最新二次函数应用题题型归纳

合集下载

二次函数应用题题型归纳总结

二次函数应用题题型归纳总结

二次函数应用题题型一 面积问题1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.O 2O 1围墙DABCO 2O 1围墙D A BCEF GH IJ题型二 利润问题1利民商店经销甲、乙两种商品. 现有如下信息: 请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求出1y 和2y 的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.型 号金 额Ⅰ型设备 Ⅱ型设备投资金额x (万元) x 5 x 2 4 补贴金额y (万元)y 1=kx(k ≠0)2y 2=ax 2+bx(a ≠0)2.43.2信息1:甲、乙两种商品的进货单价之和是5元; 信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少 1元.信息3:按零售单价购买 甲商品3件和乙商品2件, 共付了19元.3.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.(1)当每吨售价为240元时,计算此时的月销售量;(2)求y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.题型三图像表达式问题1如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。

二次函数的应用题总结

二次函数的应用题总结

二次函数的应用一、顶点坐标公式的应用(基本题型)1、某超市销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱的售价在40元~70元之间.市场调查发现:若每箱50 元销售,平均每天可销售90 箱,价格每降低1 元,平均每天多销售3 箱;价格每升高1 元,平均每天少销售3 箱.(1)写出平均每天的销售量y(箱)与每箱售价x(元)之间的函数关系式(注明自变量x 的取值范围);(2)求出超市平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润b 24ac b 2=售价-进价);(3)请把(2)中所求出的二次函数配方成y a(x )2的形式,并指出当x=40、70 时,2a 4aW 的值.(4)在坐标系中画出(2)中二次函数的图象,请你观察图象说明:当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?练习:2、我市有一种可食用的野生菌,上市时,外商李经理按市场价格30 元/千克收购了这种野生菌1000 千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨 1 元;但冷冻存放这批野生菌时每天需要支出各种费用合计310 元,而且这类野生菌在冷库中最多保存160 天,同时,平均每天有 3 千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W 元?(利润=销售总额-收购成本-各种费用)练习3、汽车城销售某种型号的汽车,每辆进货价为25 万元,市场调研表明:当销售价为29 万元时,平均每周能售出8 辆,而当销售价每降低0.5 万元时,平均每周能多售出4 辆.如果设每.辆.汽车降价x 万元,每辆汽车的销售.利.润.为y 万元.(销售利润销售价进货价)(1)求y 与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;(3 分)(2)假设这种汽车平均每周..的销售利润为z万元,试写出z与x之间的函数关系式;(3分)(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?( 4 分)练习4、某集团将下设的内部小型车场改为对外开放的收费停车场。

专题2.4 求二次函数解析式常考类型(六大题型)(解析版)

专题2.4  求二次函数解析式常考类型(六大题型)(解析版)

专题2.4 求二次函数解析式常考类型(六大题型)【题型1 开放型】【题型2 一般式】【题型3 顶点式】【题型4两根式】【题型5平移变换型】【题型6 对称变换型】【题型1 开放型】【典例1】(2023•上海)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是 y=﹣x2+1(答案不唯一) .【答案】y=﹣x2+1(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).【变式1-1】(2023•锡山区校级模拟)写出一个顶点坐标是(1,2)且开口向下的抛物线的解析式 y=﹣(x﹣1)2+2(答案不唯一) .【答案】y=﹣(x﹣1)2+2(答案不唯一).【解答】解:∵抛物线开口向下,顶点坐标为(1,2),∴a<0,设函数解析式为y=a(x﹣1)2+2,只要a<0取值即可;故答案为:y=﹣(x﹣1)2+2(答案不唯一).【变式1-2】(2023•静安区校级一模)请写出一个以直线x=3为对称轴,且在对称轴左侧部分是下降的抛物线,这条抛物线的表达式可以是 y=(x﹣3)2+2(答案不唯一) .(只要写出一个符合条件的抛物线表达式)【答案】y=(x﹣3)2+2(答案不唯一).【解答】解:满足题意的抛物线解析式为:y=(x﹣3)2+2.本题答案不唯一.故答案为:y=(x﹣3)2+2(答案不唯一).【题型2 一般式】【方法点拨】当题目给出函数图像上的三个点时,设为一般式2y ax bx c=++(a,b,c为常数,0a¹),转化成一个三元一次方程组,以求得a,b,c的值;【典例2】已知在平面直角坐标系xOy中,二次函数y=a x2+bx+c的图像经过点A(1,0)、B(0,-5)、C(2,3).求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.【答案】解:由这个函数的图象经过点A(1,0)、B(0,-5)、C(2,3),得a+b+c=0c=−54a+2b+c=3解得a=−1 b=6 c=−5所以,所求函数的解析式为y=−x2+6x−5.y=−x2+6x−5=−(x−3)2+4.所以,这个函数图象的顶点坐标为(3,4),对称轴为直线x = 3.【变式2-1】已知二次雨数:y=x2+bx+c过点(1,0),(0,-3)。

2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。

此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。

只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。

考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。

1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。

二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳)题型1:二次函数的概念1以下函数式二次函数的是()A.y=ax2+bx+cB.y=2x-12-4x2C.y=ax2+bx+c a≠0D.y=x-1x-22二次函数y=2x x−3的二次项系数与一次项系数的和为()A.2B.-2C.-1D.-4题型2:二次函数的值3已知二次函数y=x2+2x-5,当x=3时,y=.4已知二次函数y=ax2+2c,当x=2时,函数值等于8,则下列关于a,c的关系式中,正确的是()A.a+2c=8B.2a+c=4C.a-2c=8D.2a-c=45二次函数y=ax2+bx-3a≠0的图象经过点2,-2,则代数式2a+b的值为.题型3:二次函数的条件6已知y=mx m-2+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或47关于x的函数y=a-bx2+1是二次函数的条件是()A.a≠bB.a=bC.b=0D.a=0题型4:列二次函数关系式8已知有n个球队参加比赛,每两队之间进行一场比赛,比赛的场次数为m,则m关于n的函数解析式为.题型5:特殊二次函数的图像和性质9关于二次函数y =-34x 2-1的图像,下列说法错误的是()A.抛物线开口向下B.对称轴为直线x =0C.顶点坐标为0,-1D.当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大10抛物线y =34x 2与抛物线y =-34x 2+3的相同点是()A.顶点相同B.对称轴不相同C.开口方向一样D.顶点都在y 轴上11如果二次函数y =ax 2+m 的值恒大于0,那么必有()A.a >0,m 取任意实数B.a >0,m >0C.a <0,m >0D.a ,m 均可取任意实数12对于二次函数y =-3(x -2)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x =-2C.当x >-2时,y 随x 的增大而减小D.顶点坐标为2,013二次函数:①y =-13x 2+1;②y =12(x +1)2-2;③y =-12(x +1)2+2;④y =12x 2;⑤y =-12(x -1)2;⑥y =12(x -1)2.(1)以上二次函数的图象的对称轴为直线x =-1的是(只填序号);(2)以上二次函数有最大值的是(只填序号)﹔(3)以上二次函数的图象中关于x 轴对称的是(只填序号).14设函数y 1=x -a 12,y 2=x -a 22,y 3=x -a 3 2.直线x =b 的图象与函数y 1,y 2,y 3的图象分别交于点A b ,c 1,B b ,c 2 ,C b ,c 3,()A.若b <a 1<a 2<a 3,则c 2<c 3<c1B.若a 1<b <a 2<a 3,则c 1<c 2<c 3C.若a 1<a 2<b <a 3,则c 3<c 2<c 1 D.若a 1<a 2<a 3<b ,则c 3<c 2<c 115已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是.16已知关于x 的一元二次方程x 2-(2m +1)x +m 2-1=0有实数根a ,b ,则代数式a 2-ab +b 2的最小值为.题型6:与特殊二次函数有关的几何知识17在平面直角坐标系中,点A是抛物线y=a x-42+k与y轴的交点,点B是这条抛物线上的另一点,且AB⎳x轴,则以AB为边的等边三角形ABC的周长为.18在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线y=(x-a)2与线段PQ有交点,则a的取值范围是.19二次函数y=-x+3的图象上任意二点连线不与x轴平行,则t的取值范围2+h t≤x≤t+2为.题型7:二次函数y=ax2+bx+c的图像和性质20下列抛物线中,与抛物线y=x2-2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2-4xC.y=2x2-x+4D.y=-2x2+4x21若抛物线y=x2+ax+1的顶点在y轴上,则a的值为()A.2B.1C.0D.-222抛物线y=x-1x+5图象的开口方向是(填“向上”或“向下”).23当二次函数y=ax2+bx+c有最大值时,a可能是()A.1B.2C.-2D.324已知抛物线y=x2-2bx+b2-2b+1(b为常数)的顶点不在抛物线y=x2+c(c为常数)上,则c应满足()A.c≤2B.c<2C.c≥2D.c>225已知二次函数y=x2-2mx+m的图象经过A1,y1,B5,y2两个点,下列选项正确的是()A.若m<1,则y1>y2B.若1<m<3,则y1<y2C.若1<m<5,则y1>y2D.若m>5,则y1<y2题型8:二次函数y=ax2+bx+c的最值与求参数范围问题26已知直线y=2x+t与抛物线y=ax2+bx+c a≠0,且点B、B m,n有两个不同的交点A3,5是抛物线的顶点,当-2≤a≤2时,m的取值范围是.27已知抛物线y=x2+bx+c经过点(1,-2),(-2,13).(1)求抛物线解析式及对称轴.(2)关于该函数在0≤x<m的取值范围内,有最小值-3,有最大值1,求m的取值范围.28已知二次函数y=mx2-4m2x-3(m为常数,m>0).(1)若点(-2,9)在该二次函数的图象上.①求m的值:②当0≤x≤a时,该二次函数值y取得的最大值为18,求a的值;(2)若点P(x,y)是该函数图象上一点,当0≤x p≤4时,y p≤-3,求m的取值范围.题型9:根据二次函数y=ax2+bx+c的图像判断有关信息29函数y=ax2+bx+c a≠0与y=kx的图象如图所示,现有以下结论:①c=3;②k=3;③3b+c+6=0;④当1<x<3时,x2+b-1x+c<0.其中正确的为.(填写序号即可)30如图,已知二次函数y=ax2+bx+c a≠0的图象与x轴交于点A-1,0,与y轴的交点在0,-2和0,-1之间(不包括这两点),对称轴为直线x=1,下列结论:①4a+2b+c>0;②4ac-b2<8a;③13<a<23;④b>c;⑤直线y=k i(k i>0,i=1,2,3,⋯,2023)与抛物线所有交点的横坐标之和为4046;其中正确结论的个数有()A.2个B.3个C.4个D.5个题型10:二次函数的应用31如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m ,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞内部顶端离地面的距离为()A.7.5B.8C.649D.64732某炮兵部队实弹演习发射一枚炮弹,经x 秒后的高度为y 米,且时间x 与高度y 的关系为y =ax 2+bx .若此炮弹在第5秒与第16秒时的高度相等,则在下列哪一个时间段炮弹的高度达到最高.()A.第8秒B.第10秒C.第12秒D.第15秒33在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系y =-116x 2+58x +32,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米34某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①AB =30m ;②池底所在抛物线的解析式为y =145x 2-5;③池塘最深处到水面CD 的距离为3.2m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是()A.①B.②C.③D.④35某建筑工程队借助一段废弃的墙体CD,CD长为18米,用76米长的铁栅栏围成两个相连的长方形仓库,为了方便取物,在两个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,现有如下两份图纸(图纸1点A在线段DC的延长线上,图纸2点A在线段DC上),设AB =x米,图纸1,图纸2的仓库总面积分别为y1平方米,y2平方米.(1)分别写出y1,y2与x的函数关系式;(2)小红说:“y1的最大值为384.y2的最大值为507.”你同意吗?请说明理由.题型11:二次函数的解答证明题36已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.37如图,已知二次函数y=-12x2+bx+c的图象与x轴交于A1,0,B,与y轴交于点C0,-52.CD∥x轴交抛物线于点D.(1)求b,c的值.(2)已知点E在抛物线上且位于x轴上方,过E作y轴的平行线分别交AB,CD于点F,G,且GE= 2GD,求点E的坐标.38在直角坐标系中,设函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)已知a=1.①若函数的图象经过0,3和-1,0两点,求函数的表达式;②若将函数图象向下平移两个单位后与x轴恰好有一个交点,求b+c的最小值.(2)若函数图象经过-2,m,-3,n和x0,c,且c<n<m,求x0的取值范围.题型12:二次函数压轴题39在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为-5,0.(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求三角形ACP面积的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

初中数学《二次函数》重难点题型汇编含解析

初中数学《二次函数》重难点题型汇编含解析

二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。

二次函数的实际应用题

二次函数的实际应用题

第三讲:二次函数大题之应用题题型一:利润问题例题1:某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?例题2:某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)求与之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?变式训练:1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?3、为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?4、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)5、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

二次函数应用题归纳

二次函数应用题归纳

二次函数应用类问题二次函数的表达式:一般式:)0(2≠++=a c bx ax ya 的正负表示开口方向,a 表示开口大小,对称轴ab x 2-=,c 表示截距.顶点式:()a b ac a b x a k h x a y 442222-+⎪⎭⎫⎝⎛+=++=()0≠a()k h ,-表示二次函数的顶点,即对称轴为h x -=,最值为k .交点式:()()21x x x x a y --=()0≠a21,x x 为函数与x 轴交点的横坐标.二次函数配方:)0(2≠++=a c bx ax y ab ac a b x a ca ba b x a ca b a b x a b x a cx a b x a 44242442222222222-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫⎝⎛-++=+⎪⎭⎫⎝⎛+=二次函数的求法:给顶点→设顶点式()k h x a y ++=2()0≠a给两个交点→设交点()()21x x x x a y --=()0≠a过原点→设bx ax y +=2()0≠a任意三点→设一般式)0(2≠++=a c bx ax y实际应用类题型:一、如果题目中已建立好直角坐标系,按题目要求来:①② ③ 由题意可设2ax y =()0≠a ,由题可设k ax y +=2()0≠a , 由题意可设()()02≠+=a h x a y , 再找一个非原点带入求出a 即可再找两点带入解方程组即可 再找两点带入解方程组即可④⑤ 由题意可设()02≠+=a bx ax y ,由题意可设()02≠++=a c bx ax y , 再找两个非原点带去解方程组即可找三点带去解方程组即可例1、施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.例2、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.例3、如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB 的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?例4、横跨松花江两岸的阳明滩大桥是我市首座悬索桥,夜色中的璀璨灯光已成为一道亮丽的风景线,桥梁双塔间的悬索成抛物线型,如图,以桥面为x轴,以抛物线的对称轴为y轴,以1米为一个单位长度,建立平面直角坐标系.已知大桥的双塔AE和BF 与桥面垂直,且它们的高度均是83米,悬索抛物线上的点C、D的坐标分别为(0,3)、(50,8).(1)求抛物线的解析式;(2)李大爷以每秒0.8米的速度沿桥散步,那么从点E走到点F所用时间为多少秒?二、如果题目中没有建立直角坐标系:(这种情况比较少)按题目要求,建立最简便的坐标系,方便计算.例1、如图是一座抛物线拱形桥,在正常水位时,水面AB宽是20m,水位上升3m就达到警戒线CD,这是水面宽度为10m,请构建适当的水平直角坐标系求抛物线所对应的函数表达式,并求水位到达警戒线时拱顶与水面之间的距离.经济利润类型问题利润=单件利润×件数(常考)利润=总收入—总成本(通用)利润=单件利润×件数—额外支出这类问题一般分为两问到三问,第一问常考求件数与销售单件的方程,最后一问常考最大利润问题,只要把利润化成二次函数顶点式来求最大利润即可.注意点:1、可以写出自变量的取值范围.2、写出最大利润时要进行一个简单的讨论(a开口方向,对称轴,增减性)3、如果出题人设陷阱,通常是①对称轴不在取值范围内,根据二次函数图像性质来求解②如自变量必须是整数,如衣服件数,但是对称轴不是整数,对称轴最近的整数即为最值的横坐标.4、如果每提高1元,少卖5件 每提高a元,少卖a5件.例1、为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?例2、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?例3、小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?例4、某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?例5、一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?例6、“淮南牛肉汤”是安徽知名地方小吃。

二次函数应用题集锦

二次函数应用题集锦

二次函数应用题集锦一、二次函数的实际应用--商品问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

据市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。

要想获得最大利润,该商品应定价为多少元?分析:若设销售单价定为x元,每周的利润为y元。

那么每件商品的利润可表示为(x-40)元,每周的销售量可表示为[300-10(x-60)]件,一周的利润可表示为y=(x-40)[300-10(x-60)] 元,要想获得最大利润可得Y=(x-40)[300-10(x-60)]=(x-40)(900-10x)=-10x²+1300x-36000=-10(x-65)²+6250所以当x=65时,所获得的利润最大为6250元,即商品定价为65元时,可获得最大利润为6250元。

如设销售单价涨了x元,那么每件商品的利润可表示为(20+x) 元,每周的销售量可表示为(300-10x) 件,一周的利润可表示为(20+x)(300-10x) 元,每周获得利润为y=(20+x)(300-10x) =-10(x-5)²+6250当x=5时y的最大值为6250,即当定价:60+5=65元时可获得最大利润为6250元。

2.已知某商品的进价为每件40元。

现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。

如何定价才能使利润最大?解:设每件涨价为x元时获得的总利润为y元,则y =(60-40+x)(300-10x)=(20+x)(300-10x) (0≤x≤30)=-10x²+100x+6000=-10(x²-10x-600)=-10[(x-5)²-25-600]=-10(x-5)²+6250当x=5时,y的最大值是6250定价:60+5=65(元)第二问解:设每件降价x元时的总利润为y元.y=(60-40-x)(300+20x)=(20-x)(300+20x)=-20x²+100x+6000=-20(x²-5x-300)=-20(x-2.5)²+6125 (0≤x≤20)所以定价为60-2.5=57.5时利润最大,最大值为6125元.答:综合以上两种情况,定价为65元时可获得最大利润为6250元.已知某商品的进价为每件40元。

二次函数的实际应用六大压轴题型归纳总结(含答案)

二次函数的实际应用六大压轴题型归纳总结(含答案)

二次函数的实际应用六大压轴题型归纳总结【题型1 利用二次函数解决几何图形问题】【例1】(2020春•萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)【解题思路】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【解答过程】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<3 5;(2)设面积为S,则S=2x(3﹣5x)+32x2=−172x2+6x=−172(x−617)2+1817,当x=617时,S最大=1817.【变式1-1】(2020•安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.【解题思路】(1)根据矩形的性质得到CD=AB=16,AD=BC=12,根据正方形AEFG和正方形JKCI 形状大小相同,矩形GHID和矩形EBKL形状大小相同,得到DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.【解答过程】解:(1)在矩形ABCD中,CD=AB=16,AD=BC=12,∵正方形AEFG和正方形JKCI形状大小相同,矩形GHID和矩形EBKL形状形状大小相同,AG=x,∴DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,∵S矩形LJHF=FL•LJ,∴y=(2x﹣12)(16﹣2x)=﹣4x2+56x﹣192;(2)由(1)得,y=﹣4x2+56x﹣192=﹣4(x﹣7)2+4,∵FL=2x﹣12>0,LJ=16﹣2x>0,∴6<x<8,∵a=﹣4<0,∴当x=7时,y的最大值=4;故矩形观赏鱼用地LJHF面积的最大值为4m2.【变式1-2】(2020•富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【解题思路】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值;(3)根据题意确定x的取值范围,利用二次函数增减性计算即可.【解答过程】解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:{28−x≥ax≥6,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.【变式1-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【解题思路】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答过程】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696.答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S =−13(n −10)2+1003;按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【题型2 利用二次函数解决销售利润问题】【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y (千克)与销售单价x (元)的关系如图所示.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?【解题思路】(1)直接利用待定系数法求出一次函数关系式;(2)利用销量×每件利润=总利润,进而结合二次函数增减性得出答案. 【解答过程】解:(1)设y 与x 的函数关系式为:y =kx +b (k ≠0),根据图象可得方程组{30k +b =14050k +b =100,解得:{k =−2b =200,∴y 与x 的函数关系式为:y =﹣2x +200,x 的取值范围是:30≤x ≤60; (2)设日利润为w ,则可以列出函数关系式为: w =(﹣2x +200)(x ﹣30)﹣450 =﹣2x 2+260x ﹣6450, 当x =−b2a=65, 又∵30≤x ≤60,∴当x =60时,w 取得最大值,w =1950,答:当销售单价为60元时,当天该工厂日利润最大,最大日利润为1950元.【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解题思路】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答过程】解;(1)设y 关于x 的函数解析式为y =kx +b , {85k +b =17595k +b =125,得{k =−5b =600,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【变式2-2】(2020•安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解题思路】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【解答过程】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则{100k+b=20 b=30,解得:{k=−110 b=30,故z与x之间的关系式为z=−110x+30;(2)W=zx﹣y=−110x2+30x−110x2=−15x2+30x=−15(x2﹣150x)=−15(x﹣75)2+1125,∵−15<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得110x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=−15(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【变式2-3】(2020•邢台二模)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a 元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.【解题思路】(1)根据实际售价﹣进价=进价×利润率建立关于a的方程,解之可得a的值;用原销售量﹣因价格上涨而减少的销售量可得答案.(2)根据“总利润=每个硒鼓利润×销售量”列出关于x的函数,配方成顶点式,再利用二次函数的性质求解可得;(3)根据以上相等关系,并结合新进价列出关于x的二次函数,找到其对称轴,利用二次函数的增减性求解可得.【解答过程】解:(1)30×0.8﹣a=20%a,解得a=20.y=500﹣10(x﹣30),即y=﹣10x+800(20≤x≤48).(2)根据题意,得W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000.∵﹣10<0,销售单价不能超过48元/个,即当20≤x≤48时,W随x的增大而增大,∴当x=48时,W有最大值,最大值为8960.答:当售价为48元/个时,每月获得的利润最大,最大利润为8960元.(3)根据题意,得G=(x﹣n)(﹣10x+800)=﹣10x2+(800+10n)x﹣800n,对称轴x=80+n 2.∵a=﹣10<0,∵当n ≤x ≤48时,该商品利润G 随x 的增大而增大, ∴80+n 2≥48,解得n ≥16. ∵进价是降低的,∴n 的取值范围是16≤n <20.【题型3 利用二次函数解决抛物线形轨迹问题】【例3】(2020秋•渑池县期末)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距8√3米. (1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点,并说明理由.【解题思路】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA 与水平方向OC 的夹角为30°,OA =8√3米,解直角三角形可求点A 的坐标,把点A 的横坐标x =12代入抛物线解析式,看函数值与点A 的纵坐标是否相符. 【解答过程】解:(1)∵顶点B 的坐标是(9,12), ∴设抛物线的解析式为y =a (x ﹣9)2+12, ∵点O 的坐标是(0,0)∴把点O 的坐标代入得:0=a (0﹣9)2+12, 解得a =−427,∴抛物线的解析式为y =−427(x ﹣9)2+12 即y =−427x 2+83x ;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA•sin30°=8√3×12=4√3,OC=OA•cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【变式3-1】如图,运动员甲在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(3)运动员乙跳离地面时,最高能摸到3.3m,问:在(2)的条件下,运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?【解题思路】(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.(3)当y=3.3m,进而代入函数解析式,求出x的值,即可得出答案.【解答过程】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.(3)由题意可得出:y=3.3,则3.3=﹣0.2x2+3.5解得:x1=1,x2=﹣1,∴2.5﹣1=1.5(m),1.5﹣1=0.5(m)∴乙在距离甲1.5米以内或离篮板0.5米以内能在空中截住球.【变式3-2】(2021•嘉善县一模)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A'(如图3),请直接写出m的取值范围.【解题思路】(1)根据条件可以得到抛物线的顶点坐标是(6,4.4),利用待定系数法即可求得函数的解析式;(2)求出当y=2.44时,x的值,取正;(3)先求出y=0时,x的值,取正,减去恰好击中球门横梁时,足球的水平距离.【解答过程】解:(1)抛物线的顶点坐标是(6,4.4),设抛物线的解析式是:y=a(x﹣6)2+4.4,把(0,0.4)代入得36a+4.4=0.4,解得a=−1 9,则抛物线是y=−19(x﹣6)2+4.4;(2)∵球门高为2.44米,即y=2.44,则有2.44=−19(x﹣6)2+4.4,解得:x1=10.2,x2=1.8,从题干图2中,发现球门在CD右边,∴x=10.2,即足球运动的水平距离是10.2米;(3)不后退时,刚好击中横梁,∴往后退,则球可以进入球门,而当球落地时,球刚好在门口,是一个临界值,当y=0时,有0=−19(x﹣6)2+4.4,解得:x1=6+35√110,x2=6−35√110,取正值,x=6+35√110,∴后退的距离需小于6+35√110−10.2=(35√110−4.2)米故0<m<35√110−4.2.【变式3-3】(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【解题思路】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答过程】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.。

二次函数实际问题题型总结

二次函数实际问题题型总结

二次函数实际问题题型总结二次函数是高中数学中比较重要的一个章节,它表示的是一种形式为$y=ax^2+bx+c$ 的函数关系。

我们可以通过这个函数来解决很多实际问题,例如运动问题、经济学问题、物理学问题等等。

下面来总结一下二次函数实际问题的题型:1.飞行时间问题。

如果一架飞机从地面起飞并上升至高度 $H$,则它的飞行时间可以表示为 $t=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

其中 $a$ 表示重力加速度,$b$ 表示初速度, $c$ 表示起飞高度。

2.弹射高度问题。

如果一个弹球从地面弹射,并上升至高度 $H$ 后又落回地面,它的弹射高度可以表示为 $H=\frac{V_i^2\sin^2\theta}{2g}$。

其中$V_i$ 表示初速度, $\theta$ 表示仰角, $g$ 表示重力加速度。

3.投射距离问题。

如果一个物体以速度 $V$ 投出,发射角度为 $\theta$,则它的投射距离可以表示为 $R=\frac{V^2\sin2\theta}{g}$。

4.向上抛球的时间问题。

如果一个物体在 $t$ 秒时从地面抛出,当它达到最高点的时候它的高度为 $H$,则它的上升时间可以表示为$t=\frac{1}{2}\sqrt{\frac{H}{g}}$。

其中 $g$ 表示重力加速度。

5.落地时间问题。

如果一个物体从高度为 $H$ 的地方落下,则它的落地时间可以表示为 $t=\sqrt{\frac{2H}{g}}$。

6.成本问题。

如果生产一个产品的成本可以表示为 $C(x)=ax^2+bx+c$,其中$x$ 表示生产的数量, $a$ 表示固定成本, $b$ 表示每个产品的变动成本, $c$ 表示额外的成本,则我们可以通过求导数来确定生产的最优数量。

7.利润问题。

如果销售一个产品的收入可以表示为 $R(x)=mx$,其中 $m$ 表示每个产品的销售额,则利润可以表示为 $P(x)=R(x)-C(x)$。

初中数学《二次函数》十大题型汇编含解析

初中数学《二次函数》十大题型汇编含解析

二次函数【十大题型】【题型1 辨别二次函数】 (1)【题型2 由二次函数的定义求字母的值】 (3)【题型3 由二次函数的定义求字母的取值范围】 (4)【题型4 二次函数的一般形式】 (6)【题型5 求二次函数的值】 (7)【题型6 判断函数关系】 (9)【题型7 列二次函数关系式(几何图形)】 (11)【题型8 列二次函数关系式(增长率)】 (14)【题型9 列二次函数关系式(循环)】 (15)【题型10 列二次函数关系式(销售)】 (16)知识点1:二次函数的定义一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.【题型1 辨别二次函数】【例1】(23-24九年级上·江西南昌·阶段练习)下列函数解析式中,yy一定是xx的二次函数的是()A.yy=2aaxx2B.yy=2xx+aa2C.yy=2xx2−1D.yy=xx2+1xx【答案】C【分析】本题考查二次函数的识别,形如yy=aaxx2+bbxx+cc(aa≠0)的函数是二次函数,根据定义逐一判断即可得到答案.【详解】解:A,当aa=0时,yy=2aaxx2=0,不是二次函数,不合题意;B,yy=2xx+aa2,yy是xx的一次函数,不合题意;C,yy=2xx2−1,yy一定是xx的二次函数,符合题意;D,yy=xx2+1xx中含有分式,不是二次函数,不合题意;故选C.【变式1-1】(23-24九年级上·安徽安庆·阶段练习)下列函数是二次函数的是()A.yy=2xx−1B.yy=√xx2−1C.yy=xx2−1D.yy=12xx【答案】C【分析】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如yy=aaxx2+bbxx+cc (aa、b、c为常数,aa≠0)的函数叫二次函数.根据二次函数的定义逐个判断即可.【详解】解:A、函数yy=2xx−1是一次函数,不是二次函数,故本选项不符合题意;B、函数yy=√xx2−1根号内含有x,不是二次函数,故本选项不符合题意;C、函数yy=xx2−1是二次函数,故本选项符合题意;D、函数yy=12xx分母中含有x,不是二次函数,故本选项不符合题意.故选:C.【变式1-2】(23-24九年级下·江苏·专题练习)下列函数关系式中,二次函数的个数有()(1)yy=3(xx−1)2+1;(2)yy=1xx2−xx;(3)SS=3−2tt2;(4)yy=xx4+2xx2−1;(5)yy=3xx(2−xx)+3xx2;(6)yy=mmxx2+8.A.1个B.2个C.3个D.4个【答案】B【分析】本题考查了二次函数的定义,一般地,形如yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的函数叫做二次函数.判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成yy=aaxx2+bbxx+cc(aa,bb,cc为常数,aa≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】解:(1)yy=3(xx−1)2+1是二次函数,故符合题意;(2)yy=1xx2−xx,不是二次函数,故不符合题意;(3)SS=3−2tt2是二次函数,故符合题意;(4)yy=xx4+2xx2−1不是二次函数,故不符合题意;(5)yy=3xx(2−xx)+3xx2=6xx不是二次函数,故不符合题意;(6)yy=mmxx2+8,不确定m是否为0,不一定是二次函数,故不符合题意;综上所述,二次函数有2个.故选:B.【变式1-3】(23-24九年级上·湖南长沙·期末)下列函数①yy=5xx−5;②yy=3xx2−1;③yy=4xx3−3xx2;④yy=2xx2−2xx+1;⑤yy=1xx2.其中是二次函数的是.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①yy=5xx−5为一次函数;②yy=3xx2−1为二次函数;③yy=4xx3−3xx3自变量次数为3,不是二次函数;④yy=2xx2−2xx+1为二次函数;⑤yy=1xx2函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.【题型2 由二次函数的定义求字母的值】【例2】(23-24九年级下·广东东莞·期中)已知函数yy=(mm−1)xx mm2+1是二次函数,则mm=.【答案】−1【分析】根据定义得:形如yy=aaxx2+bbxx+cc(aa、bb、cc是常数,且aa≠0)的函数是二次函数,列方程可求得答案.【详解】解:依题意得:mm2+1=2且mm−1≠0,解得mm=−1.故答案为:−1.【点睛】本题考查了二次函数的定义.注意:二次函数yy=aaxx2+bbxx+cc中,aa是常数,本题关键点为aa≠0.【变式2-1】(23-24九年级上·江苏扬州·阶段练习)如果yy=2xx|mm|+3xx−1是关于xx的二次函数,则mm=.【答案】±2【分析】本题主要考查了二次函数的定义,直接利用二次函数的定义得出答案.【详解】解:∵yy=2xx|mm|+3xx−1是关于x的二次函数,∴|mm|=2,解得:mm=±2.故答案为:±2.【变式2-2】(23-24九年级上·湖北·周测)如果函数yy=(kk−1)xx kk2−kk+2+kkxx−1是关于x的二次函数,则kk=.【答案】0【分析】本题考查了二次函数的定义.根据二次函数的定义得到kk−1≠0且kk2−kk+2=2,然后解不等式和方程即可得到k的值.【详解】解:根据题意,得kk−1≠0且kk2−kk+2=2,解得kk=0.故答案为:0.【变式2-3】(23-24九年级下·广东广州·期末)如果yy=(kk−3)xx�kk-1�+xx−3是二次函数,佳佳求出k的值为3,敏敏求出k的值为-1,她们俩中求得结果正确的是.【答案】敏敏【分析】本题考查了二次函数的定义,由定义得|kk−1|=2,kk−3≠0,即可求解;理解定义:“一般地,形如yy=aaxx2+bbxx+cc(a、b、c是常数,aa≠0)的函数叫做二次函数.” 是解题的关键.【详解】解:∵yy=(kk−3)xx�kk-1�+xx−3是二次函数,∴|kk−1|=2,解得kk1=3,kk2=−1,又∵kk−3≠0,即kk≠3,∴kk=−1,故敏敏正确.【题型3 由二次函数的定义求字母的取值范围】【例3】(23-24九年级上·上海嘉定·期末)如果函数yy=(kk−1)xx2+kkxx−1(kk是常数)是二次函数,那么kk的取值范围是.【答案】kk≠1【分析】根据:“形如yy=aaxx2+bbxx+cc(aa≠0),这样的函数叫做二次函数”,得到kk−1≠0,即可.【详解】解:由题意,得:kk−1≠0,∴kk≠1;故答案为:kk≠1.【变式3-1】(23-24九年级上·浙江嘉兴·开学考试)已知函数yy=(mm2−mm)xx2+(mm−1)xx−2(m为常数).(1)若这个函数是关于x的一次函数,求m的值.(2)若这个函数是关于x的二次函数,求m的取值范围.【答案】(1)mm=0;(2)mm≠1且mm≠0.【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题.【详解】(1)解:依题意mm2−mm=0且mm−1≠0,所以mm=0;(2)解:依题意mm2−mm≠0,所以mm≠1且mm≠0.【点睛】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,属于中考常考题型.【变式3-2】(23-24九年级上·广东江门·阶段练习)已知关于xx的二次函数yy=(aa2−1)xx2+xx−2,则aa的取值范围是()A.aa≠1B.aa≠−1C.aa≠±1D.为任意实数【答案】C【分析】根据二次函数定义可得aa2−1≠0,解出答案即可.【详解】因为关于xx的二次函数yy=(aa2−1)xx2+xx−2,∴aa2−1≠0,解得:aa≠±1.故选:C.【点睛】本题考查的是二次函数yy=aaxx2+bbxx+cc(aa≠0)概念,熟练掌握二次函数定义是解题关键.【变式3-3】(23-24九年级下·四川遂宁·期中)已知函数yy=(mm2-2)xx2+(mm+√2)xx+8.若这个函数是二次函数,求mm的取值范围【答案】mm≠√2且mm≠-√2【分析】根据二次函数的定义,即可得不等式mm2-2≠0,解不等式即可求得.【详解】解:∵函数yy=(mm2-2)xx2+(mm+√2)xx+8是二次函数,∴mm2-2≠0,解得mm≠±√2,故答案为:mm≠√2且mm≠-√2.【点睛】本题考查了二次函数的定义,熟练掌握和运用二次函数的定义是解决本题的关键.【题型4 二次函数的一般形式】【例4】(23-24九年级上·四川南充·阶段练习)二次函数yy=xx2−3xx+5的二次项是,一次项系数是,常数项是.【答案】xx2−3 5【分析】根据二次函数的定义判断即可。

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。

解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。

经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。

解最值问题时,一定要注意自变量的取值范围。

分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。

2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。

二次函数的应用题的考试常见题型

二次函数的应用题的考试常见题型

二次函数的应用题的考试常见题型1. 求解二次方程根问题描述:给定一个二次方程 $ax^2 + bx + c = 0$,其中 $a, b, c$ 为已知常数,求解该二次方程的根。

解答思路:使用一元二次方程的求根公式,即 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$,其中 $\pm$ 表示两个根,根的个数和值的情况有以下三种:- 若 $b^2 - 4ac > 0$,则有两个不相等的实根;- 若 $b^2 - 4ac = 0$,则有两个相等的实根;- 若 $b^2 - 4ac < 0$,则无实根。

示例题目:已知二次方程 $2x^2 + x - 3 = 0$,求解该二次方程的根。

解答过程:根据一元二次方程的求根公式,将$a=2, b=1, c=-3$ 代入可得:$$x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-3)}}{2 \cdot 2}$$计算可得:$$x_1 = 1, x_2 = -\frac{3}{2}$$所以该二次方程的根为 $x_1 = 1$ 和 $x_2 = -\frac{3}{2}$。

2. 求解最值问题问题描述:给定一个二次函数 $y = ax^2 + bx + c$,其中 $a, b, c$ 为已知常数,求解该二次函数的最值。

解答思路:对于二次函数 $y = ax^2 + bx + c$,其最值出现在顶点处。

二次函数的顶点坐标为 $x = -\frac{b}{2a}$,将 $x$ 的值代入二次函数可得到最值。

- 如果 $a$ 为正,则二次函数的开口向上,最小值为顶点;- 如果 $a$ 为负,则二次函数的开口向下,最大值为顶点。

示例题目:已知二次函数 $y = 2x^2 + x - 3$,求解该二次函数的最值。

解答过程:将 $a=2, b=1, c=-3$ 代入可得顶点坐标 $x = -\frac{1}{2 \cdot 2} = -\frac{1}{4}$。

专题07 二次函数的应用重难点题型专训【八大题型】(解析版)

专题07 二次函数的应用重难点题型专训【八大题型】(解析版)

专题07二次函数的应用重难点题型专训【八大题型】【题型目录】【知识梳理】知识点:二次函数的应用1.审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系)。

2.设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确。

3.列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数。

4.按题目要求,结合二次函数的性质解答相应的问题。

5.检验所得解是否符合实际:即是否为所提问题的答案。

6.写出答案。

【经典例题一图形面积与周长问题】【例1】(2022·浙江温州·统考二模)已知抛物线245y ax ax a 与x 轴交于A ,B 两点,P 为抛物线顶点,且当1x 时,y 随x 的增大而减小,若△ABP 为等边三角形,则a 的值为()A .33 B .33C .3 D .3【答案】B【分析】将抛物线表达式分别转化为两点式和顶点式,得到A (-1,0)、B (5,0)及顶点P (2,-9a );过点P 作PH AB 与点H ,结合等边三角形的性质,可知6AB ,3AH ,利用勾股定理计算PH 的值,再由99PH a a 计算a 值即可.【详解】解:∵245(5)(1)y ax ax a a x x ,令(5)(1)0y a x x ,解得11x ,25x ,即A (-1,0)、B (5,0);∵2245(2)9y ax ax a a x a ,∴其顶点坐标为(2,-9a ),对称轴为2x ,∵当1x 时,y 随x 的增大而减小,∴抛物线开口向上,即0a ,∵△ABP 为等边三角形,∴5(1)6AB AP ,如图,过点P 作PH AB 与点H ,则132AH AB ,在Rt APH 中,22226333PH AP AH ,又∵9PH a ,即933a (0a ),∴33a .故选:B .【点睛】本题主要考查了二次函数与实际问题(图形问题)、等边三角形的性质以及勾股定理的知识,解题关键是准确作出图形并运用数形结合的思想分析问题.【变式训练】1.(2023·河北石家庄·校联考模拟预测)如图,利用一个直角墙角修建一个DC AB ∥的四边形储料场AB CD ,其中120C .若新建墙BC 与CD 总长为12m ,则该储料场ABCD 的最大面积是()A .218m B .2183m C .2243m D .2253m 2【答案】C 【分析】先添加辅助线,把直角梯形分成矩形和含30 直角三角形,求出梯形的上、下底和高,最后由梯形面积公式得出面积S 与x 之间的函数关系式,根据二次函数的性质直接求解.【详解】如图,过点C 作CE AB 于点E ,易得:四边形ADCE 为矩形,∴90DCE CEB ,CD AE30BCE BCD DCE ,设CD AE x ,∴12BC x , 111126222BE BC x x ,∴133366322AD CE BE x x,162AB AE BE x x ,则四边形ABCD 的面积为:11136·632222S CD AB CE x x x,整理得: 22333333183424388S x x x =,∴当CD 长为4cm 时,储料场ABCD 的面积最大为2243cm .故选:C .【点睛】此题考查了梯形的性质、矩形的性质、含30 角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.3.(2023秋·辽宁大连·九年级统考期末)如图,在平面直角坐标系中,点(2,4)A 在抛物线2y ax 上,过点A 作y 轴的垂线,交抛物线于另一点B ,点C 、D 在线段AB 上,且C 、D 两点关于y 轴对称,过点C 作x 轴的垂线交抛物线于点E .连接ED ,当CDE 是等腰直角三角形时,线段CD 的长为.【答案】252【分析】设AB 与y 轴相交于点F ,设CF m ,根据轴对称的性质和等腰三角形的性质求出点E 的坐标,然后利用待定系数法求解即可.【详解】解:设AB 与y 轴相交于点F ,设CF m ,∵C 、D 两点关于y 轴对称,∴DF CF m ,∴2CD m∵CDE 是等腰直角三角形,∴2CE m ,∴ ,42E m m ,∵点(2,4)A 在抛物线2y ax 上,∴242a ,解得1a ,∴2y x ,把 ,42E m m 代入2y x ,得242m m ,解得115m ,215m (不符合题意,舍去)∴2252CD m .故答案为:252 .【点睛】本题考查了轴对称的性质,等腰直角三角形的性质,待定系数法求二次函数的解析式,解一元二次方程等知识,掌握以上知识是解题的关键.3.(2023春·浙江温州·八年级校考期中)如何裁剪出符合要求的长方形纸片?素材1如图1,ABC 是腰长为40cm 的等腰直角三角形卡纸,校艺术节上,甲、乙、丙三名同学分别用这样的卡纸试图裁剪出不一样的长方形纸片,并使长方形的四个顶点都在ABC 的边上.素材2甲同学按图2的方式裁剪,想裁出面积为三角形面积的732的长方形纸片,乙同学按图3的方式裁剪,想裁出面积为三角形面积的58的长方形纸片,丙同学想裁出面积最大的长方形纸片.任务1计算纸片周长请帮甲同学计算此长方形纸片的周长.任务判断裁剪方案请帮乙同学判断此裁剪方案是否能够实现,说明理由.2任务3计算最大面积请帮丙同学计算出长方形纸片面积的最大值.【答案】任务1:80cm ;任务2:乙同学不能实现,见解析;任务3:2400cm 【分析】任务1.设cm EF CF x ,则 40cm AF x ,依据题意列出方程求得x 值,再利用正方形的周长公式解答即可;任务2.设cm NP CP MQ BQ y ,则4022cm PQ y ,依据题意列出方程,通过计算Δ0 ,方程没有实数根,说明乙同学的方案不能实现;任务3.利用配方法,分别求得两个方案中的面积的最大值即可得出结论.【详解】解:任务1.由题意得:45C ,EF AC ∵,EF FC .设EF CF x cm ,则 40cm AF x ,∵矩形ADEF 的面积为三角形面积的732, 71404040322x x ,化简得2401750x x ,解得:5x 或35x ,矩形ADEF 的边长为5cm ,35cm ,周长为 253580cm ;任务2.由题意得:45C B ,MQ NP ,EF AC ∵,MQ BC ,NP CP MQ BQ .设cm NP CP MQ BQ y ,则 4022cm PQ y ,∵矩形MNPQ 的面积为三角形面积的58,514022404082y y ,整理得:22022500y y .2480010002000b ac ∵,方程无实数根,乙同学的方案不能实现;任务3.图2方案: 224040(20)400S x x x x x ∵, 当20cm x 时,矩形的面积最大为2400cm ;图3方案:22402224022(102)400S y y y y y ∵, 当102cm y 时,面积最大为2400cm ,长方形纸片面积的最大值为2400cm .【点睛】本题主要考查了等腰直角三角形的性质,矩形的性质,配方法,二次函数的性质,函数的极值,利用配方法解答是解题的关键.【经典例题二图形运动问题】【例2】(2023·浙江温州·统考三模)如图,正方形ABCD 的边长为2cm ,点P ,Q 同时从点A 出发,速度均为2/s cm ,若点P 沿A D C 向点C 运动,点Q 沿A B C 向点C 运动,则APQ △的面积 2cm S 与运动时间 s t 之间函数关系的大致图象是()A .B .C .D .【答案】C【分析】分两种情况讨论:当Q 、P 两点分别在AB 、AD 上时,可得22S t ,01t ;当Q 、P 两点分别在BC 、DC 上时,连接AC ,可得42QC t ,42PC t ,根据APQ △的面积为正方形ABCD 的面积减去ABQ 面积、ADP △面积和CQP V 面积,进而有224S t t ,12t ,综上可以求出S 与t 的关系式,即可求解.【详解】解:当Q 、P 两点分别在AB 、AD 上时,2AQ t ,2AP t ,AQP △的面积为:22S t ,01t ;当Q 、P 两点分别在BC 、DC 上时,连接AC ,如图所示:根据题意有:2AB BQ t ,则 QC AB BC AB BQ ,∵正方形ABCD 的边长为2cm ,∴2cm AB BC CD AD ,∴42QC t ,同理可得42PC t ,∵根据APQ △的面积为正方形ABCD 的面积减去ABQ 面积、ADP △面积和CQP V 面积,∴AQP ABQ ADP PQC ABCD S S S S S △△正方形V V ,∴ 111222222224242222AQP S t t t t △,∴224S t t ,12t ,则有222012412t t S t t t,故C 正确.故选:C .【点睛】本题主要考查了二次函数的图象与性质的知识,掌握函数图象的性质以及分类讨论是解答本题的关键.【变式训练】1.(2022·浙江宁波·校考模拟预测)已知抛物线:213222y x x 顶点为D ,将抛物线向上平移,使得新的抛物线的顶点D ¢落在直线l :158y 上,设直线l 与y 轴的交点为O ,原抛物线上的点P 平移后的对应点为Q ,若O P O Q ,则点Q 的纵坐标为()A .238B .358C .4D .17【答案】B【分析】先根据顶点的变化规律写出平移后的抛物线的解析式,即可求得平移的距离,根据O P O Q ,得出Q 点的纵坐标为15535828.【详解】解:∵22131325222228y x x x ,由题意得向上平移后的抛物线解析式为21315228y x ,∴抛物线向上平移了5个单位,由题意得150,8O,∵O P O Q ,∴Q 点的纵坐标为15535828.故选B .【点睛】本题主要考查二次函数的图象与几何变换,二次函数的图象和性质,二次函数图象上点的坐标特征,根据题意得到关于x 的方程是解题的关键.2.(2023春·福建福州·九年级福建省罗源第一中学校考期中)点E 在边长为4的正方形ABCD 的边BC 上,点F 在边CD 上,45EAF ,则AEF 面积的最小值为.【答案】16216 /16162 【分析】将ADE V 绕点A 顺时针旋转90 得到ABH ,证明(SAS)AEF AHF ≌,则FH EF ,AEF AFH S S ,设,DE x BF y ,则BH DE x ,在Rt EFC △中,由222EC CF EF +=得出AEF S 242248284x x,根据二次函数的性质即可求解.【详解】解:如图所示,将ADE V 绕点A 顺时针旋转90 得到ABH ,则,AH AE BAH DAE ,45,90EAF BAD∵45BAF DAE BAH BAF 45FAH EAF在,AEF AHF 中,AE AH EAF HAF AF AF∴(SAS)AEF AHF ≌FH EFAEF AFHS S 设,DE x BF y ,则BH DE x ,6EF BF BH x y CE x ,6CF y 在Rt EFC △中,222EC CF EF +=222(4)(4)()x y x y 11324()24224AEF AFH S S FH AB x y x x322(4)84x x242248284x x当4244x x 时,424x∴AEF S 的最小值为16216故答案为:16216 .【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,二次函数与图形问题,构造二次函数关系式是解题的关键.3.(2020秋·广东广州·九年级中山大学附属中学校考阶段练习)如图,在矩形ABCD 中,6AB ,12BC ,点P 从点A 出发沿AB 边向点B 以1个单位每秒的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2个单位每秒的速度移动.如果P ,Q 两点在分别到达B ,C 两点后就停止移动,设运动时间为t 秒(06)t ,回答下列问题:(1)运动开始后第几秒时PBQ 的面积等于8.(2)设五边形APQCD 的面积为S ,写出S 与t 的函数关系式,当t 为何值时S 最小?求S 的最小值.【答案】(1)2秒或4秒(2)2672S t t ,当3t 时,63S 最小【分析】(1)设运动开始后第t 秒时PBQ 的面积等于8,由三角形面积公式即可求解;(2)由PBQ ABCD S S S △矩形即可求解.【详解】(1)解:设运动开始后第t 秒时PBQ 的面积等于8,由题意得16282t t ,整理得:2680t t ,解得:12t ,24t ,答:运动开始后第2秒或4秒时PBQ 的面积等于8.(2)解:PBQABCD S S S △矩形1612622t t 2672t t ,2363t ,10 ∵,06t , 当3t 时,63S 最小;答:2672S t t ,当3t 时,63S 最小.【点睛】本题考查了一元二次方程及二次函数的应用,根据图形找出等量关系式,掌握二次函数最值的求法是解题的关键.【经典例题三拱桥问题】【例3】(2021秋·浙江绍兴·九年级校联考期中)一座拱桥的示意图如图所示,当水面宽为12m 时,桥洞顶部离水面4m .已知桥洞的拱形是抛物线,以水平方向为x 轴(向右为正向),若A 为原点建立坐标系时,该抛物线的表达式为214,93y x x 则B 为原点建立坐标系时,该抛物线的表达式为()A .21493y x x B .21493y x x C .21493y x x D .21493y x x 【答案】A 【分析】根据题意得出A 点坐标,进而利用顶点式求出函数解析式即可.【详解】解:以B 为原点建立坐标系,如图所示:由题意可得出: 264y x ,将(﹣12,0)代入得出, 201264a ,解得:19a ,∴选取点B 为坐标原点时的抛物线解析式是:2211464993y x x x .故选:A .【点睛】此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.【变式训练】1.(2022秋·浙江嘉兴·九年级校联考期中)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A .43米B .52米C .213米D .7米【答案】B 【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A 的小孔所在抛物线的解析式,将x =﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN =4,EF =14,BC =10,DO =32,设大孔所在抛物线解析式为y =ax 2+32,∵BC =10,∴点B (﹣5,0),∴0=a ×(﹣5)2+32,∴a =-350,∴大孔所在抛物线解析式为y =-350x 2+32,设点A (b ,0),则设顶点为A 的小孔所在抛物线的解析式为y =m (x ﹣b )2,∵EF =14,∴点E 的横坐标为-7,∴点E 坐标为(-7,-3625),∴-3625=m (x ﹣b )2,∴x 1=615m +b ,x 2=-615m +b ,∴MN =4,∴|615m +b -(-615m+b )|=4∴m =-925,∴顶点为A 的小孔所在抛物线的解析式为y =-925(x ﹣b )2,∵大孔水面宽度为20米,∴当x =-10时,y =-92,∴-92=-925(x ﹣b )2,∴x 1=522+b ,x 2=-522+b ,∴单个小孔的水面宽度=|(522+b )-(-522+b )|=52(米),故选:B .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2.(2023·吉林长春·东北师大附中校考三模)如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO 与BD 均为0.9米,绳子甩到最高点C 处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点О水平距离为m 米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m 的取值范围是.【答案】15m 【分析】根据题意建立直角坐标系,提取出点的坐标求出抛物线解析式,根据能跳绳及高度大于1.4米列不等式即可得到m 的值.【详解】解:以O 为坐标原点,OA 所在直线为y 轴OD 所在直线为x 轴,由题意可得,(0,0.9)A ,(6,0.9)B ,(3,1.8)C ,设抛物线解析式为2y ax bx c,将点代入可得,0.993 1.83660.9c a b c a b c,解得:11035910a b c,∴213910510y x x ,∵身高为1.4米的小吉站在距点О水平距离为m 米处能够正常跳大绳,即跳绳高度要高于1.4米,∴2139 1.410510m m ,当2139 1.410510m m 时,整理得2650m m ,解得11m ,25m ,即身高为1.4米的小吉站在距点О水平距离1米处和5米处时,绳子恰好在头顶上,∵绳子甩到最高时要超过他的头顶,∴15m ,故答案为15m .【点睛】本题考查二次函数的应用及坐标求法,解题的关键是建立适当的直角坐标系,会根据题意得出点的坐标.3.(2023·陕西西安·陕西师大附中校考模拟预测)某公司生产A 型活动板房的成本是每个3500元.图1表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长4m AD ,宽3m AB ,抛物线的最高点E 到BC 的距离为4m .(1)按图1中所示的平面直角坐标系,求该抛物线的函数表达式;(2)现将A 型活动板房改造成为B 型活动板房.如图2,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G 、M 在AD 上,点F 、N 在抛物线上,窗户的成本为150元/2m .已知2m GM ,求每个B 型活动板房的成本.(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本)【答案】(1)2114y x (2)每个B 型活动板房的成本为3725元【分析】(1)根据题意得出 0,1,2,0E D ,设该抛物线的函数表达式为21y kx ,利用待定系数法求解即可;(2)根据题意得出31,4N,继而求出矩形FGMN 的面积,列式求解即可.【详解】(1)∵长方形的长4m AD ,宽3m AB ,抛物线的最高点E 到BC 的距离为4m ,∴3m OH AB ,∴431m OE EH OH ,∴ 0,1,2,0E D ,设该抛物线的函数表达式为21y kx ,把 2,0D 代入,得041k ,解得14k ,∴该抛物线的函数表达式为2114y x ;(2)∵2m GM ,∴1m OM OG ,当1x 时,131144y ,∴31,4N,3m 4MN ,∴2332m 42FGMN S MN GM 矩形,∴3350015037252(元),所以,每个B 型活动板房的成本为3725元.【点睛】本题考查了二次函数的实际应用,准确理解题意,熟练掌握二次函数的图象和性质是解题的关键.【经典例题四销售问题】【例4】(2023秋·贵州遵义·九年级统考期末)某商店销售一种进价为40元/千克的海鲜产品,据调查发现,月销售量y (千克)与售价x (元/千克)之间满足一次函数关系,部分信息如下表,下列说法错误的是()售价x (元/千克)50607080…销售量y (千克)250240230220…A .y 与x 之间的函数关系式为300y xB .当售价为72元时,月销售利润为7296元C .当每月购进这种海鲜的总进价不超过5000元时,最大利润可达到16900元D .销售这种海鲜产品,每月最高可获得利润16900元【答案】C【分析】根据题意,可设y 与x 之间的函数关系式为 0y kx b k ,再把将 50250,、 60240,代入 0y kx b k ,联立方程组,并解出,得出y 与x 之间的函数关系式,即可判断选项A ;再根据一次函数的性质,得出当72x 时,月销售量为228千克,然后算出月销售利润,即可判断选项B ;设月销售利润为w ,根据月销售利润等于每千克的利润乘以数量,得出 217016900w x ,再根据题意,得出月销售量不超过125千克,再根据一次函数,得出售价,然后代入 217016900w x ,计算即可判断选项C ;再根据二次函数的性质,即可判断选项D ,综合即可得出答案.【详解】解:∵月销售量y (千克)与售价x (元/千克)之间满足一次函数关系,∴设y 与x 之间的函数关系式为 0y kx b k ,将 50250,、 60240,代入 0y kx b k ,可得:5025060240k b k b ,解得:1300k b,∴y 与x 之间的函数关系式为300y x ,故选项A 正确;当72x 时,72300228y ,∴月销售利润为: 22872407296 (元),故选项B 正确;设月销售利润为w ,∴ 2404030017016900w x y x x x ,∵每月购进这种海鲜的总进价不超过5000元,∴500040125 (千克),即月销售量不超过125千克,∴当125y 时,即300125x ,解得:175x ,∴ 21751701690016875w 最大(元),故选项C 错误;∵ 217016900w x ,∴当170x 时,w 有最大值,最大值为16900,即最高利润为16900元,故选项D 正确.故选:C【点睛】本题考查了一次函数的应用、求一次函数解析式、二次函数的应用、二次函数的性质,解本题的关键在理解题意,正确得出函数解析式.【变式训练】1.(2023秋·云南临沧·九年级统考期末)为庆祝第五个中国农民丰收节,宣传玉龙县特色农产品,“迎盛会·庆丰收·促振兴”农特产品展销推荐会在白华生态农贸市场举行.某农户销售一种商品,成本价为每千克40元,按规定,该商品每千克的售价不低于成本价,且不高于60元.经调查每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克)405060销售量y (千克)12010080设销售该商品每天的利润为W (元),则W 的最大值为()A .1800B .1600C .1400D .1200【答案】B 【分析】设出y 与x 的函数关系式y kx b ,把 40,120, 50,100代入求出关系式,再根据题意列出利润W 的二次函数关系式,根据二次函数的性质和实际情况求解最大值即可.【详解】提示:设y 与x 的函数关系式y kx b ,把 40,120, 50,100代入,得4012050100k b k b ,解得2200k b,∴2200y x ,由题意得 2404022002701800W x y x x x ,∵20 ,开口方向向下,∴当70x 时,y 随x 的增大而增大,又∵4060x ,∴60x 时, 2max 2607018001600W (元).故选:B .【点睛】本题考查了一次函数和二次函数的应用,根据题意列出相关函数关系式是解题的关键.2.(2022秋·河北邢台·九年级校考阶段练习)某批发商销售一种成本是40元/副的防寒手套,当每副防寒手套的售价定为60元时,一天内可卖出100副.经调研得知,该防寒手套的单价每降低1元,每天的销量可增加10副.(1)当防寒手套的单价在定价的基础上降低2元时,每天的销售量为副.(2)该批发商每天要获利2240元,为尽可能让利于顾客,赢得市场,那么这种防寒手套的售价应降价元.当每副防寒手套的定价为元时,该批发商可获得最大利润.【答案】120655【分析】(1)利用平均每天的销售量100 (每副降低的价格1 )10 ,即可得出结论;(2)设每天利润为w ,每副手套应降价x 元,则(6040)(10010)w x x 化简求最大值即可.【详解】解:(1)∵该防寒手套的单价每降低1元,每天的销量可增加10副,∴当防寒手套的单价在定价的基础上降低2元时,每天销售量可增加210201(副)∴每天的销量为:10020120 (副)故答案为:120;(2)设这种防寒手套的售价应降价x 元,则每副防寒手套的销售利润为 6040x 元,平均每天的销售量为 10010x 副,依题意得 6040100102240x x ,解得14x ,26x .∵尽可能让利于顾客,赢得市场,∴每副防寒手套应降价6元.设利润为w ,依据题意可知,604010010w x x 21052250x .∵100 ,当5x 时,批发商可获得最大利润.即每副防寒手套的定价为55元.故答案为:6;55.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是根据题目中的等量关系列出方程和函数关系式.3.(2023·湖北十堰·统考中考真题)“端午节”吃粽子是中国传统习俗,在“端午节”来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒,根据以往销售经验发现,当每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,设每盒售价为x 元,日销售量为p 盒.(1)当60x 时,p __________;(2)当每盒售价定为多少元时,日销售利润W (元)最大?最大利润是多少?(3)小强说:“当日销售利润最大时,日销售额不是最大,”小红说:“当日销售利润不低于8000元时,每盒售价x 的范围为6080x .”你认为他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确的结论.【答案】(1)400(2)当每盒售价定为65元时,日销售利润W (元)最大,最大利润是8750元.(3)他们的说法正确,理由见解析【分析】(1)根据每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,列式计算即可;(2)根据销售量乘以每盒的利润得到 210709000W x ,根据二次函数的性质即可得到答案;(3)设日销售额为y 元,则 2105025000y x ,根据二次函数的性质即可判断当日销售利润最大时,日销售额不是最大,即可判断小强的说法;当8000W 时,由 2800010709000x ,解得1260,80x x ,由抛物线开口向下,得到当6080x 时,80009000W ,即可判断小红的说法.【详解】(1)解:当60x 时, 500106050400p (盒),故答案为:400(2)由题意得,40500105040W p x x x 221014004000010709000x x x ,又∵350p ,即 5001050350x ,解得65x ,∵100 ,∴当65x 时,W 最大,最大值为8750,∴当每盒售价定为65元时,日销售利润W (元)最大,最大利润是8750元.(3)他们的说法正确,理由如下:设日销售额为y 元,则225001050101000105025000y x x x x x ,∵100 ,∴当50x 时,y 最大,最大值为25000,∴当日销售利润最大时,日销售额不是最大,即小强的说法正确;当8000W 时, 2800010709000x ,解得1260,80x x ,∵抛物线开口向下,∴当6080x 时,80009000W ,∴当日销售利润不低于8000元时,每盒售价x 的范围为6080x .故小红的说法正确.【点睛】此题考查了二次函数的应用,根据题意正确列出函数解析式是基础,熟练掌握二次函数的性质和正确计算是解题的关键.【经典例题五投球问题】【例5】(2022秋·浙江台州·九年级统考期末)一位运动员在离篮筐水平距离4m 处起跳投篮,球运行路线可看作抛物线,当球离开运动员的水平距离为1m 时,它与篮筐同高,球运行中的最大高度为3.5m ,最后准确落入篮筐,已知篮筐到地面的距离为3.05m ,该运动员投篮出手点距离地面的高度为()A .1.5mB .2mC .2.25mD .2.5m【答案】C【分析】根据图象,求得图象上点的坐标,设出函数解析式,代入点求出,进一步求得问题的解.【详解】解:如图,以地面为横轴,距离运动员右侧2.5米处的点O 画纵轴,建立平面直角坐标系由题意可知,点C 的坐标为(0,3.5),点B 的坐标为(1.5,3.05),设函数解析式为y =ax 2+3.5,代入B (1.5,3.05)得,2.25a +3.5=3.05解得,a =-0.2,因此函数解析式为:y =-0.2x 2+3.5,当x =-2.5时,y =20.2(2.5) 3.5= 1.25+3.5 =2.25;所以,球出手时离地面2.25米时才能投中.故选C .【点睛】此题主要考查根据函数的特点,用待定系数法求函数解析式,再进一步利用解析式解决问题.【变式训练】1.(2023秋·浙江温州·九年级期末)把一个距离地面1米的小球竖直向上抛出,该小球距离地面的高度h (米)与所经过的时间t (秒)之间的关系为21(4)2h t m ,若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围()A .08a B .18 a C .09a D .19a 【答案】D 【分析】将(0,1)代入21(4)2h t m 求得函数解析式为21(4)92h t ,再由题意可得方程 21492a t ,由存在两个不同的t 的值,使足球离地面的高度均为a ,故△240b ac ,即可求出相应的范围.【详解】解:将(0,1)代入21(4)2h t m ,得:211(4)2m ,解得:9m ,∴21(4)92h t ,令h a ,则可得方程21(4)92a t ,∵存在两个不同的t 的值,使足球离地面的高度均为a ,∴方程21(4)92a t 有两个不相等的实根,整理得:28220t t a ,△224(8)41(22)0b ac a ,解得:9a ,又1a ∵,∴a 的取值范围为:19a ,故选:D .【点睛】本题主要考查二次函数的应用,解题的关键是根据题意得到相应的方程及将实际问题转化为方程问题.2.(2023·吉林长春·统考一模)如图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分,且石块在离发射点水平距离50米处达到最大高度25米.现将该投石机放置在水平地面上的点O 处,如图②,石块从投石机竖直方向上的点A 处被投出,投向远处的防御墙BC ,BC 垂直于水平地面且与OA 之间的距离超过50米.已知OA 高5米,BC 高20米,若石块正好能打中防御墙BC ,设投石机离防御墙的水平距离OB 为x 米,则x 的取值范围是.【答案】7550255x 【分析】根据题意得出石块运动轨迹所在抛物线的顶点坐标是 50,5, 0,5A ,设石块运动轨迹所在抛物线的解析式为 25025y a x ,待定系数法求解析式,进而将20,0y 分别代入解析式,求得x 的值,即可求解.【详解】解:依题意,石块运动轨迹所在抛物线的顶点坐标是 50,5, 0,5A ,20C y ,设石块运动轨迹所在抛物线的解析式为 25025y a x ,将 0,5A 代入得1125a,∴ 215025125y x ,令20y ,即 215025=20125x,解得:125x (50OB ,舍去),275x ,令0y ,即 215025=0125x ,解得:50255x (舍去),25550x ,∴x 的取值范围是7550255x ,故答案为:7550255x .【点睛】本题考查了二次函数的应用,根据题意求得二次函数的性质是解题的关键.3.(2023·河南信阳·校考三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分,已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m ,实心球运动至最高点时距地面3.4m ,距出手点的水平距离为4m .设实心球掷出后距地面的竖直高度为y (m ),实心球距出手点的水平距离为x (m ).如图,以水平方向为x 轴,出手点所在竖直方向为y 轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m 为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y 与水平距离x 近似满足函数关系 20.085 3.8y x .记小军第一次投掷时出手点与着陆点的水平距离为1d ,第二次投掷时出手点与着陆点的水平距离为2d ,则1d ______2d (填“>”“<”“=”).【答案】(1) 20.14 3.4y x (2)不能得满分(3)<【分析】(1)设抛物线的表达式为 24 3.4y a x ,将 0,1.8代入解得a 即可;(2)令 20.14 3.40x ,解得x ,与12.4m 比较即可;(3)令 20.085 3.80x ,解得x ,根据(2)所得即可比较1d 与2d .【详解】(1)由题意,可知抛物线最高点的坐标为 4,3.4,设抛物线的表达式为 24 3.4y a x ,将 0,1.8代入 24 3.4y a x ,得16 3.4 1.8a ,解得0.1a .∴第一次掷实心球时运动路线所在抛物线的表达式为 20.14 3.4y x ;(2)令 20.14 3.40x ,解得434x (负值已舍去),∴实心球出手点与着陆点的水平距离为 434 m .∵3436 ,即346 ,∴4341012.4 ,∴小军第一次投掷实心球不能得满分.(3)∵ 20.085 3.80x ,解得19052x (负值已舍去), 1434d ,219052d ,43410 ∵,190135511.522,∴12d d .。

专题01二次函数(重点)(解析版)

专题01二次函数(重点)(解析版)

专题01二次函数(重点)一、单选题1.观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个.A .2B .3C .4D .52.对于y =ax 2+bx +c ,有以下四种说法,其中正确的是( )A .当b =0时,二次函数是y =ax 2+c B .当c =0时,二次函数是y =ax 2+bx C .当a =0时,一次函数是y =bx +c D .以上说法都不对【答案】D【分析】根据二次函数的定义和一次函数的定义判断即可.【解析】A.当b =0,a ≠0时.二次函数是y =ax 2+c ,故此选项错误;B.当c =0,a ≠0时,二次函数是y =ax 2+bx ,故此选项错误;C.当a =0,b ≠0时.一次函数是y =bx +c ,故此选项错误;D.以上说法都不对,故此选项正确.故选D .【点睛】本题主要考查了二次函数和一次函数的定义,注意二次函数y =ax 2+bx +c 的二次项系数0a ≠,一次函数y kx b =+的一次项系数0k ≠.3.下列关于二次函数()2435y x =--的说法,正确的是( )A .对称轴是直线3x =-B .当3x =时有最小值5-C .顶点坐标是()3,5D .当3x >时,y 随x 的增大而减少【答案】B【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解析】解:由二次函数()2435y x =--可知对称轴是直线3x =,故选项A 错误,不符合题意;由二次函数()2435y x =--可知开口向上,当3x =时有最小值5-,故选项B 正确,符合题意;由二次函数()2435y x =--可知顶点坐标为(3,-5),故选项C 错误,不符合题意;由二次函数()2435y x =--可知顶点坐标为(3,-5),对称轴是直线3x =,当x <3时,y 随x 的增大而减小,故选项D 错误,不符合题意;故选:B .【点睛】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.4.抛物线y =x 2+x +2,点(2,a ),(﹣1,b ),(3,c ),则a 、b 、c 的大小关系是( )A .c >a >b B .b >a >c C .a >b >c D .无法比较大小c a b \>>;故选:A .【点睛】此题考查了二次函数图象上点的坐标特征:解题的关键是掌握二次函数图象上点的坐标满足其解析式.5.一次函数y =ax +b 与二次函数y =a 2x +bx +c 在同一坐标系中的图象可能是( )A .B .C .D .6.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数2y ax bx c =++的图象过点(1,0)……求证这个二次函数的图象关于直线2x =对称,根据现有信息,题中的二次函数一定不具有的性质是( )A .过点(3,0)B .顶点是(-2,2)C .在x 轴上截得的线段的长是2D .与y 轴的交点是(0,3)【答案】B【分析】由题目条件可知该二次函数图象对称轴为x =2,可求得抛物线与x 轴的另一交点,则可判断A 、C ;由抛物线顶点的横坐标应为对称轴,即可判断B ;把x =0代入可求得y =c ,由c 的值有可能为3,故可判断D 正确.【解析】解:由题可知抛物线与x 轴的一交点坐标为(1,0),抛物线对称轴为x =2,∴抛物线与x 轴的另一交点坐标为(3,0),∴在x 轴上截得的线段长是3-1=2,∴A 、C 正确,不符合题意;∵该二次函数图象对称轴为x =2,∴顶点横坐标应为2,∴B 一定不正确,符合题意;把x =0代入可求得y =c ,∴当c =3时,抛物线与y 轴的交点坐标为(0,3),∴D 有可能正确,不符合题意.故选B .【点睛】本题考查二次函数的图象和性质.掌握函数图象上的点关于对称轴的对称点一定也在二次函数的图象上是解题关键.7.小明在研究抛物线()21y x h h =---+(h 为常数)时,得到如下结论,其中正确的是( )A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线1y x =-上C .当12x -<<时,y 随x 的增大而增大,则2h ≥D .该抛物线上有两点()11,A x y ,()22,B x y ,若12x x <,122x x h +<,则12y y >8.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如表:t 01234567…h8141820201814…下列结论:①足球距离地面的最大高度超过20m ;②足球飞行路线的对称轴是直线t =92;③点(9,0)在该抛物线上;④足球被踢出5s ~7s 时,距离地面的高度逐渐下降.其中正确的结论是( )A .②③B .①②③C .①②③④D .②③④【答案】C【分析】由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为h =at (t ﹣9),把(1,8)代入可得a =﹣1,可得h =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,由此即可一一判断.【解析】解:由题意,抛物线的解析式为h =at (t ﹣9),把(1,8)代入可得a =﹣1,∴h =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m >20m ,故①正确,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,h =0,∴点(9,0)在该抛物线上,故③正确,∵当t =5时,h =20,当t =7时,h =14,∴足球被踢出5s ~7s 时,距离地面的高度逐渐下降,故④正确.∴正确的有①②③④,故选:C .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质解答.9.设直线x =1是抛物线2y ax =+bx +c (a ,b ,c 是实数,且a <0)的对称轴,下列结论正确的是( )A .若m >1,则(m ﹣1)a +b >0B .若m >1,则(m ﹣1)a +b <0C .若m <1,则(m +1)a +b >0D .若m <1,则(m +1)a +b <0【答案】C【分析】利用二次函数对称轴以及a <0,求出b 与a 的关系式,再综合利用a 、m 的取值范围进行判断即可.10.已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是( )A.1B.2C.3D.4【答案】Aa>,结合二次函数的图象【分析】判定一个命题正确与否,只要举出一个反例便可确定,因此,不妨设0与性质逐项判定即可得出结论.【解析】解:不妨假设a>0.①如图1中,P1,P2满足x1>x2+2,∵P1P2∥AB,∴S1=S2,故①错误;②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,则S1>S2,故②错误;③∵|x 1﹣2|>|x 2﹣2|>1,∴P 1,P 2在x 轴的上方,且P 1离x 轴的距离比P 2离x 轴的距离大,∴S 1>S 2,故③正确;④如图2中,P 1,P 2满足|x 1﹣2|>|x 2+2|>1,但是S 1=S 2,故④错误;故选:A .【点睛】本题考查抛物线与x 轴的交点,二次函数图象上的点的特征等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.二、填空题11.已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.【答案】 3 -5 1【分析】形如:()20y ax bx c a =++≠这样的函数是二次函数,其中二次项系数为,a 一次项系数为,b 常数项为,c 根据定义逐一作答即可.【解析】解:二次函数y =1﹣5x +3x 2,则二次项系数a =3,一次项系数b =﹣5,常数项c =1,故答案为:3,﹣5,1.【点睛】本题考查了二次函数的定义,熟记二次函数的定义是解题关键.12.若2(1)m my m x -=+是关于x 的二次函数,则m =_____【答案】2【分析】利用二次函数定义可得22m m -=,且10m +≠,再解即可.【解析】解:由题意得:得22m m -=,且10m +≠,解得:2m =,故答案为:2.【点睛】本题考查了二次函数的定义.解题的关键是掌握二次函数的定义:形如2(0y ax bx c a =++≠,a 、b 、c 为常数)的函数叫做二次函数.13.已知抛物线()21y x =+向右平移2个单位,再向上平移1个单位,得到的抛物线表达式为____.【答案】()211y x =-+【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【解析】解:抛物线()21y x =+向右平移2个单位,得到()()22121y x x =+-=-,再向上平移1个单位,得到()211y x =-+,故答案为:()211y x =-+.【点睛】本题考查二次函数的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键.14.已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.【答案】2019【分析】先将点(m ,0)代入函数解析式,然后求代数式的值即可得出结果.【解析】解:将(m ,0)代入函数解析式得,m 2-m -1=0,∴m 2-m =1,∴-3m 2+3m +2022=-3(m 2-m )+2022=-3+2022=2019.故答案为:2019.【点睛】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m ,0)代入函数解析式得到有关m 的代数式的值.15.已知二次函数222(0)y x kx k k k =-+-> ,当 x <1 时,y 随 x 的增大而减小,则 k 的最小整数值为_____.【答案】1【分析】根据题意,先求得二次函数的对称轴x k =,根据题意即可求得k 的最小整数解16.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为(1,1)、(1,3)、(3,3).若抛物线2y ax =的图象与正方形ABCD 有公共点,则a 的取值范围是_________.17.若点M (﹣1,y 1),N (1,y 2),P (72,y 3)都在抛物线y =﹣ax 2+4ax +a 2+1(a >0)上,则y 1,y 2,y 3大小关系是(用<号连接)_________.18.如图,在抛物线24y ax =-(a >0)上有两点P 、Q ,点P 的坐标为(4m ,y 1),点Q 的坐标为(m ,y 2)(m >0),点M 在y 轴上,M 的坐标为(0,-1).(1)用含a 、m 的代数式表示12y y -=____.(2)连接PM ,QM ,小磊发现:当直线PM 与直线QM 关于直线y =1-对称时,12y y -为定值d ,则d =_____.三、解答题19.已知函数y =(m 2-2)x 2+(m )x +8.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,求m 的取值范围.20.已知:抛物线2621y x x =--+求:(1)求抛物线2621y x x =--+的顶点坐标(2)写出当y 随x 的增大而增大时,自变量x 的取值范围(3)当2x >时,直接写出y 的取值范围.【答案】(1)(3,30)- ;(2)3x £-;(3)5y <【分析】(1)把二次函数配方成顶点式,进而即可求解;(2)根据抛物线的开口方向和对称轴,即可求解;(3)根据2x >时,当y 随x 的增大而减小,即可求解.【解析】解:(1)∵()22621330y x x x =--+=-++,∴抛物线2621y x x =--+的顶点坐标为(-3,30);(2)∵抛物线的开口向下,对称轴为直线x =-3,∴当y 随x 的增大而增大时,自变量x 的取值范围:x ≤-3;(3)∵2x >时,当y 随x 的增大而减小,∴226221y <--´+,即:5y <.【点睛】本题考查了二次函数的性质,求出二次函数图像的顶点坐标和对称轴方程是解题的关键.21.如图,已知二次函数()20y ax a =≠与一次函数2y kx =-的图象相交于()1,1A --,B 两点.(1)求a ,k 的值;(2)求点B 的坐标;(3)求AOB S V .【答案】(1)1a =-,1k =-;(2)(24)B -;(3)3【分析】(1)将点(1,1)A --代入二次函数()20y ax a =≠与一次函数2y kx =-即可求得,a k 的值;(2)联立二次函数与一次函数的解析式即可求得点B 的坐标;(3)设直线AB 与y 轴的交点为C ,根据一次函数解析式求得点C 的坐标,进而根据ABO AOC BOC S S S =+△△△即可求得AOB S V .【解析】(1)Q 二次函数()20y ax a =≠与一次函数2y kx =-的图象相交于()1,1A --,则21(1)a -=´-,解得1a =-12k -=--,解得1k =-\二次函数解析式为:2y x =-一次函数解析式为:2y x =--(2)由题意可知,已知二次函数()20y ax a =≠与一次函数2y kx =-的图象相交于()1,1A --,B 两点联立22y x y x ì=-í=--î由2y x =--,令0x =,解得(0,2)C \-22.如图,已知抛物线25y x mx =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(5,0).(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.【答案】(1)m =4,顶点坐标为(2,9)(2)P (2,3)【分析】(1)将点(5,0),代入25y x mx =-++,得其解析式,从而求出m 的值及抛物线的顶点坐标;(2)利用“将军饮马”思路,点A 关于抛物线对称轴l 对称的点是点B ,进而解决问题.(1)将点(5,0)代入y =﹣x 2+mx +5得,0=﹣25+5m +5,m =4,∴抛物线解析式为y =﹣x 2+4x +5y =﹣x 2+4x +5=﹣(x ﹣2)2+9,∴抛物线的顶点坐标为(2,9);(2)如下图,点A 与点B 是关于直线l 成轴对称,根据其性质有,PA +PC =PC +PB ,当点C 、点P 、点B 共线时,PC +PB =BC 为最小值,即为PA +PC 的最小值,由抛物线解析式为()224529y x x x =-++=--+,可得点C 坐标为(0,5),点B 坐标为(5,0),对称轴l 为x =2,设直线BC 的解释为y =kx +b ,将点C (0,5),点B (5,0),代入y =kx +b 得,055k b b =+ìí=î,解得15k b =-ìí=î,∴直线BC 的解析式为y =﹣x +5,联立方程,52y x x =-+ìí=î,解得23x y =ìí=î,∴当PA +PC 的值最小时,点P 的坐标为(2,3).【点睛】本题考查了二次函数的图像和性质和最短路径问题,解决本题的关键是掌握二次函数的性质.23.已知二次函数()222y mx m x =-++.(1)求证:二次函数的图象必过点()1,0Q ;(2)若点()()12,3,M m y N m y +,在函数图象上,2130y y =+,求该函数的表达式;(3)若该函数图象与x 轴有两个交点()()12,0,,0A x B x ,求证:()21220x x -->.24.某服装厂生产A品种服装,每件成本为73元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当0<x≤200时,y与x的函数关系式为 .(2)零售商到此服装厂一次性批发A品牌服装x(0<x≤400)件,服装厂的利润为w元,问:x为何值时,w 最大?最大值是多少?(3)政府为服装厂制定优惠政策:当一次性批发服装件数满足0<x≤200时,决定每件服装给与a元的补贴(0<a<13),若此条件下可获得的最大利润为2560元,请求出a的值,写出详细过程.25.如图,在平面直角坐标系中,二次函数2=-+的图像与x轴交于点A(2-,0)、B(4,0),与y轴y ax x c交于点C .(1)求a 和c 的值;(2)若点D (不与点C 重合)在该二次函数的图像上,且ABD ABC S S =△△,求点D 的坐标;(3)若点P 是该二次函数图像上位于x 轴上方的一点,且BPA BPC S S =V V ,直接写出点P 的坐标.则点A 和C 到BP 的距离不相等∴BPA BPC S S ≠V V ,综上所述,点P 的坐标为(﹣6,20).【点睛】本题考查了二次函数综合,涉及到待定系数法求函数解析式,三角形面积,平行线之间的距离,一次函数,解题的关键是分类讨论思想的应用.26.如图,已知抛物线2y ax bx c =++的顶点为A (4,3),与y 轴相交于点B (0,﹣5),对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.故点P 、Q 的坐标分别为(2,1)、(4,1);综上,P 、Q 的坐标分别为(6,1)P 或(2,1),(4,5)Q 或(4,3)-或(4,1).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形的性质等,其中(3),要注意分类求解,避免遗漏.27.在平面直角坐标系xOy 中,O 为坐标原点,定义()11,P x y ,()22,Q x y 两点之间的“直角距离”为()1212,d P Q x x y y =-+-.二次函数234y x x =-+的图象如图所示.(1)点A 为图象与y 轴的交点,点()1,B b -在该二次函数的图象上,求(),d A B 的值.(2)点C 是二次函数()2340y x x x =-+≥图象上的一点,记点C 的横坐标为m .①求(),d O C 的最小值及对应的点C 的坐标.②当1t m t ££+时,(),d O C 的最大值为p ,最小值为q ,若34p q -=,求t 的值.。

二次函数解决实际问题归纳

二次函数解决实际问题归纳

二次函数解决实际问题归纳及练习一、应用二次函数解决实际问题的基本思路和步骤:1、基本思路:理解问题→分析问题中的变量和常量以及它们之间的关系→用函数关系式么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。

(1)利用二次函数解决利润最大问题此类问题围绕总利润=单件利润×销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。

例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x﹥0)①求M型服装的进价②求促销期间每天销售M型服装所获得的利润W的最大值。

(2)利用二次函数解决面积最值例:已知正方形ABCD边长为8,E、F、P分别是AB、CD、AD上的点(不与正方形顶点重合),且PE⊥PF,PE=PF问当AE为多长时,五边形EBCFP面积最小,最小面积多少?1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。

这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。

二次函数应用题

二次函数应用题

一、传播问题:1、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求,,每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?2、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?二、增长率问题:平均增长(降低)率公式注意:(1)1与x 的位置不要调换(2)解这类问题列出的方程一般用直接开平方法1. 某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程为_________________2. 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为_____________3、雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?4、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒121元降到每盒100元,则这种药品平均每次降价的百分率为多少?2(1)a x b±=5、我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里,到2005年已增至144平方公里。

请问:2003至2005年沙化土地的平均增长率为多少?三、面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。

专题1.8 二次函数重难点应用题归纳(六大题型)(解析版)

专题1.8 二次函数重难点应用题归纳(六大题型)(解析版)

专题1.8 二次函数重难点应用题归纳(六大题型)【题型1 运动类- 落地类型】【题型2 运动类- 最值类型】【题型3 经济类问题-与一次函数综合问题】【题型4 经济类问题-每每问题】【题型5 面积类问题】【题型6 拱桥类问题】【模型1:运动类】(1)落地模型(2)最值模型【模型2:经济类】销售问题常用等量关系 :利润=收入-成本; 利润=单件利润×销量 ;成本利润率利润⨯=【模型3:面积类】【模型4:拱桥类】一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.【题型1 运动类- 落地类型】【典例1】(2023•方城县一模)掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为3m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式.(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.【答案】(1);(2)该女生在此项考试中是得满分.【解答】解:(1)设y关于x的函数表达式为y=a(x﹣3)2+3.把代入解析式,得,解得.∴.(2)该女生在此项考试中是得满分.理由:令y=0,即,解得x1=7.5,x2=﹣1.5(舍去).∴该女生投掷实心球从起点到落地点的水平距离为7.5m,大于6.70m.∴该女生在此项考试中是得满分.【变式1-1】(2023•大连模拟)已知实心球运动的高度y(m)与水平距离x (m)之间的函数关系是y=﹣(x﹣1)2+4,则该同学此次投掷实心球的成绩是( )A.2m B.3m C.3.5m D.4m【答案】B【解答】解:在y=﹣(x﹣1)2+4中,令y=0得:0=﹣(x﹣1)2+4,解得x=3或x=﹣1(舍去),∴该同学此次投掷实心球的成绩是3m,故选:B.【变式1-2】(2022秋•牡丹区校级期末)校运动会上,某运动员掷铅球时,他所掷的铅球的高h(m)与水平距离x(m)之间的函数关系满足h=﹣x2+ x+,则该运动员掷铅球的成绩是( )A.6m B.10m C.8m D.12m【答案】B【解答】解:由题意可知,把y=0代入解析式得:﹣x2+x+=0,解方程得x1=10,x2=﹣2(舍去),即该运动员的成绩是10米.故选:B.【变式1-3】(2022秋•西华县期中)从地面竖直向上抛出一小球,小球的高度h (单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2,小球运动到最高点所需的时间是( )A.2s B.3s C.4s D.5s【答案】B【解答】解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,∴当t=3时,h有最大值,最大值为45.故选:B.【变式1-4】(2023•静乐县一模)2022年的卡塔尔世界杯受到广泛关注,在半决赛中,梅西的一脚射门将足球沿着抛物线飞向球门,此时,足球距离地面的高度h与足球被踢出后经过的时间t之间的关系式为h=﹣t2+bt.已知足球被踢出9s时落地,那么足球到达距离地面最大高度时的时间l为( )A.3s B.3.5s C.4s D.4.5s【答案】D【解答】解:根据题意得,当t=9时,h=0,则﹣81+9b=0,解得b=9,∴h=﹣t2+9t=﹣(t﹣)2+,∵﹣1<0,∴当t=时,h最大,故选:D.【变式1-5】(2023春•阳山县校级期中)在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x2+x+1的一部分(如图所示,水平地面为x 轴,单位:m),则下列说法不正确的是( )A.出球点A离点O的距离是1 mB.羽毛球横向飞出的最远距离是3 mC.羽毛球最高达到mD.当羽毛球横向飞出m时,可到达最高点【答案】B【解答】解:A、当x=0时,y=1,则出球点A离地面点O的距离是1m,故A正确;B、当y=0时,0=﹣x2+x+1,解得:x1=﹣1(舍去),x2=4≠3.故B错误;C、∵y=﹣x2+x+1,∴y=﹣(x﹣)2+,∴此次羽毛球最高可达到m,故C正确;D、∵y=﹣(x﹣)2+,∴当羽毛球横向飞出m时,可达到最高点.故D正确.∴只有B是错误的.故选:B.【变式1-6】(2023•沭阳县模拟)小敏在今年的校运动会跳高比赛中跳出了满意一跳,函数h=3.5t﹣4.9t2(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是 s.【答案】.【解答】解:∵h=3.5t﹣4.9t2=﹣4.9(t﹣)2+,∴当t=时,h取得最大值,故他起跳后到重心最高时所用的时间是s,故答案为:.【题型2 运动类- 最值类型】【典例2】(2022秋•乐亭县期末)飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数解析式是s=60t﹣1.5t2,那么飞机着陆后滑行多长时间才能停下来( )A.10s B.20s C.30s D.40s【答案】B【解答】解:∵a=﹣1.5<0,∴函数有最大值,当t=﹣=﹣=20(秒),即飞机着陆后滑行20秒能停下来,故选:B.【变式2-1】(2021秋•厦门期末)某种爆竹点燃后升空,并在最高处燃爆.该爆竹点燃后离地高度h(单位:m)关于离地时间t(单位:s)的函数解析式是h=20t﹣5t2,其中t的取值范围是( )A.t≥0B.0≤t≤2C.2≤t≤4D.0≤t≤4【答案】B【解答】解:∵h=20t﹣5t2=﹣5(t﹣2)2+20,∴当t=2时,爆竹达到最大高度燃爆,∴t的取值范围是0≤t≤2,故选:B.【变式2-2】(2023春•青秀区校级期末)某学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数关系式为h=﹣t2+14t+3,当火箭升空到最高点时,距离地面 52 m.【答案】52.【解答】解:由题意可得:h=﹣t2+14t+3=﹣(t2﹣14t)+3=﹣(t﹣7)2+52,∵a=﹣1<0,∴抛物线开口向下,当x=7时,h取得最大值,当火箭升空到最高点时,距离地面52m.故答案为:52.【变式2-3】(2023•襄阳模拟)某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+8t,无人机着陆后滑行 16 秒才能停下来.【答案】16.【解答】解:由题意得,S=﹣0.25t2+8t=﹣0.25(t2﹣32t+256﹣256)=﹣0.25(t﹣16)2+64,∵﹣0.25<0,∴t=16时,飞机滑行的距离最大,即当t=16秒时,飞机才能停下来.故答案为:16.【变式2-4】(2023•襄城区校级二模)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,飞机着陆至停下来共滑行 750m .【答案】见试题解答内容【解答】解:∵y=60t﹣t2=﹣(t﹣25)2+750,∴当t=25时,y取得最大值750,即飞机着陆后滑行750米才能停下来,故答案为:750m.【变式2-5】(2022秋•南岗区校级期中)飞机着陆后滑行的距离y(单位:m)与滑行时间t(单位:s)函数解析式y=﹣1.5t2+60t,在飞机着陆滑行中,最后4秒滑行的距离是 24 m.【答案】24.【解答】解:当y取得最大值时,飞机停下来,则y=y=﹣1.5t2+60t=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=16时,y=576,所以600﹣576=24(米)故答案为:24【题型3 经济类问题-与一次函数综合】【典例3】(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.【答案】(1)y=﹣2x+240;(2)2450元.【解答】解:(1)设y与x的一次函数关系式为y=kx+b(k≠0),由题意得:,解得:,则y与x的一次函数关系式为y=﹣2x+240.(2)由题意得:w=(x﹣50)y=(x﹣50)(﹣2x+240)=﹣2x2+340x﹣12000=﹣2(x﹣85)2+2450,∵这个抛物线的对称轴为直线x=85,且开口向下,∴当x=85时,w取得最大值,最大值为2450,答:该茶商这一周销售该品牌茶叶所获利润w(元)的最大值为2450元.【变式3-1】(2023•新抚区模拟)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元,试销期间发现每天的销售量y(袋)与销售单价x(元/袋)之间满足一次函数y=﹣80x+560,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元,设每天的利润为w元.(1)求w与x的函数关系式;(2)若每天获得160元的利润,销售单价多少?(3)每天的最大利润是多少?当利润最大时当天的销售量是多少?【答案】(1)w=﹣80x2+800x﹣1760;(2)若每天获得160元的利润,销售单价4元/袋;(3)每天的最大利润是240元,当利润最大时当天的销售量是160袋.【解答】解:(1)w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760.(2)w=﹣80x2+800x﹣1760=160,解方程得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:若每天获得160元的利润,销售单价4元/袋.(3)w=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵﹣80<0,3.5≤x≤5.5,∴当x=5时,w取最大值为240.此时y=﹣80x+560=160.答:每天的最大利润是240元,当利润最大时当天的销售量是160袋.【变式3-2】(2023•五华县一模)某商场购进一批单价为16元的日用品,销售一段时间后,经调查发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的价格销售时,每月能卖210件,若每月销售件数y(件)与价格x(元/件)满足关系y=kx+b(1)确定y与x的函数关系式,并指出x的取值范围;(2)为了使每月获得利润为1800元,问商品应定为每件多少元?(3)为了获得了最大的利润,商品应定为每件多少元?【答案】见试题解答内容【解答】解:(1)依题意设y=kx+b,则有,解得k=﹣30,b=960,∴y=﹣30x+960(16≤x≤32);(2)设每月获得利润P,则p=(x﹣16)y,∴P=(﹣30x+960)(x﹣16),当每月获得利润为1800元,即(﹣30x+960)(x﹣16)=1800,x2﹣48x+572=0,解得:x1=22,x2=26,∴当每月获得利润为1800元时,商品应定为每件22元或26元;(3)∵获得利润P=(﹣30x+960)(x﹣16)=30(﹣x+32)(x﹣16)=30(﹣x2+48x﹣512)=﹣30(x﹣24)2+1920,∴当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.【变式3-3】(2022秋•连山区期末)某景区超市销售一种纪念品,这种商品的成本价为14元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于24元/件,市场调查发现,该商品每天的销售量y(件)与销售单价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售单价x(元/件)之间的函数关系式,并求出每件的销售单价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)y=﹣x+60(15≤x≤24);(2)每件销售价为24元时,每天的销售利润最大,最大利润是360元.【解答】解:(1)设y与x的函数解析式为y=kx+b,将(14,46)、(24,36)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+60(15≤x≤24);(2)根据题意知,W=(x﹣14)y=(x﹣14)(﹣x+60)=﹣x2+74x﹣840,∵﹣=﹣=37,又∵a=﹣1<0,∴当x<37时,W随x的增大而增大,∵14≤x≤24,∴当x=24时,W取得最大值,最大值为360,答:每件销售价为24元时,每天的销售利润最大,最大利润是360元.【变式3-4】(2023•兴隆台区二模)2022年卡塔尔世界杯足球赛开战,很多商家都紧紧把握这一商机,赛场内外随处可见“中国制造”的身影,某商家销售一批“中国制造”的吉祥物“拉伊卜”毛绒玩具,已知每个毛绒玩具“拉伊卜”的成本为40元,销售单价不低于成本价,且不高于成本价的1.8倍,在销售过程中发现,毛绒玩具“拉伊卜”每天的销售量y(个)与销售单价x (元)满足如图所示的一次函数关系.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每个毛绒玩具“拉伊卜”的售价为多少元时,该商家每天的销售利润为2400元?(3)当毛绒玩具“拉伊卜”的销售单价为多少元时,该商家每天获得的利润最大?最大利润是多少元?【答案】(1)y与x之间的关系式为:y=﹣2x+220(40≤x≤72);(2)每个毛绒玩具“拉伊卜”的售价为70元时,该商家每天的销售利润为2400元;(3)当毛绒玩具“拉伊卜”的销售单价为72元时,该商家每天获得的利润最大,最大利润是2432元.【解答】解:(1)设一次函数关系式为y=kx+b(k≠0),由图象可得,当x=50时,y=120;x=60时,y=100,∴,解得:,∵销售单价不低于成本价且不高于成本价的1.8倍,∴40≤x≤72∴y与x之间的关系式为:y=﹣2x+220(40≤x≤72);(2)根据题意得:(x﹣40)(﹣2x+220)=2400,整理得:x2﹣150x+5600=0,解得x=70或x=80,∵40≤x≤72,∴x=70,答:每个毛绒玩具“拉伊卜”的售价为70元时,该商家每天的销售利润为2400元;(3)设该商家每天获得的利润为w元,则w=(x﹣40)y=(x﹣40)(﹣2x+220)=﹣2x2+300x﹣8800=﹣2(x﹣75)2+2450,∵﹣2<0,40≤x≤72,∴当x=72时,w最大,最大值为2432,答:当毛绒玩具“拉伊卜”的销售单价为72元时,该商家每天获得的利润最大,最大利润是2432元.【变式3-5】(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)【答案】(1)y与x的函数关系式为y=;(2)该农产品的销售量有4天不超过60千克;(3)当月第30天,该农产品的销售额最大,最大销售额是480元.【解答】解:(1)当0<x≤20时,设y与x的函数关系式为y=ax+b,把(0,80),(20,40)分别代入解析式,得,,解得,即当0<x≤20时,y与x的函数关系式为y=﹣2x+80,当20<x≤30时,设y与x的函数关系式为y=mx+n,把(20.40),(30,80)分别代入解析式,得:,解得,即当20<x≤30时,y与x的函数关系式为y=4x﹣40,由上可得,y与x的函数关系式为y=;(2)把y≤60代入y=4x﹣40,4x﹣40≤60,解得x≤25,∵﹣2x+80≤60,∴x≥10,∴10≤x≤25,答:该农产品的销售量有16天不超过60千克;(3)设当月第x天的销售额为w元,当0<x≤20时,w=0.4x(−2x+80)=﹣0.8(x−20)2+320,∴当x=15时,w取得最大值,此时w=500,当20<x≤30时,w=(﹣0.2x+12)×(4x﹣40)=﹣0.8(x﹣35)2+500,∴当x=30时,w取得最大值,此时w=480,综上可得,当x=30时,w取得最大值,此时w=480;答:当月第30天,该农产品的销售额最大,最大销售额是480元.【变式3-6】(2023•利州区一模)某商店决定购进A,B两种纪念品进行销售.已知每件A种纪念品比每件B种纪念品的进价高30元.用1000元购进A 种纪念品的数量和用400元购进B种纪念品的数量相同.(1)求A,B两种纪念品每件的进价分别是多少元?(2)该商场通过市场调查,整理出A型纪念品的售价与数量的关系如表.售价x(元/件)50≤x≤6060<x≤80销售量(件)100400﹣5x①当x为何值时,售出A纪念品所获利润最大,最大利润为多少?②该商场购进A,B型纪念品共200件,其中A型纪念品的件数少于B型纪念品的件数,但不少于60件.若B型纪念品的售价为30元/件时,求商场将A,B型纪念品均全部售出后获得的最大利润.【答案】(1)A,B两种纪念品每件的进价分别是50元和20元;(2)①当x=65时,售出A纪念品所获利润最大,最大利润为1125元.②最大利润为2480.【解答】解:(1)设B纪念品每件的进价是x元,则A纪念品每件的进价是(x+30)元,由题意,得:,解得:x=20,经检验:x=20是原方程的解;当x=20时:x+30=50;∴A,B两种纪念品每件的进价分别是50元和20元;(2)①设利润为w,由表格,得:当50≤x≤60时,w=(x﹣50)×100=100x﹣5000,∵k=100>0,∴w随着x的增大而增大,∴当售价为:60元时,利润最大为:100×60﹣5000=1000元;当60<x≤80,w=(x﹣50)(400﹣5x)=﹣5x2+650x﹣20000=﹣5(x﹣65)2+1125,∵a=﹣5<0,∴当x=65时,利润最大为:1125元;综上:当x=65时,售出A纪念品所获利润最大,最大利润为1125元.②设该商场购进A型纪念品a件,则购进B型纪念品(200﹣a)件,由题意,得:60≤a<200﹣a,解得:60≤a<100,∵60≤400﹣5x<100,∴60<x≤68,设A,B型纪念品均全部售出后获得的总利润为:y,则:y=(x﹣50)(400﹣5x)+(30﹣20)(200﹣400+5x),整理,得:y=﹣5x2+700x﹣22000,∵﹣5<0,对称轴为直线,∵当x=68时,y有最大值,最大值为:y=﹣5×682+700×68﹣22000=2480,【题型4 经济类问题-每每问题】【典例4】(2022秋•法库县期末)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件,市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式;(2)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.【答案】见试题解答内容【解答】解:(1)根据题意得,y=200﹣10(x﹣8)=﹣10x+280,故y与x的函数关系式为y=﹣10x+280(6≤x≤12);(2)根据题意得,w=(x﹣6)(﹣10x+280)=﹣10(x﹣17)2+1210,∵﹣10<0,∴当x<17时,w随x的增大而增大,=960,当x=12时,w最大答:当x为12时,日销售利润最大,最大利润960元.【变式4-1】(2023•息县模拟)2023年春节,各地暂停的庙会重新焕发了生机.某摊贩的货品中有A,B两款兔玩偶受到消费者的喜爱,A款玩偶和B款玩偶进货单价之和为50元,该摊贩购进A款玩偶100个,B款玩偶50个共花费3500元.(1)A款玩偶和B款玩偶的进货单价分别是多少?(2)摊主发现A款玩偶售价为27元时,每小时可以卖出10个.摊主为扩大销量,决定降价销售.若售价每降低1元,则每小时多卖出2个.若不考虑库存,按当天摆摊8小时计算,试求当天出售A款玩偶获得利润最大为多少.【答案】见试题解答内容【解答】解:(1)设A款玩偶和B款玩偶的进货单价分别是x元,y元,根据题意得,解得,答:A款玩偶和B款玩偶的进货单价分别是20元,30元;(2)设A款玩偶每天的销售利润为w元,每个售价为t元,根据题意得,w=(t﹣20)[8×10+2×8(27﹣t)]=﹣16t2+832t﹣10240=﹣16(t﹣26)2+576,∵﹣16<0,∴当t=26时,w取最大值576,答:A玩偶售价为26元时,每天的销售利润最大是576元.【变式4-2】(2023•鞍山二模)某款零件的成本为30元/个,当售价为80元/个时,一周销售量为600个,经过市场调查,每个零件的售价每降低2元(降低的价格为偶数),每周销售量会增加30个,设每个零件的售价降低x元时一周销售量为y个.(1)求y与x之间的函数表达式;(2)当每个零件降价多少元时一周销售利润最大,最大利润为多少元?【答案】(1)y=15x+600;(2)当每个零件降价4元或6元时一周销售利润最大,最大利润为30360元.【解答】解:(1)依题意有:y=15x+600;(2)依题意有:W=(80﹣30﹣x)(15x+600)=﹣15(x﹣5)2+30375,∵﹣15<0且x为偶数,∴当x=4或6时,W取得最大值,最大值最大利润是30360元;答:当每个零件降价4元或6元时一周销售利润最大,最大利润为30360元.【变式4-3】(2023春•东营期末)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?【答案】见试题解答内容【解答】解:(1)设每件衬衫降价x元,商场平均每天盈利y元,则y=(40﹣x)(20+2x)=800+80x﹣20x﹣2x2=﹣2x2+60x+800,当y=1200时,1200=(40﹣x)(20+2x),解得x1=10,x2=20,经检验,x1=10,x2=20都是原方程的解,但要尽快减少库存,所以x=20,答:每件衬衫应降价20元;(2)∵y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∴当x=15时,y的最大值为1250,答:当每件衬衫降价15元时,专卖店每天获得的利润最大,最大利润是1250元.【变式4-4】(2023•湟中区校级开学)某景区商店销售一种纪念品,每件的进货价为40元,经市场调研,当该纪念品每件的销售价为50元时,每天可销售100件;当每件的销售价每增加1元,每天的销售数量将减少5件.(1)当每件的销售价为52元时,该纪念品每天的销售量为 90 件;当每件的销售价为x元时,该纪念品每天的销售量为 100﹣5(x﹣50) 件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.【答案】(1)90;100﹣5(x﹣50);(2)每件销售价为13元时,获得最大利润;最大利润为6845元.【解答】解:(1)由题意得:100﹣5×(52﹣50)=100﹣10=90(件),每件的销售价为x元时,该纪念品每天的销售量为:100﹣5(x﹣50)件;故答案为:90;100﹣5(x﹣50);(2)由题意得:y=(x﹣40)[100﹣5(x﹣50)]=﹣5x2﹣130x+6000=﹣5(x﹣13)2+6845,∴每件销售价为13元时,获得最大利润;最大利润为6845元.【变式4-5】(2023•涟水县一模)某商场销售一种小商品,进货价为40元/件.当售价为60元/件时,每天的销售量为300件.在销售过程中发现:销售单价每上涨2元,每天的销售量就减少20件.设销售价格上涨x元/件(x为偶数),每天的销售量为y件.(1)当销售价格上涨10元时,每天对应的销售量为 200 件.(2)请写出y与x的函数关系式.(3)设每天的销售利润为w元,为了让利于顾客,则每件商品的销售单价定为多少元时,每天获得的利润最大,最大利润是多少?【答案】(1)200;(2)y与x的函数关系式为y=300﹣10x;(3)每件商品的销售单价定为64元时,每天获得的利润最大,最大利润是6240元.【解答】解:(1)∵销售单价每上涨2元,每天的销售量就减少20件,∴当销售价格上涨10元时,每天对应的销售量为(件),故答案为:200;(2)设销售价格上涨x元/件,∵销售单价每上涨2元,每天的销售量就减少20件.∴其销售量;(3)依题意可得每天的销售利润为w=(300﹣10x)(60﹣40+x)=﹣10(x ﹣5)2+6250,故当x=5时,最大值w=6250,∵x为偶数,∴当x=4或x=6时,有最大利润,为了让利于顾客,∴x=4,符合题意,此时w=6240.此时销售单价为60+4=64(元),∴每件商品的销售单价定为64元时,每天获得的利润最大,最大利润是6240元.【变式4-6】(2023•龙岗区校级一模)海安宾馆有50个房间供游客居住.当每个房间的定价为180元时,房间会全部住满;当每个房间的定价每增加10元时,就会有一个房间空着.设房价为x元.(1)求宾馆每天的营业额y与房价x的函数关系式;(2)若有游客居住时,宾馆需要对每个房间支出20元的各种费用.房价定为多少时,宾馆利润W最大?(利润=营业额﹣支出)【答案】(1)宾馆每天的营业额y与房价x的函数关系式为y=﹣x2+68x;(2)房价定为350元时,宾馆利润W最大.【解答】解:(1)由题意得:y=x(50﹣)=﹣x2+68x,∴宾馆每天的营业额y与房价x的函数关系式为y=﹣x2+68x;(2)由题意得:W=y﹣20(50﹣)=﹣x2+68x﹣(﹣2x+1380)=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵﹣<0,∴当x=350时,W最大,最大值为10890,答:房价定为350元时,宾馆利润W最大.【题型5 面积类问题】【典例5】(2023•菏泽)某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?【答案】(1)垂直于墙的边为20米,平行于墙的边为60米,花园面积最大为1200平方米;(2)最多可以购买1400株牡丹.【解答】解:(1)设垂直于墙的边为x米,围成的矩形面积为S平方米,则平行于墙的边为(120﹣3x)米,根据题意得:S=x(120﹣3x)=﹣3x2+120x=﹣3(x﹣20)2+1200,∵﹣3<0,∴当x=20时,S取最大值1200,∴120﹣3x=120﹣3×20=60,∴垂直于墙的边为20米,平行于墙的边为60米,花园面积最大为1200平方米;(2)设购买牡丹m株,则购买芍药1200×2﹣m=(2400﹣m)株,∵学校计划购买费用不超过5万元,∴25m+15(2400﹣m)≤50000,解得m≤1400,∴最多可以购买1400株牡丹.【变式5-1】(2022秋•西岗区校级期末)如图,用一段长为30米的篱笆围成一个一边靠墙的矩形苗圃园,墙长为18米,设这个苗圃园垂直于墙的一边AB 的长为x米,苗圃园的面积为y平方米.(1)求y关于x的函数表达式.(2)当x为何值时,苗圃的面积最大?最大值为多少平方米?【答案】(1)y=﹣2x2+30x;(2)x=时,苗圃的面积最大,最大值为平方米.【解答】解:(1)根据题意得:y=x(30﹣2x)=﹣2x2+30x,∴y关于x的函数表达式为y=﹣2x2+30x;(2)由题意得:0<30﹣2x≤18,解得6≤x<15,由(1)知,y=﹣2x2+30x=﹣2(x﹣)2+,∵﹣2<0,6≤x<15,∴当x=时,y有最大值,最大值为,答:当x=时,苗圃的面积最大,最大值为平方米.【变式5-2】(2023•高阳县校级模拟)如图,王大爷准备围一块菜地,菜地一面靠墙,墙长14米,另外三面用29米长的篱笆围成,其中一面开一扇1米宽的门(不包括篱笆).(1)王大爷能否围成面积为100平方米的菜地?若能,求BC的长;若不能.请说明理由.(2)王大爷想要围成的菜地面积最大,请你帮助他设计一下.【答案】(1)菜地BC边长为10米,AB边长为10米;(2)当AB边长为8米,BC边长为14米时,菜地面积可以达到最大112平方米.【解答】解:(1)能,理由:设BC=x米,则米,根据题意得,,∴x1=10,x2=20(不合题意,舍去).答:菜地BC边长为10米,AB边长为10米;(2)设BC=x米,则米,菜地面积为S平方米,根据题意得,,整理得,∴当x=14时,S max=112.答:当AB边长为8米,BC边长为14米时,菜地面积可以达到最大112平方米.【变式5-3】(2023•海淀区校级模拟)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为160m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2(1)是否存在x的值,使得矩形ABCD的面积是1500m2;(2)x为何值时,y有最大值?最大值是多少?【答案】见试题解答内容【解答】解:(1)设AE=a,由题意得:AE•AD=2BE•BC∵AD=BC∴BE=a,AB=由题意可得:2x+3a+2×a=160∴a=40﹣x∴y=AB•BC=ax=(40﹣x)x∴y=﹣x2+60x(0<x<80)令y=1500得:﹣x2+60x=1500化简得:x2﹣80x+2000=0∵△=802﹣4×2000=6400﹣8000<0∴方程无解答:不存在x的值,使得矩形ABCD的面积是1500m2(2)∵y=﹣x2+60x=﹣(x﹣40)2+1200∴当x=40时,y有最大值,最大值是1200m2.【变式5-4】(2023•凉山州模拟)2022年5月,教育部颁布的《义务教育劳动课程标准》中,要求以丰富开放的劳动项目为载体,培养学生正确的劳动价值观和良好的劳动品质.某校为此规划出矩形苗圃ABCD,苗圃的一面靠墙(墙最大可用长度为12米),另三边用木栏围成,中间也用垂直于墙的木栏隔开分成面积相等的两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD的一边CD长为x米.(1)矩形ABCD的另一边BC长为 30﹣3x 米(用含的代数式表示);(2)若矩形ABCD的面积为63m2,求x的值;(3)当x为何值时,矩形ABCD的面积最大,最大面积为多少平方米?【答案】(1)30﹣3x;(2)7;(3)当x=6时,矩形ABCD的面积最大,最大面积为72平方米.【解答】解:(1)∵修建所用木栏总长28米,且两处各留1米宽的门(门不用木栏),∴BC=2+28﹣3x=(30﹣3x)米,故答案为:30﹣3x;(2)∵墙最大可用长度为12米,∴2<BC≤12,即2<30﹣3x≤12,解得:6≤x<,根据图形可列方程得:x(30﹣3x)=63,解得:x1=3(舍),x2=7,∴x的值为7;(3)设矩形的面积为S平方米,则S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,∵﹣3<0,且6≤x<,∴当x=6时,S有最大值,最大值为72,答:当x=6时,矩形ABCD的面积最大,最大面积为72平方米.【题型6 拱桥类问题】【典例6】(2023•碑林区校级模拟)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系(以AB中点为原点,抛物线对称轴所在直线为y轴)中,拱桥高度OC=5m,跨度AB=20m.(1)求抛物线的表达式;(2)拱桥下,有一加固桥身的“脚手架”矩形EFGH(H,G分别在抛物线的左右侧上),已知搭建“脚手架”EFGH的三边所用钢材长度为18.4m(EF 在地面上,无需使用钢材),求“脚手架”打桩点E与拱桥端点A的距离.【答案】(1)抛物线的表达式为y=﹣x2+5;(2)“脚手架”打桩点E与拱桥端点A的距离为4m.【解答】解:(1)根据已知可得,A(﹣10,0),抛物线顶点C(0,5),设抛物线的表达式为y=ax2+5,把A(﹣10,0)代入得:100a+5=0,解得a=﹣,。

二次函数应用题七大题型

二次函数应用题七大题型

二次函数应用题七大题型
1.确定二次函数的表达式,求出其顶点坐标和开口方向,然后根据题目中的条件,构建方程组求解问题;
2. 根据题目中给出的数据,列出二次函数的函数式,然后根据题目中的条件,构建方程组求解问题;
3. 根据题目中的条件,列出二次函数的函数式,然后利用函数图像和已知条件,解决问题;
4. 根据题目中给出的数据和条件,列出二次函数的函数式,然后结合图像解决问题;
5. 利用已知的两个点和开口方向,构建二次函数的函数式,然后根据题目中的条件解决问题;
6. 利用已知的一个点和对称轴,构建二次函数的函数式,然后根据题目中的条件解决问题;
7. 利用已知的两个点和对称轴,构建二次函数的函数式,然后根据题目中的条件解决问题。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

围墙A09D二次函数应用题题型一面积问题1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为 18米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米. (1) 若平行于墙的一边的长为 y 米,直接写出y 与x 之间的函数关系式及其自变量 x 的取值范围;(2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3) 当这个苗圃园的面积不小于 88平方米时,试结合函数图像,直接写出x 的取值范围.2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙 (墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形 ABCD •已知木栏总长为120米,设AB 边的长为x 米,长方形 ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量 x 的取值范围).当x 为何值时,S 取 得最值(请指出是最大值还是最小值 )?并求出这个最值;⑵学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为01和02,且01到AB 、BC 、AD 的距离与02到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习•当(I )中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.B -----------------------C围墙_i I _i题型二利润问题1利民商店经销甲、乙两种商品•现有如下信息:请根据以上信息,解答下列问题:(1 )甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?信息1:甲、乙两种商品的进货单价之和是5元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买I型、n型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.(1 )分别求出y1和y2的函数解析式;(2 )有一农户同时对I型、n型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额型号金额I型设备n型设备投资金额x(万元) x5x24补贴金额y (万元) y1=kx(k 工0)2y2=ax +bx(a丰 0) 2.4 3.23•利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)•当每吨售价为260元时,月销售量为45吨•该经销店为提高经营利润,准备采取降价的方式进行促销. 经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.(1)当每吨售价为240元时,计算此时的月销售量;(2)求y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大•”你认为对吗?请说明理由.题型三图像表达式问题1如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。

点A、B在抛物线造型上,且点A到水平面的距离AC=4O米, 点B到水平面距离为2米,OC=8米。

(1)请建立适当的直角坐标系,求抛物线的函数解析式;(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱RA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)2张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y (元/吨)与采购量x (吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C)。

(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?3为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴. 规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系•随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益Z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值.1. -3的绝对值是(&直线I :y= x+ 2与y轴交于点A,将直线I绕点A旋转90。

后,所得直线的解析式为()A . y= x-2B . y=- x+2C . y =- x- 2D . y=- 2x- 19•分解因式:x2y-2xy+y= ____________10甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:则射击成绩最稳定的选手是____________ .(填“甲”、“乙”、“丙”中的一个)11.方程组!x+y =3的解是____________________iX _ y = —1选手甲乙丙平均数9. 39. 39.3方差0.0260. 0150. 032A. 3B. -3C.D.1 _32.计算2x2 (_3x3)的结果是A. -6x56x5_2x62x63.已知点P(a,a-1)在直角坐标系的第一象限内, 则a的取值范围在数轴上可表示为(4.成都地铁二号线工程即将竣工,通车后与地铁一号线呈换能力将成倍增长.该工程投资预算约为( ) 十”字交叉,城市交通通行和转930 000万元,这一数据用科学记数法表示为5 6A. 9.3 10 万元B . 9.3 10 万元C. 93 104万元D. 0.93 106万元5.如右图所示几何体的主视图是(rm6.点B (-正面4)关于y轴的对称点为;,则点 BA的坐标是( rRD)A . (3, 4)B . (-4, - 3)(4, - 3) D. (-3,- 4)7.把不等式组丿x >—1的解集表示在数轴上,下列选项正确的是( x+2 兰3-1 0 1 A.-6 ----- * -------1 0 1B .-6 ------------ 1 --------------1 0 1C.-A ----- * ----- ―»-1 0 1D .向旋转90°后得到△ AO^!,则点B i 的坐标是14.⑴ 计算: 2」-(2011 -二)° 3cos30° -(-1)2011-6⑵解方程:2 l-x 一 x-l -1 =012丿J 2丿(3)先化简,再求值:2m -2m 1, “ m -1、 2(m -1 ),其中 m= 3 .m -1m 115完全相同的4个小球,上面分别标有数字 1、一 1、2、一 2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出后不放回).把第一次、第二次摸到的球上标有的数字分别记作 m 、n ,以m 、n 分别作为一个点的横坐标与纵坐标, 求点(m , n )在第二象限的概率.(用树状图或列表法求解)12.如图,是反比例函数k i 并分别交两条曲线于 A 、 y = —1和y= y =纟(k 2)在第一象限的图象,直线 AB // x 轴,x xB 两点,若 S A AOB =2,则k 2- k 1的值是 ____________ .x + 4与x 轴、y 轴分别交于A 、O16.已知一次函数y^ = x m 的图象与反比例函数⑴求一次函数的解析式;⑵已知反比例函数在第一象限上有一点 距离为3,求△ ABC 的面积.17.为倡导“低碳生活”,常选择以自行车作为代步工具,如图 1所示是一辆自行车的实物图,车架档AC 与CD 的长分别为45cm 、60cm ,且它们互相垂直,座杆 CE 的长为20cm ,点A 、C 、E 在同一条直线上,且 NCAB=75°如图2.(1)求车架档AD 的长;(2)求车座点E 到车架档AB 的距离.(结果精确到1cm.参考数据:sin75 ° - 0.9659, cos7 5° 0.2588, tan75 ° 3.7321)y 2 的图象交于A 、B 两点.已知当x ■x当 o ::: x ::: 1 时,亠:y .19正方形ABCD 边长为4, M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动 时,保持AM 和MN 垂直,(1)证明: Rt A ABM s Rt A MCN ;(2)设BM 二x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当 M 点运动到 什么位置时,四边形 ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时 Rt △ ABM s Rt △ AMN ,求此时x 的值.20、为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级 中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类 补贴措施如下表,其余费用由区财政部门补贴。

添置多媒体所需费用(万兀)补贴百分比不大于10万兀部分80% 大于10万元不大于m 万元部分50% 大于m 万兀部分20%40之间18万元,求市、区两级财政部门应各自补贴多少; x 万元,市财政部门补贴 y 万元,试分类列出 y 关于30万元,市财政部门补贴 y 万元的取值范围为12W y w 24,试求m 的取值范围。

(20W me 40)。

试解决下列问题: (1) 若某学校的多媒体教学设备费用为 (2) 若某学校的多媒体教学设备费用为 x 的函数式;(3) 若某学校的多媒体教学设备费用为。

相关文档
最新文档