对数的概念与对数运算性质

合集下载

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质1.对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N=,其中a 叫做底数,N 叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式:log 10a =,log 1a a =,log ba ab =. (3)常用对数与自然对数 常用对数:lg N ,即10log N; 自然对数:ln N ,即log e N(其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 2.对数函数及其性质 定义:函数log (0a y x a =>且1)a ≠叫做对数函数图象:定义域:(0,)+∞ 值域:R 过定点:图象过定点(1,0),即当1x =时,0y =.1 xy O1xyO奇偶性:非奇非偶 单调性:在(0,)+∞上是增函数1a >;在(0,)+∞上是减函数01a <<; 函数值的变化情况:log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<变化对图象的影响:在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. 判断技巧:指数函数令1=x 得到第一象限内底大图上;对数函数令1=y 得到第一象限底大图下。

对数的运算与对数函数

对数的运算与对数函数

1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。

即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。

自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。

3.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈,则log a = 。

⑷log a N a N =2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的. 推广:⑴1log log a b b a=⑵log log log log a b c a b c d d =, ⑶1log log n a a M M n =,则log na m M = 。

特别地:log log 1a b b a =知识要点对数运算与对数函数【例1】 求下列各式中x 的取值范围。

(1)2log (5)x +(2)1log (10)x x --【例2】 将下列指数式化为对数式,对数式化为指数式。

(1) 1642= (2) 9132=- (3) 481log 3=(4) 6125log -=a (5)lg0.0013=-; (6)ln100=4.606【例3】 计算(1)lg 4lg 25+ (2)22log 24log 6-(3)531log ()3(4) 001.0lg (5)e1ln (6)1lg【巩固1】3log =2log =(2log (2= 21log 52+=【巩固2】). A. 1 B. -1 C. 2 D. -2【巩固3】计算2(lg5)lg 2lg50+⋅= .知识要点【例4】 (1)(2 。

对数函数的基本性质及运算法则

对数函数的基本性质及运算法则

对数函数的基本性质及运算法则对数函数是数学中常见的一种函数,它在许多领域中都有广泛的应用。

本文将介绍对数函数的基本性质及运算法则,帮助读者更好地理解和应用对数函数。

一、对数函数的定义和基本性质对数函数是指数函数的反函数。

设a为一个正实数且不等于1,b为正实数,则对数函数的定义如下:y = loga(b)其中,a称为底数,b称为真数,y称为对数。

对数函数的基本性质如下:1. 对数函数的定义域为正实数集合,即x > 0。

2. 对数函数的值域为实数集合,即y ∈ R。

3. 对数函数的图像在直线y = x的左侧,且与x轴交于点(1, 0)。

4. 对数函数是递增函数,即当b1 > b2时,loga(b1) > loga(b2)。

5. 对数函数的反函数是指数函数,即y = loga(x)的反函数为x = a^y。

二、对数的运算法则对数函数的运算法则是指对数函数在进行运算时的一些基本规则和性质。

1. 对数的乘法法则loga(b * c) = loga(b) + loga(c)这个法则表明,对数函数中两个数的乘积的对数等于这两个数分别取对数后的和。

2. 对数的除法法则loga(b / c) = loga(b) - loga(c)这个法则表明,对数函数中两个数的商的对数等于这两个数分别取对数后的差。

3. 对数的幂法法则loga(b^c) = c * loga(b)这个法则表明,对数函数中一个数的幂的对数等于该数取对数后乘以指数。

4. 对数的换底公式loga(b) = logc(b) / logc(a)这个法则表明,当底数不同时,可以通过换底公式将对数转化为另一个底数的对数。

5. 对数函数的性质(1)loga(1) = 0,即任何底数的对数函数中1的对数都等于0。

(2)loga(a) = 1,即任何底数的对数函数中底数的对数都等于1。

(3)loga(a^x) = x,即任何底数的对数函数中底数的幂的对数等于指数。

对数函数的运算与性质

对数函数的运算与性质

对数函数的运算与性质对数函数是数学中常见的一类函数,具有独特的运算性质和特点。

本文将探讨对数函数的运算规则、性质以及其在实际应用中的重要意义。

一、对数函数的定义和性质对数函数的定义如下:对于任意实数x>0和正实数a (a ≠ 1),称满足a^x = y的x为以a为底y的对数,记作x=log_a y。

对数函数有以下基本运算性质:1. 对数与指数的互为反函数关系:log_a a^x = x,a^log_a y = y。

2. 对数的运算法则:log_a (xy) = log_a x + log_a y,log_a (x/y) =log_a x - log_a y,log_a x^m = mlog_a x。

3. 对数函数的定义域和值域:对数函数log_a x的定义域是x>0,值域是实数集。

4. 对数函数的图像特点:不同底数的对数函数在x轴的正半轴上有不同的图像特点。

以e为底的自然对数函数y=lnx是单调递增函数,底数大于1的对数函数是增函数,底数在0和1之间的对数函数是减函数。

二、对数函数的运算法则1. 对数的乘方法则:log_a x^p = plog_a x。

其中,对于底数相同的对数函数,指数相加等于原来两个数的乘积的对数。

例如,log_a (x^2y^3) = 2 log_a x + 3 log_a y。

2. 对数的换底公式:log_a x = log_b x / log_b a。

该公式用于将一个底数为a的对数转化为底数为b的对数。

例如,log_3 2 = log_10 2 / log_10 3。

3. 对数的消去法则:如果log_a x = log_a y,则x=y。

该法则用于解方程时,当两个对数底相同时,如果其对数相等,那么其底数也相等。

三、对数函数的应用对数函数在实际应用中有广泛的用途,以下介绍几个常见的应用领域:1. 科学计算与统计学:对数函数可以简化复杂计算和数据分析过程,特别适用于大数据的处理和处理结果的可视化呈现。

对数的含义与运算

对数的含义与运算

对数含义与运算一、 知识综述1.对数定义:一般地,如果a (10≠>a a 且)的b 次幂等于N , 就是N a b =,那么数 b 叫做a 为底 N 的对数,记作 b N a =log ,a 叫做对数的 ,N 叫做 。

即ba N =, log a Nb =aNb指数式N a b = 底数 幂 指数 对数式b N a =log对数的底数真数对数例如:对数式与指数式的互换2416= 210100= 1242= 2100.01-=2.基本性质:若0a >且1a ≠,0N >,则(1)log 10a =,log 1a a =;(2)log a Na N =.3.介绍两种特殊的对数: ①常用对数:以10作底 10log N 写成lg N ②自然对数:以e 作底为无理数,e = 2.71828…… , log e N 写成ln N .4.对数的运算性质:如果 a > 0 , a ≠ 1, M > 0 ,N > 0, 那么(1)log ()log log a a a MN M N =+;(2)log log -log aa a M M N N=;(3)log log ()na a M n M n R =∈. 5.换底公式:log log log m a m NN a=( a > 0 , a ≠ 1 ;0,1m m >≠)说明:两个较为常用的推论:(1)log log 1a b b a ⨯= ; (2)log log m na a nb b m= (a 、0b >且均不为1). 二、例题讲解例一:(1)计算: 9log 27, 345log 625.(2)求 x 的值:①33log 4x =-; ②()2221log 3211x x x ⎛⎫ ⎪⎝⎭-+-=.(3)求底数:①3log 35x =-, ②7log 28x =.例二: 例5.求下列各式的值:(1)()752log 42⨯; (2)5lg 100 .例三: 计算: (1)lg14-21g 18lg 7lg 37-+; (2)9lg 243lg ; (3)2.1lg 10lg 38lg 27lg -+.三、课堂练习 一、填空题1.计算:log2.56.25+lg1001+ln e +3log 122+= . 2.若10x=3,10y=4,则102x-y=__________;为表示、用7512log y x .3.(log 43+log 83)(log 32+log 92)-log 421329log 255+=__________ .4.若log (21)1x +=-, 则x = . 5.已知()xf e x =,则f(5)等于 . 6.如果732log [log (log )]0x =,那么12x -等于________________.7.25)a (log 5-(a ≠0)化简得结果是_____________________.8.已知 ab=M (a>0, b>0, M ≠1), 且logM b=x ,则logM a=________________.9.设(){}1,,lg A y xy =, {}0,,B x y =,且A =B ,则x = ;y =10. 计算:()()5log 22323-+二、选择题11.3log 9log 28的值是 ( )A .32 B .1 C .23 D .212.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x 13.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 C.0D.21 14.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+1215.已知2 lg(x -2y )=lg x +lg y ,则yx 的值为( )A .1B .4C .1或4D .4 或-116.若log a b ·log 3a=5,则b 等于( )A .a 3B .a 5C .35D .5317. 已知ab>0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lga+lgb ②lgb a =lga -lgb ③bab a lg )lg(212= ④lg (ab )=10log 1abA .0B .1C .2D .318.若f (ln x )=3x +4,则f (x )的表达式为 ( )A 3ln xB 3ln x +4C 3e x +4D 3e x三、解答题19. (1)已知32a=,用a 表示33log 4log 6-;(2)已知3log 2a =,35b=,用a 、b 表示 30log 3.20.已知:lg (x -1)+lg (x -2)=lg2,求x 的值21. 已知18log 9,185,ba ==用a,b 表示 36log 4522. 15.(14分)已知函数2()(lg 2)lg f x x a x b =+++满足(1)2f -=-,且对一切实数x ,都有f (x)≥2x 成立,求实数a 、b 的值.课后练习1.下列指数式与对数式互化中错误的一组是 A . 01e =与ln10= B .13182-=与811log 23=- C . 3log 92=与1293= D .7log 71=与177=2.若b ≠1,则 loga b 等于( )。

对数的性质与运算

对数的性质与运算

对数的性质与运算对数是数学中常用的一种运算工具,它在科学、工程和计算机等领域被广泛应用。

对数有许多独特的性质和运算规则,下面将对这些内容进行介绍。

一、对数的定义对数可以理解为指数的逆运算。

设 a 和 x 是正数,且a ≠ 1,那么以a 为底的 x 的对数表示为logₐx,满足 a 的 x 次幂等于 x,即a^logₐx = x。

其中,a 称为底数,x 称为真数。

二、对数的性质1. logₐ1 = 0:任何数以自身为底数的对数均为 0。

2. logₐa = 1:任何数以自身为底数的对数均为 1。

3. logₐ(a × b) = logₐa + logₐb:两个正数的乘积的对数等于各自对数之和。

4. logₐ(a / b) = logₐa - logₐb:两个正数的商的对数等于被除数的对数减去除数的对数。

5. logₐaⁿ = n × logₐa:一个数的 n 次幂的对数等于该数的对数乘以 n。

6. logₐa = 1 / logₐa:等式左右两边互为倒数。

三、对数的运算1. 对数的乘法:logₐ(a × b) = logₐa + logₐb。

对数的乘法规则表明,两个正数的乘积的对数等于各自对数之和。

例如:log₂2 + log₂3 = log₂(2 × 3) = log₂6。

2. 对数的除法:logₐ(a / b) = logₐa - logₐb。

对数的除法规则表明,两个正数的商的对数等于被除数的对数减去除数的对数。

例如:log₃8 - log₃2 = log₃(8 / 2) = log₃4。

3. 对数的幂:logₐaⁿ = n × logₐa。

对数的幂规则表明,一个数的n 次幂的对数等于该数的对数乘以n。

例如:log₄(2³) = 3 × log₄2。

4. 对数的换底公式:logₐb = logₓb / logₓa。

换底公式是用于将对数的底数从一个给定的底数转换为另一个给定的底数。

对数的概念及运算法则

对数的概念及运算法则

对数的概念及运算法则对数是数学中的一个概念,它表示一个数相对于一些给定的底数的幂。

在日常生活中,对数经常被用来解释指数增长或减少的情况。

首先,对数的定义是:对于给定的正数a(a ≠ 1),将正数x表达为底数a的幂的等式,即x = a^m (m为任意实数),称m为x的以a为底的对数,记作m =log[底数a](x),即m = loga(x)。

对数有以下几个重要特点:1.底数必须是一个正数,并且不能等于12.对数函数中x的取值范围为正实数,因为负数和0的对数不存在。

3.对数的结果m可以是任意实数,包括正数、负数和零。

对数具有一些重要的性质和运算法则,下面介绍其中的一些:1.换底公式:对于任意给定的x和任意的正数a、b(a、b≠1),有以下等式成立:loga(x) = logb(x) / logb(a)换底公式可以将一个对数用另一个底数的对数表示,这样在计算和比较对数时更加方便。

2.加减法法则:对于任意给定的正数a、b和任意的正数x、y,有以下等式成立:loga(x * y) = loga(x) + loga(y)loga(x / y) = loga(x) - loga(y)加减法法则可以将对数的乘法和除法分解为对数的加法和减法,简化对数运算。

3.乘方法则:对于任意给定的正数a和任意的正数x和正整数n,有以下等式成立:loga(x^n) = n * loga(x)乘方法则可以将对数中的指数化简为对数本身的乘法。

4.对数的乘法和除法法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:loga(x^b) = b * loga(x)loga(b^x) = x * loga(b)乘法和除法法则可以将指数中的对数化简为对数本身的乘法或除法。

5.对数的幂次法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:a^(loga(x)) = x如果a ≠ 1,则loga(a^x) = x幂次法则可以将对数中的幂次化简为原指数。

对数与对数函数

对数与对数函数

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: logaa=1;如果a=1或=0那么logaa 就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yOxy<a <y = l o g x a111())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是11xy y y y OA BC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足=x z =x 7z =7x z=z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则<b <c <c <b <a <c<a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a .∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A.21B.-21D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是xyxyx yxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 B.2解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________.解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).-1O y注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x x +)成立的函数是 (x )=x 21(x )=x 2(x )=2x(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1) 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.(2004年苏州市模拟题)已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点. (1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3).(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169.小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

对数的基本性质和运算公式

对数的基本性质和运算公式

对数的基本性质和运算公式对数是数学中非常重要和常用的概念,它在许多领域都有广泛的应用。

对数的基本性质和运算公式包括对数的定义、对数的性质、对数的运算规则以及一些常用的对数公式等。

本文将详细介绍这些基本性质和运算公式。

一、对数的定义:对数是指数运算的逆运算。

设a为一个正实数,b为一个正实数且不等于1,若满足b^x = a,其中x为实数,则称x为以b为底a的对数,记作x = log_b a。

其中,a称为真数,b称为底数,x称为对数。

在对数的定义中,底数和真数的位置可以互换,即x = log_b a等价于 a = b^x。

二、对数的性质:1.对数的定义保证了对数的唯一性,即对于给定的底数和真数,对数是唯一的。

2.对于不同的底数,同一个真数的对数是不同的。

3.当底数为1时,对数不存在,因为1的任何次幂都等于14. 当真数为1时,对数等于0,即log_b 1 = 0。

5.当底数为0时,对数不存在,因为0无法作为一个数的底数。

6.当0<b<1时,对数是负数;当b>1时,对数是正数;当b=1时,对数等于0。

三、对数的运算规则:1.对数的乘法法则:log_b (a * c) = log_b a + log_b c2.对数的除法法则:log_b (a / c) = log_b a - log_b c3.对数的幂法法则:log_b (a^p) = p * log_b a,其中p是任意实数。

这些运算规则可以用来简化对数运算或者将对数转化成乘法和除法的形式。

四、常用的对数公式:1.自然对数和常用对数之间的换底公式:log_b a = log_c a / log_c b,其中b和c是底数。

2.e为底的自然对数:自然对数是以e (自然常数)为底的对数,记作ln(x)。

3.常用对数:常用对数是以10为底的对数,记作log(x)。

4.对数性质的推广:log_b a^n = n * log_b alog_b √(a) = 1/2 * log_b a这些对数公式在计算和解决问题时都有常用的作用。

初中数学知识归纳对数的运算与性质

初中数学知识归纳对数的运算与性质

初中数学知识归纳对数的运算与性质对数是数学中常见的概念,它在各个领域都有广泛的应用。

在初中数学中,对数的运算与性质是我们必须要掌握的知识点之一。

本文将对初中数学中对数的运算与性质进行详细的归纳总结。

一、对数的定义与基本概念对数的定义:对数是指数运算的逆运算。

设a为正实数,b为正实数且不等于1,若满足b=a^x(a的x次方等于b),则称x为以a为底,以b为真数的对数。

对数的表示:我们用log_a^b表示以a为底,以b为真数的对数,其中a称为底数,b称为真数。

二、对数的运算性质1. 对数运算的特点:(1)对数是单调递增函数,即底数相同时,对数越大,真数也越大。

(2)对数运算的结果为实数,且有无限个解。

2. 对数的运算法则:(1)指数与对数互为逆运算。

即log_a(a^x)=x,a^log_a(x)=x。

(2)对数的乘法法则:log_a(mn) = log_a(m) + log_a(n)(3)对数的除法法则:log_a(m/n) = log_a(m) - log_a(n)(4)对数的幂法法则:log_a(m^p) = p * log_a(m)三、对数的常见性质1. 对数与指数的关系:若a^x=b,则log_a(b)=x,即指数与对数互为逆运算。

2. 对数的底数变换:若log_a(b)=x,则log_c(b)=log_c(a) * x,即对数的底数变化只影响对数的值。

3. 对数与指数的运算:(1)log_a(a)=1,即以a为底的对数a的对数值为1。

(2)log_a(1)=0,即以a为底的对数1的对数值为0。

(3)log_a(a^x)=x,即以a为底,指数为x的幂的对数为x。

四、对数的应用对数在实际生活和各个学科中都有广泛的应用,以下列举一些常见的应用场景:1. 对数在计算机科学中的应用:对数可用于衡量计算机算法的时间复杂度和空间复杂度。

2. 对数在经济学中的应用:对数可用于描述经济指标的增长速度和变化趋势。

对数函数的定义与性质

对数函数的定义与性质

对数函数的定义与性质对数函数是数学中一种常见的特殊函数,它在很多领域都有着重要的应用。

在本文中,我们将探讨对数函数的定义与一些基本性质。

一、对数函数的定义对数函数是指以某个常数为底数的对数函数。

通常用log表示。

对于任何正数x和正数a(a≠1),对数函数可以用以下公式表示:y = logₐx其中,a表示底数,x表示真数,y表示以a为底x的对数。

二、常见的对数函数1. 自然对数函数:当底数a取自然常数e(e≈2.71828)时,对数函数称为自然对数函数。

自然对数函数的常用记法为ln,即y = ln⁡x。

2. 以10为底的对数函数:当底数a取10时,对数函数称为常用对数函数。

常用对数函数用log表示,即y = log₁₀x。

三、对数函数的性质对数函数具有以下几个基本性质:1. 定义域和值域:对于底数a大于1的对数函数,其定义域为正实数集(0,+∞),值域为实数集。

对于底数a等于1的对数函数,其定义域为正实数集(0,+∞),值域为空集。

2. 单调性:对数函数在定义域内是严格递增函数。

当底数a大于1时,对数函数随着真数的增大而增大;当底数a在0和1之间时,对数函数随着真数的增大而减小。

3. 对数的运算性质:(1)对数乘法公式:logₐ(x·y) = logₐx + logₐy。

即对数函数中两个数的积等于对数函数中各自对应数的对数之和。

(2)对数除法公式:logₐ(x/y) = logₐx - logₐy。

即对数函数中两个数的商等于对数函数中各自对应数的对数之差。

(3)对数的幂运算公式:logₐ(b^x) = x·logₐb。

即对数函数中一个数的指数幂等于对数函数中该数对应底数的对数乘以指数。

4. 特殊值:(1)对于底数a大于1的对数函数,当真数x等于1时,对数函数的值为0,即logₐ1 = 0。

(2)对于底数a大于1的对数函数,当真数x等于底数a时,对数函数的值为1,即logₐa = 1。

对数的概念与性质

对数的概念与性质

对数的概念与性质对数是数学中的一个重要概念,它在各个领域都有广泛的应用。

本文将介绍对数的概念及其性质,帮助读者更好地理解并应用对数。

一、对数的概念对数是指数运算的逆运算。

在数学中,对于任意正实数a和正实数b,如果a^x = b,则称x为以a为底b的对数,记作x=logₐ b。

这里的a 称为对数的底数,b称为真数。

对数运算可以理解为将指数运算的结果转化为一个数值。

二、对数的性质1. 对数的底数不能为0或1:因为0的任何正数次幂都等于0,而1的任何实数次幂都等于1,这样就无法满足对数的逆运算的要求。

2. 对数的底数不能为负数:因为负数的幂在实数范围内没有定义,无法满足对数的逆运算的要求。

3. 对数的底数必须大于0且不等于1:只有在底数大于0且不等于1的情况下,才能保证对数的逆运算存在,这样才有意义。

4. 对数的特殊形式:a) logₐ a = 1:任何数以自身为底的对数都等于1。

b) logₐ 1 = 0:任何底数的对数等于1的幂都等于1,因此对数的真数为1时,对数等于0。

c) logₐ (a×b) = logₐ a + logₐ b:对数运算的运算律之一,在求两个数的乘积的对数时,可以拆分为两个对数的和。

d) logₐ (a/b) = logₐ a - logₐ b:对数运算的运算律之二,在求两个数的商的对数时,可以拆分为两个对数的差。

e) logₐ (a^k) = k × logₐ a:对数运算的运算律之三,在求一个数的幂的对数时,可以将指数提到对数的前面。

三、对数的应用对数在数学和其它领域中有广泛的应用,下面列举几个常见的应用:1. 指数运算转化:对数的一个重要应用是将指数运算转化为简单的加减运算,方便计算和处理复杂的指数关系。

2. 代数方程求解:对数可以用于求解各种类型的代数方程,特别是指数方程和对数方程。

3. 数据缩放:在数据处理和统计学中,对数可以用于将大范围的数值转化为比较小的范围,方便分析和比较。

对数函数知识点总结

对数函数知识点总结

对数函数知识点总结对数函数是数学中的一种重要的函数类型,广泛应用于各个科学领域。

本文将对对数函数的基本定义、性质以及应用进行总结。

1. 定义与性质对数函数是指数函数的逆运算。

设a是一个正实数且a≠1,b是任意正实数,则“以a为底b的对数”可以表示为logₐb。

其中底数a称为对数的底,b称为真数,logₐb称为对数。

对数函数通常用f(x) = logₐx表示。

对数函数具有以下基本性质:1)logₐ1 = 0:任何数以其本身为底的对数等于1。

2)logₐa = 1:任何数以其本身为底的对数等于1。

3)logₐaˣ = x:对数函数的一个基本性质是,以a为底的对数函数中,a的x次幂等于x。

即logₐaˣ = x。

4)logₐxy = logₐx + logₐy:对数函数中,底为a的对数函数中,两个数相乘的对数等于这两个数的对数之和。

即logₐxy = logₐx + logₐy。

5)logₐxⁿ = nlogₐx:对数函数中,底为a的对数函数中,以x为真数n次幂的对数等于n乘以以底为a,真数为x的对数。

即logₐxⁿ = nlogₐx。

2. 常用对数和自然对数常用对数函数是以10为底的对数函数,通常用log(x)表示,即log(x) = log₁₀x。

常用对数函数的性质和定义与之前的对数函数一致。

自然对数函数是以自然常数e(约等于2.71828)为底的对数函数,通常用ln(x)表示,即ln(x) = logₑx。

自然对数函数的性质与定义也与之前的对数函数相同。

3. 对数函数的应用对数函数在实践中有广泛的应用,下面举几个例子说明:1)指数增长与对数函数:对数函数在描述指数增长和衰减方面非常有用。

当某个变量随着时间的增加以指数形式增长或减少时,可以使用对数函数来描述其增长或减少的速度和幅度。

2)复利计算:对数函数在金融和投资领域中的应用非常重要。

例如,复利计算中,对数函数可以帮助计算利息的增长速度和总额。

初三数学对数运算规律与性质

初三数学对数运算规律与性质

初三数学对数运算规律与性质对数运算是初中数学中的重要内容,它与指数运算密切相关,具有独特的规律与性质。

在本文中,我们将探讨对数运算的基本规律以及相关的性质。

一、对数的基本概念对数是指数运算的逆运算。

设a为正实数且a≠1,对数的定义如下:如果b的x次方等于a,即b^x=a,那么x叫做以b为底a的对数,记作x=logb(a)。

公式中,x表示对数,b表示底数,a表示真数。

二、对数运算的基本规律1. 乘法规律:logb(m*n) = logb(m) + logb(n)这个规律可以准确地计算出两个数相乘后的对数,只需将原来的两个数各自取对数,然后相加即可。

2. 除法规律:logb(m/n) = logb(m) - logb(n)这个规律将两个数相除后的对数转化为两个数各自的对数之差。

3. 幂运算规律:logb(m^p) = p * logb(m)这个规律将一个数的幂运算后的对数,转化为该数的对数与指数之间的乘法运算。

三、对数运算的性质1. 对数与指数的关系:对数与指数是互为反函数的,即:b^logb(a) = a这个性质说明了对数与指数运算之间的密切联系。

2. 对数的底数与真数之间的关系:对于同一个正整数a,当底数b>1时,随着底数b的增大,logb(a)也会增大;当底数1<b<1时,随着底数b的增大,logb(a)会减小。

3. 对数的性质:(1)零的对数不存在:logb(0)是无穷小。

(2)底数为1时:log1(a)不存在,因为1的任何次方都等于1。

(3)同底数的对数之差:logb(a) - logb(c) = logb(a/c),其中a、c均为正实数。

(4)对数的倒数:logb(1/a) = -logb(a),其中a为正实数。

(5)换底公式:logb(a) = logc(a) / logc(b),其中a、b为正实数且a≠1,c为正整数且c≠1。

综上所述,我们通过对数运算的基本规律与性质的介绍,可以更加深入地理解和应用对数运算。

对数及运算性质

对数及运算性质

§4.1 对数与对数运算1.对数:(1)定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。

) 由于N a b=>0故lo g a N 中N 必须大于0。

2.对数的运算性质及换底公式.(2)指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0).(3)对数运算性质:①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log log n m a amb b n=④对数换底公式:log b N =b N a a log log lg lg N b =○5log a M a M= ○61log log a b b a=1、求下列各式中x 的值:log 83x =(1) lg100x =(2) 2ln x e =(3)- 642(4)log x 3=-2、求下列各式的值:51log 25() 15log 15(2) 9log 81(3) 4lg1000()(5)lg10000 0.4log 1(6) 217log 16()lg 0.001(8)(9)lg0.01 (10) lg 5100 (11)3log 273 (12)5111255og3、化简求值(1)2log (74×52) (2)lg 5+lg 2 (3)5log 3+5log 31(4)2log 6-2log 3(5)3log 5-3log (6)3lglg 70lg 37+-(7)(8) (9)2194log 2log 3log -⋅ (10)(11)3log 12.05- (12)(13)21lg 4932-34lg 8+lg 245强化训练:对数与对数运算练习题一.选择题1.2-3=18化为对数式为( )A .log 182=-3 B .log 18(-3)=2 C .log 218=-3 D .log 2(-3)=182.log 63+log 62等于( )A .6 B .5 C .1 D .log 65 3.如果lg x =lg a +2lg b -3lg c ,则x 等于( )A .a +2b -3c B .a +b 2-c 3 C.ab 2c 3D.2ab3c4.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2 B .5a -2C .3a -(1+a )2D .3a -a 2-1 5.的值等于( )A .2+ 5 B .2 5 C .2+52D .1+526.Log 22的值为( )A .- 2B. 2 C .-12D.127.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <3或3<a <5C .2<a <5D .3<a <48.方程2log3x =14的解是( )A .x =19 B .x =x3C .x = 3D .x =99.若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( )A .9 B .8 C .7 D .6 10.若102x =25,则x 等于( )A .lg 15 B .lg5 C .2lg5D .2lg 1511.计算log 89·log 932的结果为( )A .4 B.53 C.14 D.3512.已知log a x =2,log b x =1,log c x =4(a ,b ,c ,x >0且≠1),则log x (abc )=( ) A.47 B.27 C.72 D.74 二.填空题:1.2log 510+log 50.25=__ __. 2.方程log 3(2x -1)=1的解为x =_______. 3.若lg(ln x )=0,则x =_ ______. 4.方程9x -6·3x -7=0的解是_______ 5.若log 34·log 48·log 8m =log 416,则m =________.6.已知log a 2=m ,log a 3=n ,则log a 18=_______.(用m ,n 表示) 7.log 6[log 4(log 381)]=_______.8.使对数式log (x -1)(3-x )有意义的x 的取值范围是_______ 三.计算题1.(1)2log 210+log 20.04 (2) lg3+2lg2-1lg1.2(3)log 6112-2log 63+13log 627 (4)log 2(3+2)+log 2(2-3);(5)lg5·lg8000+06.0lg 61lg )2(lg 23++ (6)2)2(lg 50lg 2lg 25lg +⋅+(7)lg 25+lg2·lg50 (8)(log 43+log 83)(log 32+log 92)2.已知5lg 2lg 35lg 2lg 33⋅++=+b a ,求333ba ab ++3.已知log 34·log 48·log 8m =log 416,求m 的值.§5 对数函数及其性质1、对数函数图像过点(4,2),则该对数函数的解析式是( )A 、x y 2log =B 、x y 4log =C 、x y 8log =D 、不确定2、函数x a y a log )1(2-=是对数函数,则a 的值为( )A 、1B 、2C 、2±D 、任意值3、函数x a a y a log )33(2+-=是对数函数,则a 的值为( )A 、1B 、2C 、1或2D 、任意值4、若)10(log )(≠>=a a x x f a 且,且0)2(<f ,则)(x f 的图像是 ( )5、若函数)10()(≠>=-a a a x f x ,是定义在R 上的增函数,则函数)1(log )(+=x x g a 的图像大致是( )6、已知0lg lg =+ba ,则函数x a x f =)(与函数x x gb log )(-=的图像可能是( )7、函数)10(1log )(≠>-=a a x x f a 且的图像恒过点( )A 、(1,0)B 、(0,-1)C 、(1,1)D 、(1,-1)8、函数)10(12log )(≠>--=a a x x f a 且)(的图像恒过点( )A 、(1,0)B 、(0,-1)C 、(1,1)D 、(1,-1) 9、已知函数)10(98)3(log ≠>-+=a a x y a 且的图像恒过点A ,若点A 也在函数bx f x +=3)(的图像上,则b 的值为( )A 、0B 、0C 、0或1D 、-1 10、已知)1(log )2(log 45.045.0x x ->+,则实数x 的取值范围是11、已知)65(log )32(log 22->+x x ,则实数x 的取值范围是12、已知)2(log )43(log ->-x x a a ,则实数x 的取值范围是13、132log <a ,则a 的取值范围是 14、函数)1lg(-=x y 的图像大致是( )15、已知10≠>a a且,则函数x a y =与)(log x y a -=的图像可能是( )16、下列函数图像正确的是( )17、函数x y 2log =在[1,2]上的值域是 18、函数)1(log 22≥+=x x y 的值域是19、函数)73(1)1(log 2≤≤++=x x y 的值域是20、函数)73(1)1(log 21≤≤++=x x y 的值域是。

对数函数及其性质-对数的公式互化-详尽的讲解

对数函数及其性质-对数的公式互化-详尽的讲解

对数与对数运算1.对数的概念一般地,如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y =a x的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x=N ⇔x =log a N ,从而得对数恒等式:a log a N =N .(2)“log”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN=log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n=n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a MN=log a M log a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x=N .两边取以c 为底的对数, 得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式: (1)log b N =1log N b或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1); (2)log bn N m=m nlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一正确理解对数运算性质对于a>0且a≠1,下列说法中,正确的是( )①若M=N,则log a M=log a N;②若log a M=log a N,则M=N;③若log a M2=log a N2,则M=N;④若M=N,则log a M2=log a N2.A.①与③B.②与④C.②D.①、②、③、④解析在①中,当M=N≤0时,log a M与log a N均无意义,因此log a M=log a N不成立.在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立.在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3=2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2=2+1-(lg2)2+(lg2)2=3.(3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝ ⎛⎭⎪⎫log 253+log 225log 24+log 25log 28⎝ ⎛⎭⎪⎫log 52+log 54log 525+log 58log 5125 =⎝⎛⎭⎪⎫3log 25+2log 252log 22+log 253log 22⎝ ⎛⎭⎪⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎪⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝ ⎛⎭⎪⎫lg125lg2+lg25lg4+lg5lg8⎝ ⎛⎭⎪⎫lg2lg5+lg4lg25+lg8lg125=⎝ ⎛⎭⎪⎫3lg5lg2+2lg52lg2+lg53lg2⎝ ⎛⎭⎪⎫lg2lg5+2lg22lg5+3lg23lg5=⎝⎛⎭⎪⎫13lg53lg2⎝ ⎛⎭⎪⎫3lg2lg5=13.点评 方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,求实数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(上海高考)方程9x-6·3x-7=0的解是________.解析 ∵9x -6·3x -7=0,即32x -6·3x-7=0 ∴(3x-7)(3x+1)=0 ∴3x=7或3x=-1(舍去) ∴x =log 37. 答案 log 372.(辽宁高考)设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=____.解析 g ⎝ ⎛⎭⎪⎫12=ln 12<0,g ⎝ ⎛⎭⎪⎫ln 12=eln 12=12, ∴g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7) D.(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2C .5a -2D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2.3.log 56·log 67·log 78·log 89·log 910的值为( ) A .1 B .lg5 D .1+lg2 答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) D .(1,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a的值为( )A .4 C .3 答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg 5=0的两根为α,β,则αβ等于( ) A .lg7·lg5 B.lg35 C .35 答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝ ⎛⎭⎪⎫12=________.答案 2解析 令log 2x =12,则212=x ,∴f ⎝ ⎛⎭⎪⎫12=212= 2.8.log (2-1)(2+1)=________.答案 -1 解析 log2-1(2+1)=log2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2= 0,lg3= 1,lg x =-2+ 1,则x =________. 答案解析 ∵lg2= 0,lg3= 1,而 0+ 1= 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy的值; (2)已知log 189=a,18b=5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y ,又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y . 则log 2xy=log 24y y =log 24=lg4lg 2=4. (2)∵18b=5,∴log 185=b, 又∵l og 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b1+log 18189=b 1+(1-log 189)=b2-a.11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z,1x +1y +1z=0,求abc 的值.解 令a x =b y =c z=t (t >0且t ≠1), 则有1x =log t a ,1y =log t b ,1z=log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1.12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0. 即lg(c 2-b 2)-2lg a =0,故c 2-b 2=a 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形.2.对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a(a>0且a≠1)的b次幂等于N,就是a b=N,那么数b叫做以a为底N的对数,记作b=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质有:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e为底的对数叫做自然对数,log10N可简记为lg N,log e N简记为ln N.4.若a>0,且a≠1,则a b=N等价于log a N=b.5.对数恒等式:a log a N=N(a>0且a≠1).一、对数式有意义的条件例1 求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2.(3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5 D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式: (1)54=625; (2)log 128=-3;(3)⎝ ⎛⎭⎪⎫14-2=16; (4)log 101 000=3.分析 利用a x=N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4. (2)∵log 128=-3,∴⎝ ⎛⎭⎪⎫12-3=8.(3)∵⎝ ⎛⎭⎪⎫14-2=16,∴log 1416=-2.(4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x=N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值: (1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2. (4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝ ⎛⎭⎪⎫12x =16,即2-x =24,∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0); (2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N =c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95. 点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b=N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b=N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0 B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) -2 +2-2或5+2 D .2-5 答案 B4.如果f (10x)=x ,则f (3)等于( ) A .log 310 B .lg3 C .103D .310答案 B解析 方法一 令10x=t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x=3,则x =lg3,∴f (3)=lg3. 5.21+12·log 25的值等于( )A .2+ 5B .25C .2+52 D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x=25,则x 的值为________. 答案 100解析 ∵5lg x=52,∴lg x =2,∴x =102=100. 7.设log a 2=m ,log a 3=n ,则a 2m +n的值为________.答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n=3, ∴a2m +n=a 2m ·a n =(a m )2·a n =22×3=12.8.已知lg6≈ 2,则 2≈________. 答案 600 解析2≈102×10lg6=600.三、解答题9.求下列各式中x 的值 (1)若log 3⎝⎛⎭⎪⎫1-2x 9=1,则求x 值;(2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝⎛⎭⎪⎫1-2x 9=1,∴1-2x 9=3∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎪⎫22x=4, ∴2-12x =22,-x 2=2,x =-4.(2)由已知得:9x =3,即32x=312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝ ⎛⎭⎪⎫1x 3=23,1x =2,x =12.(5)由已知得:x =⎝ ⎛⎭⎪⎫124=116. 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ; (2)log a M N=log a M -log a N ; (3)log a M n=n log a M (n ∈R ). 2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y ); ③log a x y=log a x ÷log a y ; ④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( ) A .log a x =-log a 1xB .(log a x )n=n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)错误!;(4)(lg5)2+lg2·lg50. 分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1. (3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值: (1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2. (2)原式=[log 262+log 62·log 6(3×6)]÷log 622=log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y=36,求2x +1y的值;(2)已知log 189=a,18b=5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x=36,4y=36, ∴x =log 336,y =log 436, 由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364,∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. (2)∵log 189=a,18b=5,∴log 185=b . ∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a.点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值. 解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +bb.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝ ⎛⎭⎪⎫lg a b 2的值等于( ) A .2 C .4 答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝ ⎛⎭⎪⎫lg a b 2=(lg a -lg b )2=(lg a +lg b )2-4lg a ·lg b =22-4×12=2.4.若=1 000,=1 000,则1x -1y等于( )B .3C .-13 D .-3答案 A解析 由指数式转化为对数式:x = 000,y = 000,则1x -1y =log 1 -log 1 =log 1 00010=13. 5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8, 所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005|=2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 错误!=__________. 答案a +2b -12解析 lg 错误!=错误!=错误!lg 错误!=错误!lg 错误! =12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6 ∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63= 1,log 6x = 9,则x =________. 答案 2解析 由log 63+log 6x = 1+ 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg75=lg 42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2 =lg10·lg 52+lg4=lg ⎝ ⎛⎭⎪⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1. 10.若26a =33b =62c,求证:1a +2b =3c.证明 设26a =33b =62c=k (k >0),那么⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k =2log k6.∴1a +2b=6·log k 2+2×3log k 3=log k (26×36)=6log k 6=3×2log k 6=3c,即1a +2b =3c.2. 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y =log a x 中,log a x 前面的系数为1,自变量在真数的位置,底数a 必须满足a >0,且a ≠1;(3)以10为底的对数函数为y =lg x ,以e 为底的对数函数为y =ln x .2.对数函数的图象及性质:3.指数函数与对数函数的关系比较m (1)当(m -1)(n -1)>0,即m 、n 范围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 范围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1; (2)y =11-log a (x +a )(a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围. 解 (1)要使函数有意义,必须{ 2x +3>0,x -1>0,3x -1>0,3x -1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23.∴x >1.∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b b a,log b a ,log a b 的大小. (1)解析 ∵log 34>1,0<log 43<1, log 4334=log 43⎝ ⎛⎭⎪⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<a b<1.∴log a a b <0,log b b a∈(0,1),log b a ∈(0,1). 又a >b a >1,且b >1,∴log b b a<log b a ,故有log a ab <log b b a<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12.故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x-log a x <0,当x ∈⎝ ⎛⎭⎪⎫0,12时恒成立,求实数a 的取值范围.解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减.又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫ ⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫ ⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.错解 ∵f (x )的值域是R , ∴ax 2+2x +1>0对x ∈R 恒成立, 即{ a >0Δ<0⇔{ a >04-4a <0⇔a >1.错因分析 出错的原因是分不清定义域为R 与值域为R 的区别. 正解 函数f (x )=lg(ax 2+2x +1)的值域是R ⇔真数t =ax 2+2x +1能取到所有的正数.当a =0时,只要x >-12,即可使真数t 取到所有的正数,符合要求;当a ≠0时,必须有{ a >0Δ≥0⇔{ a >04-4a ≥0⇔0<a ≤1.∴f (x )的值域为R 时,实数a 的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x 的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1),又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b .答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1} D .∅ 答案 C2.已知函数f (x )=lg 1-x 1+x ,若f (a )=12,则f (-a )等于( )B .-12 C .-2 D .2答案 B解析 f (-a )=lg 1+a 1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a =-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( ) A .c <b <a B .a <b <c C .b <c <a D .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ;又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数. 又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞) 答案 D解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x(x ∈R )的部分对应值如下表:则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =,∴(x -1)<0, ∴(x -1)<,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________. 答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1, 即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案 ⎣⎢⎡⎭⎪⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质对数函数y =log a x (a >0且a ≠1)和指数函数y =a x_(a >0且a ≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3 C .101,53,3,34 D .53,101,3,34 答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下: ①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系: (1)若logm5>logn5,则m n ; (2)若>,则m n. 答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域: (1)y =3log 2x ; (2)y =4x -3); (3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =4x -3)有意义, 必须(4x -3)≥0=, ∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域. 解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1. 当0<a <1时,(*)可化为 log a (4x -3)≥log a 1, ∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝ ⎛⎦⎥⎤34,1.三、对数函数单调性的应用例3 比较大小: (1)与;(2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =在(0,+∞)内是减函数,∵<2,∴和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64, ∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小: (1),; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1). 解 (1)∵0<<1,∴对数函数y =在(0,+∞)上是减函数. 又∵<,∴在(0,+∞)上是增函数, ∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数, ∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值范围.分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a .当a >1时,1a <34<a ,∴a >43.当0<a <1时,1a >34>a ,∴0<a <34.∴a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞.点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性. (2)解决与对数函数相关的问题时要遵循“定义域优先”原则. (3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值范围.解 log a (2a +1)<log a 3a <0(*) 当a >1时,(*)可化为⎩⎪⎨⎪⎧0<2a +1<10<3a <12a +1<3a,解得⎩⎪⎨⎪⎧-12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎪⎨⎪⎧2a +1>13a >12a +1>3a ,解得⎩⎪⎨⎪⎧a >0a >13a <1,∴13<a <1. 综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。

对数函数的性质及运算

对数函数的性质及运算

对数函数的性质及运算对数函数是数学中经常使用的一种函数,它在许多领域都有重要的应用。

本文将探讨对数函数的性质及其运算规则。

一、对数函数的定义及性质对数函数的定义:给定一个正数a(a>0且a≠1),那么以a为底的对数函数记作logₐ(x),定义为满足a的x次方等于b的数x,即aˣ=b,其中b>0。

1. 对数函数的定义域和值域:对数函数的定义域是(0, +∞),值域是(-∞, +∞)。

当底数a>1时,对数函数是递增的;当0<a<1时,对数函数是递减的。

2. 对数函数的性质:(1)logₐ(a)=1,即对数函数的基本性质。

(2)logₐ(aˣ)=x,即对数函数的反函数性质。

(3)logₐ(a×b)=logₐ(a)+logₐ(b),即对数函数的乘法公式。

(4)logₐ(a/b)=logₐ(a)-logₐ(b),即对数函数的除法公式。

(5)logₐ(a^k)=k·logₐ(a),即对数函数的幂函数公式。

(6)logₐ1=0,即对数函数的特殊性质。

二、对数函数的运算规则1. 对数运算的基本性质:(1)logₐ(m×n)=logₐ(m)+logₐ(n),即对数乘法法则。

(2)logₐ(m/n)=logₐ(m)-logₐ(n),即对数除法法则。

(3)logₐ(m^k)=k·logₐ(m),即对数幂函数法则。

(4)logₐ(a)=1/logₐ⁡(a),即对数底变换公式。

2. 特殊情况下的对数运算:(1)logₐ(a)=1,其中a是正实数且a>0,即指数和对数的底为同一个数时,结果为1。

(2)logₐ(a)≠0,其中a是正实数且a>0,即指数和对数的底不相等时,结果不为0。

三、对数函数的应用对数函数在科学研究和实际生活中有着广泛的应用,例如:1. 财务与利息计算:对数函数可以用于计算复利、年化利率等问题。

2. 生物学与医学研究:对数函数可以用于研究生物体的生长和代谢等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数的概念与对数运算性质
2.2.1对数的概念与对数运算性质
一、内容与解析
(一)内容:对数的概念与对数的基本性质
(二)解析:我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.
教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
二、教学目标及解析
(一)教学目标
1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.
2.通过与指数式的比较,引出对数的定义与性质.
3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;在学习过程中培养学生探究的意识;增加学生的成功感,增强学习的积极性.
(二)解析
1、理解对数的概念就是指:一是实际的需要;二是人为规定的一种新的表示数的符号;
2、熟练进行对数式与指数式的互化就是指:一是弄清楚对数与指数,对数式与指数式的含义;二是理解对数式与指数式的互化的实质;三是要把这种互化提升为一种方法,为我们以后解题奠定基础。

3、会求一些特殊的对数式的值就是指能够熟练利用:和对数恒等式。

三、问题诊断分析
对数概念的理解中学生存在问题,所以要结合具体的实例,指出为了解决实际问题,引入对数的概念,体现了数学来源于实际的生活,并服务于实际的生活。

四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().
五、教学过程
1.庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺?
2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?
抽象出:1.=?,=0.125x=?2.=2x=?
也是已知底数和幂的值,求指数你能看得出来吗?怎样求呢?
问题1.将上述问题进行归纳----对数的定义
一般地,如果a(a>0,a≠1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarith),记作x=logaN,其中a叫做对数的底数,N叫做真数.
有了对数的定义,(1)前面问题中的x就可表示成什么式子?
x=log1.01,x=log1.01,x=log1.01.
(2)怎样用表格表示对数和指数幂之间的关系?
由此得到对数和指数幂之间的关系:
aNb
指数式ab=N底数幂指数
对数式logaN=b对数的底数真数对数
例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01 -2=log100.01
探究一:指对互化
例1将下列指数式写成对数式:(课本第87页)
(1)=625(2)=(3)=27(4)=5.73
解析:直接用对数式的定义进行改写.
解:(1)625=4;(2)=-6;
(3)27=a;(4)
点评:主要考察了底真树与幂三者的位置.
变式练习1:将下列对数式写成指数式:
(1);(2)128=7;
(3)lg0.01=-2;(4)ln10=2.303
解:(1)(2)=128;
(3)=0.01;(4)=10
探究二:计算
例2计算:⑴,⑵,⑶,⑷
解析:将对数式写成指数式,再求解.
解:⑴设则,∴
⑵设则,,∴
⑶令=,
∴,∴
⑷令,∴,,∴
点评:考察了指数与对数的相互转化.
五.课堂目标检测
优化设计:随堂练习.
六.小结
本节主要学习了对数的概念,要熟练的进行指对互化.七.配餐作业
优化设计:优化作业.
(1)求log84的值;
(2)已知loga2=,loga3=n,求a2+n的值.。

相关文档
最新文档