数字信号处理a(双语)chapter 6-z transform b

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选ppt
18百度文库
6.4.3 Inverse z-Transform by Partial-Fraction Expansion
精选ppt
19
6.4.3 Inverse z-Transform by Partial-Fraction Expansion
Solutions: Step 1-- Converting G(z) into the form of
精选ppt
3
6.4.1 General Expression
●Recall that, for z= re jω, the z-transform G(z)
given by
G(z) G(re j ) g[n]r ne jn n
is merely the DTFT of the modified sequence g(n)r-n ● Accordingly, the inverse DTFT is thus given by
Chapter 6 z-Transform
精选ppt
1
Part B: Inverse ZT and ZT Theorems
6.4 The Inverse z-Transform 6.5 z-Transform Theorems
精选ppt
2
6.4 The Inverse z-Transform
proper fractions by long division Step 2-- Summing the inverse transform of
the individual simpler terms in the expansion
精选ppt
20
6.4.3 Inverse z-Transform by Partial-Fraction Expansion
z=0 in the ROC of G(z)
精选ppt
5
6.4.1 General Expression
逆z变换是一个对X(Z)Zn-1进行的围线积分,积 分路径C是一条在X(Z)收敛环域(Rx-,Rx+) 内以逆时针方向绕原点一周的单围线。
jI m[z]
|z |= R x +
c
|z |= R x -
g[n] Z 1[G(z)] 1 G(z)zn1dz
2j c
where c is a counterclockwise contour of integration
defined by |z|= r
But the integral remains unchanged when c is
replaced with any contour c’ encircling the point
• 一阶极点的留数
x (n ) N R e s [X (z )z n 1 ;z k ] N [(z z k )X (z )z n 1 ]
k 1
k 1
z z k
• N 阶极点的留数
R es[X (z)zn 1 ;zk](N 1 1 )!d d zN N 1 1[(z zk)N X (z)zn 1 ]
6.4.1 General Expression 6.4.2 Inverse z-Transform by Table Look-Up
Method 6.4.3 Inverse z-Transform by Partial-Fraction
Expansion 6.4.4 Partial-Fraction Using MATLAB 6.4.5 Inverse z-Transform via Long Division 6.4.6 Inverse z-Transform Using MATLAB
精选ppt
14
6.4.1 General Expression
精选ppt
15
6.4.1 General Expression
精选ppt
16
6.4.2 Table Look-up Method
Example 6.12 H (z)z20 z.5 z0.25 ,z0.5
H(z)z 0.0 5.z521 00 .5 .5 zz1 12
Look up Table 6.1 on Page 253
nn[n]
z1
1z1
2
z
h[n]n0.5n[n]
精选ppt
17
6.4.3 Inverse z-Transform by Partial-Fraction Expansion
A rational z-transform G(z) with a causal inverse transform g(n) has an ROC that is exterior to a circle
Here it is more convenient to express G(z) in a partial-fraction expansion form and then determine g(n) by summing the inverse transform of the individual simpler terms in the expansion
精选ppt
9
1.1 General Expression
精选ppt
10
6.4.1 General Expression
精选ppt
11
6.4.1 General Expression
精选ppt
12
6.4.1 General Expression
精选ppt
13
6.4.1 General Expression
g[n]r n 1 G(re j )e jnd
2
精选ppt
4
6.4.1 General Expression
By making a change of variable z re j , the
previous equation can be converted into a contour integral given by
o
R e [z]
精选围ppt 线积分路径
6
6.4.1 General Expression
直接计算围线积分比较麻烦,一般不采用此 法求逆z变换,求解逆z变换的常用方法有: 留数定律法 查表法 部分分式法★ 长除法
精选ppt
7
6.4.1 General Expression
精选ppt
8
利用留数定理计算围线积分
相关文档
最新文档