光的干涉现象与相干条件

合集下载

光的干涉与相干性分析

光的干涉与相干性分析

光的干涉与相干性分析光的干涉是光学中一个重要而又神奇的现象,通过光的干涉实验可以揭示光的波动性质以及光的相干性。

干涉实验是通过将来自同一光源的两束光线重叠在一起,观察它们相互干涉的现象来进行的。

一、干涉现象的解释在光的干涉实验中,我们经常会用到干涉条纹。

当两束相干光线重叠时,根据叠加原理可知,在干涉条纹上光的亮度会发生变化。

这是由于光波的叠加和干涉导致的,对于构成干涉条纹的两束光来说,当它们达到相干条件时,即频率和波长相同、相位差恒定时,它们会相互加强或抵消,从而形成亮暗相间的条纹。

二、相干性的评价在光的干涉实验中,相干性是一个关键的概念。

相干性描述了两束波动的频率和相位之间的关系。

相干光是指两束波动的频率和相位相近的光线,它们的干涉现象会产生明显的干涉条纹。

反之,如果两束波动的频率和相位有明显差异,它们的干涉现象会变得不明显或根本不存在。

相干性可以通过相干时间和相干长度来评价。

相干时间是指两束波动的相位差在一个时间范围内保持恒定的时间长度。

相干长度是指两束波动的相位差在某一距离范围内保持恒定的长度。

在实际应用中,我们常常使用干涉仪器如干涉滤光片、干涉准直器等来评价光线的相干性,通过测量干涉条纹的清晰程度和可见范围来判断两束波动是否相干。

三、干涉的应用光的干涉现象在科学研究和实际应用中有着广泛的应用。

最典型的应用就是干涉测量。

通过测量干涉条纹的位置变化或行程差,可以获得物体的形状、厚度、折射率等信息。

例如,干涉仪在工业界的精密测量和全息术、干涉比色法在化学分析中的应用等,都是光的干涉原理应用的例子。

干涉还被广泛应用于光学薄膜的设计和制备中。

由于干涉条纹的特殊性质,我们可以通过调整光波的相位差来控制和改变反射和透射光的强度和颜色。

这为光学器件的设计和制造提供了新的思路和方法。

此外,干涉还在光学成像和光学信号处理等领域拥有广泛的应用。

例如,在光学干涉显微镜中,通过观察干涉条纹的微小变化可以得到高分辨率的图像,从而实现显微观察。

大学物理第12章2

大学物理第12章2



(
k

0,1,2,
)
增透膜的最小厚度:d
4n
光学厚度: nd
4
2、增反膜:把低折射率的膜(MgF2)改成同样光学厚度的 高折射率的膜(ZnS)
—ZnS,折射率2.40
2nd
H
2
L
H
2
L
•多层高反射膜
—在玻璃上交替镀上光学厚度
均为/4的高折射率ZnS膜和低
牛顿环 装置简图
分束镜M
.S
显微镜
平凸透镜
o
平晶

R
r
d
A
干涉条纹
(2)光程差和明暗条纹条件
如果不是空 气劈尖,结 果又如何?
应用 ①测微小角度:

已知:λ、n。测出l。
l
2n
2nl
②测微小长度 已知 :λ、n。测出干涉条纹的总级数 K
d
d 2k 1 (明)d k (暗)
4n
2n
③测折射率:已知θ、λ,测l可得n
④ 检测物体表面的平整度
A
B 若干涉条纹是平行直线,说 明B 面是平的。
n11
n11
=
2 0

=
2 0

2n2d

n1
1
2

§12-5 薄膜干涉
薄膜干涉:光波经薄膜两表面反射后相互叠加所形成的 干涉现象。 薄膜干涉分为:等倾干涉与等厚干涉。
干涉光的获取方法:分振幅法。
一、等倾干涉条纹
1、产生条件
扩展光源发出的不同方向的光,入射到厚度均 匀的薄膜上。 同级干涉条纹对应的光线的入射角相 同,这种干涉称为等倾干涉。

物体的光的干涉

物体的光的干涉

物体的光的干涉光的干涉是光波的特性之一,当两束或多束光波相互叠加或相遇时,会出现干涉现象。

在这种情况下,光波的干涉会改变光的强度、亮度和颜色。

干涉现象广泛应用于科学研究和技术领域,帮助我们深入了解光的性质以及创造各种应用。

一、干涉现象的基本原理和条件光的干涉现象是基于光波的波动特性产生的,其中最重要的两个原理是波的叠加和干涉条纹的形成。

波的叠加指的是当两束或多束光波相遇时,它们会相互叠加形成新的波形。

而干涉条纹的形成是由于不同光波的相位差导致光强的增强或削弱,从而在观察屏幕或干涉仪上出现明暗相间的条纹。

干涉现象需要满足一定的条件,其中之一是光源必须是相干光源。

相干光源是指光波具有固定的频率和相位关系,它们的光波振动在时间和空间上是完全一致的。

在实际应用中,我们通常使用激光等特殊光源来满足这个条件。

另一个条件是光波必须经过分束器或反射器进行分离,使得光波可以相互干涉。

二、杨氏双缝干涉实验杨氏双缝干涉实验是物体光的干涉现象的经典实验,也是理解干涉现象的重要实验之一。

实验装置由一个光源、两个狭缝和一个观察屏幕组成。

光波从光源发出,经过狭缝后形成两束光线,它们在观察屏幕上相遇并产生干涉现象。

当两束光线相遇时,它们的光波发生干涉,形成一系列明暗相间的条纹。

这些条纹被称为干涉条纹,它们的间距和分布规律与光波的波长、狭缝间距等因素密切相关。

通过观察和测量干涉条纹的特征,我们可以计算光波的波长、相位差等物理参数。

三、干涉现象在科学和技术中的应用干涉现象不仅在物理研究中起到重要作用,还被广泛应用于科学和技术领域。

以下是一些干涉现象的应用举例:1. 光学显微镜:干涉现象被应用于光学显微镜中的朗格朗日干涉仪,用于观察细胞、薄膜等微观结构。

2. 全息照相:全息照相是一种利用干涉现象捕捉并重建光场的技术,可实现真实感十足的三维图像。

3. 激光干涉测量:激光干涉仪常用于测量物体的形状、振动、位移等参数,具有高精度和高灵敏度。

什么是光的干涉

什么是光的干涉

什么是光的干涉光的干涉是一种光学现象,指的是两个或多个光波相互作用而产生的干涉效应。

当两束光波相遇时,它们会相互干涉并形成干涉图样,这是由于光的波动性质所致。

光的干涉现象在自然界和科学研究中有着广泛的应用。

1. 光的波动性质光既具有粒子性也具有波动性,光的波动性是光的干涉现象的基础。

光波的传播速度是有限的,它会沿着直线传播,并在传播过程中产生交迭、叠加和干涉。

2. 干涉的条件光的干涉需要满足两个基本条件:一是光源必须是相干光源,即光源发出的光波具有相同的频率、相位和振幅;二是光波必须在空间中交迭或叠加。

3. 干涉的类型光的干涉可以分为两类:一是光的干涉分为建设性干涉和破坏性干涉,二是光的干涉又可以分为薄膜干涉、杨氏双缝干涉、杨氏双缝干涉、菲涅尔双棱镜干涉等多种类型。

4. 建设性干涉和破坏性干涉当两束光波相遇且波峰与波峰相重叠(或波谷与波谷相重叠)时,它们会产生建设性干涉,此时干涉图样中会出现明亮的干涉条纹,光强增强;相反,当波峰与波谷相重叠时,它们会产生破坏性干涉,此时干涉图样中会出现暗淡的干涉条纹,光强减弱或消失。

5. 薄膜干涉薄膜干涉是指光在由两个介质分界面分离的薄膜上反射和透射产生的干涉现象。

当光波从一个介质射入到另一个介质时,会发生反射和透射。

光的反射和透射在介质的界面上发生相位差,不同相位差会导致干涉效应。

薄膜干涉常用于衬底上的光学薄膜和光学元件的设计。

6. 杨氏双缝干涉杨氏双缝干涉是一种经典的干涉实验,由英国科学家杨恩斯提出。

它通过将光通过两个狭缝,让光波以波前偏斜的方式形成干涉条纹。

杨氏双缝干涉实验证明了光的波动性和光的干涉现象,为光的本质提供了重要的证据。

7. 菲涅尔双棱镜干涉菲涅尔双棱镜干涉是将平行光通过两个类似楔形棱镜所形成的干涉图样。

这种干涉实验是由法国科学家菲涅尔提出的,可以用来测量光的波长和探测光的相位差。

菲涅尔双棱镜干涉被广泛应用于光学检测、波长测量和多种光学仪器的设计中。

光的干涉和衍射

光的干涉和衍射
1 2nt cosθ = (k + )λ 2
1 干涉暗条纹:∆t = k + λ 2
薄膜干涉
a a n ar att’r t attr ’2 att’ t n
Δ = 2nt cosθ − r
λ
2
Δ = 2nt cosθ t
等倾 等厚
光程差决定于膜厚、倾角
(C)分振幅干涉的两种类型-------等厚干涉和等倾干涉 a. 等厚干涉 --- 倾角θ 恒定
λ
2
只决定于入射角,同一级干涉条纹由
相同入射角的光束干涉形成 • 迈克尔逊 干涉仪 振幅分割型双光束干涉仪; 许多现代干涉计量仪器的基础。
光程差 位相差
∆ = 2nt cosθ
δ=

t 面 光 源 照 明 B θ
M2’ M1
λ

空气层
n =1
C
M2
∆ = 2t cosθ
P Michelson 光
(A)薄膜表面的反射和折射 a ar at’ n’ n at a ar’ n’ n
反射系数 透射系数
r ≡ E反射 E
t ≡ E透射 E入射 (t和t’代表上下表面的振幅透射率)
(r和r’代表上下表面的振幅反射率, 入 由于r和r’绝对值相等,所以以后就 射 不再区别r和r’ )
图示:薄膜表面的反射和折射 透明薄膜的反射光干涉主要为 1 和 2 之间的双光束干涉 双光束干涉 同样,透射光的干涉也为双光束干涉
波前分割法 光波的分割方法
将同一光源发出的波列,利 振幅分割法 用振幅分解的方法,分解成 两个或两个以上的相干波列。 光的反射和折射是天然地实 现振幅分解的方法。
(1)波前分割法 )
S

光的干涉和光的相干性 (2)

光的干涉和光的相干性 (2)

干涉现象与相干性的区别
干涉现象:光波 叠加后形成的明 暗条纹,是光的 相干性的直接表 现。
相干性:光波之 间的相位差和频 率差,决定了干 涉现象的性质和 强度。
干涉条纹:干涉 现象中形成的明 暗条纹,其宽度 和间距与相干性 有关。
相干性测量:通 过测量干涉条纹 的性质,可以了 解光波的相干性。
干涉与相干性在光学实验中的应用
光的干涉:两束或两束以上的光波在空间相遇时,会发生叠加,形成干涉现象 相干性:光波的相干性是指光波之间的相位差和频率差之间的关系 干涉条件:光的干涉需要满足相干性、频率相同和相位差恒定的条件 干涉图样:干涉现象会产生各种不同的干涉图样,如明暗相间的条纹、彩色的环状等 相干性的影响:相干性的大小会影响干涉图样的清晰度和亮度,相干性越好,干涉图样越清晰,亮度越高
对信息科学的影响
光的干涉和相干性是信息科学的基础理论之一 光的干涉和相干性在光纤通信、激光雷达等领域有广泛应用 光的干涉和相干性研究有助于提高信息传输速度和质量 光的干涉和相干性研究有助于推动量子通信、量子计算等新兴领域的发展
对现代科技发展的贡献
光的干涉和相干性是现代光学技术的基础,如激光、光纤通信等。
干涉现象的应用
光学仪器:如显微镜、望远镜等,利用光的干涉原理提高成像质量
光纤通信:利用光的干涉原理实现高速、大容量的信息传输
激光技术:利用光的干涉原理产生高强度、单色性的激光束 生物医学:利用光的干涉原理进行细胞、组织、器官等的无损检测和治 疗
02 光的相干性
相干性的定义
光的相干性是指两 束光在空间和时间 上的相位差保持恒 定的特性。
两列光波的相位差恒 定
两列光波的振动方向 相同
两列光波的强度相同
干涉现象的分类

光的干涉

光的干涉

洛埃镜
S1 d S2 M
E'
E
洛埃镜
此处为暗纹—半波损失
M为反射镜,S1为狭缝光源,它发出的光波一部分以接近于 为反射镜, 为狭缝光源, 为反射镜 90˚的入射角掠射于反射镜上,经反射到达屏幕 上,另一部 的入射角掠射于反射镜上, 的入射角掠射于反射镜上 经反射到达屏幕E上 分直接射到屏幕上。 可看作两个相干光源。 分直接射到屏幕上。S1和S2可看作两个相干光源。 处于位置 若光屏E处于位置 ,从光路上看,由S1和S2发出的光到达接 光屏 处于位置E',从光路上看, 触处的路程相等,该处应该出现明条纹。 触处的路程相等,该处应该出现明条纹。但实验结果这里出现 的是暗条纹,说明反射光在该处出现了大小为π的相位变化 的相位变化, 的是暗条纹,说明反射光在该处出现了大小为 的相位变化, 这种现象称为“半波损失” 这种现象称为“半波损失”。
例题 4-4:
干涉现象应用于射电天文学: 干涉现象应用于射电天文学:将微波检测器安装在海平面上 h = 20m处。 处 当发射频率为ν= 60 MHz 的射电星从海面升起时,检测器收到来自星体和 当发射频率为 的射电星从海面升起时, 海面反射的电波干涉信号。求当第一个极大出现时, 海面反射的电波干涉信号。求当第一个极大出现时,射电星体相对于地平 线的仰角θ= 线的仰角 ?
获得相干光的基本方法是将光源上同一点发出的光设法 获得相干光的基本方法是将光源上同一点发出的光设法 同一点 一分为二” 然后再使这两部分光叠加起来, “一分为二”,然后再使这两部分光叠加起来,由于这两 部分光实际上都是来自同一发光原子 同一次发光, 同一发光原子的 部分光实际上都是来自同一发光原子的同一次发光,即每 一个光波列都分为两个频率相同、振动方向相同、 一个光波列都分为两个频率相同、振动方向相同、相位差 恒定的波列,因而这两部分光满足相干条件。 恒定的波列,因而这两部分光满足相干条件。 获得相干光的方法: 获得相干光的方法: ⑴使用单色光源(如:钠光灯、激光器等); 使用单色光源( 钠光灯、激光器等); ⑵将一个分子单次发出的光波分为两个部分: 将一个分子单次发出的光波分为两个部分: 分波面法 分振幅(强度) 分振幅(强度)法

光的干涉 知识点总结

光的干涉 知识点总结

第二章 光的干涉 知识点总结2.1.1光的干涉现象两束(或多束)光在相遇的区域内产生相干叠加,各点的光强不同于各光波单独作用所产生的光强之和,形成稳定的明暗交替或彩色条纹的现象,称为光的干涉现象。

2.1.2干涉原理注:波的叠加原理和独立性原理成立于线性介质中,本书主要讨论的就是线性介质中的情况. (1)光波的独立传播原理当两列波或多列波在同一波场中传播时,每一列波的传播方式都不因其他波的存在而受到影响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等) (2)光波的叠加原理在两列或多列波的交叠区域,波场中某点的振动等于各个波单独存在时在该点所产生振动之和。

波叠加例子用到的数学技巧: (1) A +iB =√A 2+B 2(A √A 2+B2+i B √A 2+B 2)=A t e iφt(2)eiφ1=ei[(φ12+φ22)+(φ12−φ22)] eiφ1=ei[(φ12+φ22)−(φ12−φ22)]注:叠加结果为光波复振幅的矢量和,而非强度和。

分为相干叠加(叠加场的光强不等于参与叠加的波的强度和)和非相干叠加(叠加场的光强等于参与叠加的波的强度和). 2.1.3波叠加的相干条件干涉项:相干条件:(干涉项不为零)(为了获得稳定的叠加分布) (为了使干涉场强不随时间变化) 2.1.4 干涉场的衬比度1.两束平行光的干涉场(学会推导) (1)两束平行光的干涉场 干涉场强分布:21ωω=10200⋅≠E E 2010ϕϕ-=常数()()212121212()()()2=+⋅+=++⋅I r E E E E I r I r E E 12102012201021212010212{cos()()()cos()()()}⋅=⋅+⋅++-++-⋅+---E E E E k k r t k k r t ϕϕωωϕϕωω()()()*12121212,(,)(,)(,)(,)2cos =++=++∆I x y U x y U x y U x y U x y I I I I ϕ亮度最大值处:∆φ=2mπ亮度最小值处:∆φ=(2m +1)π 条纹间距公式∆x =λsin θ1+sin θ2空间频率:ƒ=1∆x ⁄(2)定义衬比度以参与相干叠加的两个光场参数表示:衬比度的物理意义 1.光强起伏2.相干度2.2分波前干涉2.2.1普通光源实现相干叠加的方法 (1)普通光源特性• 发光断续性 • 相位无序性• 各点源发光的独立性根源:微观上持续发光时间τ0有限。

光学光的干涉现象是什么

光学光的干涉现象是什么

光学光的干涉现象是什么光学光的干涉现象是指当两束或多束光线交叠在一起时,由于光的波动性质而产生的干涉现象。

干涉是光学中的重要现象,它揭示了光的波动性质以及光与物质相互作用的规律。

从古至今,人们对干涉现象进行了广泛的研究,取得了许多重要的科学成果。

一、干涉现象的产生干涉现象的产生是由于光的波动性质所致。

当两束或多束光线同时通过一个空间时,它们在空间中相遇并相互干涉。

根据波动理论,光可以看作是波动传播的电磁波,具有波长、频率和振幅等特性。

在干涉现象中,光波根据各自的相位差进行干涉,相位的差异导致了干涉图样的形成。

二、干涉现象的类型干涉现象主要分为两大类:相干干涉和非相干干涉。

1. 相干干涉:相干干涉是指干涉源发出的光线具有相同的频率、相同的相位以及相同的偏振状态。

相干光线通过干涉使得光的波纹产生增强或相互抵消的效果,从而形成干涉条纹。

相干干涉可以进一步分为两个子类:激光干涉和自然光干涉。

激光干涉是指由激光器发出的相干光线进行干涉。

由于激光光线的特性具有高度的单色性、方向性和相干性,因此激光干涉具有明显的干涉条纹和高对比度。

自然光干涉是指自然光通过一定装置或介质产生干涉。

自然光的干涉具有波矢方向的随机性和波源频率的不匹配性,干涉条纹常常是交错的、多种颜色的。

2. 非相干干涉:非相干干涉是指干涉源发出的光线具有不同的频率、不同的相位以及不同的偏振状态。

由于非相干光线相互之间没有相干性可言,因此产生的干涉条纹非常复杂,常常是一种平均效果的叠加。

例如,在河流或光源的反射中产生的干涉就属于非相干干涉。

三、干涉现象的应用干涉现象的研究不仅仅是理论探讨,还具有广泛的应用价值。

以下是干涉现象在实际应用中的几个重要领域。

1. 干涉计量学:干涉计量学是利用干涉现象进行物体测量的一门学科。

例如,使用干涉仪测定物体的长、厚、表面形貌等参数,具有高精度和非接触性的优点。

2. 干涉光谱学:干涉光谱学是一种利用干涉现象研究物质的结构和性质的方法。

光的干涉相干性、分布规律及其计算方式

光的干涉相干性、分布规律及其计算方式
空中的距离,统 一 使用 真空计 算 。
折合原则:在引起光波相位改变上等效。
介质中 x 距离内波数:x
真空中同样波数占据的距离
x
x c
u
x
c u
xn
介质折射率
结论:
光在折射率为n 的介质中前进x 距离引起的相位改 变与在真空中前进nx 距离引起的相位改变相同。
定义: 光 程 几 何 路 介程 质 折 射 率 等效真空程
研究光的干涉现象的产生和基本实验规律。
本章教学内容:
光源和光的相干性 杨氏双缝干涉 薄膜干涉
第十二章 光的干涉
基本要求
1. 掌握光的相干性、光程和光程差的概念 2. 2. 理解获得相干光的分波阵面法和分振幅法 3. 3. 掌握双缝干涉条纹分布规律及相关计算方法 4. 4. 掌握劈尖干涉条纹分布规律及相关计算方法 5. 5. 掌握牛顿环干涉条纹分布规律及相关计算方法 6. 6. 了解迈克尔逊干涉仪的原理和应用
长为 的光照射双缝S1和S2,通过空气后在屏幕E上
形成干涉条纹。已知P点处为第三级明条纹,则S1和 S2到P点的光程差为多少?若将整个装置放于某种透 明液体中,P点变为第四级明条纹,则该液体的折射
率为多少? 解: 由明纹条件
P S1
k(k0,1,2,)
S

3
S2 E
由明纹位置 xkD (k0,1,2,)
d
得 34
所以 n / 4 /3 1 .33
其它分波阵面干涉
菲涅耳双面镜
P
s
M1
s1
d
s2
C
M2
D
洛埃镜
P'
P
s1
d s2
ML

光的干涉现象与空间相干性

光的干涉现象与空间相干性

光的干涉现象与空间相干性光的干涉现象是光学中的一个重要现象,它揭示了光波的波动性质和波动光学的基本原理。

而干涉现象的产生与光的空间相干性密切相关。

本文将从光的干涉现象和空间相干性两个方面进行探讨。

一、光的干涉现象光的干涉现象是指两束或多束光波相互叠加而产生的干涉条纹。

干涉现象的产生需要满足两个条件:一是光源必须是相干光源,即光源发出的光波的频率和相位保持稳定;二是光波必须是相干光波,即光波的相位关系满足一定条件。

在干涉现象的实验中,常用的装置有杨氏双缝干涉装置和迈克尔逊干涉仪。

杨氏双缝干涉装置由一块屏幕上有两个狭缝的光源和一个屏幕组成。

当光通过两个狭缝后,会形成一系列明暗相间的干涉条纹。

迈克尔逊干涉仪则是利用半反射镜和全反射镜的干涉效应来观察干涉条纹。

干涉现象的产生可以解释为光波的叠加效应。

当两束光波相遇时,它们的振幅会相互叠加,形成新的波面。

如果两束光波的相位差为整数倍的波长,它们的振幅将增强,形成明亮的干涉条纹;如果相位差为半波长的奇数倍,它们的振幅将相互抵消,形成暗淡的干涉条纹。

二、空间相干性空间相干性是指光波在空间上保持相位关系的性质。

在光学中,空间相干性是光的相干性的一种表现形式。

相干性是指两个或多个光波的相位关系保持稳定的性质。

空间相干性可以通过干涉实验来验证。

在干涉实验中,如果两束光波的相干时间长,它们的相位关系将保持稳定,干涉条纹将清晰可见;如果相干时间短,光波的相位关系将不稳定,干涉条纹将模糊不清。

空间相干性与光的波长和光源的发散性有关。

光的波长越短,空间相干性越好,干涉条纹越清晰;光源的发散性越小,空间相干性越好,干涉条纹越清晰。

因此,使用单色光源和点光源可以提高干涉实验的分辨率。

三、光的干涉现象与空间相干性的应用光的干涉现象和空间相干性在科学和技术领域有着广泛的应用。

其中最重要的应用之一是干涉测量技术。

干涉测量技术是一种非接触式的测量方法,可以精确测量物体的形状、表面粗糙度和位移等参数。

相干光具有的条件

相干光具有的条件

相干光具有的条件相干光是指具有相同频率、相同方向、相同偏振状态的光波之间存在稳定的相位关系的现象。

相干光具有以下条件:1. 频率相同:相干光的频率必须相同,只有频率相同的光波才能产生干涉现象。

频率不同的光波会发生相位差的变化,无法形成稳定的干涉图案。

2. 方向相同:相干光的传播方向必须一致,只有在同一方向上传播的光波才能产生干涉现象。

如果光波的传播方向不同,会导致干涉条纹的位置错乱,无法形成清晰的干涉图案。

3. 偏振状态相同:相干光的偏振状态必须相同,只有具有相同偏振方向的光波才能产生干涉现象。

如果光波的偏振方向不同,会导致干涉条纹的强度变化,使干涉图案不稳定。

相干光的产生与光源的特性密切相关。

对于自然光源,由于光波的相位关系随机,无法满足相干光的条件,因此无法产生明显的干涉现象。

而对于激光等特定光源,由于光波具有相干性,能够产生清晰的干涉图案。

相干光的应用十分广泛。

其中之一就是干涉仪的应用。

干涉仪是利用相干光的干涉现象测量物体的形状、表面质量等参数的一种仪器。

干涉仪通过将光波分成两束,经过不同的光程后再进行叠加,利用干涉条纹的变化来测量待测物体的性质。

干涉仪在光学领域的研究和实验中起到了至关重要的作用。

相干光还可以用于光学显微镜的成像。

在传统的光学显微镜中,由于光源的非相干性,会产生大量的散射光,导致图像的模糊和光强不均匀。

而使用相干光源作为照明光源,可以有效减少散射光的影响,提高图像的清晰度和对比度,使得显微镜观察的细节更加清晰。

相干光还在光学通信领域得到了广泛应用。

在光纤通信中,由于光波的传播距离较长,容易受到噪声和衰减的影响。

利用相干光可以通过调制光波的相位和振幅来传输信息,提高信号的传输质量和容量,实现高速、稳定的光纤通信。

除了上述应用之外,相干光还在干涉测量、光学存储、光谱分析等领域起到了重要作用。

相干光的特性使得它成为光学研究和应用中的重要工具,为人们深入探索光的本质和开发新的光学技术提供了有力支持。

光的干涉和光的相干性

光的干涉和光的相干性

干涉现象的产生条件
相干光源:由 同一波源发出 的光被分成两 部分,分别经 过不同的路径
后再次相遇
相干长度:在 一定距离内, 光波的相位差 保持不变,形
成干涉现象
光的干涉条件: 两束光波的频 率相同、振动 方向相同、相
位差恒定
干涉现象:在 相遇处形成明 暗相间的条纹, 增强或减弱的 光强分布不均

干涉现象的分类
的变化情况
实验结果:通 过观察干涉图 样,可以验证 光的干涉现象 和相干性,并 测量光波的波 长和相干长度
等参数。
光的干涉和相干性的理论解释
波动理论对干涉现象的解释
波动理论认为光是一种波,具有干涉现象 干涉现象是两束或多束波在空间相遇时,在某些区域波动增强,在另一 些区域波动减弱的现象 干涉现象的产生需要满足一定的条件,如频率相同、相位差恒定等
波动理论能够解释光的干涉现象,为光的相干性提供了理论基础
波动理论对相干性的解释
添加 标题
波动理论的基本概念:波动是能量在空间中传播的形式,具有振幅、频率和相位等特征。
添加 标题
相干性的定义:相干性是指两个或多个波源产生的波在空间某一点相遇时,它们在相位和振幅上相互关联的 程度。
添加 标题
波动理论对相干性的解释:根据波动理论,当两个或多个波源产生的波在空间相遇时,它们会相互叠加,形 成干涉现象。干涉的结果取决于各个波的相位关系,相干性则决定了干涉现象的明显程度。
THANK YOU
汇报人:
干涉现象与相干性的区别
干涉现象:由于光波的叠加而形成的明暗相间的条纹,与相干性无关。 相干性:光波的振动方向、频率和相位的一致性,是产生干涉现象的必要 条件。 区别:干涉现象是光的波动性的表现,而相干性是描述光波的振动状态。

高中物理光的干涉知识点

高中物理光的干涉知识点

高中物理光的干涉知识点光的干涉一课教材篇幅少,现象观察不易,教学难度较大。

为了加深学生对光的干涉现象与本质的理解,下面是店铺给大家带来的高中物理光的干涉知识点,希望对你有帮助。

高中物理光的干涉知识点归纳1.双缝干涉(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象.(2)产生干涉的条件两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.(3)双缝干涉实验规律①双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为 .若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3…),P点将出现暗条纹.②屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹。

③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹。

④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即 .在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.⑤用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小。

2.薄膜干涉(1)薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹。

(2)薄膜干涉的应用①增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的.②检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象。

光的干涉现象与相干条件

光的干涉现象与相干条件
2 2 2 1
i1 60o m2 i1 30o m 1
457.6 nm
558.7 nm
二、 等厚干涉
1、 劈尖薄膜的等厚干涉
( i1 0
n1 n3 1)
2hn 2
( 2m 1) m
m m

2
明 暗

2
2hn

相邻 两条纹
n1 n3
(2)测长度微小变化
• (3)检查光学平面的缺陷
玻璃板向上平移 干涉条纹移动 受热 膨胀
条纹偏向膜(空气)厚部表 示平面上有凸起。
h 2n
条纹整体移 l 改变 h 平面上有凹坑。
(4)测凸透镜的曲率半径
明 m 2hn 2m 1 暗 2 2 中心 h 0 m0 0级暗纹
2
I12 E10 E20 cos
满足相干条件
2 I1 I 2 cos
3、相干叠加光强分布
只是空间的函
数,因此光强在空 间呈稳定分布。
I I1 I 2 2 I1 I 2 cos
在 = 2m 处
I M I1 I 2 2 I1 I 2
=(2m+1) 处
一、基本概念
1、光矢量
E
光强
——平均辐射强度
I S E2 E Eo cos ( t )
P
r1 n1
1 2 Eo 2
2、光程 光程差
1r 1n 1L L n r 2 2 2 -)
s1 s2
r2 n2
返回4
光程差
L1 L2
例题
真空中波长为 的单色光,在折射率 n 的透 明介质中从 A 传播到 B ,两处相位差为 3 , 则沿此路径 AB 间的光程差为 (A)1.5 (C)3 (B) 1.5n (D) 1.5/n

光的干涉

光的干涉

3、关于光在竖直肥皂液薄膜上产生的干涉现象,下列说 法中正确的是( A、 )C A.干涉条纹的产生是由于光在薄膜前后两表面发生反射, 形成的两列光波叠加的结果 B.若出现明暗相间的条纹相互平行,说明肥皂膜的厚度是 均匀的
C.用绿色光照射薄膜产生的干涉条纹间距比黄光照射间距
小 D.薄膜上的干涉条纹基本上是竖直的
3 2
五、薄膜干涉 肥皂泡看起来常常是彩 色的,雨后公路积水上 面漂浮的油膜,看起来 也是彩色的。这些现象 是怎样形成的呢?
观察肥皂薄膜上干涉条纹
1.薄膜干涉的成因
如图所示,竖直放置的肥皂薄膜由于
受到重力的作用,下面厚、上面薄.因 此,在薄膜上不同的地方,从膜的前、 后表面反射的两列光波叠加,在某些位 置,这两列波叠加后互相加强,出现亮 条纹;在另一些地方,叠加后互相削弱, 出现暗条纹.故在单色光照射下,就出
暗条纹形成的原因
双缝 屏幕
取P点上方的点Q1,与两个狭缝S1、 S2路程差δ= Q1 S2- Q1 S1=λ/2 当其中一条光传来的是波峰,另 一条传来的就是波谷,其中一条 光传来的是波谷,另一条传来的 一定是波峰,Q1点总是波峰与波 谷相遇,振幅最小,Q1点总是振 动减弱的地方,故出现暗纹。
S1 S2
3λ/2
δ= 3λ/2
以此类推
当光程差δ= 半波长的奇数倍时出现暗纹
双缝
屏幕
Q3 第三暗纹 Q2 第二暗纹
δ=5λ/2
δ=3λ/2 δ=λ/2 δ=λ/2
S1 S2
Q 1 第一暗纹
Q1 / 第一暗纹 Q2 / 第二暗纹 Q3 / 第三暗纹
δ=3λ/2 δ=5λ/2
总结规律
(1)空间的某点距离光源S1 和S2的路程差为0、1 λ、2 λ、3 λ、等波长的整数倍 (半波长的偶数倍)时,该点 为振动加强点。 (2)空间的某点距离光 源S1和S2的路程差为λ /2、3 λ/2、5λ/2、等 半波长的奇数倍时,该点 为振动减弱点。

论述光的空间相干性和时间相干性

论述光的空间相干性和时间相干性
相应地,波列长度LC(即两列相干波到达观察点旳 最大光程差),称为相干长度。
τ或LC越大,时间相干性越好,反之就越差。
结语

经过以上关于光旳空间相干性和时间性
旳某些简介,我们现在简朴地进行一下归纳总结
分别从下列几种方面讨论一下光旳空间相干性和
时间相干性旳区别。
• 本质:空间相干性源于扩展光源不同部分发光旳
空间相干性
杨氏双缝干涉试验装置
x
z y
空间相干性
双缝间距为d,两个屏间距为r,光波旳波长为 λ,光源在x方向上旳线度为Δx。有下式满足时, 能够出现干涉现象:d<rλ/ Δx。
假如光源在y方向上旳线度为Δy,则光源旳发 光面积为ΔA= Δx×Δy。在光场中与光源相距r处 旳空间有一块垂直于光传播方向旳面积
我们会从光旳干涉效应角度出发分别讨论光旳空间相 干性和光旳时间相干性,简介与其有关旳几种概念。
空间相干性
在杨氏双缝干涉装置中,保持其他不变,而仅仅使光 源S移动,假如有两个点光源S,S1,其中S处于中心轴线 上,而S1在中心轴线外,则每一种光源发出旳光经过双缝 后,各自形成一套干涉把戏。这两套干涉条纹相互交替, 假如一套旳亮条纹恰好处于另一套旳暗条纹位置,干涉条 纹旳反衬度将会大大降低,甚至无法观察到明显旳明暗条 纹分布。这种情况就是我们要讨论旳光波长旳空间相干性 旳问题。
相干光源:能够观察到干涉条纹旳理想光源,是从一 无限小旳点光源发出无限长光波列,用光学措施将其分为 两束,再实现同一波列旳相遇迭加,能得到稳定旳干涉条 纹旳光源。
概述
实际旳相干光源和理想旳相干光源有两点主要旳不同, 一是理想相干光源所发出旳是无限长光波列,而实际相干 光源所发出旳是有限长光波列;二是理想相干光源为一几 何点,而实际相干光源总有一定旳线度。所以,我们应注 意下列两方面旳问题: (1)因为实际相干光源所发出旳光波列为有限长,若两束 光到达观察点旳光程差超出一种波列旳长度,在该处就不 能实现相干迭加。所以,波列长度和光程差旳大小是影响 干涉条纹清楚度旳一种主要原因。

高中物理竞赛-光学

高中物理竞赛-光学

明环半径 暗环半径
光程差
Δ 2d
2
k (k 1,2, ) 明纹
(2k 1) (k 0,1, ) 暗纹
2
d相同,则光程差 相同
d 0, / 2 , k 0(暗)
R rd
干涉条纹:以接触点为中心 的明暗相间的同心圆环。
2020/6/16
天津农学院机电系机械教研室
r 圆环
1、条纹半径:
l
l N
2
(2)测膜厚
l0
n1
e SiO2
n2
Si
2020/6/16
eN
2n1
天津农学院机电系机械教研室
(3)检验光学元件表面平整度
e
b
b'
底面凸凹不平,花样变形:向棱边弯曲,下
方凹陷;反之下面凸起。
2020/6/16
天津农学院机电系机械教研室
被检体
被检体
被检体
2020/6/16
被检体
天津农学院机电系机械教研室
光学竞赛要求和内容
获得相干 光的方法
光的干涉现象
相干条件: 1)振动频率相同 2)振动方向相同 3)相位差恒定
相位差与光程差关系:
=2/ =2k, 明纹 =(2k+1), 暗纹
分波振面法
分波振幅法
扬 氏 干 涉
洛 埃 德 镜
薄膜的等倾干涉, e 相同, i不同
2e n22 n12 sin2 i
ab a
b
刻痕,遮光
光栅常数 d=a+b
d 1cm / N
未刻,缝, 透光
d 103 ~ 104cm
2020/6/16
天津农学院机电系机械教研室

干涉测量技术

干涉测量技术

干涉测量技术(冶金与能源工程学院)摘要:干涉测量技术已经得到相当广泛的应用。

一方面因为微电子、微机械、微光学和现代工业提出了愈来愈高的精度和更大的量程,其它方法难以胜任;另一方面因为当代干涉测量技术本身具有灵敏度高、量程大、可以适应恶劣环境、光波和米定义联系而容易溯源等特点,因而在现代工业中应用非常广泛。

本论文阐述了干涉测量技术的光学原理,测试条件,并以迈克尔逊干涉仪为典型,阐明干涉测量技术的应用,迈克尔逊干涉仪是一种利用分割光波振幅的方法实现干涉的精密光学仪器关键词:干涉测量光学原理迈克尔逊干涉仪PSInSARSUN Ya Juan(Metallurgy and energy engineering institute,Kunming university of science and technology)Abstract:Interference measuring technology has been quite a wide range of applications,On the one hand for microelectronics, micro mechanical, diffractive and modern industry and put forward high precision and greater range, other methods are hard to do the job,On the other hand because contemporary interference measuring technology itself has a high sensitivity, range, and can adapt to bad environment, light and meters contact and easy to trace the definition, etc, thus in the modern industry is widely used.This paper expounds the interference of measuring technology of optical principle, test conditions, and with Michelson interferometer is typical, expounds the application of interference measuring technology, Michelson interferometer is a use of segmentation method of realization of light amplitude precision optical instrument interferenceKey words: Interferometry Principles of Optics Michelson interferometer0 、引言光的干涉现象是光的波动性的一种表现。

光波干涉的三个必要条件

光波干涉的三个必要条件

光波干涉的三个必要条件光波干涉是光学中重要的现象之一,它是指两束或多束光波相互叠加而产生的干涉现象。

光波干涉能够解释许多光学现象,并且在科学研究和工程应用中具有重要的价值。

要产生光波干涉,需要满足三个必要条件。

第一个必要条件是相干光源。

相干光源是指光源发出的两束或多束光波具有固定的相位关系。

这意味着它们的波长相同,频率相同,并且能够保持一定的相位差。

如果光源发出的光波是不相干的,即相位关系随机变化,那么就无法产生光波干涉现象。

例如,使用两个独立的发光二极管作为光源,由于它们的相位关系是随机的,无法产生明显的干涉条纹。

因此,相干光源是光波干涉的必要条件之一。

第二个必要条件是光波的相交。

两束或多束光波需要在空间中相互交叉或叠加,才能产生干涉现象。

光波可以通过不同的方式相交,如平行相交、垂直相交、斜向相交等。

例如,当一束光波通过一块狭缝后,另一束光波从狭缝旁边通过,它们在空间中相交并产生干涉现象。

因此,光波的相交是光波干涉的必要条件之一。

第三个必要条件是光波的波长与空间尺度相比可忽略不计。

在光波干涉中,光波的波长通常远小于干涉区域的尺度,因此可以忽略光波的波长对干涉现象的影响。

这意味着在干涉区域内,光波的相位差只与光波的光程差有关,而与波长无关。

例如,当两束光波从不同的路径到达干涉区域时,它们的光程差决定了干涉条纹的位置和形状,而与光波的波长无关。

因此,光波的波长与空间尺度相比可忽略不计是光波干涉的必要条件之一。

总结起来,光波干涉的三个必要条件包括相干光源、光波的相交以及光波的波长与空间尺度相比可忽略不计。

只有同时满足这三个条件,才能产生明显的光波干涉现象。

光波干涉不仅在基础的光学研究中具有重要意义,还广泛应用于光学测量、干涉仪器、光学薄膜等领域。

通过深入研究光波干涉的必要条件,可以更好地理解和应用光学现象,推动光学科学的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Rh
R
第 m 级暗环对应
r
牛 顿 环
h
特点 级次—内低外高 间距—内疏外密
2Rhm h r r
2 m 2 m
2 nrm R m
R ( R hm ) r
2 2
m 膜厚 hm 2n
2 m
半径
rm
2 m
(5)牛顿环在光学冷加工中的应用 压 压
环外扩:要打磨中央部分
x
0
2 ~ 3 1 ~ 4
11.4 一、 等倾干涉
分振幅干涉
AB cos i 2 h AD AC sin i1 AC tg i2 2h
1、 等倾干涉相长与相消的条件
S
i1
n1 n2 n3
D
L
2 ABn2 ADn1
A
B
C
i2
h 2h n n sin i1 ( 2 )= m (暗)2
环内缩:要打磨边缘部分
11.5 迈克尔孙干涉仪
M1 M2
n1 n2 n3 1
M1 M2
h
i1 i2
M1 // M 2 实现等倾干涉
i1
M1
明 m 2hn cosi2 2m 1 暗 2 条纹特点
望远镜
1、同心圆 3、中心级次
2、内疏外密
(m 0 ,
1 , )
Im 0
原子发光具有随机性、间断性,即使同一个原子 发出的前后两列波,也很难保证同时满足三个相干 条件。要获得相干光需要采取特殊的方法.
4、 获得相干光的主要方法 • 分波阵面 法 具有确定相 差的波阵面上的两个次 级子光源是相干的。 • 分振幅干涉法
W入
3、相干叠加光强分布
只是空间的函
数,因此光强在空 间呈稳定分布。
I I1 I 2 2 I1 I 2 cos
在 = 2m 处
I M I1 I 2 2 I1 I 2
=(2m+1) 处
I m I 1 I 2 2 I 1 I 2
I1 I 2 I o I M 4Io
S2
E E1 E 2
1 E1 u1
S1
2 E 2 u2
2、相干条件
2 I E ( E1 E2 ) 2 2 E1 E2 2 E1 E2
2
在交叠区 E E E 1 2
I1 I 2 I12 (干涉项)
2 2 2 1
i1 60o m2 i1 30o m 1
457.6 nm
558.7 nm
二、 等厚干涉
1、 劈尖薄膜的等厚干涉
( i1 0
n1 n3 1)
2hn 2
( 2m 1) m
m m

2
明 暗

2
2hn

相邻 两条纹
n1 n2 n3
2hm n2 2
n1 1 h n2 1.38 n3 1.5
思考:若 n2>n3 会得到
什么结果?为什么望远镜的 镜片有的发红,有的发蓝?
2hn2 ( 2m 1) 2
相消 hm 4n 2
反射光相消 = 增透 效果最好—— n2
Io
Io 2
0
I

o

单色光 准单色光 光强降到一半时曲线的 宽度—— 谱线宽度
o

2
o

2
返回4
二、准单色光双缝干涉条纹
I
D x nd
2 o

2 2 不同波长的叠加 —— 非 相干叠加 —— 光强叠加
1 o

总光强曲线
0 1 2
条纹消失的级次?
明( m 1、 2、 3)
暗(m 0、 1、 2)
h
厚度差 中心间距
第m条暗纹对应膜厚hm
h l sin 2n
h hm 1 hm 2n
2、等厚干涉的应用 (1)增透膜与增反膜
玻璃 n1=1.5, 镀MgF2 n2=1.38,放在 空气中,白光垂直 射到膜的表面,欲使反射光中=550nm 的成分相消, 求 :膜的最小厚度。
4 n1
4000 nm
四、洛埃镜实验
n
2a
r1
r2

直射光光程
nr1


D


2
明 m ( 2 m 1 ) 暗 2
反射光光程 nr2

2

思考:与杨氏双缝实
验比干涉条纹有哪些相 同、不同之处?
n( r2 r1 )
11.3
光的时空相干性
一、准单色光的谱线宽度
3、单色光
复色光 准单色光
单色光的波列无头 无尾 无始无终。 实际波列有限 长——复色光
x E Eo cos[ (t ) ] u
间断振动
o 108 s
1014 Hz
c 3 108 ms1
lo c o
波列越长 单色性越好
二、相干光和相干条件
1、波的独立性原理和叠加原理
级明条纹中 心的光程差
M k 0
相干长度 To16
作者
余 虹
=(2k+1) ( 2k 1)
I m I1 I 2 2 I1 I 2 cos (暗)

(k 0 , 1 , )
2
I1 I 2 I o
I M 4Io
Im 0
三、 杨氏双缝实验条纹位置
s1
s2
d
h
r1 n r2
D
x

x
0
明 m ( 2m 1) 暗 2
当 I12 处处为0 时 I= I1 +I2 ——称作非相干叠加 —— 不相干。
I12不处处为 0 的条件—— 相干条件 1) 相同 2) E1 E 2 间的夹角 不随t变 化,且 3)相位差是常量
2
I12 E10 E20 cos
满足相干条件
2 I1 I 2 cos
h N 2
h0
2h Lc
条纹消失!
思考:尖劈(n)插入,条纹移N根,厚度?
例题
用波长为 的单色光垂直照射牛顿环装置,若使 透镜慢慢上移到原接触点间距离为d,视场中固定 点可观察到移过的条纹数目为多少根? 分析: d
光程差改变 ,条纹移过 1 根;平移 d, L = 2d;移过 N= 2d/
三、相干长度
2 0 2 1 0 2
第k 级 第k+1 级
由于光源的非单 重合 色性,k 级以上条 纹消失!
( 0 )k ( 0 )( k 1) 2 2 0 2 k 0 k 2 M 0 双缝到第k
m0
2h

最高
明暗不定
To17 返回4
M1 M2
m0
2h

平移M1 h 变化 条纹分布变化 更高级次的环从 中心“涌出”,所 有的环都往外扩。 原最高级次的环 从中心“缩进”, 所有的环都往里缩 。
h m 0
M 1 h m 0
i
望远镜
2h 变化 ,条纹 集体移一个间距。
h

问题:1、透射光的干涉情况如何? 2、透镜换成眼睛能看到这些条纹吗?
例题
白光照射空气中的平行薄膜,已知 h=0.34m,n=1.33 问:当视线与膜法线 成 60o 和 30o 时观察点各呈什么颜色 ?
60o
30o
h

n
4h n 2 sin2 i1 2m 1
解 2h n n sini1 m 2 2 2 2h n sin i1 ( 2m 1) 2
( m 0,1, )
D 条纹宽度 x nd
例题 杨氏双缝实验,=500nm ,在一光路中插入玻 璃片(n =1.5)后0点变为4级明纹中心。 求:玻璃片 厚度e。 解:光程差改变 ne e
x
s1 s2
条纹移动 N = 4
(e , n)
0
N
N e n1
u
返回4
二、 光强分布
x

( r1 r2 )
u
s1
n
D D
r1
x
O 0
s2
= 2k k
d
r2
2 ( r1 r2 ) u
2 ( r1 r2 ) n n 2

I M I1 I 2 2 I1 I 2 cos
(明)
r2 r1 s2 h d sin
d D
明条纹中心:
暗条纹中心:
x sin tg x D D xnd n( r2 r1 ) D
( m 1,2, )
xm m
x m nd m D D
nd
D x m ( 2m 1) 2nd
2 2 2 1 2
2hn2 2hn1 ctg i2 si ni1 cos i2 2hn2 cosi 2 m (明)
n1 n2 n3
n1 n2 n3
To25 返回4
2、等倾干涉的特点
S
i1
n1 n2 n3
L
1、倾角相同的光线形成的干涉光 光强相同。 2、所有的平行光汇聚在透镜焦平 面上的同一点。使条纹的对比度 更高。 3 、透镜正放,焦面上条纹是一组 同心圆。
相关文档
最新文档