模式识别报告二
模式识别上机实验报告
实验一、二维随机数的产生1、实验目的(1) 学习采用Matlab 程序产生正态分布的二维随机数 (2) 掌握估计类均值向量和协方差矩阵的方法(3) 掌握类间离散度矩阵、类内离散度矩阵的计算方法(4) 熟悉matlab 中运用mvnrnd 函数产生二维随机数等matlab 语言2、实验原理多元正态分布概率密度函数:11()()2/21/21()(2)||T X X d p X eμμπ---∑-=∑其中:μ是d 维均值向量:Td E X μμμμ=={}[,,...,]12Σ是d ×d 维协方差矩阵:TE X X μμ∑=--[()()](1)估计类均值向量和协方差矩阵的估计 各类均值向量1ii X im X N ω∈=∑ 各类协方差矩阵1()()iTi iiX iX X N ωμμ∈∑=--∑(2)类间离散度矩阵、类内离散度矩阵的计算类内离散度矩阵:()()iTi iiX S X m X m ω∈=--∑, i=1,2总的类内离散度矩阵:12W S S S =+类间离散度矩阵:1212()()Tb S m m m m =--3、实验内容及要求产生两类均值向量、协方差矩阵如下的样本数据,每类样本各50个。
1[2,2]μ=--,11001⎡⎤∑=⎢⎥⎣⎦,2[2,2]μ=,21004⎡⎤∑=⎢⎥⎣⎦ (1)画出样本的分布图;(2) 编写程序,估计类均值向量和协方差矩阵;(3) 编写程序,计算类间离散度矩阵、类内离散度矩阵; (4)每类样本数增加到500个,重复(1)-(3)4、实验结果(1)、样本的分布图(2)、类均值向量、类协方差矩阵根据matlab 程序得出的类均值向量为:N=50 : m1=[-1.7160 -2.0374] m2=[2.1485 1.7678] N=500: m1=[-2.0379 -2.0352] m2=[2.0428 2.1270] 根据matlab 程序得出的类协方差矩阵为:N=50: ]0628.11354.01354.06428.1[1=∑ ∑--2]5687.40624.00624.08800.0[N=500:∑--1]0344.10162.00162.09187.0[∑2]9038.30211.00211.09939.0[(3)、类间离散度矩阵、类内离散度矩阵根据matlab 程序得出的类间离散度矩阵为:N=50: ]4828.147068.147068.149343.14[=bS N=500: ]3233.179843.169843.166519.16[b =S根据matlab 程序得出的类内离散度矩阵为:N=50:]0703.533088.73088.71052.78[1=S ]7397.2253966.13966.18975.42[2--=S ]8100.2789123.59123.50026.121[=W SN=500: ]5964.5167490.87490.86203.458[1--=S ]8.19438420.78420.70178.496[2=S ]4.24609071.09071.06381.954[--=W S5、结论由mvnrnd 函数产生的结果是一个N*D 的一个矩阵,在本实验中D 是2,N 是50和500.根据实验数据可以看出,当样本容量变多的时候,两个变量的总体误差变小,观测变量各个取值之间的差异程度减小。
模式识别实验报告
模式识别实验报告————————————————————————————————作者:————————————————————————————————日期:实验报告实验课程名称:模式识别姓名:王宇班级: 20110813 学号: 2011081325实验名称规范程度原理叙述实验过程实验结果实验成绩图像的贝叶斯分类K均值聚类算法神经网络模式识别平均成绩折合成绩注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2014年 6月实验一、 图像的贝叶斯分类一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念:阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。
并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。
最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。
而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。
类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。
这时如用全局阈值进行分割必然会产生一定的误差。
分割误差包括将目标分为背景和将背景分为目标两大类。
实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。
模式识别第一次作业报告
模式识别第一次作业报告姓名:刘昌元学号:099064370 班级:自动化092班题目:用身高和/或体重数据进行性别分类的实验基本要求:用famale.txt和male.txt的数据作为训练样本集,建立Bayes分类器,用测试样本数据test1.txt和test2.txt该分类器进行测试。
调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
一、实验思路1:利用Matlab7.1导入训练样本数据,然后将样本数据的身高和体重数据赋值给临时矩阵,构成m行2列的临时数据矩阵给后面调用。
2:查阅二维正态分布的概率密度的公式及需要的参数及各个参数的意义,新建m函数文件,编程计算二维正态分布的相关参数:期望、方差、标准差、协方差和相关系数。
3.利用二维正态分布的相关参数和训练样本构成的临时数据矩阵编程获得类条件概率密度,先验概率。
4.编程得到后验概率,并利用后验概率判断归为哪一类。
5.利用分类器训练样本并修正参数,最后可以用循环程序调用数据文件,统计分类的男女人数,再与正确的人数比较得到错误率。
6.自己给出决策表获得最小风险决策分类器。
7.问题的关键就在于利用样本数据获得二维正态分布的相关参数。
8.二维正态分布的概率密度公式如下:试验中编程计算出期望,方差,标准差和相关系数。
其中:二、实验程序设计流程图:1:二维正态分布的参数计算%功能:调用导入的男生和女生的身高和体重的数据文件得到二维正态分布的期望,方差,标准差,相关系数等参数%%使用方法:在Matlab的命令窗口输入cansu(male) 或者cansu(famale) 其中 male 和 famale%是导入的男生和女生的数据文件名,运用结果返回的是一个行1行7列的矩阵,其中参数的顺序依次为如下:%%身高期望、身高方差、身高标准差、体重期望、体重方差、体重标准差、身高和体重的相关系数%%开发者:安徽工业大学电气信息学院自动化 092班刘昌元学号:099064370 %function result=cansu(file)[m,n]=size(file); %求出导入的数据的行数和列数即 m 行n 列%for i=1:1:m %把身高和体重构成 m 行 2 列的矩阵%people(i,1)=file(i,1);people(i,2)=file(i,2);endu=sum(people)/m; %求得身高和体重的数学期望即平均值%for i=1:1:mpeople2(i,1)=people(i,1)^2;people2(i,2)=people(i,2)^2;endu2=sum(people2)/m; %求得身高和体重的方差、%x=u2(1,1)-u(1,1)^2;y=u2(1,2)-u(1,2)^2;for i=1:1:mtem(i,1)=people(i,1)*people(i,2);ends=0;for i=1:1:ms=s+tem(i,1);endcov=s/m-u(1,1)*u(1,2); %求得身高和体重的协方差 cov (x,y)%x1=sqrt(x); %求身高标准差 x1 %y1=sqrt(y); %求身高标准差 y1 %ralation=cov/(x1*y1); %求得身高和体重的相关系数 ralation %result(1,1)=u(1,1); %返回结果 :身高的期望 %result(1,2)=x; %返回结果 : 身高的方差 %result(1,3)=x1; %返回结果 : 身高的标准差 %result(1,4)=u(1,2); %返回结果 :体重的期望 %result(1,5)=y; %返回结果 : 体重的方差 %result(1,6)=y1; %返回结果 : 体重的标准差 %result(1,7)=ralation; %返回结果:相关系数 %2:贝叶斯分类器%功能:身高和体重相关情况下的贝叶斯分类器(最小错误率贝叶斯决策)输入身高和体重数据,输出男女的判断%%使用方法:在Matlab命令窗口输入 bayes(a,b) 其中a为身高数据,b为体重数据。
武汉理工大学,模式识别实验报告,带数据!带代码!
武汉理工大学模式识别实验报告姓名:班级:学号:姓名:班级:学号:实验一总体概率密度分布的非参数方法一、实验目的1.了解使用非参数方法估计样本概率密度函数的原理。
2.了解Parzen窗法的原理及其参数h1,N对估计结果的影响。
3.掌握Parzen窗法的算法并用Matlab实现。
4.使用Matlab分析Parzen窗法的参数h1,N对估计结果的影响。
二、实验数据一维正态分布样本,使用函数randn生成。
三、实验结果选取的h1=0.25,1,4,N=1,16,256,4096,65536,得到15个估计结果,如下图所示。
由下面三组仿真结果可知,估计结果依赖于N和h1。
当N=1时,是一个以样本为中心的小丘。
当N=16和h1=0.25时,仍可以看到单个样本所起的作用;但当h1=1及h1=4时就受到平滑,单个样本的作用模糊了。
随着N的增加,估计量越来越好。
这说明,要想得到较精确的估计,就需要大量的样本。
但是当N取的很大,h1相对较小时,在某些区间内hN趋于零,导致估计的结果噪声大。
分析实验数据发现在h1=4,N=256时,估计结果最接近真实分布。
附录:1.Parzen窗法函数文件parzen.m function parzen=parzen(N,h1,x) %ParzenhN = h1/sqrt(N);num_x = numel(x);parzen = zeros(1, num_x);for u = 1:num_xfor i=1:Nparzen(u) = parzen(u)+exp(((x(u)-x(i))/hN).^2/-2);endparzen(u)=parzen(u)/sqrt(2*pi)/h1/sqrt(N);end2.例程文件parzen_sample.mx = randn(1,10000);%Normally distributed pseudorandom numberspx = normpdf(x,0,1);%Normal probability density function - normpdf(X,mu,sigma)h1 = [0.25, 1, 4];N = [1, 16, 256, 1024, 4096];num_h1 = numel(h1);%Number of array elementsnum_N = numel(N);figure('Name', '总体概率密度分布的非参数方法');%遍历h1for i_h1 = 1:length(h1)h1_offset = (i_h1-1)*(num_N+1)+1;%绘图位置的偏移量subplot(num_h1, num_N+1, h1_offset);plot(x, px, '.');ylabel(sprintf('%s%4.2f', 'h1=', h1(i_h1)));title('正态分布样本的概率密度函数')%遍历Nfor i_N = 1 : length(N)pNx=parzen(N(i_N), h1(i_h1), x);subplot(num_h1, num_N+1, h1_offset+i_N);plot(x, pNx, '.');title(sprintf('%s%d', 'N=', N(i_N)));endend姓名:班级:学号:实验二感知器准则算法实验一、实验目的1.了解利用线性判别函数进行分类的原理。
模式识别关于男女生身高和体重的神经网络算法
模式识别实验报告(二)学院:专业:学号:姓名:XXXX教师:目录1实验目的 (1)2实验内容 (1)3实验平台 (1)4实验过程与结果分析 (1)4.1基于BP神经网络的分类器设计 .. 1 4.2基于SVM的分类器设计 (4)4.3基于决策树的分类器设计 (7)4.4三种分类器对比 (8)5.总结 (8)1)1实验目的通过实际编程操作,实现对课堂上所学习的BP神经网络、SVM支持向量机和决策树这三种方法的应用,加深理解,同时锻炼自己的动手实践能力。
2)2实验内容本次实验提供的样本数据有149个,每个数据提取5个特征,即身高、体重、是否喜欢数学、是否喜欢文学及是否喜欢运动,分别将样本数据用于对BP神经网络分类器、SVM支持向量机和决策树训练,用测试数据测试分类器的效果,采用交叉验证的方式实现对于性能指标的评判。
具体要求如下:BP神经网络--自行编写代码完成后向传播算法,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算可以基于平台的软件包);SVM支持向量机--采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判;决策树--采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。
3)3实验平台专业研究方向为图像处理,用的较多的编程语言为C++,因此此次程序编写用的平台是VisualStudio及opencv,其中的BP神经网络为自己独立编写, SVM 支持向量机和决策树通过调用Opencv3.0库中相应的库函数并进行相应的配置进行实现。
将Excel中的119个数据作为样本数据,其余30个作为分类器性能的测试数据。
4)4实验过程与结果分析4.1基于BP神经网络的分类器设计BP神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
《模式识别》实验报告K-L变换特征提取
《模式识别》实验报告K-L变换特征提取基于K-L 变换的iris 数据分类⼀、实验原理K-L 变换是⼀种基于⽬标统计特性的最佳正交变换。
它具有⼀些优良的性质:即变换后产⽣的新的分量正交或者不相关;以部分新的分量表⽰原⽮量均⽅误差最⼩;变换后的⽮量更趋确定,能量更集中。
这⼀⽅法的⽬的是寻找任意统计分布的数据集合之主要分量的⼦集。
设n 维⽮量12,,,Tn x x x =x ,其均值⽮量E=µx ,协⽅差阵()T x E=--C x u)(x u ,此协⽅差阵为对称正定阵,则经过正交分解克表⽰为x =TC U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u =U 为对应特征值的特征向量组成的变换阵,且满⾜1T-=UU。
变换阵TU 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协⽅差阵12[,,,]xn diag λλλ==x U C U C。
通过略去对应于若⼲较⼩特征值的特征向量来给y 降维然后进⾏处理。
通常情况下特征值幅度差别很⼤,忽略⼀些较⼩的值并不会引起⼤的误差。
对经过K-L 变换后的特征向量按最⼩错误率bayes 决策和BP 神经⽹络⽅法进⾏分类。
⼆、实验步骤(1)计算样本向量的均值E =µx 和协⽅差阵()T xE ??=--C x u)(x u5.8433 3.0573 3.7580 1.1993??=µ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.12161.29560.5810x----=--C (2)计算协⽅差阵xC 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537??=U从上⾯的计算可以看到协⽅差阵特征值0.023835和0.07821相对于0.24267和4.2282很⼩,并经计算个特征值对误差影响所占⽐重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最⼩的特征值,得到新的变换阵12,,,newn k u u u -=U。
《模式识别》线性分类器设计实验报告
《模式识别》实验报告三、线性分类器实验1.(a)产生两个都具有200 个二维向量的数据集X1 和X1 ’。
向量的前半部分来自m1=[-5;0]的正态分布,并且S1=I 。
向量的后半部分来自m2=[5;0]的正态分布,并且S1=I。
其中I是一个2×2 的单位矩阵。
(b)在上面产生的数据集上运用Fisher 线性判别、感知器算法和最小平方误差判别算法,需要初始化参数的方法使用不同的初始值。
(c)测试每一种方法在X1 和X1 ’ 上的性能(错误率)。
(d)画出数据集X1 和X1 ’,已经每种方法得到对应参数向量W 的分界线。
Fisher线性判别图1 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数向量w = [-9.9406, 0.9030]’错误率error=0,感知器算法:图2 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=2参数向量w = [-4.8925, 0.0920]’错误率error=0图3 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];迭代次数iter=2参数向量w = [-3.9925, 0.9920]’错误率error=0图4 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10; 10];迭代次数iter=122参数向量w = [-5.6569, 7.8096]’错误率error=0图5 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 50];迭代次数iter=600参数向量w = [-27.0945, 37.4194]’错误率error=0图6 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 100];迭代次数iter=1190参数向量w = [-54.0048, 74.5875]’错误率error=0最小平方误差判别算法:图7 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.1908, -0.0001]’错误率error=0图8 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.1924, 0.1492]’错误率error=0图9 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 0.5];参数向量w = [-0.1914, 0.0564]’错误率error=0图10 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];参数向量w = [-0.1943, 0.3359]’错误率error= 0.00502.重复1.中的实验内容,数据集为X2 和X2 ’。
模式识别实验报告
模式识别实验报告关键信息项:1、实验目的2、实验方法3、实验数据4、实验结果5、结果分析6、误差分析7、改进措施8、结论1、实验目的11 阐述进行模式识别实验的总体目标和期望达成的结果。
111 明确实验旨在解决的具体问题或挑战。
112 说明实验对于相关领域研究或实际应用的意义。
2、实验方法21 描述所采用的模式识别算法和技术。
211 解释选择这些方法的原因和依据。
212 详细说明实验的设计和流程,包括数据采集、预处理、特征提取、模型训练和测试等环节。
3、实验数据31 介绍实验所使用的数据来源和类型。
311 说明数据的规模和特征。
312 阐述对数据进行的预处理操作,如清洗、归一化等。
4、实验结果41 呈现实验得到的主要结果,包括准确率、召回率、F1 值等性能指标。
411 展示模型在不同数据集或测试条件下的表现。
412 提供可视化的结果,如图表、图像等,以便更直观地理解实验效果。
5、结果分析51 对实验结果进行深入分析和讨论。
511 比较不同实验条件下的结果差异,并解释其原因。
512 分析模型的优点和局限性,探讨可能的改进方向。
6、误差分析61 研究实验中出现的误差和错误分类情况。
611 分析误差产生的原因,如数据噪声、特征不充分、模型复杂度不足等。
612 提出减少误差的方法和建议。
7、改进措施71 根据实验结果和分析,提出针对模型和实验方法的改进措施。
711 描述如何优化特征提取、调整模型参数、增加训练数据等。
712 预测改进后的可能效果和潜在影响。
8、结论81 总结实验的主要发现和成果。
811 强调实验对于模式识别领域的贡献和价值。
812 对未来的研究方向和进一步工作提出展望。
在整个实验报告协议中,应确保各项内容的准确性、完整性和逻辑性,以便为模式识别研究提供有价值的参考和借鉴。
模式识别实验指导书2014版
cpmean(i,:)=mean(meas(strmatch(char(sta(i,1)),species,'exact'),:));
4 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
− −
5 6
⎟⎟⎠⎞, ⎜⎜⎝⎛
− −
6 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 4
⎟⎟⎠⎞,
⎜⎜⎝⎛
4 5
⎟⎟⎠⎞,
⎜⎜⎝⎛
5 6
⎟⎟⎠⎞,
⎜⎜⎝⎛
6 5
⎟⎟⎠⎞⎭⎬⎫
,计算样本协方
差矩阵,求解数据第一主成分,并重建原始数据。
(2)使用 Matlab 中进行主成分分析的相关函数,实现上述要求。
有 c 个不同的水平,表示 c 个不同的类。
表 1-1 fit 方法支持的参数名与参数值列表
参数名
参数值
说明
'normal'
正态分布(默认)
核密度估计(通过‘KSWidth’参数设置核密度估计的窗宽
'kernel'
(默认情况下自动选取窗宽;通过‘KSSupport’参数设置
‘Distribution’ 'mvmn'
信息与电气工程学院专业实验中心 二〇一四年八月
《模式识别》实验一 贝叶斯分类器设计
一、实验意义及目的
掌握贝叶斯判别原理,能够利用 Matlab 编制程序实现贝叶斯分类器设计,熟悉基于 Matlab 的 算法处理函数,并能够利用算法解决简单问题。
模式识别课程报告
考察报告一、人工智能与模式识别的研究已有多年,但似乎公认的观点认为它仍然非常困难。
在查阅文献或网络的基础上,试对你所熟悉的任一方向(如人像识别、语音识别、字符识别、自然语言理解、无人驾驶等等)的发展状况进行描述。
并设想如果你将从事该方向的研究,你打算如何着手,以建立有效的理论和方法;或者你认为现在的理论和方法有何缺陷,有什么办法来进行改进?(10分)回答:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。
用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行识别的一系列相关技术。
其的识别内容包括三个部分:(1)人脸检测(2)人脸跟踪(3)人脸对比;人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
目前人脸识别的主要用途为识别身份,其主要产品有数码相机中的人脸自动对焦和笑脸快门技术、门禁系统、身份辨识、网络应用和娱乐应用等。
我认为现在的人脸识别技术还存在的问题是:时不时会人脸识别系统会将人识别成另外一个长相类似的人,有识别不清和识别错误的问题存在。
在理论上这是由于人脸作为生物特征带来的困难,还需要大量的数据来进一步改进识别的精确度,理论上是十分麻烦的,此外还存在着人脸结构相似带来的问题以及人脸易变性的技术问题。
改进方法有:提高算法的精确性以及在采集的时候对同一个人的不同表情进行采集,尽量扩大采集范围。
二、论述建立专家系统的一般步骤。
回答:(1)知识工程师首先通过与专家进行对话获取专家知识。
(2)将知识编码至知识库中(3)专家评估系统并返回意见给知识工程师(4)循环直至系统性能为专家所满意。
三、查阅统计模式识别的相关文献,论述一种统计模式识别方法、具体实现过程及其应用情况,给出所参考的文献。
(10分)回答:贝叶斯分类器模式识别的目的就是要将一个物体(由它的特征表示)判别为它所属的某一类。
模式识别实验报告
模式识别实验报告班级:电信08-1班姓名:黄**学号:********课程名称:模式识别导论实验一安装并使用模式识别工具箱一、实验目的:1.掌握安装模式识别工具箱的技巧,能熟练使用工具箱中的各项功能;2.熟练使用最小错误率贝叶斯决策器对样本分类;3.熟练使用感知准则对样本分类;4.熟练使用最小平方误差准则对样本分类;5.了解近邻法的分类过程,了解参数K值对分类性能的影响(选做);6.了解不同的特征提取方法对分类性能的影响(选做)。
二、实验内容与原理:1.安装模式识别工具箱;2.用最小错误率贝叶斯决策器对呈正态分布的两类样本分类;3.用感知准则对两类可分样本进行分类,并观测迭代次数对分类性能的影响;4.用最小平方误差准则对云状样本分类,并与贝叶斯决策器的分类结果比较;5.用近邻法对双螺旋样本分类,并观测不同的K值对分类性能的影响(选做);6.观测不同的特征提取方法对分类性能的影响(选做)。
三、实验器材(设备、元器件、软件工具、平台):1.PC机-系统最低配置512M 内存、P4 CPU;2.Matlab 仿真软件-7.0 / 7.1 / 2006a等版本的Matlab 软件。
四、实验步骤:1.安装模式识别工具箱。
并调出Classifier主界面。
2.调用XOR.mat文件,用最小错误率贝叶斯决策器对呈正态分布的两类样本分类。
3.调用Seperable.mat文件,用感知准则对两类可分样本进行分类。
4.调用Clouds.mat文件,用最小平方误差准则对两类样本进行分类。
5.调用Spiral.mat文件,用近邻法对双螺旋样本进行分类。
6.调用XOR.mat文件,用特征提取方法对分类效果的影响。
五、实验数据及结果分析:(1)Classifier主界面如下(2)最小错误率贝叶斯决策器对呈正态分布的两类样本进行分类结果如下:(3)感知准则对两类可分样本进行分类当Num of iteration=300时的情况:当Num of iteration=1000时的分类如下:(4)最小平方误差准则对两类样本进行分类结果如下:(5)近邻法对双螺旋样本进行分类,结果如下当Num of nearest neighbor=3时的情况为:当Num of nearest neighbor=12时的分类如下:(6)特征提取方法对分类结果如下当New data dimension=2时,其结果如下当New data dimension=1时,其结果如下六、实验结论:本次实验使我掌握安装模式识别工具箱的技巧,能熟练使用工具箱中的各项功能;对模式识别有了初步的了解。
模式识别-线性拟合实验报告-黄志强
线性拟合-实验报告内蒙古大学计算机学院31209003 黄志强一.实验方法:1最小二乘法2梯度下降法二.公式推导1 最小二乘用线性函数h a(x)=a0+a1*x来拟合y=f(x);构造代价函数J(a):代价函数分别对a0和a1求偏导,连个偏导数都等于0成为两个方程,两个方程联合求解得到a0和a1;2 梯度下降构造代价函数J(a),J(a)对a0,a1分别求偏导得到梯度,〆J(a)/〆a0=n*a0+a1*sumx-sumy;〆J(a)/〆a1=a1*sumx*sumx+a0*sumx-sumx*sumy;tidu_a0=n*a0+a1*sumx-sumy;tidu_a1=a1*sumxx+a0*sumx-sumxy;设置步长为l,迭代m次delta_r=sqrt(tidu_a0*tidu_a0+tidu_a1*tidu_a1);a0=a0-l*(tidu_a0/tidu_r);a1=a1-l*(tidu_a1/tidu_r);每次迭代显示得到的直线和mse,并修订学习率x2=[-0.1,1.1];y2=x2.*a1+a0;plot(x2,y2,'color',[1-i/m,1-i/m,1-i/m]);%显示错误error=0;for j=1:nerror=error+(y(j)-(a1*x(j)+a0))*(y(j)-(a1*x(j)+a0));endmse=error/n;l=mse;mse三.matlab代码1 最小二乘法代码:%in是一个100行2列的矩阵,两列分别为x和y。
用一条直线y=x*a+b拟合x和y的关系;%用最小二乘法计算a和b。
x=in(1:100,1);y=in(1:100,2);sumx=0;sumy=0;sumxx=0;sumyy=0;sumxy=0;for i=1:1:100sumx=sumx+x(i);sumy=sumy+y(i);sumxx=sumxx+x(i)*x(i);sumyy=sumyy+y(i)*y(i);sumxy=sumxy+x(i)*y(i);endplot(in(:,1),in(:,2),'r.'); %用红色的点画出100个样本点hold on; %保留当前绘图,不被下次绘图遮盖n=100;[b,a]=solve('n*a0+a1*sumx=sumy','a0*sumx+a1*sumxx=sumxy','a0','a1'); %解二元一次方程组,未知数为a0,a1,结果返回给b和a。
模式识别技术实验报告
模式识别技术实验报告本实验旨在探讨模式识别技术在计算机视觉领域的应用与效果。
模式识别技术是一种人工智能技术,通过对数据进行分析、学习和推理,识别其中的模式并进行分类、识别或预测。
在本实验中,我们将利用机器学习算法和图像处理技术,对图像数据进行模式识别实验,以验证该技术的准确度和可靠性。
实验一:图像分类首先,我们将使用卷积神经网络(CNN)模型对手写数字数据集进行分类实验。
该数据集包含大量手写数字图片,我们将训练CNN模型来识别并分类这些数字。
通过调整模型的参数和训练次数,我们可以得到不同准确度的模型,并通过混淆矩阵等评估指标来评估模型的性能和效果。
实验二:人脸识别其次,我们将利用人脸数据集进行人脸识别实验。
通过特征提取和比对算法,我们可以识别不同人脸之间的相似性和差异性。
在实验过程中,我们将测试不同算法在人脸识别任务上的表现,比较它们的准确度和速度,探讨模式识别技术在人脸识别领域的应用潜力。
实验三:异常检测最后,我们将进行异常检测实验,使用模式识别技术来识别图像数据中的异常点或异常模式。
通过训练异常检测模型,我们可以发现数据中的异常情况,从而做出相应的处理和调整。
本实验将验证模式识别技术在异常检测领域的有效性和实用性。
结论通过以上实验,我们对模式识别技术在计算机视觉领域的应用进行了初步探索和验证。
模式识别技术在图像分类、人脸识别和异常检测等任务中展现出了良好的性能和准确度,具有广泛的应用前景和发展空间。
未来,我们将进一步深入研究和实践,探索模式识别技术在更多领域的应用,推动人工智能技术的发展和创新。
【字数:414】。
模式识别实验报告
北京邮电大学实验报告题目:模式识别班级:27专业:信息工程姓名:吕则东序号:20目录实验一、Bayes分类器设计 (3)1.1实验类型: (3)1.2实验目的: (3)1.3实验条件: (3)1.4实验原理: (3)1.5实验内容: (4)1.6 实验要求: (4)1.7实验代码和结果 (5)最小错误率贝叶斯分类器设计 (6)实验程序: (6)运行结果 (8)最小风险贝叶斯决策分类器设计 (8)实验程序 (9)运行结果 (11)实验二、基于Fisher准则线性分类器设计 (13)2.1实验类型: (13)2.2实验目的: (13)2.3实验条件: (13)2.4实验原理: (13)2.5实验内容: (14)2.6实验要求: (17)2.7实验代码和实验结果 (18)分类器设计和分类结果 (18)实验结果 (20)实验分析: (25)实验四、近邻法分类器设计 (26)4.1 实验类型: (26)4.2 实验目的: (26)4.3 实验条件: (26)4.4 实验原理: (26)4.5 实验内容 (27)4.6 实验要求: (33)实验代码: (35)实验结果: (39)问题3回答: (41)实验总结 (41)实验一、Bayes 分类器设计1.1实验类型:基础型:Bayes 分类器设计1.2实验目的:本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
1.3实验条件:matlab 软件1.4实验原理:最小风险贝叶斯决策可按下列步骤进行:(1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x(2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险∑==cj jjii X P a X a R 1)(),()(ωωλ,i=1,2,…,a(3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即则k a 就是最小风险贝叶斯决策。
模式识别实验报告哈工程
一、实验背景随着计算机科学和信息技术的飞速发展,模式识别技术在各个领域得到了广泛应用。
模式识别是指通过对数据的分析、处理和分类,从大量数据中提取有用信息,从而实现对未知模式的识别。
本实验旨在通过实践操作,加深对模式识别基本概念、算法和方法的理解,并掌握其应用。
二、实验目的1. 理解模式识别的基本概念、算法和方法;2. 掌握常用的模式识别算法,如K-均值聚类、决策树、支持向量机等;3. 熟悉模式识别在实际问题中的应用,提高解决实际问题的能力。
三、实验内容本次实验共分为三个部分:K-均值聚类算法、决策树和神经网络。
1. K-均值聚类算法(1)实验目的通过实验加深对K-均值聚类算法的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组二维数据,包括100个样本,每个样本包含两个特征值;② 初始化聚类中心:随机选择K个样本作为初始聚类中心;③ 计算每个样本到聚类中心的距离,并将其分配到最近的聚类中心;④ 更新聚类中心:计算每个聚类中所有样本的均值,作为新的聚类中心;⑤ 重复步骤③和④,直到聚类中心不再变化。
(3)实验结果通过实验,可以得到K个聚类中心,每个样本被分配到最近的聚类中心。
通过可视化聚类结果,可以直观地看到数据被分成了K个类别。
2. 决策树(1)实验目的通过实验加深对决策树的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组具有分类标签的二维数据,包括100个样本,每个样本包含两个特征值;② 选择最优分割特征:根据信息增益或基尼指数等指标,选择最优分割特征;③ 划分数据集:根据最优分割特征,将数据集划分为两个子集;④ 递归地执行步骤②和③,直到满足停止条件(如达到最大深度、叶节点中样本数小于阈值等);⑤ 构建决策树:根据递归分割的结果,构建决策树。
(3)实验结果通过实验,可以得到一棵决策树,可以用于对新样本进行分类。
3. 神经网络(1)实验目的通过实验加深对神经网络的理解,掌握其基本原理和实现方法。
模式识别学习报告(团队)
模式识别学习报告(团队)简介该报告旨在总结我们团队在模式识别研究中的成果和收获。
模式识别是一门重要的学科,它涉及到从数据中识别和分类出模式和结构。
通过研究模式识别,我们可以更好地理解和处理各种数据,并应用到实际问题中。
研究内容我们团队在研究模式识别时,主要涉及以下内容:1. 模式识别算法:我们研究了各种常用的模式识别算法,包括K近邻算法、支持向量机、决策树等。
通过研究这些算法,我们可以根据不同的数据和问题选择合适的方法进行模式识别。
2. 特征提取和选择:在模式识别中,选择合适的特征对于识别和分类模式至关重要。
我们研究了特征提取和选择的方法,包括主成分分析、线性判别分析等,可以帮助我们从原始数据中提取重要的特征。
3. 模型评估和选择:为了评估和选择模式识别模型的性能,我们研究了各种评估指标和方法,包括准确率、召回率、F1分数等。
通过合适的评估方法,我们可以选择最合适的模型来应对具体问题。
研究成果通过团队研究,我们取得了以下成果:1. 理论知识的掌握:我们对模式识别的基本概念和原理有了较为深入的了解,并能够灵活运用于实际问题中。
2. 算法实现和编程能力的提升:我们通过实践练,掌握了常用模式识别算法的实现方法,并在编程中加深了对算法的理解。
3. 团队合作和沟通能力的提高:在研究过程中,我们通过合作完成了多个小组项目,提高了团队合作和沟通的能力。
总结通过研究模式识别,我们不仅增加了对数据的理解和处理能力,还提高了团队合作和沟通的能力。
模式识别是一个不断发展和应用的领域,我们将继续深入研究,并将所学知识应用到实际问题中,为社会发展做出更大的贡献。
参考[1] 孙建华. 模式识别与机器研究[M]. 清华大学出版社, 2019.[2] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer Science & Business Media.。
模式识别实习报告(K—L变换)
模式识别实习报告(K—L变换)班级:姓名:学号:一、编程要求:编程实现KL变换,并对TM六波段图像进行演算。
KL变换的思想是:从n维特征选取m维特征,删去的n-m维特征不一定就是无用的信息,如何在信息损失最小的情况下选取特征,在理论上就显得更严密些。
通常采用正交变换,得到新的经变换的模式,以保证信息损失最小情况下获得有利于分类的特征。
二、编程思想:将6副图象依次输入获得灰度值存在一个6*size(size为一副图象的像素数)的二维数组中,计算每个波段的灰度均值,然后计算协方差矩阵,得出特征值和特征向量,再重新计算要输出的处理的图象的灰度。
三、核心代码:1、读入图像数据void CKLchangeView::Oninput() //TM图象数据读入{AfxMessageBox("注意:请一次将6副图象都读入!");//读图象的方法int flag=0;while(flag<6){CFileDialog dlg(TRUE,"bmp",".bmp");if(dlg.DoModal()==IDOK){m_NewFileName[flag]=dlg.GetFileName();for(int j=0;j<5;j++){if(flag==j||m_NewFileName[flag]!=m_NewFileName[j]) continue;else{AfxMessageBox("已打开过的图象!请按方法重新打开!");flag=0;for(int i=0;i<6;i++) m_NewFileName[i]="";return;}}NewFileName=m_NewFileName[flag];flag++;}//判断是否是已经打开的图象,若已经打开,则要重新按方法打开else //不读图象,或是只是要看图象{for(int i=0;i<6;i++) m_NewFileName[i]="";return;}CDC *pDC = GetWindowDC();CFile f(NewFileName,0);m_pDib.Read(&f);//读图象if(m_pDib.m_nColorTableEntries!=256)//判断是否是灰度图象{AfxMessageBox("请打开灰度图象!");return;}CKLchangeDoc* pDoc = GetDocument();pDoc->pDib=&m_pDib;OnDraw(pDC);//调用OnDraw函数绘图sizeImage = m_pDib.GetDimensions();sizeSaveImage = m_pDib.GetDibSaveDim();a=sizeSaveImage.cx * sizeSaveImage.cy;//象素数if(flag==1) tm=CMatrix(6,a);//开第一副图象时为矩阵分配内存//将每幅图象象素灰度值放入矩阵中if(flag==1)for(int i=0;i<a;i++){tm.m_pData[i]=*(m_pDib.m_lpImage+sizeSaveImage.cx*(i/sizeImage.cx)+i%sizeI mage.cx);}if(flag==2)for(int i=0;i<a;i++){tm.m_pData[a+i]=*(m_pDib.m_lpImage+sizeSaveImage.cx*(i/sizeImage.cx)+i%si zeImage.cx);}if(flag==3)for(int i=0;i<a;i++){tm.m_pData[2*a+i]=*(m_pDib.m_lpImage+sizeSaveImage.cx*(i/sizeImage.cx)+i% sizeImage.cx);}if(flag==4)for(int i=0;i<a;i++){tm.m_pData[3*a+i]=*(m_pDib.m_lpImage+sizeSaveImage.cx*(i/sizeImage.cx)+i% sizeImage.cx);}if(flag==5)for(int i=0;i<a;i++){tm.m_pData[4*a+i]=*(m_pDib.m_lpImage+sizeSaveImage.cx*(i/sizeImage.cx)+i% sizeImage.cx);}if(flag==6)for(int i=0;i<a;i++){tm.m_pData[5*a+i]=*(m_pDib.m_lpImage+sizeSaveImage.cx*(i/sizeImage.cx)+i% sizeImage.cx);}}}2、KL变换计算void CKLchangeView::OnKl() //KL变换计算{int i,j;xfea.Init(6,1);xfeat.Init(1,6);temp=CMatrix(6,6);feature=new double[6];fea.Init(6,6);double tmave[6];//求每幅图象的灰度均值for (i=0;i<6;i++){tmave[i]=0;for(j=0;j<a;j++){tmave[i]+=tm.m_pData[i*a+j];}tmave[i]/=(double)a;}//求方差矩阵Rfor(j=0;j<36;j++){temp.m_pData[j]=0.0;for(i=0;i<a;i++){temp.m_pData[j]+=(tm.m_pData[(j/6)*a+i%6]-tmave[j/6])*(tm.m_pData[(j%6)*a+i%6 ]-tmave[j%6]);}temp.m_pData[j]/=(double)a;}temp.JacobiEigenv2(feature, fea, 0.000001);//求特征值和特征向量double t=0.0;double featuretemp[6];//临时变量for(i=0;i<6;i++)featuretemp[i]=feature[i];//给临时数组赋值for(i=0;i<6;i++)//"冒泡法"将特征值排序for(j=0;j<5;j++)if(feature[j]>feature[j+1]){t=feature[j];feature[j]=feature[j+1];feature[j+1]=t;}for(i=0;i<6;i++)//求出特征值排序后对应在特征值数组中的位置for(j=0;j<6;j++)if(feature[i]==featuretemp[j]){index[i]=j;}}void CKLchangeView::OnFirst() //第一主分量{if(NewFileName=="") {AfxMessageBox("请先读入图象数据!");return;} if(fea.m_pData[0]==0) OnKl();result.Init(1,a);for(int i=0;i<a;i++){for(int j=0;j<6;j++)result.m_pData[i]+=fea.m_pData[index[5]+j*6]*tm.m_pData[j*a+i];}Draw();}void CKLchangeView::OnFive() //第五主分量{if(NewFileName=="") {AfxMessageBox("请先读入图象数据!");return;} if(fea.m_pData[0]==0) OnKl();result.Init(1,a);for(int i=0;i<a;i++){for(int j=0;j<6;j++)result.m_pData[i]+=fea.m_pData[index[1]+j*6]*tm.m_pData[j*a+i];}Draw();}void CKLchangeView::OnFour() //第四主分量{if(NewFileName=="") {AfxMessageBox("请先读入图象数据!");return;} if(fea.m_pData[0]==0) OnKl();result.Init(1,a);for(int i=0;i<a;i++){for(int j=0;j<6;j++)result.m_pData[i]+=fea.m_pData[index[2]+j*6]*tm.m_pData[j*a+i];}Draw();}void CKLchangeView::OnSecond() //第二主分量{if(NewFileName=="") {AfxMessageBox("请先读入图象数据!");return;} if(fea.m_pData[0]==0) OnKl();result.Init(1,a);for(int i=0;i<a;i++){for(int j=0;j<6;j++)result.m_pData[i]+=fea.m_pData[index[4]+j*6]*tm.m_pData[j*a+i];}Draw();}void CKLchangeView::OnSix() //第六主分量{if(NewFileName=="") {AfxMessageBox("请先读入图象数据!");return;} if(fea.m_pData[0]==0) OnKl();result.Init(1,a);for(int i=0;i<a;i++){for(int j=0;j<6;j++)result.m_pData[i]+=fea.m_pData[index[0]+j*6]*tm.m_pData[j*a+i];}Draw();}void CKLchangeView::OnThird() //第三主分量{if(NewFileName=="") {AfxMessageBox("请先读入图象数据!");return;} if(fea.m_pData[0]==0) OnKl();result.Init(1,a);for(int i=0;i<a;i++){for(int j=0;j<6;j++)result.m_pData[i]+=fea.m_pData[index[3]+j*6]*tm.m_pData[j*a+i];}Draw();}void CKLchangeView::Draw() //图象输出{int i;for(i=0;i<a;i++)//处理越界的灰度值{if(result.m_pData[i]<0) result.m_pData[i]=0;if(result.m_pData[i]>255) result.m_pData[i]=255;}for (i = 0; i <a; i ++)//重新给图象每个象素赋灰度值{unsigned char*pData=m_pDib.m_lpImage+sizeSaveImage.cx*(i/sizeImage.cx)+i%sizeImage.cx;*pData=(BYTE)(long)(result.m_pData[i]+0.5);}CDC *pDC = GetWindowDC();CKLchangeDoc* pDoc = GetDocument();pDoc->pDib=&m_pDib;OnDraw(pDC);//将处理后图象绘出}四、实习总结通过本次实习,我对K—L变换有了进一步的了解,学会了用K—L变换来进行分类,对我个人的编程能力有了比较大的提高。
模式识别实验报告
模式识别实验报告实验一、线性分类器的设计与实现1. 实验目的:掌握模式识别的基本概念,理解线性分类器的算法原理。
2. 实验要求:(1)学习和掌握线性分类器的算法原理;(2)在MATLAB 环境下编程实现三种线性分类器并能对提供的数据进行分类;(3)对实现的线性分类器性能进行简单的评估(例如算法适用条件,算法效率及复杂度等)。
注:三种线性分类器为,单样本感知器算法、批处理感知器算法、最小均方差算法批处理感知器算法算法原理:感知器准则函数为J p a=(−a t y)y∈Y,这里的Y(a)是被a错分的样本集,如果没有样本被分错,Y就是空的,这时我们定义J p a为0.因为当a t y≤0时,J p a是非负的,只有当a是解向量时才为0,也即a在判决边界上。
从几何上可知,J p a是与错分样本到判决边界距离之和成正比的。
由于J p梯度上的第j个分量为∂J p/ða j,也即∇J p=(−y)y∈Y。
梯度下降的迭代公式为a k+1=a k+η(k)yy∈Y k,这里Y k为被a k错分的样本集。
算法伪代码如下:begin initialize a,η(∙),准则θ,k=0do k=k+1a=a+η(k)yy∈Y k|<θuntil | ηk yy∈Y kreturn aend因此寻找解向量的批处理感知器算法可以简单地叙述为:下一个权向量等于被前一个权向量错分的样本的和乘以一个系数。
每次修正权值向量时都需要计算成批的样本。
算法源代码:unction [solution iter] = BatchPerceptron(Y,tau)%% solution = BatchPerceptron(Y,tau) 固定增量批处理感知器算法实现%% 输入:规范化样本矩阵Y,裕量tau% 输出:解向量solution,迭代次数iter[y_k d] = size(Y);a = zeros(1,d);k_max = 10000; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k=0;y_temp=zeros(d,1);while k<k_maxc=0;for i=1:1:y_kif Y(i,:)*a'<=tauy_temp=y_temp+Y(i,:)';c=c+1;endendif c==0break;enda=a+y_temp';k=k+1;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %k = k_max;solution = a;iter = k-1;运行结果及分析:数据1的分类结果如下由以上运行结果可以知道,迭代17次之后,算法得到收敛,解出的权向量序列将样本很好的划分。
模式识别实验报告_3
模式识别实验报告_3第⼀次实验实验⽬的:1.学习使⽤ENVI2.会⽤MATLAB读⼊遥感数据并进⾏处理实验内容:⼀学习使⽤ENVI1.使⽤ENVI打开遥感图像(任选3个波段合成假彩⾊图像,保存写⼊报告)2.会查看图像的头⽂件(保存或者copy⾄报告)3.会看地物的光谱曲线(保存或者copy⾄报告)4.进⾏数据信息统计(保存或者copy⾄报告)5.设置ROI,对每类地物⾃⼰添加标记数据,并保存为ROI⽂件和图像⽂件(CMap贴到报告中)。
6.使⽤⾃⼰设置的ROI进⾏图像分类(ENVI中的两种有监督分类算法)(分类算法名称和分类结果写⼊报告)⼆MATLAB处理遥感数据(提交代码和结果)7.⽤MATLAB读⼊遥感数据(zy3和DC两个数据)8.⽤MATLAB读⼊遥感图像中ROI中的数据(包括数据和标签)9.把图像数据m*n*L(其中m表⽰⾏数,n表⽰列数,L表⽰波段数),重新排列为N*L的⼆维矩阵(其中N=m*n),其中N表⽰所有的数据点数量m*n。
(提⽰,⽤reshape函数,可以help查看这个函数的⽤法)10.计算每⼀类数据的均值(平均光谱),并把所有类别的平均光谱画出来(plot)(类似下⾯的效果)。
11.画出zy3数据中“农作物类别”的数据点(⾃⼰ROI标记的这个类别的点)在每个波段的直⽅图(matlab函数:nbins=50;hist(Xi,nbins),其中Xi表⽰这类数据在第i波段的数值)。
计算出这个类别数据的协⽅差矩阵,并画出(figure,imagesc(C),colorbar)。
1.打开遥感图像如下:2.查看图像头⽂件过程如下:3.地物的光谱曲线如下:4.数据信息统计如下:(注:由于保存的txt⽂件中的数据信息过长,所以采⽤截图的⽅式只显⽰了出⼀部分数据信息)5.设置ROI,对每类地物⾃⼰添加标记数据,CMap如下:6.使⽤⾃⼰设置的ROI进⾏图像分类(使⽤⽀持向量机算法和最⼩距离算法),⽀持向量机算法分类结果如下:最⼩距离算法分类结果如下:对⽐两种算法的分类结果可以看出⽀持分量机算法分类结果⽐最⼩距离算法分类结果好⼀些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二次试验报告一 实验名称贝叶斯分类器设计(最小风险贝叶斯决策和最小错误率贝叶斯抉择)二 实验原理最小错误率:合理决策依据:根据后验概率决策已知后验概率P(w 1|x), P(w 2|x),决策规则:• 当P(w 1|x)>P(w 2|x) x ∈w 1,• 当P(w 1|x)<P(w 2|x) x ∈w 2• ∴当对具体样本作观察后,判断出属于w i 的可能性后,再决策才合理。
• 后验概率的计算方法:1(/)()(/)()(|)()(/)()i i i i i c i ii p x w P w p x w P w P w x p x p x w P w ===∑最小风险:1. 已知类别的P(w i )及x 的p(x/w i ),利用贝叶斯公式,可得类别的后验概率P(w i /x)。
2. 利用决策表和后验概率,计算最小条件风险3. 决策:在各种决策中选择风险最小的决策三 实验内容⏹ 假定某个局部区域细胞识别中正常( w1)和非正常( w2)两类先验概率分别为⏹ 正常状态:P (w1)=0.9;异常状态:P (w2)=0.1。
1(/)()(/)(/)()i i i c i ii p x w P w P w x p x w P w =⋅=∑⏹现有一系列待观察的细胞,其观察值为x:-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.18823.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.11864.2532•类条件概率分布正态分布分别为(-2,0.5)(2,2)试对观察的结果进行分类。
四实验步骤及贴图步骤:⏹1.用matlab完成分类器的设计,说明文字程序相应语句,子程序有调用过程。
⏹2.根据例子画出后验概率的分布曲线以及分类的结果示意图。
⏹3.最小风险贝叶斯决策,决策表如下:⏹重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的后验概率的分布曲线和分类结果,并比较两个结果。
最小风险⏹最小风险贝叶斯决策:⏹带红色虚线曲线是异常细胞的条件风险曲线;青色圆圈曲线是正常细胞的条件风险曲线⏹根据贝叶斯最小风险判决准则,判决结果显示在曲线下方:⏹五角星代表判决为正常细胞,*号代表异常细胞⏹各细胞分类结果(0为判成正常细胞,1为判成异常细胞):⏹1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 10 0 0 1 0 1 1⏹⏹⏹最小风险⏹最小错误率:⏹后验概率曲线与判决显示在上图中⏹后验概率曲线:带红色虚线曲线是判决为异常细胞的后验概率曲线⏹青色实线曲线是为判为正常细胞的后验概率曲线⏹根据最小错误概率准则,判决结果显示在曲线下方:⏹五角星代表判决为正常细胞,*号代表异常细胞⏹各细胞分类结果(0为判成正常细胞,1为判成异常细胞):⏹0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 10 0 0 1 0 1 1⏹⏹⏹实验代码最小错误率:clear all;clc;x=[-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 0.7431 -0.4221 -1.1186 4.2532 ]pw1=0.9; pw2=0.1;e1=-2; a1=0.5;e2=2;a2=2;m=numel(x); %得到待测细胞个数pw1_x=zeros(1,m); %存放对w1的后验概率矩阵pw2_x=zeros(1,m); %存放对w2的后验概率矩阵results=zeros(1,m);%存放比较结果矩阵for i = 1:m%计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)) ;%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)) ;endfor i = 1:mif pw1_x(i)>pw2_x(i) %比较两类后验概率result(i)=0;%正常细胞elseresult(i)=1;%异常细胞endenda=[-5:0.05:5]; %取样本点以画图n=numel(a);pw1_plot=zeros(1,n);pw2_plot=zeros(1,n);for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)); %计算每个样本点对w1的后验概率以画图pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)); endfigure(1);hold onh1=plot(a,pw1_plot,'co');h2=plot(a,pw2_plot,'r-.');for k=1:mif result(k)==0h3=plot(x(k),-0.1,'cp'); %正常细胞用五角星表示elseh4=plot(x(k),-0.1,'r*'); %异常细胞用*表示end;end;legend([h1,h2,h3,h4],'正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞');xlabel('样本细胞的观察值');ylabel('后验概率');title('后验概率分布曲线');grid onfigure(2);hold ona1=-2;sigma1=0.5;x1=-10:0.0001:10;y1=(1/((sqrt(2*pi))*sigma1))*exp(-((x1-a1).^2)/(2*sigma1.^2));plot(x1,y1,'r');a2=2;sigma2=2;x2=-10:0.0001:10;y2=(1/((sqrt(2*pi))*sigma2))*exp(-((x2-a2).^2)/(2*sigma2.^2));plot(x2,y2,'b');legend('正常细胞类条件概率分布曲线','异常细胞类条件概率分布曲线');title('条件概率分布曲线');grid on最小风险:在原源代码的基础上,删改一些代码,标有‘%%’的即为新增代码,clear all;clc;x=[-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 0.7431 -0.4221 -1.1186 4.2532 ]pw1=0.9; pw2=0.1;e1=-2; a1=0.5;e2=2;a2=2;y(1,1)=0;%%y(1,2)=2;%%y(2,1)=4;%%y(2,2)=0;%%m=numel(x); %得到待测细胞个数pw1_x=zeros(1,m); %存放对w1的后验概率矩阵pw2_x=zeros(1,m); %存放对w2的后验概率矩阵r2_x=zeros(1,m); %存放将样本x判为正常细胞所造成的损失r2_x=zeros(1,m); %存放将样本x判为异常细胞所造成的损失results=zeros(1,m);%存放比较结果矩阵for i = 1:m%计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)) ;%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)) ;endfor i=1:mr1_x(i)=y(1,1)*pw1_x(i)+y(2,1)*pw2_x(i);%%计算在w1下的条件风险值r2_x(i)=y(1,2)*pw1_x(i)+y(2,2)*pw2_x(i);%%计算在w2下的条件风险值end%for i = 1:m% if pw1_x(i)>pw2_x(i) %比较两类后验概率% result(i)=0;%正常细胞% else% result(i)=1;%异常细胞% end%endfor i=1:mif r1_x(i)<r2_x(i) result(i)=0;%%当第一类风险小于第二类风险的时候,判为正常细胞elseresult(i)=1;%%当第一类风险大于或者等于第二类风险的时候,判为异常细胞endenda=[-5:0.05:5]; %取样本点以画图n=numel(a);%%pw1_plot=zeros(1,n);%%pw2_plot=zeros(1,n);%%for j=1:n%%pw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)); %计算每个样本点对w1的后验概率以画图%%pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)); r1_plot=zeros(1,n);r2_plot=zeros(1,n);for j=1:nr1_plot(j)=y(1,1)*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)) +y(2,1)*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2));%%计算每个样本点对w1的条件画图r2_plot(j)=y(1,2)*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)) +y(2,2)*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2));%%计算每个样本点对w2的条件风险画图endfigure(1);hold on%h1=plot(a,pw1_plot,'co');%h2=plot(a,pw2_plot,'r-.');h1=plot(a,r1_plot,'co');%%h2=plot(a,r2_plot,'r-.');%%for k=1:mif result(k)==0h3=plot(x(k),-0.1,'cp'); %正常细胞用五角星表示elseh4=plot(x(k),-0.1,'r*'); %异常细胞用*表示end;end;legend([h1,h2,h3,h4],'正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞');xlabel('样本细胞的观察值');ylabel('后验概率');title('后验概率分布曲线');grid onfigure(2);hold ona1=-2;sigma1=0.5;x1=-10:0.0001:10;y1=(1/((sqrt(2*pi))*sigma1))*exp(-((x1-a1).^2)/(2*sigma1.^2));plot(x1,y1,'r');a2=2;sigma2=2;x2=-10:0.0001:10;y2=(1/((sqrt(2*pi))*sigma2))*exp(-((x2-a2).^2)/(2*sigma2.^2));plot(x2,y2,'b');legend('正常细胞类条件概率分布曲线','异常细胞类条件概率分布曲线');title('条件概率分布曲线');grid on五实验总结实验建立在贝叶斯最小风险决策计算的原理之上,通过matlab工具,将概率计算的结果通过图形比较直观的表现出来。