

标准差是数据离均值的平均距离,是最常用的衡量数据分散程度的统计量。

方差是标准差的平方,由于平方的量级较大,因此比标准差不易解释。

极差是数据最大值与最小值之差,不考虑数据内部的分布情况,因此不具有代表性。

四分位数差是在数据中将数值分为四个部分,即25%、50%、75%三个分位点,然后用75%分位点减去25%分位点,用于描述数据离散程度。

分布形态分布形态是指数据分布的偏态和峰态。

常用的分布形态统计量包括偏度和峰度。

偏度是反映数据分布偏斜程度的统计量,正偏分布表示分布的长尾在分布的右侧,负偏分布表示分布的长尾在分布的左侧。

当偏度为0时,表示分布是对称的。

峰度是反映数据分布峰态的统计量,正峰分布表示分布的峰在分布的中心较高,负峰分布表示分布的峰在分布的中心较低。

当峰度为0时,表示分布的峰态基本接近正态分布。

相关性相关性是指两个变量之间的关联程度。

常用的相关性统计量包括相关系数和协方差。

相关系数是反映两个变量之间线性相关程度的统计量,取值范围为-1~1之间,正值表示正相关,负值表示负相关,0表示不相关。

协方差是反映两个变量之间相关性的统计量,数值大小表示两个变量之间的相关程度,但由于单位的影响,不易比较。

第二讲定量资料的统计描述和正态分布

第二讲定量资料的统计描述和正态分布

Analyze
Frequencies
选项有:statistics、chart和format
2、2 Descriptives 过程
Analyze
Descripitive statistics
Frequencies
2、3 Expore过程

Analyze
Descriptive Statistics Explore Dependent List框:要分析变量 Plots Normality plots with test Continue OK

算数均数 (mean)
适用条件:对称分布,特别是正态或者近似正态分 布的资料。

几何均数 (geometric mean)
适用条件:偏态分布,但是经过对数变换之后呈正 态或近似正态分布的资料。

中位数 (median)
适用条件:偏态分布资料及两端无确切值或分布不 明确的资料。
定量资料的统计描述---离散程度
计算医学参考值范围常用的方法:
正态分布法 参考值 范围% 单侧 双侧 只有 下限
X 1.64S
百分位数法 单侧 只有 上限
X 1.64S
双侧
只有 下限 P5
只有 上限 P95
95
X 1.96S
P2.5~P97.5
99
X 2.58S
X 2.32S
X 2.32S
P0.5~P99.5

变异系数 (CV)
适用条件:比较度量单位不同或均数相差悬殊的资料
描述定量变量指标的正确选择

正态或近似正态分布的资料
均数和标准差

偏态分布的资料
中位数和四分位数间距
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f lg X lg f
1
X1,X2…Xn 为各组段的滴度或滴度倒数。 f1,f2…fn分别为各组段的频数。
例2-6 52例慢性迁延性肝炎患者的HBsAg滴度 数据见表2-4,求其平均滴度。
2 1.20412 7 1.50515 ... 7 2.7027 G lg 1 52 lg 1 108.06977/ 52 lg 2.7017 119.74705
①两端的组段应分别包含最小值或 步骤: 最大值; (1) 求全距:(极差) R=29.64-7.42=22.22 ②尽量取较整齐的数值作为组段的 端点,便于对数据进行表述; (2) 定组段数与组距 : 8~15个组段,组距i=全距/组段数 ③组距以相等为宜。 (3) 划组段:以一个稍小于或等于最小值的整数作为第一个
理的各种因素在个体之间都不会完全相同,即个体间存在差
异,因此导致某地18-35岁健康男性居民血清铁含量不会完全 相同,而是呈现或大或小的离散趋势。
一、描述集中趋势的统计指标
平均数:描述一组同质计量资料的集中趋势;反映一组观察值 的平均水平。 常用的平均数有算术均数,几何均数和中位数。 (一)算术均数(mean):简称均数,总体均数用希腊字母µ 表
四、频数分布的类型
对称分布型:指集中位置在正中,左右 两侧频数分布大体对称。
偏态分布型:指集中位置偏向一侧,频数 分布不对称。 正偏态分布:集中位置偏向数值小的一侧。
偏态分布型
频数分布
负偏态分布:集中位置偏向数值大的一侧。
频数表的用途
1. 揭示频数分布的分布特征和分布类型。文献中常 将频数表作为陈述资料的形式。
图中横轴为血清铁含量,纵轴为频率密度,直条面 积等于相应组段的频率。
由于同质性,所有实测值趋向 同一数值的趋势称为集中趋势。 三、 频数分布的两个特征 集中趋势:血清铁含量向中央部分集中, 即中等含量者居多,集中在18 这个组段,这种现象为集中趋势。 离散趋势:从中央部分到两侧的频数分布 逐渐减少,而且血清铁含量的值参差不齐, 最低的接近6 ,最高的接近30 , 这种现象称为离散趋势。 离散趋势或变异程度是指观察 值之间参差不齐的程度。
组段的起点数据。 下限:每个组段的起点(最小值) 。 上限:每个组段的终点(近似最大值)。 注:最后一个组段应同时写出上限和下限来。
(4) 绘制整理表
“下限≤x<上限”
注:各组段的频数之和应等于总的观察例数。
表2
120名正常成年男子血清铁含量的频数分布表 划记
一 上 正一 正上 正正丅 正正正正 正正正正正丅 正正正上 正正丅 正上 止 一
1. 极差(range ,R) 也称为全距,用R表示,即一组资料中,最大值与最 小值之差。 缺点:1)除了最大、最小值外,不能反映组内其他 数据的变异度。2)样本例数越多,抽到较大或较小变量 值的可能性越大,因而极差可能越大。3)即使样本含量 相同,极差也不够稳定。
2. 四分位数间距(quartile range ,Q)
1. 中位数和百分位数的计算 1) 直接法:适用于样本例数n较少的资料。 将观察值按大小顺序排列,当n为奇数时,中
间那个数就是中位数。当 为偶数时,中间两个数 M Xn n 1
的平均数就是中位数。 例2-7
2
M Xn Xn / 2 1 某药厂观察9只小鼠口服高山红景天醇 2 2
由于
3. 均数的应用 但它最适用于对称分布资料,尤其是 正
态分布资料。因为这时均数位于分布的中心,
最能反映资料的集中趋势。
( 二)几何均数(geometric mean):
(几何均数也称为倍数均数,用G表示) 1. 几何均数的计算方法 1) 直接法:适用于样本例数n较少的资料。 将n 个观察值X1,X2,X3…Xn的乘积开n次方
(1)
频数(f)
(2)
组中值(X0)
(3)
fX 0
(4)=(2)(3) (5)=(3)(4)
6~ 8~ 10~ 12~ 14~ 16~ 18~ 20~ 22~ 24~ 26~ X 28~30

1 3 6 8 12 20 27 12 10 8 fx 4 0 1f

7 7 9 27 11 66 13 104 15 180 17 340 19 513 21 378 23 276 25 200 2228 27 18.57108 m ol/ L 29 29 120 2228(∑fX0)
即频数多,权数大,作用也大,频数小,权数小,作 用也小。
例2-3 测得8只正常大白鼠总酸性磷酸酶 (TACP)含量(U/L)为4.20,6.43,2.08, 3.45,2.26,4.04,5.42,3.38。试求其算术均数。
求例2-2中某地120名正常成年男子的血清铁
含量的均数。
120名成年男子血清铁含量均数、标准差计算表(加权法) 组段
组段 6~ 8~ 10~ 12~ 14~ 16~ 18~ 20~ 22~ 24~ 26~ 28~30
合计
120
例 某市大气中SO2的日平均浓度见表2.5,求P25,P50,P75。

某市大气中SO2的日平均浓度见表2.5,求中位数,P25,P50,P75。
2. 中位数和百分位数的应用
1)中位数常用于描述偏态分布资料的集中趋势,反映位
2. 便于进一步计算统计指标和进行统计分析处理。
3. 便于发现某些特大或特小的可疑值。
110名7岁男童身高(cm)的频数分布
90 ~ 92 ~ 94 ~ 96 ~ 98 ~ 100 ~ 110 ~ 112 ~ 114 ~ 116 ~ 118 ~ 120 ~ 122 ~ 124 ~ 126 ~ 128 ~ 130 ~ 132 ~ 134 ~ 136 1 0 0 0 0 0 1 3 9 9 15 18 21 14 10 4 3 2 1
频率:各组的频数除以总例数 n 所得的比值。 频率描述了各组频数在全体中所占的比重,各组 频率之和等于100%。 累计频数:本组段的频数与以前各组段的频数 相加; 累计频率:每组段的累计频数除以总例数。
连续变量的频数分布图
直方图
连续型变量的频数分布图,以直方的面积大小表 示频率的多少。 等距分组 以横轴表示被观察变量,纵轴表示频率密度,以 各矩形(宽度为组距)的面积代表各组段的频率。
频数(frequency):对一个随机变量做重复观察,
其中某变量值出现的次数。 频数分布表(frequency distribution table):将各变 量值及其相应的频数列成表格的形式。 例2-2 抽样调查某地120名18岁~35岁健康男性居
民血清铁含量(μmol/L)见P12,试编制频数分布表。
次居中的观察值的平均水平。在对称分布的资料中,中位数和
均数在理论上是相同的。
2)百分位数可用于确定医学参考值范围(详后)。
3)分布在中部的百分位数相当稳定,具有较好的代表性,
但靠近两端的百分位数,只有在样本例数足够多时才比较稳定。
应用平均数的注意事项
1.平均数的计算和应用必须具备同质基础,必须先
合理分组。
卫生统计学
第二章
定量资料的 统计描述
定量资料的统计描述
统计图表:频数分布表(图)
集中趋势指标
统计指标: 离散趋势指标
利用统计表对数据进行概括,用统计图对分布形态 及分布间的关系做直观的表达,用于描述定量资料的统 计指标的意义与计算。
第一节
频数与频数分布
一、连续型定量变量的频数分布 频数表的编制:
组段
6~ 8~ 10~ 12~ 14~ 16~ 18~ 20~ 22~ 24~ 26~ 28~30
频数
1 3 6 8 12 20 27 18 12 8 4 1 120
合计
二、离散型定量变量的频数分布
离散型变量的频数分布图
直条图
横坐标为产前检查次数;纵坐标为 频率,即产前检 查K次的妇女在被统计妇女中所占的比例%。图中等宽矩 形长条的高度与相应检查次数的频率呈正比。
简记为Q,可看为特定的百分位数。P25表示全部观
不同质的事物要分别求平均数,以便分析比较。 2.根据资料的分布选用适当的平均数。对称分布资 料,尤其是正态分布资料,宜用均数,也可用中位数, 而偏态分布资料则中位数的代表性较好,对数正态分
布及等比级数资料宜用几何均数。
二、描述离散趋势的特征数
例2-11 A组 B组 C组 试观察3组数据的离散情况。 26 28 30 32 34 24 27 30 33 36 26 29 30 31 34
49 243 726 1352 2700 5780 9747 7938 6348 5000 2916 841
合计
120(∑f)
43640(
)
2. 均数的两个重要特性
1). 各离均差的总和等于0。(总体中各变量值X与均 数之差称为离均差) 2). 离均差的平方和小于各观察值X与任何数a之差的 平方和。( ) 即 < 设:a≠ ,则a= ±d,d>0
提物(RSAE)后在乏氧条件下的生存时间(分钟)
如下:49.1,60.8,63.3,63.6,63.6,65.6,65.8,
68.6,69.0 n为奇数,M=63.6 (cm)
2)频数表法计算中位数和百分位数:适用于
样本例数n较多的资料。
累计频数:本组段的频数与以前各组段的频数
相加; 累计频率:每组段的累计频数除以总例数。 公式为
i Xn Px L fL f x 100
L为百分位数所在组段的下限,i为该组段的组距,fx
为该组段的频数,fL为百分位数所在组段的前一组段
的累计频数,n为总例数。
例2-8
利用表2-2的频数表求血清铁含量的中位数。
频数 1 3 6 8 12 20 27 18 12 8 4 1 累计频数 1 4 10 18 30 50 77 95 107 115 119 120 累计频率 0.83 3.33 8.33 15.00 25.00 41.67 64.17 79.17 89.17 95.83 99.17 100.00
相关文档
最新文档