最新二次函数应用题题型归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

围墙

A

09

D

二次函数应用题

题型一面积问题

1星光中学课外活动小组准备围建一个矩形生物苗圃园.

其中一边靠墙,另外三边用长为30

米的篱笆围成.已知墙长为 18米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米. (1) 若平行于墙的一边的长为 y 米,直接写出y 与x 之间的函数关系式及其自变量 x 的取

值范围;

(2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3) 当这个苗圃园的面积不小于 88平方米时,试结合函数图像,直接写出

x 的取值范围.

2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙 (墙的长度不

限),另三边用木栏围成,建成的苗圃为如图所示的长方形 ABCD •已知木栏总长为120米,

设AB 边的长为x 米,长方形 ABCD 的面积为S 平方米.

(1)求S 与x 之间的函数关系式(不要求写出自变量 x 的取值范围).当x 为何值时,S 取 得最值

(请指出是最大值还是最小值 )?并求出这个最值;

⑵学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,

其圆心分别为

01和02,且01到AB 、BC 、AD 的距离与02到CD 、BC 、AD 的距离都相等,并要求在苗

圃内药材种植区域外四周至少要留够

0.5米宽的平直路面,以方便同学们参观学习•当

(I )中

S 取得最大值时,请问这个设计是否可行

?若可行,求出圆的半径;若不可行,请说明理由.

B -----------------------C

围墙

_i I _i

题型二利润问题

1利民商店经销甲、乙两种商品•现有如下信息:请根据以上信息,解答下列问题:

(1 )甲、乙两种商品的进货单价各多少元?

(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商

品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利

润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m

定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?

信息1:甲、乙两种商品的进货单价之和是5元;

信息2:甲商品零售单价比进货单价多1元,

乙商品零售单价比进货单价的2倍少

1元.

2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买I型、n型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.

(1 )分别求出y1和y2的函数解析式;

(2 )有一农户同时对I型、n型两种设备共投资10万元购买,请你设计一个能获得最

大补贴金额的方案,并求出按此方案能获得的最大补贴金额

型号

金额

I型设备n型设备

投资金额x(万元) x5x24

补贴金额y (万元) y1=kx(k 工

0)2y2=ax +bx(a

丰 0) 2.4 3.2

3•利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售

出后再进行结算,未售出的由厂家负责处理)•当每吨售价为260元时,月销售量为45吨•该经销店为提高经营利润,准备采取降价的方式进行促销. 经市场调查发现:当每吨售价下降

10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.

(1)当每吨售价为240元时,计算此时的月销售量;

(2)求y与x的函数关系式(不要求写出x的取值范围);

(3)该经销店要获得最大月利润,售价应定为每吨多少元?

(4)小静说:“当月利润最大时,月销售额也最大

•”你认为对吗?请说明理由.

题型三图像表达式问题

1如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平

面上,对称轴是水平线OC。点A、B在抛物线造型上,且点A到水平面的距离AC=4O米, 点B到水平面距离为2米,OC=8米。

(1)请建立适当的直角坐标系,求抛物线的函数解析式;

(2)为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱RA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省

(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)

(3)为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点

O、P之间的距离是多少?(请写出求解过程)

2张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y (元/吨)与采购

量x (吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C)。

(1)求y与x之间的函数关系式;

(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?

3为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩

电的农户实行政府补贴. 规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系•随着补贴款额x

的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z与x之间也

大致满足如图②所示的一次函数关系.

(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?

(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益Z与政府补

贴款额x之间的函数关系式;

(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x定为多少?并

求出总收益w的最大值.

相关文档
最新文档