2020年中考数学押题试卷(附答案)-2020中考圧题

合集下载

2020年中考数学押题卷及答案(二十)

2020年中考数学押题卷及答案(二十)

2020年中考数学押题卷及答案(二十)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10 D.﹣a102.(4分)下列方程中,有实数根的是()A.B. C.2x4+3=0 D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a 的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C. D.36.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为厘米.9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a0.(填“<”或“>”)12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y 轴,那么m的值是.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是米.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=.16.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M落在边BC 上的点D处,那么BD=.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC 上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.20.(10分)解方程组:.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y 轴的交点是C点,求△ABC的面积.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB 长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10 D.﹣a10【解答】解:(﹣a2)•a5=﹣a7,故选B2.(4分)下列方程中,有实数根的是()A.B. C.2x4+3=0 D.【解答】解:A、由题意=﹣1<0,方程没有实数根;B、去分母得到:x2﹣x+1=0,△<0,没有实数根;C、由题意x4=﹣<0,没有实数根,D、去分母得到:x=﹣1,有实数根,故选D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a 的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选B.4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,【解答】解:A、如果k=0或,那么,正确;B、设m为实数,则,正确;C、如果,那么或,错误;D、在平行四边形ABCD中,,正确;5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C. D.3【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选:A.6.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0【解答】解:y1=x2﹣2x﹣3=(x﹣1)2﹣4,则它的顶点坐标为(1,﹣4),所以抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组得或,所以当﹣1≤x≤3.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.【解答】解:由等比性质,得==,故答案为:.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为(﹣1)厘米.【解答】解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.【解答】解:设第三边为x,∵:=1:,∵与1是对应边,与是对应边,∵△ABC与△DEF相似,∴==,解得x=,即△DEF的第三边应该是.故答案为:.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是y=.【解答】解:将x=1代入y=2x,得y=2,∴点A(1,2),设反比例函数解析式为y=,∵一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,2),∴2=.解得,k=2,即反比例函数解析式为y=,故答案为:y=.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a<0.(填“<”或“>”)【解答】解:∵抛物线y=ax2+bx+c在对称轴左侧的部分是上升的,∴抛物线开口向下,∴a<0.故答案为:<.12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y 轴,那么m的值是2.【解答】解:将抛物线y=(x+m)2向右平移2个单位后,得到抛物线解析式为y=(x+m﹣2)2.其对称轴为:x=2﹣m=0,解得m=2.故答案是:2.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是6米.【解答】解:∵斜坡AB的坡度i=1:4,∴=,∵从点B测得离地面的铅垂线高度BC是6米,∴=,解得:AC=24,则斜坡AB的长为:==6(米).故答案为6.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.【解答】解::∵AB=AC=5,BC=8,点G为重心,∴AD⊥BC,CD=BC=×8=4,∴AD===3,∴GA=2,∴DG=1,∴BG=,∴∠CBG的余切值=,故答案为:15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=12.【解答】解:∵∠ABD=∠C、∠BAD=∠CAB,∴△ABD∽△ACB,∴,即AB2=AC•AD,∵AD=9,DC=7∴AC=16,∴AB=12,故答案为:1216.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)【解答】解:∵EF是梯形的中位线,∴EF=(A D+BC),∵AD:BC=3:4,=,∴BC=AD,∴=(+)=(+)=.故答案为17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M落在边BC 上的点D处,那么BD=3.【解答】解:∵△ABC中,AB=AC,∠A=90°,BC=6,∴AB=cos45°×BC=3,∵直线MN∥BC,∴△AMN∽△ABC,∵直线MN将△ABC分为面积相等的两部分,∴S△AMN:S△ABC=1:2,∴==,即=,解得AM=3,如图,过A作AD⊥BC于D,则AD=BC=3,∴将线段AM绕着点A逆时针旋转45°,可以使点M落在边BC上的点D处,此时,BD=BC=3.故答案为:3.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC 上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为 1.5或3.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.【解答】解:原式=+﹣×=2+﹣=1.20.(10分)解方程组:.【解答】解:由②得:(x﹣y﹣3)(x﹣y+1)=0∴x﹣y=3或x﹣y=﹣1∴或∴或.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y 轴的交点是C点,求△ABC的面积.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)2+5,将A(1,3)代入上式得3=a(1﹣3)2+5,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+5,(2)∵A(1,3)抛物线对称轴为:直线x=3∴B(5,3),令x=0,y=﹣(x﹣3)2+5=,则C(0,),△ABC的面积=×(5﹣1)×(3﹣)=5.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)【解答】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴,∵AB=600m,∴AD+BD=600m,∴,∴,∴,∴点M到AB的距离.(2)过点N作NE⊥AB于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN为平行四边形,∴,MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴,∴.23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.【解答】证:(1)∵∠ADB=90°,AD=BD,∴∠A=∠DBA=45°,又∵DC∥AB,∴∠CDB=∠DBA=45°=∠A,又∵∠CBE=∠DBA=45°,∴∠EBA=∠CBD,∴△CBD∽△EBA;(2)∵△CBD∽△EBA,∴,∵∠CBE=∠DBA,,∴.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.【解答】解:(1)把A(﹣1,0)、B(5,0)代入抛物线解析式,得:,解得:,∴抛物线的解析式为:,∴顶点C(2,﹣3)(2)方法一:设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(﹣1,0)和C(2,﹣3)代入得:解得:则直线AC:y=﹣x﹣1,∴D(0,﹣1),同理可得直线BD:y=x﹣1,∴∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴∴△HPG∽△CPB,∴,∴,∴;方法二:如图2,过点H作HM⊥CG于M,∵,,,∴BD2=CD2+BC2,∴∠BCD=90°,∵S△BCD=BD•CH=BC•CD,∴,∵∠ABD=∠HCG,∴△OBD∽△MCH,∴,∴,,∴,由勾股定理得:GH=∴, 方法三:直线AC :y=﹣x ﹣1,∴D (0,﹣1),直线BD :y=x ﹣1,∵CH ⊥BD ,∴k BD •k CH =﹣1,∴直线CH :y=﹣5x +7,联立解析式:,解得:,∴∴.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB 长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)【解答】(1)证明:∵AD=DC,AB=BC∴∠DAC=∠DCA,∠BAC=∠BCA又AC平分∠BAD∴∠DAC=∠BAC∴∠DCA=∠BAC,∠DAC=∠BCA,∴AB∥DC,AD∥BC∴四边形ABCD为平行四边形又AD=DC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,∴AF∥BC,AB=BC∴∠AFB=∠CBF,∠FAC=∠ACB,∠ACB=∠BAC ∴∠EBC=∠BAC=∠AFB=∠FAC=∠ACB∴△AEF∽△ABC,△ABC∽△BEC∴∴BC2=EC•AC∴a2=EC•x∴,∴AE=AC﹣EC=x﹣,∵△AEF∽△ABC∴,即∴();(3)解:∵△CEG是等腰三角形,①当CG=EG时,∴∠CGE=∠ECG,∵∠ECG=∠CBF,∴∠CGE=∠CBF,∵∠CGB=∠ABF,∴∠ABF=∠CBF,此时,点F,G和点D重合,∴AF=AB,∴y=a,即∴,②当CG=CE时,∴∠CEG=∠CGB,∵∠CEG=∠AC B+∠CBF=2∠ACB=∠BCD,∴∠CGB=∠BCD,∵∠FDG=∠BAD=∠BCD,∴∠FDG=∠FGD,∴FG=FD,∴AF=BF,∵∠EBCC=∠ECB,∴BE=CE,∵∠EAF=∠EFA,∴AE=EF,∴FB=AC∴y=x即∴(负值已舍),③当EG=CE时,∴∠CEG=∠ACD,∵∠ACD=∠CBF,∴∠CEG=∠CBF,∵∠CEG=∠CBF+∠ACB,∴此种情况不存在.综上所述:或时,△CEG为等腰三角形.。

2020年中考数学压轴试卷(含答案)

2020年中考数学压轴试卷(含答案)

中考数学压轴卷一.选择题(满分20分,每小题2分) 1.﹣2的相反数是( )A .2B .﹣2C .D .﹣2.如图,下列选项中不是正六棱柱三视图的是( )A .B .C .D .3.今年一季度,河北省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7”用科学记数法表示为( ) A .2.147×102 B .0.2147×103 C .2.147×1010D .0.2147×10114.下列运算错误的是( ) A .(a 2)3=a 6B .a 7÷a 3=a 4C .a 3•a 6=a 9D .a 2+a 3=a 55.一组数据8,7,6,7,6,5,4,5,8,6的众数是( ) A .8B .7C .6D .56.下列的平面几何图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.不等式组的解集在数轴上应表示为( )A .B .C.D.8.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D. x(x﹣1)=21010.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 二.填空题(满分18分,每小题3分)11.分解因式:3x3﹣27x=.12.分式方程=的解为.13.如图,⊙C经过原点,并与两坐标轴分别交于A,D两点,已知∠OBA=30°,点A的坐标为(2,0),则点D的坐标为.14.关于x的一元二次方程(m﹣1)x2+2x﹣1=0没有实数根,则m的取值范围是.15.如图,已知直线y=﹣2x+5与x轴交于点A,与y轴交于点B,将△AOB沿直线AB翻折后,设点O的对应点为点C,双曲线经过点C,则k值为.16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.三.解答题17.(6分)计算:四.解答题18.(6分)如图,△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,E是AB上一点且BD=BE,求∠ADE的度数.五.解答题19.(8分)民间剪纸在山西是一种很普遍的群众艺术,并有极高的审美价值,被黄河水,黄土山养育的山西人民具有粗犷豪放、朴实教厚的气质和性格,他们飞剪走纸,将自己的情思才华和美好的心愿都倾注在朝夕相伴的剪纸中,构成了特有的地域习俗与人文心态现有四张不透明的、背面完全一样的剪纸画卡片:王沛玲将这四张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片(不放回),再随机抽取一张卡片.(1)王沛玲第1次抽取的卡片上的剪纸画是“一帆风顺”的概率是.(2)请你用列表法或画树状图法,帮助王沛玲求出2次抽取的卡片上的剪纸画一张是“一帆风顺”,一张是“喜结良缘”的概率.六.解答题20.(8分)甲、乙两名同学进入九年级后,某学科6次考试成绩如图所示:(1)请根据图填写表:(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析:①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?七.解答题21.(10分)已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA:AB=1:2.(1)求∠CDB的度数;(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.八.解答题22.(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)九.解答题23.(12分)施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM为16米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A.D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.一十.解答题24.(12分)如图,长方形AOCB的顶点A(m,n)和C(p, q)在坐标轴上,已知和都是方程x+2y=4的整数解,点B在第一象限内.(1)求点B的坐标;(2)若点P从点A出发沿y轴负半轴方向以1个单位每秒的速度运动,同时点Q从点C 出发,沿x轴负半轴方向以2个单位每秒的速度运动,问运动到多少秒时,四边形BPOQ 面积为长方形ABCO面积的一半;(3)如图2,将线段AC沿x轴正方向平移得到线段BD,点E(a,b)为线段BD上任意一点,试问a+2b的值是否变化?若变化,求其范围;若不变化,求其值.(直接写出结论)一十一.解答题25.(12分)在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:如果y'=,那么称点Q为点P的“可控变点”.例如:点(5,6)的”可控变点”为点(5,6),点(﹣5,6)的可控变点”为点(﹣5,﹣6).(1)①点(2,1)的“可控变点”为;②如果点A(3,﹣1),B(﹣1,3)的“可控变点”中有一个在函数y=的图象上那么这个点是(填“点A”或“点B”).(2)如果点N′(m+1,2)是一次函数y=x+3图象上点N的“可控变点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“可控变点“Q的纵坐标y'的取值范围是﹣4<y'≤4,请结合图象求实数a的值.参考答案一.选择题1.解:根据相反数的定义,﹣2的相反数是2.故选:A.2.解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.3.解:214.7可用科学记数法表示为2.147×102,故选:A.4.解:(a2)3=a2×3=a6,故选项A不合题意;a7÷a3=a7﹣3=a4,故选项B不合题意;a3•a6=a3+6=a9,故选项C不合题意;a2与a3不是同类项,故不能合并,故选项D符合题意.故选:D.5.解:在这组数据中6出现3次,次数最多,所以众数为6,故选:C.6.解:下列的平面几何图形中,既是轴对称图形又是中心对称图形的是,故选:A.7.解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示不等式组的解集为故选:C.8.解:∵一次函数y=kx+b,y随着x的增大而减小∴k<0又∵kb<0∴b>0∴此一次函数图象过第一,二,四象限.故选:A.9.解:由题意得,x(x﹣1)=210,故选:B.10.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE∥DF;C、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;D、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).12.解:去分母得:3x+6=5x+5,解得:x=,经检验x=是分式方程的解.故答案为:.13.解:连接AD,如图,∵∠AOD=90°,∴AD为直径,即C点在AD上,∵∠ADO=∠OBA=30°,∵点A的坐标为(2,0),∴OA=2,∴AD=2AO=4,∴OD===2,∴D点坐标为(0,2),故答案为(0,2).14.解:根据题意得m﹣1≠0且△=22﹣4(m﹣1)×(﹣1)<0,所以m<0.故答案为m<0.15.解:过C作x轴的垂线,垂足为K,连接OC交AB于H,∵将△AOB沿直线AB翻折后,设点O的对应点为点C,∴OC⊥AB,OH=HC,∵直线y=﹣2x+5与x轴交于点A,与y轴交于点B,∴A(2.5,0),B(0,5),∵∠AOB=90°,∴AB=,∴OH=,∴OC=2,∵∠COK=90°﹣∠OAB=∠ABO,∴tan∠COK=tan∠ABO=,设C(2a,a),则OC=,∴a=2,∴点C(4,2),∴﹣k=2×4,k=﹣8故答案为:k=﹣816.解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴∠BHA=∠BHE=60°,∴∠KHF=180°﹣60°﹣60°=60°,∵∠F=90°,∴∠FKH=30°,∴AH=AB•tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.三.解答题(共1小题,满分6分,每小题6分)17.解:原式=4﹣1﹣(2﹣)+2=4﹣1﹣2++2=1+3.四.解答题(共1小题,满分6分,每小题6分)18.解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BD=BE,∴∠BDE=∠BED=75°,∵AB=AC,AD是BC边上的中线,∴∠ADB=90°,∴∠ADE=∠ADB﹣∠BDE=15°.五.解答题(共1小题,满分8分,每小题8分)19.解:(1)从四张卡片中任意摸出一张,卡片上的剪纸画是“一帆风顺”的概率是.故答案为:;(2)将四张剪纸分别记为A、B、C、D,列表如下:所有等可能的情况数有12种,其中2次抽取的卡片上的剪纸画一张是“一帆风顺”,一张是“喜结良缘”的有2种情况,分别为(A,B),(B,A),所以2次抽取的卡片上的剪纸画一张是“一帆风顺”,一张是“喜结良缘”的概率为=.六.解答题(共1小题,满分8分,每小题8分)20.解:(1)乙的平均数:=(85+70+70+75+70+80)=75分,= [(60﹣75)2+(65﹣75)2+(75﹣75)2+(75﹣75)2+(80﹣75)2+(95﹣75)2]=125,乙的中位数为:(70+75)÷2=72.5,甲的众数75,乙的众数为70,填写表格如下:(2)①从平均数上看家、乙两人的成绩相同,但乙的方差较小,说明乙的成绩比较稳定,单从是否稳定上看,乙的成绩较稳定;②从折线统计图的走势上看,从总体看甲的成绩呈现上升趋势,并且上升的幅度较大,而乙的成绩趋势整体没有太多变化,且成绩均在较低的范围变化,因此甲的成绩较好,有继续上升的可能.七.解答题(共1小题,满分10分,每小题10分)21.解:(1)连接OC,∵CD是⊙O的切线,∴∠OCD=90°.设⊙O的半径为R,则AB=2R,∵DA:AB=1:2,∴DA=R,DO=2R.∴A为DO的中点,∴AC=DO=R,∴AC=CO=AO,∴三角形ACO为等边三角形∴∠COD=60°,即∠CDB=30°.(2)直线EB与⊙O相切.证明:连接OC,由(1)可知∠CDO=30°,∴∠COD=60°.∵OC=OB,∴∠OBC=∠OCB=30°.∴∠CBD=∠CDB.∴CD=CB.∵CD是⊙O的切线,∴∠OCE=90°.∴∠ECB=60°.又∵CD=CE,∴CB=CE.∴△CBE为等边三角形.∴∠EBA=∠EBC+∠CBD=90°.∴EB是⊙O的切线.八.解答题(共1小题,满分8分,每小题8分)22.解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=100,∠CAO=60°,∴CO=AO•tan60°=100(米).设PE=x米,∵tan∠PAB==,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=100﹣x,PF=OA+AE=100+2x,∵PF=CF,∴100+2x=100﹣x,解得x=(米).答:电视塔OC高为100米,点P的铅直高度为(米).九.解答题(共1小题,满分12分,每小题12分)23.解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y=a(x﹣8)2+8,将点O(0,0)代入上式得:0=64a+8,解得:a=﹣,故函数的表达式为:y=﹣(x﹣8)2+8,(0≤x≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x=7.5﹣3.5=4,当x=4时,y=6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)点A、D关于函数对称轴对称,则设AD=2m,则点A(8﹣m,y),则AB=y=﹣(x﹣8)2+8=8﹣m2,设:w=AB+AD+DC=2m+2AB=﹣m2+2m+16,∵﹣<0,故w有最大值,当m=4时,w的最大值为20,故AB、AD、DC的长度之和的最大值是20.一十.解答题(共1小题,满分12分,每小题12分)24.解:(1)∵A(m,n),C(p,q),∴m=0,n>0,p>0,q=0,∵方程x+2y=4的非负整数解为,或,或,∴A(0,2),C(4,0),∵四边形AOCB是矩形,∴BC=OA=2,AB=OC=4,∴点B的坐标为(4,2);(2)如图1所示:由题意得:AP=t,CQ=2t,∴四边形BPOQ的面积=矩形AOCB的面积﹣△ABP的面积﹣△BCQ的面积=4×2﹣×4×t﹣×2t×2=×4×2,解得:t=1,即运动到1秒时,四边形BPOQ面积为长方形ABCO面积的一半;(3)a+2b的值不变化,值为8,理由如下:作EF⊥CD于F,如图2所示:则EF∥OA∥BC,由平移的性质得:AC∥BD,AC=BD,∴四边形ABDC是平行四边形,∴CD=AB=4,∴OD=OC+CD=8,∵点E的坐标为(a,b),∴OF=a,EF=b,∴DF=8﹣a,∵EF∥BC,∴△DEF∽△DBC,∴=,即=,整理得:a+2b=8.一十一.解答题(共1小题,满分12分,每小题12分)25.解:(1)①根据定义,点M坐标为(2,1).故答案为(2,1);②点B的“可控变点”为(﹣1,﹣3),该点在函数上,故答案为B;(2)当m+1≥0时,点N(m+1,2),当m+1<0时,点N(m+1,﹣2),故点N(m+1,2)或(m+1,﹣2);(3)如图为“可控点”函数图象:从函数图象看,“可控变点“Q的纵坐标y'的取值范围是﹣4<y'≤4,而﹣2<x≤a,则a=0.。

精品资料——押题卷02-决胜2020年中考数学押题卷(全国通用)(解析版).docx

精品资料——押题卷02-决胜2020年中考数学押题卷(全国通用)(解析版).docx

押题卷02一、选择题(本大题共10小题,每小题3分,共30分.在四个选项中,只有一个选项是符 合题目要求的)b= —那么直角坐标系中点A (a, b )的位置在( V2-1 A.第一象限B.第二象限C.第三象限D.第四象限答案:C 解析:fl =-l-V2 <0, Z?=V2+l>0.I A (a, b )在第二象限选 C2.下列四个立体图形,左视图与其它三个不同的是( )答案:B解析:A 左视图是三角形B 左视图是矩形C 左视图是三角形D 左视图是三角形选 B3. 三角形的两边长分别为3和6,第三边的长是方程寸-6*+8=0的一个根,则这个三角形的 周长为()A 11B 12C 11 或 13D 13【答案】D【解析】•.•/-6了+8=0 中 a=l , b=-6, c=8 ,;.A=(-6)2-4x 1x8=4解得户2或x=4 .1.如果a= 1 1-V2当x=2时,2+3<6 ,构不成三角形,舍去;当x=4时,符合题意,这个三角形的周长为3+4+6=13.故选D.4.在。

中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD.如图,若点Q与圆心。

不重合,ZBAC=25° ,则ZDCA的度数()A. 35°B.40°C. 45°D.65°【答案】B【解析】连接BCBC ,■: AB是直径,ZACB=90° ,V ZBAC=25° ,.I Z B=90°- Z BAC=90°-25 °=65 ° ,根据翻折的性质,弧AC所对的圆周角为ZB,弧ABC所对的圆周角为ZAOC, ZADC+ZB= 180° ,:.ZB=ZCDB=65° ,ZDCA^ZCDB-ZBAC=65°-25°=40° .故选B.5.如图,正方形ABCZ)的边长为2, E是3。

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。

2020年河北省中考数学押题试卷及答案详解

2020年河北省中考数学押题试卷及答案详解

2020年河北省中考数学押题试卷一.选择题(本题共42分,第1-10题,每小题3分,第11-16题,每小题2分,请将你认为正确的选项填在规定位置)1.(3分)天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为()A.14.96×107B.1.496×107C.14.96×108D.1.496×108 2.(3分)如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)3.(3分)下列说法正确的是()A.﹣m一定表示负数B.平方根等于它本身的数为0和1C.倒数是本身的数为1D.互为相反数的绝对值相等4.(3分)“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x•(1+30%)×80%=2080B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%5.(3分)关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣16.(3分)把方程x2+8x﹣3=0化成(x+m)2=n的形式,则m,n的值分别是()A.4,13B.﹣4,19C.﹣4,13D.4,197.(3分)我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l 和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A.B.C.D.8.(3分)如图,反比例函数y=的图象经过点A(4,1),当y<2时,x的取值范围是()A.x>2B.x<2C.x<0或x>2D.0<x<29.(3分)如图,⊙O的半径为5,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.810.(3分)一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是,袋中白球共有()A.1个B.2个C.3个D.4个11.(2分)若关于x的方程=1的解为正数,则m的范围为()A.m≥2且m≠3B.m>2且m≠3C.m<2且m≠3D.m>212.(2分)如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(﹣1,),顶点B(1,),设直线AE与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为()A.B.1C.D.13.(2分)如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100°B.105°C.110°D.115°14.(2分)如图图象中,不可能是关于x的一次函数y=mx﹣(m﹣6)的图象的是()A.B.C.D.15.(2分)已知抛物线y=x2+(m+1)x+m,当x=1时,y>0,且当x<﹣3时,y的值随x值的增大而减小,则m的取值范围是()A.m>﹣1B.m<5C.m≥5D.﹣1<m≤5 16.(2分)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论①2a+c>0;②若(),(),(,y3)在抛物线上,则y1>y2>y3③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形;其中正确结论个数有()个.A.1B.2C.3D.4二.填空题(共3小题,满分11分)17.(3分)一元二次方程式x(x﹣6)=0的两个实数根是.18.(4分)甲列车从A地开往B地,速度是60km/h,乙列车比甲晚1h从B地开往A地,速度是90km/h,已知A、B两地相距300km,当两车距离为15km时,乙列车行驶的时间为h.19.(4分)现规定一种运算:a*b=a2+ab﹣b,则3*(﹣2)=.三.解答题(共7小题,满分67分)20.(8分)(1)将6﹣4x+x2减去﹣x﹣5+2x3,把结果按x的降幂排列.(2)已知关于x的方程4x﹣20=m(x+1)﹣10无解,求代数式的值.21.(9分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形图形,则x+y+z=.(4)如图4所示,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连结AG和GE,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?22.(9分)学校准备购置一批教师办公桌椅,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求一套A型桌椅和一套B型桌椅的售价各是多少元;(2)学校准备购进这两种型号的办公桌椅200套,平均每套桌椅需要运费10元,并且A 型桌椅的套数不多于B型桌椅的套数的3倍.请设计出最省钱的购买方案,并说明理由.23.(9分)如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△P AB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.24.(10分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.25.(10分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,AB=,摆动臂AD可绕点A旋转,AD=.(1)在旋转过程中,①当A、D、B三点在同一直线上时,求BD的长;②当A、D、B三点为同一直角三角形的顶点时,求BD的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△A′B′C′外的点D1转到其内的点D2处,如图2,此时∠AD2C=135°,CD2=1,求BD2的长.(3)若连接(2)中的D1D2,将(2)中△AD1D2的形状和大小保持不变,把△ADD3绕点A在平面内自由旋转,分别取D1D2、CD2、BC的中点M、P、N,连接MP、PN、NM,M随着△MD1D2绕点A在平面内自由旋转,△MPN的面积是否发生变化,若不变,请直接写出△MPN的面积;若变化,△MPN的面积是否存在最大与最小?若存在,请直接写出△MPN面积的最大值与最小值.(温馨提示×==)26.(12分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2020年河北省中考数学押题试卷参考答案与试题解析一.选择题(共16小题,满分39分)1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为()A.14.96×107B.1.496×107C.14.96×108D.1.496×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数149600000用科学记数法表示为1.496×108.故选:D.2.(3分)如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即(∠1+∠2)=90°;而∠1的余角为90°﹣∠1,可将上式代入90°﹣∠1中,即可求得结果.【解答】解:由图知:∠1+∠2=180°;∴(∠1+∠2)=90°;∴90°﹣∠1=(∠1+∠2)﹣∠1=(∠2﹣∠1).故选:C.3.(3分)下列说法正确的是()A.﹣m一定表示负数B.平方根等于它本身的数为0和1C.倒数是本身的数为1D.互为相反数的绝对值相等【分析】根据平方根、倒数以及绝对值的性质即可判断.【解答】解:A、﹣m有可能是正数,也可能是负数或0,故选项错误;B、平方根等于它本身的数为0,故选项错误;C、倒数是本身的数为±1,故选项错误;D、互为相反数的绝对值相等,正确.故选:D.4.(3分)“十一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本价为x元,根据题意,下面所列方程正确的是()A.x•(1+30%)×80%=2080B.x•30%•80%=2080C.2080×30%×80%=x D.x•30%=2080×80%【分析】设该电器的成本价为x元,求出成本价提高之后然后打折之后的价钱,据此列方程.【解答】解:设该电器的成本价为x元,由题意得,x(1+30%)×80%=2080.故选:A.5.(3分)关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1【分析】分别求出每一个不等式的解集,根据不等式组无解,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解可得答案.【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.6.(3分)把方程x2+8x﹣3=0化成(x+m)2=n的形式,则m,n的值分别是()A.4,13B.﹣4,19C.﹣4,13D.4,19【分析】利用配方法求解可得.【解答】解:∵x2+8x﹣3=0,∴x2+8x=3,∴x2+8x+16=3+16,即(x+4)2=19,∴m=4,n=19,故选:D.7.(3分)我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l 和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A.B.C.D.【分析】根据垂线的作法即可判断.【解答】解:观察作图过程可知:A.作法正确,不符合题意;B.作法正确,不符合题意;C.作法错误,符号题意;D.作法正确,不符合题意.故选:C.8.(3分)如图,反比例函数y=的图象经过点A(4,1),当y<2时,x的取值范围是()A.x>2B.x<2C.x<0或x>2D.0<x<2【分析】求得函数为2时的x的值,根据反比例函数的图象即可得出结论.【解答】解:∵反比例函数y=的图象经过点A(4,1),∴k=4×1=4,∴y=,当y=2时,解得x=2,∴当y<2时,x<0或x>2.故选:C.9.(3分)如图,⊙O的半径为5,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.8【分析】首先连接OA,由⊙O的半径为5,圆心O到弦AB的距离OM的长为3,由勾股定理即可求得AM的长,然后由垂径定理求得AB的长.【解答】解:连接OA,∵⊙O的半径为5,圆心O到弦AB的距离OM的长为3,∴OA=5,OM=3,∴AM==4,∴AB=2AM=8.故选:D.10.(3分)一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是,袋中白球共有()A.1个B.2个C.3个D.4个【分析】设白球有x个,根据摸出的球是红球的概率是,利用概率公式列出方程,解之可得.【解答】解:设白球有x个,根据题意,得:=,解得:x=2,即袋中白球有2个,故选:B.11.(2分)若关于x的方程=1的解为正数,则m的范围为()A.m≥2且m≠3B.m>2且m≠3C.m<2且m≠3D.m>2【分析】先将原方程去分母,化为整式方程,再根据解为正数及原方程的分母不为0,可得m的取值范围.【解答】解:原方程两边同时乘以(x﹣1)得:m﹣3=x﹣1∴x=m﹣2∵解为正数,且m﹣2≠1∴m>2,且m≠3故选:B.12.(2分)如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(﹣1,),顶点B(1,),设直线AE与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为()A.B.1C.D.【分析】根据正六边形的性质得出点E与B重合时,α的角度不变;点E与F、M重合时,α的角度不变;点E与G、H重合时,α的角度不变,此时角度最小;求出tan∠EAN 和tan∠MAO的值,当OE⊥AE时,α角是最大的,由OE=2,OA=4,得出α=30°,tanα=;即可得出结果.【解答】解:如图所示,连接AM,∵正六边形是中心对称图形,绕中心O旋转时,点E与B重合时,α的角度不变;点E与F、M重合时,α的角度不变;点E与G、H重合时,α的角度不变,此时角度最小;∵AN=4﹣,EN=1,OM=OE==2,∴tan∠EAN===,tan∠MAO===;当OE⊥AE时,α角是最大的,∵OE=2,OA=4,∴α=30°,∴tanα=∴当α取最大角时,它的正切值为;故选:C.13.(2分)如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100°B.105°C.110°D.115°【分析】由平行四边形ABCD中,若∠A+∠C=130°,可求得∠A的度数,继而求得∠D的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=130°,∴∠A=65°,∴∠D=180°﹣∠A=115°.故选:D.14.(2分)如图图象中,不可能是关于x的一次函数y=mx﹣(m﹣6)的图象的是()A.B.C.D.【分析】分别根据四个答案中函数的图象求出m的取值范围即可.【解答】解:A、由函数图象可知,解得0<m<6;B、由函数图象可知,解得m=6;C、由函数图象可知,解得m<0,m>6,无解;D、由函数图象可知,解得m<0.故选:C.15.(2分)已知抛物线y=x2+(m+1)x+m,当x=1时,y>0,且当x<﹣3时,y的值随x值的增大而减小,则m的取值范围是()A.m>﹣1B.m<5C.m≥5D.﹣1<m≤5【分析】根据“当x=1时,y>0,且当x<﹣3时,y的值随x值的增大而减小”列出不等式组并解答.【解答】解:依题意得:.解得﹣1<m≤5.故选:D.16.(2分)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论①2a+c>0;②若(),(),(,y3)在抛物线上,则y1>y2>y3③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形;其中正确结论个数有()个.A.1B.2C.3D.4【分析】利用二次函数的性质一一判断即可.【解答】解:∵﹣<,a>0,∴a>﹣b,∵x=﹣1时,y>0,∴a﹣b+c>0,∴2a+c>a﹣b+c>0,故①正确,若(),(),(,y3)在抛物线上,由图象法可知,y1>y2>y3;故②正确,∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,∴ax2+bx+c﹣t=0有实数解要使得ax2+bx+k=0有实数解,则k=c﹣t≤c﹣n;故③错误,设抛物线的对称轴交x轴于H.∵=﹣,∴b2﹣4ac=4,∴x=,∴|x1﹣x2|=,∴AB=2PH,∵BH=AH,∴PH=BH=AH,∴△P AB是直角三角形,∵P A=PB,∴△P AB是等腰直角三角形.故④正确.综上,结论正确的是①②④,故选:C.二.填空题(共3小题,满分11分)17.(3分)一元二次方程式x(x﹣6)=0的两个实数根是x1=0,x2=6.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x(x﹣6)=0,可得x=0或x﹣6=0,解得:x1=0,x2=6.故答案为:x1=0,x2=6.18.(4分)甲列车从A地开往B地,速度是60km/h,乙列车比甲晚1h从B地开往A地,速度是90km/h,已知A、B两地相距300km,当两车距离为15km时,乙列车行驶的时间为 1.5或1.7h.【分析】分两种情况:①两车相遇之前两车距离为15km;②两车相遇之后两车距离为15km.【解答】解:当两车距离为15km时,设乙列车行驶的时间为xh.分两种情况:①两车相遇之前两车距离为15km,由题意,可得60(x+1)+90x=300﹣15,解得x=1.5;②两车相遇之后两车距离为15km,由题意,可得60(x+1)+90x=300+15,解得x=1.7.答:当两车距离为15km时,乙列车行驶的时间为1.5或1.7h.故答案为1.5或1.7.19.(4分)现规定一种运算:a*b=a2+ab﹣b,则3*(﹣2)=5.【分析】根据题中的新定义将所求式子化为普通运算,计算即可得到结果.【解答】解:根据题意得:3※2=32+3×(﹣2)﹣(﹣2)=9﹣6+2=5.故答案为:5.三.解答题(共7小题,满分67分)20.(8分)(1)将6﹣4x+x2减去﹣x﹣5+2x3,把结果按x的降幂排列.(2)已知关于x的方程4x﹣20=m(x+1)﹣10无解,求代数式的值.【分析】(1)先去括号,再合并同类项,再按x的指数从大到小排列各项即可;(2)先将方程4x﹣20=m(x+1)﹣10整理为(4﹣m)x=m+10,再根据方程无解得出4﹣m=0,m+10≠0,求出m的值,再代入即可求解.【解答】解:(1)(6﹣4x+x2)﹣(﹣x﹣5+2x3)=6﹣4x+x2+x+5﹣2x3=﹣2x3+x2﹣3x+11;(2)4x﹣20=m(x+1)﹣10,(4﹣m)x=m+10,由题意,得4﹣m=0,m+10≠0,解得m=4.当m=4时,=×42﹣=7﹣1=6.21.(9分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=30.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形图形,则x+y+z=9.(4)如图4所示,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连结AG和GE,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?【分析】(1)由大正方形等于9个长方形面积的和;(2)将所求式子转化为a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac),代入已知条件即可;(3)将式子化简为(2a+b)(a+2b)=2a2+5ab+2b2,即可确定x、y、z的值;(4)阴影部分的面积等于两个正方形面积减去两个直角三角形面积.【解答】解:(1)由图可知大正方形面积为(a+b+c)2,大正方形由9个长方形组成,则有(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;故答案为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac),∵a+b+c=10,ab+ac+bc=35,∴a2+b2+c2=100﹣2×35=30;故答案为30;(3)∵(2a+b)(a+2b)=2a2+5ab+2b2,∴x=2,y=2,z=5,∴x+y+z=9;故答案为9;(4)由已知,阴影部分的面积等于两个正方形面积减去两个直角三角形面积,即a2+b2﹣a(a+b)﹣b2=a2+﹣=[(a+b)2﹣3ab],∵a+b=10,ab=20,∴[(a+b)2﹣3ab]=(100﹣60)=20.22.(9分)学校准备购置一批教师办公桌椅,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求一套A型桌椅和一套B型桌椅的售价各是多少元;(2)学校准备购进这两种型号的办公桌椅200套,平均每套桌椅需要运费10元,并且A型桌椅的套数不多于B型桌椅的套数的3倍.请设计出最省钱的购买方案,并说明理由.【分析】(1)设一套A型桌椅的售价是x元,一套B型桌椅的售价是y元,根据“购进2套A型桌椅和1套B型桌椅共需2000元;购进1套A型桌椅和3套B型桌椅共需3000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型桌椅m套,则购进B型桌椅(200﹣m)套,由购进A型桌椅的套数不多于B型桌椅的套数的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再设购买费及运费的总和为w元,根据总费用=购买单价×购买数量+每套的运费×套数,即可得出w关于m的函数关系式,利用一次函数的性质即可找出最省钱的购买方案.【解答】解:(1)设一套A型桌椅的售价是x元,一套B型桌椅的售价是y元,依题意,得:,解得:.答:一套A型桌椅的售价是600元,一套B型桌椅的售价是800元.(2)设购进A型桌椅m套,则购进B型桌椅(200﹣m)套,依题意,得:m≤3(200﹣m),解得:m≤150.再设购买费及运费的总和为w元,依题意,得:w=600m+800(200﹣m)+10×200=﹣200m+162000.∵﹣200<0,∴w值随着m值的增大而减小,∴当购进A型桌椅150套、B型桌椅50套时,总费用最少,最少费用为132000元.23.(9分)如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△P AB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.【分析】(1)由条件可得出,可求出CD的长,则⊙P的半径可求出;(2)证明△ACD∽△ABO,可得比线线段,求出CD,AD的长,过点P 作PE⊥AO于点E,证明△CPE∽△CAD,由比例线段可求出点P的坐标,可求出△POB 的面积;(3)①若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,则△P AB的面积可求出.②若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,可求出CF=3,过点P作PG⊥AB于点G,可得DG=,则PG为△DCF的中位线,PG=,则△P AB的面积可求出.【解答】解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△P AB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△P AB的面积==.综上所述,在整个运动过程中,△P AB的面积是定值,定值为.24.(10分)如图,已知一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.(1)请直接写出不等式﹣x+n≤的解集;(2)求反比例函数和一次函数的解析式;(3)过点A作x轴的垂线,垂足为C,连接BC,求△ABC的面积.【分析】(1)根据A、B的横坐标,结合图象即可得到不等式﹣x+n≤的解集;(2)根据待定系数法即可求得;(3)根据三角形面积公式求得即可.【解答】解:(1)由图象可知:不等式﹣x+n≤的解集为﹣2≤x<0或x≥4;(2)∵一次函数y=﹣x+n的图象与反比例函数y=的图象交于A(4,﹣2),B(﹣2,m)两点.∴k=4×(﹣2)=﹣2m,﹣2=﹣4+n解得m=4,k=﹣8,n=2,∴反比例函数和一次函数的解析式分别为y=﹣,y=﹣x+2;(3)S△ABC==6.25.(10分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,AB=,摆动臂AD可绕点A旋转,AD=.(1)在旋转过程中,①当A、D、B三点在同一直线上时,求BD的长;②当A、D、B三点为同一直角三角形的顶点时,求BD的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△A′B′C′外的点D1转到其内的点D2处,如图2,此时∠AD2C=135°,CD2=1,求BD2的长.(3)若连接(2)中的D1D2,将(2)中△AD1D2的形状和大小保持不变,把△ADD3绕点A在平面内自由旋转,分别取D1D2、CD2、BC的中点M、P、N,连接MP、PN、NM,M随着△MD1D2绕点A在平面内自由旋转,△MPN的面积是否发生变化,若不变,请直接写出△MPN的面积;若变化,△MPN的面积是否存在最大与最小?若存在,请直接写出△MPN面积的最大值与最小值.(温馨提示×==)【分析】(1)①分两种情形分别求解即可.②显然∠ABD不能为直角.当∠ADB为直角时,根据AB2=AD2+BD2,计算即可,当∠BAD=90°时,根据BD2=AD2+AB2,计算即可.(2)如图1,连接D1D2,D1C,则△AD1D2为等腰直角三角形,利用勾股定理求出CD1,证明△BAD2≌△CAD1,利用全等三角形的性质证明BD2=CD1即可;(3)如图2所示,连接CD1,证明△PMN为等腰直角三角形.根据三角形的面积公式,由BD2的最大值和最小值可求出答案.【解答】解:(1)①当点D落在线段AB上,BD=AB﹣AD=,当点D落在线段BD的延长线上时,BD=AB+AD=+,∴BD的长为﹣或.②显然∠ABD不能为直角,当∠ADB为直角时,AD2+BD2=AB2,∴,当∠BAD为直角时,AB2+AD2=BD2,∴,∴BD长为或.(2)如图,连接D1D2,D1C,则△AD1D2为等腰直角三角形,∴,∴AD1=AD2,AB=AC,∵∠BAC=∠D2AD1,∴∠BAD2=∠CAD1,在△ABD2和△ACD1中,,∴△BAD2≌△CAD1(SAS),∴BD2=CD1,又∵∠AD2C=135°,∴∠D1D2C=∠AD2C﹣∠AD2D1=135°﹣45°=90°,∴=,∴.(3)如图2,所示,连接CD1,理由:∵点P,M分别是CD2,D2D1的中点,∴,PM∥CD1,∵点N,M分别是BC,D1D2的中点,∴,PN∥BD2,∵BD2=CD1,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CD1,∴∠D2PM=∠D2CD1,∵PN∥BD2,∴∠PNC=∠D2BC,∵∠D2PN=∠D2CB+∠PNC=∠D2CB+∠D2BC,∴∠MPN=∠D2PM+∠D2PN=∠D2CD1+∠D2CB+∠D2BC=∠BCD1+∠D2BC=∠ACB+∠ACD1+∠D2BC=∠ACB+∠ABD2+∠D2BC=∠ACB+∠ABC.∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°.∴△PMN为等腰直角三角形.∴.=,∴当BD2取最大时,△PMN的面积最大,此时最大面积S==.当BD2取最小时,△PMN面积最小,此时最小面积S==.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【分析】(1)将点B,C的坐标代入y=﹣x2+bx+c即可;(2)①求出顶点坐标,直线MB的解析式,由PD⊥x轴且OD=m知P(m,﹣2m+6),即可用含m的代数式表示出S;②在①和情况下,将S与m的关系式化为顶点式,由二次函数的图象及性质即可写出点P的坐标;(3)分情况讨论,如图2﹣1,当∠CPD=90°时,推出PD=CO=3,则点P纵坐标为3,即可写出点P坐标;如图2﹣2,当∠PCD=90°时,证∠PDC=∠OCD,由锐角三角函数可求出m的值,即可写出点P坐标;当∠PDC=90°时,不存在点P.【解答】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得,解得,,∴二次函数的解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线BM的解析式为y=kx+b,将点B(3,0),M(1,4)代入,得,解得,∴直线BM的解析式为y=﹣2x+6,∵PD⊥x轴且OD=m,∴P(m,﹣2m+6),∴S=S△PCD=PD•OD=m(﹣2m+6)=﹣m2+3m,即S=﹣m2+3m,∵点P在线段BM上,且B(3,0),M(1,4),∴1≤m≤3;②∵S=﹣m2+3m=﹣(m﹣)2+,∵﹣1>0,∴当m=时,S取最大值,∴P(,3);(3)存在,理由如下:如图2﹣1,当∠CPD=90°时,∵∠COD=∠ODP=∠CPD=90°,∴四边形CODP为矩形,∴PD=CO=3,将y=3代入直线y=﹣2x+6,得,x=,∴P(,3);如图2﹣2,当∠PCD=90°时,∵OC=3,OD=m,∴CD2=OC2+OD2=9+m2,∵PD∥OC,∴∠PDC=∠OCD,∴cos∠PDC=cos∠OCD,∴=,∴DC2=PD•OC,∴9+m2=3(﹣2m+6),解得,m1=﹣3﹣3(舍去),m2=﹣3+3,∴P(﹣3+3,12﹣6),当∠PDC=90°时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(,3)或(﹣3+3,12﹣6).。

2020年中考数学押题卷一(附答案)

2020年中考数学押题卷一(附答案)

2020 年中考数学押题卷一(附答案)注意事项:1.本试卷共 5 页,满分 120 分,考试时间 120 分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第Ⅰ卷一、选择题(本大题共12 小题,每题 3 分,共 36 分 .在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.计算 10+(﹣ 24)÷ 8+2×(﹣ 6)的结果是()A.﹣ 5B.﹣ 1C.1D. 52.一个正常人的心跳平均每分钟70 次,一天大体跳的次数用科学记数法表示这个结果是()A.× 105B.× 103C.× 104D. 504× 1023.列方程中有实数解的是A. x2 1 0B.x1C. x 1xD. x2x 121 x21x4. 桌上倒扣着反面相同的 5 张扑克牌,其中 3 张黑桃、 2 张红桃.从中随机抽取一张,则()A.能够早先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性相同大D.抽到红桃的可能性更大5.以下四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120 °后,能与原图形完全重合的是()6.如图,点A, B, C 是⊙ O 上的三点,已知∠AOB=100°,那么∠ ACB的度数是()A. 30°B. 4 0°C. 50°D.60°7. 用 4 个完满相同的小正方体搭成以下列图的几何体,该几何体的()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同8.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10 户家庭的月用水情况,则以下关于这10 户家庭的月用水量说法错误的选项是()月用水量(吨)4569户数(户)3421 A.中位数是 5 吨B.众数是 5 吨C.极差是 3 吨D.平均数是吨9.关于 x 的一元二次方程(m﹣ 5)x2+2x+2= 0 有实根,则m 的最大整数解是()A. 2B. 3C. 4D. 510.关于二次函数y= 2x2+x﹣ 3,以下结果中正确的选项是()A.抛物线有最小值是y=﹣B. x>﹣ 1 时 y 随 x 的增大而减小C.抛物线的对称轴是直线x=﹣D.图象与x 轴没有交点11.如图, AB=DB,∠ 1=∠ 2,请问增加下面哪个条件不能够判断△ABC≌△ DBE的是()A. BC=BE B. AC=DE C.∠ A=∠ D D.∠ ACB=∠ DEB12.如图,△ABC为等边三角形,以AB 为边向形外作△ABD,使∠ ADB= 120°,再以点 C 为旋转中心把△CBD 旋转到△CAE,则以下结论:①D、A、E 三点共线;②DC 均分∠ BDA;③ ∠ E=∠BAC;④DC= DB+DA,其中正确的有()A.1 个B. 2 个C. 3 个D.4 个第Ⅱ卷二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13.若一元二次方程x2﹣( a+2) x+2a=0 的两个实数根分别是 3、 b,则 a+b=.14.在平行四边形ABCD中,对角线 AC、BD 订交于点 O.若是 AB=14,BD=8, AC=x,那么 x 的取值范围是.15.如图,在正方形ABCD中,点 E、F 分别在 BC、CD上,且 BE=DF,若∠ EAF=30°,则 sin∠EDF=.16.如图,在Rt△ ABC中,∠ ACB=90°,∠ A=30°, AC=15cm,点径为 3cm 的⊙ O 与△ ABC 的边相切时,x=.O 在中线CD 上,设OC=xcm,当半17.如,在平面直角坐系中,△ABC的点坐分( 4,0 ),(8 ,2),( 6,4).已知△ A1B1C1的两个点的坐( 1,3 ),( 2,5 ),若△ ABC 与△ A1B1C1位似,△ A1B1C1的第三个点的坐.18.二次函数 y=的象如,点A位于坐原点,点A, A , A ⋯A在 y 的正半上,点0123nB1, B2, B3⋯B n在二次函数位于第一象限的象上,点C1,C2, C3⋯C n在二次函数位于第二象限的象上,四形A0B1A1C1,四形 A1B2A2C2,四形 A2B3A3C3⋯四形 A n﹣1B n A n C n都是菱形,∠ A0B1A1=B A =∠ A B A ⋯=∠ A B A =60 °,菱形 A B AC 的周.∠ A1 2 2 2 3 3n﹣ 1 n n n﹣ 1 n n n三、解答(本大共 6 小,共 66 分 .解答写出文字明、演算步或推理程.)19.(本10 分 )解不等式合意填空,完成本的解答.( 1)解不等式①,得;( 2)解不等式②,得;( 3)把不等式①和②的解集在数上表示出来:( 4)原不等式组的解集为.20.(本题 10 分 )如图,在△ ABC 中,∠ ACB= 90°, M 、N 分别是的中点,延长BC 至点 D,使 CD=BD,连接DN、 MN .若 AB= 6.( 1)求证: MN = CD;( 2)求 DN 的长.21.(本题 10 分 )2019 年 3 月 30 日,四川省凉山州木里县境内发生森林火灾,30 名左右的扑火英雄牺牲,让人感觉痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100 分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完满的统计图表:组别成绩 x/ 分组中值A50≤ x< 6055B60≤ x< 7065C70≤ x< 8075D80≤ x< 9085E90≤ x< 10095请依照图表供应的信息,解答以下各题:( 1)补全频数分布直方图和扇形统计图;( 2)分数段80≤ x< 90 对应扇形的圆心角的度数是°,所抽取的学生竞赛成绩的中位数落在区间内;(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.22.(本题 12 分 )如图,在⊙ O 中,半径OD⊥直径 AB,CD 与⊙ O 相切于点D,连接 AC 交⊙ O 于点 E,交 OD 于点G,连接 CB并延长交⊙于点F,连接 AD, EF.(1)求证:∠ ACD=∠ F;(2)若 tan ∠ F=①求证:四边形ABCD是平行四边形;②连接 DE,当⊙ O 的半径为 3 时,求 DE 的长.23.(本题 12 分 )如图示一架水平翱翔的无人机AB 的尾端点 A 测得正前面的桥的左端点P的俯角为α其中tanα= 2,无人机的翱翔高度AH 为 500米,桥的长度为 1255 米.(1)求点 H 到桥左端点 P 的距离;(2)若无人机前端点 B 测得正前面的桥的右端点 Q 的俯角为 30°,求这架无人机的长度 AB.24.(本题 12 分)已知抛物线y= ax2﹣ 2ax﹣2( a≠ 0).( 1)当抛物线经过点P( 4,﹣ 6)时,求抛物线的极点坐标;( 2)若该抛物线张口向上,当﹣1≤ x≤ 5 时,抛物线的最高点为M,最低点为N,点 M 的纵坐标为,求点 M 和点 N 的横坐标;( 3)点 A( x1, y1)、 B(x2, y2)为抛物线上的两点,设t ≤ x1≤ t+1,当 x≥3时,均有 y1≥ y2,求 t 的取值范围.参照答案第Ⅰ卷一、选择题(本大题共12 小题,每题 3 分,共 36 分 .在每题给出的四个选项中,只有一项为哪一项符合题目要求的)第Ⅱ卷二、填空题(本大题共 6 小题,每题 3 分,共 18 分)13. 5 1 4. 20<x< 3615.16. 2,3或6.17.( 3, 4)或( 0, 4).三、解答题(本大题共7 小题,共 66 分 .解答应写出文字说明、演算步骤或推理过程.)19.解:,(1)解不等式①,得 x<﹣ 1,(2)解不等式②,得 x≤ 2,(3)把不等式①和②的解集在数轴上表示出来为:( 4)∴原不等式组的解集为x<﹣ 1,故答案为: x<﹣ 1,x≤ 2, x<﹣ 1.20.( 1)证明:∵ M 、N 分别是的中点,∴MN = BC, MN ∥BC,∵ CD= BD,∴CD= BC,∴MN = CD;(2)解:连接 CM,∵MN ∥ CD, MN = CD,∴四边形 MCDN 是平行四边形,∴ DN= CM,∵∠ACB=90°,M 是AB 的中点,∴ CM= AB,∴ DN= AB= 3.21.解:( 1)样本容量是:10÷5%= 200,D 组人数是: 200﹣( 10+20+30+60)= 80(人),D 组所占百分比是:× 100%=40%,E 组所占百分比是:× 100%=30%.补全频数分布直方图和扇形统计图以下列图:( 2)分数段80≤x< 90 对应扇形的圆心角的度数是:360°×= 144°;一共有 200 个数据,依照从小到大的序次排列后,第100 个与第 101 个数据都落在 D 组,所以所抽取的学生竞赛成绩的中位数落在80≤ x< 90 区间内.故答案为144, 80≤ x<90;(3)( 55× 10+65× 20+75× 30+85× 80+95× 60)÷ 200= 83(分).所以估计该校参赛学生的平均成绩是83 分.22.( 1)证明:∵ CD 与⊙ O 相切于点D,∴OD⊥ CD,∵半径 OD⊥直径 AB,∴AB∥ CD,∴∠ ACD=∠ CAB,∵∠ EAB=∠ F,∴∠ ACD=∠ F;(2)①证明:∵∠ ACD=∠ CAB=∠ F,∴ tan∠ GCD= tan∠GAO= tan∠ F=,设⊙ O 的半径为 r,在 Rt△ AOG 中, tan ∠ GAO==,∴ OG=r,∴ DG= r﹣r=r,在 Rt△ DGC 中, tan∠ DCG==,∴CD= 3DG= 2r,∴DC= AB,而DC∥ AB,∴四边形ABCD是平行四边形;②作直径DH,连接 HE,如图, OG= 1,AG==,CD= 6, DG= 2, CG==2,∵DH 为直径,∴∠HED= 90°,∴∠H+∠HDE= 90°,∵DH⊥ DC,∴∠ CDE+∠ HDE= 90°,∴∠ H=∠ CDE,∵∠ H=∠ DAE,∴∠ CDE=∠ DAC,而∠ DCE=∠ ACD,∴△ CDE∽△ CAD,∴=,即=,∴ DE=.23.解:( 1)在 Rt△ AHP 中,∵ AH=500,由 tan ∠ APH= tanα===2,可得PH=250米.∴点 H 到桥左端点P 的距离为250 米.(2)设 BC⊥HQ 于 C.在 Rt△ BCQ中,∵ BC= AH= 500,∠ BQC=30°,∴ CQ==1500米,2020年中考数学押题卷一(附答案) 11 / 11∵ PQ = 1255 米,∴ CP =245 米,∵ HP = 250 米,∴ AB = HC =250 ﹣245= 5 米.答:这架无人机的长度AB 为5 米. 24.解:( 1)该二次函数图象的对称轴是x == 1; ( 2)∵该二次函数的图象张口向上,对称轴为直线x = 1,﹣ 1≤ x ≤5, ∴当 x =5时, y 的值最大,即M ( 5, ). 把 M (5,)代入 y = ax 2﹣ 2ax ﹣ 2,解得 a = ,∴该二次函数的表达式为y = x 2﹣ 2x ﹣ 2,当 x = 1 时, y = ,∴ N ( 1,﹣ );( 3)当 a >0 时,该函数的图象张口向上,对称轴为直线 x = 1,∵ t ≤ x 1≤ t+1,当 x 2≥ 3 时,拥有 y 1≥ y 2,点 A ( x 1 ,y 1 )B ( x 2, y 2)在该函数图象上, ∴ t ≥ 3 或 t+1≤ 1﹣( 3﹣ 1),解得, t ≥ 3 或 t ≤﹣ 2;当 a < 0 时,该函数的图象张口向下,对称轴为直线x = 1, ∵ t ≤ x 1 2时,拥有12 1 1 22 ≤ t+1,当 x ≥ 3 y ≥ y ,点 A ( x ,y )B ( x , y )在该函数图象上, ∴, ∴﹣ 1≤ t ≤ 2.t 的取值范围﹣ 1≤ t ≤ 2.。

黑龙江省2020年中考数学押题卷及答案

黑龙江省2020年中考数学押题卷及答案

4
21. (本题 10 分 ) 2019 年 3 月 30 日,四川省凉山州木里县境内发生森林火灾, 30 名左右的扑火英雄牺牲,让人
感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一 次“防火安全知识竞赛”(满分 100 分),赛后从中抽取了部分学生的成绩进行整理,并制作了如 下不完整的统计图表:
C.抛物线的对称轴是直线 x=﹣
D .图象与 x 轴没有交点
11.如图, AB=DB,∠ 1=∠ 2,请问添加下面哪个条件不能判断△ ABC≌△ DBE的是(

A. BC=BE
B. AC=DE C .∠ A=∠ D
D .∠ ACB=∠ DEB
12.如图,△ ABC为等边三角形,以 AB为边向形外作△ ABD,使∠ ADB=120°,再以点 C 为旋转中
°,所抽取的学生竞赛成绩的中位
数落在
区间内;
( 3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估
计该校参赛学生的平均成绩.
22.( 本题 12 分 )
如图,在⊙ O中,半径 OD⊥直径 AB,CD与⊙ O相切于点 D,连接 AC交⊙ O于点 E,交 OD于点 G,
连接 CB并延长交⊙于点 F,连接 AD, EF.
抽到红桃的可能性更大
5.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转
120°后,能与原图形
完全重合的是(

6.如图,点 A, B, C 是⊙ O上的三点,已知∠ AOB=10°0 ,那么∠ ACB的度数是(

A .30° B . 4 0° C .50°
D .60°
7. 用 4 个完全相同的小正方体搭成如图所示的几何体,该几何体的(

2020年中考数学押题卷四(附答案)

2020年中考数学押题卷四(附答案)

2020年中考数学押题卷四(附答案)注意事项:1. 本试卷共5页,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.6 的相反数是( ) A.61 B. 6 C. -6 D. -61 2. 下面四个几何体中,左视图是四边形的几何体共有( )A .1 个B .2 个C .3 个D .4 个3.计算(﹣ab 2)3的结果是( )A .﹣a 3b 5B .﹣a 3b 6C .﹣ab 6D .﹣3ab 24.下列调查中,适合采用全面调查(普查)方式的是( )A .对长江水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .对某班40名同学体重情况的调查D .对某类烟花爆竹燃放安全情况的调查 5.已知∠α=35°,那么∠α的余角等于( ) A .35°B .55°C .65°D .145°6.不等式组的解集为()A.x>B.x<﹣1 C.﹣1<x<D.x>﹣7.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.B.C.D.8.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.409.小颖同学制作了四张材质和外观完全一样的书签,每个书签的正面写着一本数学著作的书名,分别是《九章算术》、《几何原本》、《周髀算经》、《海岛算经》.将这四张书签背面朝上洗匀后随机抽取一张,则抽到的书签上恰好写有我国古代数学著作书名的概率是()A.B.C.D.10.不等式组的解集在数轴上表示正确的是()A.B.C.D.11. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④12.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.4 B.6 C.8 D.10第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:x2﹣4x=.14. 下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△5=2×3+5=11,2△(﹣1)=2×3+(﹣1)=5,6△3=6×3+3=21,4△(﹣3)=4×3+(﹣3)=9……根据这个定义,计算(﹣2018)△2018的结果为15.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.16.某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:苹果总质量n(kg)1002003004005001000损坏苹果质量m(kg)苹果损坏的频率(结果保留小数点后三位)估计这批苹果损坏的概率为(结果保留小数点后一位),损坏的苹果约有kg.17.如图,AB是⊙O的直径,PA,PC分别与⊙O相切于点A,点C,若∠P=60°,PA=,则AB的长为.18.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac <0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c ﹣2=0有两个相等的实数根.其中正确的结论有(填序号).三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.(本题10分)已知x,y满足方程组,求代数式(x﹣y)2﹣(x+2y)(x﹣2y)的值.20.(本题10分)如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.21.(本题10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少请用画树状图或列表法加以说明,并列举所有等可能的结果.22.(本题12分)根据《太原市电动自行车管理条例》的规定,2019年5月1日起,未上牌的电动自行车将禁止上路行驶,而电动自行车上牌登记必须满足国家标准.某商店购进了甲.乙两种符合国家标准的新款电动自行车.其中甲种车总进价为22500元,乙种车总进价为45000元,已知乙种车每辆的进价是甲种车进价的倍,且购进的甲种车比乙种车少5辆.(1)甲种电动自行车每辆的进价是多少元(2)这批电动自行车上市后很快销售一空.该商店计划按原进价再次购进这两种电动自行车共50辆,将新购进的电动自行车按照表格中的售价销售.设新购进甲种车m辆(20≤m≤30),两种车全部售出的总利润为y元(不计其他成本).①求y与m之间的函数关系式;②商店怎样安排进货方案,才能使销售完这批电动自行车获得的利润最大最大利润是多少型号甲乙售价(元/辆)2000280023.(本题12分)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,∠DCB=60°②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP 绕点逆时针旋转2α得到线段DF,连结BF,请直接写出、BP三者的数量关系(不需证明)24.(本题12分)已知二次函数y=ax2﹣2ax+3的最大值为4,且该抛物线与y轴的交点为C,顶点为D.(1)求该二次函数的解析式及点C,D的坐标;(2)点P(t,0)是x轴上的动点,①求|PC﹣PD|的最大值及对应的点P的坐标;②设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+3的图象只有一个公共点,求t的取值范围.参考答案第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.x(x﹣4)14. ﹣4036 15. 4 16. 1000 18.②③④三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.解:解方程组得:,所以(x﹣y)2﹣(x+2y)(x﹣2y)=x2﹣2xy+y2﹣x2+4y2=﹣2xy+5y2=﹣2×3×(﹣1)+5×(﹣1)2=11.20.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD,∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形,(2)∵四边形AFHG是正方形,∴∠BHC=90°,又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x,则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2,∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去),∴AD=12,∴AB===6.21.解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,108°;(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.22.解:(1)设甲种电动自行车每辆的进价是x元,则乙种电动车的进价为元,由题意得:,解得:x=1500,经检验,x=1500是原方程的解,答:甲电动车的进价为每辆1500元.(2)①设新购进甲种车m辆,则乙电动车为(50﹣m)辆,y=(2000﹣1500)m+(2800﹣1500×)(50﹣m)=﹣50m+27500②∵y=﹣50m+27500,y随x的增大而减小,20≤m≤30,∴当x=20时,y=﹣50×20+27500=26500元,最大答:y与x的函数关系式为y=﹣50x+27500,当x=20时,利润最大,最大利润为26500元.23. 解:(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.故答案为60②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α﹣∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF,∴CP=BF,CP=BF.(2)结论:BF﹣BP=2DE•tanα.理由:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α+∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,在Rt△CDE中,∠DEC=90°,∴tan∠DCE=,∴CE=DEtanα,∴BC=2CE=2DEtanα,即BF﹣BP=2DEtanα.解:(Ⅰ)在二次函数y=ax2﹣2ax+3中,∵x=﹣=1,∴y=ax2﹣2ax+3的对称轴为x=1,∵y=ax2﹣2ax+3的最大值为4,∴抛物线的顶点D(1,4),将D(1,4)代入y=ax2﹣2ax+3中,得a=﹣1,∴该二次函数的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3),D点坐标为(1,4);(Ⅱ)①∵|PC﹣PD|≤CD,∴当P,C,D三点在一条直线上时,|PC﹣PD|取得最大值,如图1,连接DC并延长交x轴于点P,将点D(1,4),C(0,3)代入y=kx+b,得,解得k=1,b=3,∴y CD=x+3,当y=0时,x=﹣3,∴P(0,﹣3),CD==,∴|PC﹣PD|的最大值为,P(﹣3,0);②y=a|x|2﹣2a|x|+3可化为y=,将P(t,0),Q(0,2t)代入y=kx+b,得,解得:k=﹣2,b=2t,∴y PQ=﹣2x+2t,情况一:如图2﹣1,当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ与函数y=的图象只有一个公共点,此时t=﹣3,综合图2﹣1,图2﹣2,所以当t≤﹣3时,线段PQ与函数y=的图象只有一个公共点;情况二:如图2﹣3,当线段PQ过(0,3),即点Q与点C重合时,线段PQ与函数y=的图象只有一个公共点,此时t=,如图2﹣4,当线段PQ过点(3,0),即点P与点A(3,0)重合时,t=3,此时线段PQ与函数y=的图象有两个公共点,综合图2﹣3,图2﹣4,所以当≤t<3时,线段PQ与函数y=的图象只有一个公共点;情况三:如图2﹣5,将y=﹣2x+2t带入y=﹣x2+2x+3(x≥0),整理,得x2﹣4x+2t﹣3=0,△=16﹣4(2t﹣3)=28﹣8t,令28﹣8t=0,解得t=,∴当t=时,线段PQ与与函数y=的图象只有一个公共点;。

2020年中考数学押题卷及答案(二)

2020年中考数学押题卷及答案(二)

2020年中考数学押题卷及答案(二)注意事项:1.答题前,务必将自己的姓名、准考证号填写在规定的位置.2.答题时,卷Ⅰ必须使用2B铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚.3.所有题目必须在答题卡上作答,在试卷上答题无效.4.本试题共6页,满分150分,考试用时120分钟.5.考试结束后,将试卷和答题卡一并交回.卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分,在每小题的四个选项中,只有一个选项正确)1.64的立方根是( C )A.8 B.±8 C.2 D.±22.下列计算错误的是( A )A.(-2x)2=-2x2B.(-2a3)2=4a6C.(-x)9÷(-x)3=x6D.-a2·a=-a33.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是( B )A.8.5×105吨B.8.5×106吨C.8.5×107吨D.85×106吨4.如图,该几何体的俯视图是( B )5.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是( D )A.角平分线B.中位线C.高D.中线6.青蛙是人类的朋友,为了了解某地青蛙的数量,先从池塘里捕捞20只青蛙,作上标记,放回池塘,经过一段时间后,再从池塘中捞出40只青蛙,其中有标记的有4只,请你估计一下,这个池塘里有多少只青蛙( D )A.100只B.150只C.180只D.200只7.为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的中位数是( C )A.4小时B.4.5小时C.5小时D.5.5小时8.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是( B )A.15°B.25°C .30°D .35°9.下列命题中,正确的是( D )A .平行四边形既是中心对称图形,又是轴对称图形B .四条边相等的四边形是正方形C .三角形的内心到三角形各顶点的距离相等D .有一个角为60°的等腰三角形是等边三角形10.若关于x 的一元二次方程kx 2-2x -1=0有两个实数根,则k 的取值范围是( C )A .k ≠0B .k ≥-1C .k ≥-1且k ≠0D .k >-1且k ≠011.如图,已知AB ,AD 是⊙O 的弦,∠B =20°,点C 在弦AB 上,连接CO 并延长CO 交于⊙O 于点D ,∠D =15°,则∠BAD 的度数是( D )A .30°B .45°C .20°D .35°,第11题图) ,第12题图),第14题图)12.如图,已知双曲线y =-3x (x <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,则△AOC 的面积为( B )A .6 B.92 C .3 D .213.某校组织1080名学生去外地参观,现有A ,B 两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租12辆,设A 型客车每辆坐x 人,根据题意列方程为( D )A.1080x =1080x -15+12B.1080x =1080x -15-12 C.1080x =1080x +15-12 D.1080x =1080x +15+12 14.如图所示的抛物线是二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法错误的是( C )A .abc >0B .当x <1时,y 随x 的增大而减小C .a -b +c >0D .当y >0时,x <-2或x >415.如图,在△ABC 中,AB =AC ,AD ,CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 的最小值的是( B )A .BCB .CEC .AD D .AC点拨:如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴当P,C,E共线时,PB+PE的值最小,最小值为CE的长度.卷Ⅱ二、填空题(本大题共5小题,每小题5分,共25分)16.分解因式:x3-4xy2=__x(x+2y)(x-2y)__.17.如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AD=6,BD=2,AE=9,则EC的长是__3__.19.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为3π__.20.如图是一组有规律图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…,依此规律,第n 个图案有__3n +1__个三角形.(用含n 的代数式表示)解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…,∴第n 个图案有(3n +1)个三角形.三、解答题(本大题共7小题,各题分值见题号后,共80分)21.(本题8分)计算:(-1)2017-(12)-1+(π-3.14)0+|1-3|-3tan 30°.解:原式=-322.(本题8分)先化简,再求值:(a -2a 2+2a -a -1a 2+4a +4)÷a -4a +2,其中a 满足a 2+2a -7=0.解:原式=1a2+2a,∵a 2+2a-7=0,∴a2+2a=7,∴原式=1723.(本题10分)某经销单位将进价为每件27.4元的商品按每件40元销售,经两次调价后调至每件32.4元.(1)若该商店两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,其销量就增加10件,若该商品原来每月可销售500件,那么两次调价后,每月销售该商品可获利多少元?解:(1)设这个降价率为x,依题意得40(1-x)2=32.4,解得x1=0.1=10%,x2=1.9(舍去).答:这个降价率为10%(2)∵降价后多销售的件数为[(40-32.4)÷0.2]×10=380(件),∴两次调价后,每月可销售该商品的件数为380+500=880(件),∴每月销售该商品可获利(32.4-27.4)×880=4400(元).答:两次调价后,每月销售该商品可获利4400元24.(本题12分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A ,B ,C ,D 表示这四种不同的口味粽子)的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整的统计图.请根据以上信息回答下列问题:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外形完全相同的A ,B ,C ,D 粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?解:(1)调查的居民数有240÷40%=600(人)(2)C 类的人数是600-180-60-240=120(人),A 类所占百分比为180÷600=30%,C 类所占百分比为120÷600=20%,补图略(3)爱吃D 粽的人数是8000×40%=3200(人)(4)画树状图略,则P (第二个吃到的恰好是C 粽)=312=1425.(本题12分)如图,在平行四边形ABCD 中,过B 作BE ⊥CD ,垂足为点E ,连接AE ,F 为AE 上一点,且∠BFE =∠C.(1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30°,求AE 的长.解:(1)∵AD ∥BC ,∴∠C +∠ADE =180°,∵∠BFE =∠C ,∠AFB +∠BFE =180°,∴∠AFB =∠EDA ,∵AB ∥DC ,∴∠BAE =∠AED ,∴△ABF ∽△EAD(2)∵AB ∥CD ,BE ⊥CD ,∴∠ABE =90°,∵AB =4,∠BAE =30°,∴AE =2BE ,由勾股定理可求得AE =83326.(本题14分)如图,AB 是⊙O 的直径,AB =43,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB.(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC 的长度.(结果保留π)解:(1)∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE(2)连接AC.∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°.∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE(3)作BM ⊥PF 于M ,则CE =CM =CF ,∵CF CP =34,设CE =CM =CF =3a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM PM =CM BM,∴BM 2=CM ·PM =3a 2,∴BM =3a ,tan ∠BCM =BM CM =33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴劣弧BC 的长为60×π×23180=233π27.(本题16分)如图,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴、y 轴建立平面直角坐标系.(1)求AE 的长;(2)求经过O ,D ,C 三点的抛物线的解析式;(3)若点N 在(2)中抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.解:(1)∵CE =CB =OA =5,CO =AB =4,∴在Rt △COE 中,OE =CE 2-CO 2=3,∵OA =5,∴AE =5-3=2(2)在Rt △ADE 中,设AD =m ,则DE =BD =4-m ,由勾股定理,得AD 2+AE 2=DE 2,即m 2+22=(4-m )2,解得m =32,∴D (-32,-5),∵C (-4,0),O (0,0),∴设过O ,D ,C 三点的抛物线为y =ax (x +4),∴-5=-32a (-32+4),解得a =43, ∴抛物线解析式为y =43x (x +4)=43x 2+163x (3)∵抛物线的对称轴为直线x =-2,点M 在抛物线上,∴设N (-2,n ),M (m ,43m 2+163m ),又由题意可知C (-4,0),E (0,-3),①当EN 为对角线,即四边形ECNM 是平行四边形时,则线段EN 中点的横坐标为-1,线段CM 中点的横坐标为m +(-4)2,∵EN ,CM 互相平分,∴m +(-4)2=-1,解得m =2,∵43×22+163×2=16,∴M (2,16);②当EM 为对角线,即四边形ECMN 是平行四边形时,则线段EM 中点的横坐标为m 2,线段CN 中点的横坐标为-3,∵EN ,CM 互相平分,∴m 2=-3,解得m =-6,∵43×(-6)2+163×(-6)=16,∴M (-6,16);③当EC 为对角线,即四边形EMCN 是平行四边形时,同理可得0+(-4)2=m +(-2)2,解得m =-2.∵43×(-2)2+163×(-2)=-163,∴M (-2,-163).综上可知,存在满足条件的点M ,其坐标为(2,16),(-6,16)或(-2,-错误!)。

湖南省2020年中考数学押题卷(含解析)

湖南省2020年中考数学押题卷(含解析)

2020年湖南省中考数学押题卷一.选择题(每小题3分,满分36分)1.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃2.3tan60°的值为()A.B.C.D.33.下列图形是中心对称图形的是()A.B.C.D.4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10105.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.三个实数3、、的大小关系是()A.B.C.D.7.化简+的结果是()A.B.C.x+1 D.x﹣18.在方程组中,代入消元可得()A.3y﹣l﹣y=7 B.y﹣1﹣y=7 C.3y﹣3=7 D.3y﹣3﹣y=7 9.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.10.已知点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,那么()A.y2<y1<y3B.y3<y1<y2C.y1<y3<y2D.y2<y3<y1 11.如图,在正方形ABCD中,E是AB上的一点,BE=1,AE=3BE,P是AC上一动点,则PB+PE的最小值是()A.5 B.4 C.D.412.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(每小题3分,满分18分)13.(3分)﹣的系数是,次数是.14.(3分)如图钢架中,焊上等长的7根钢条来加固钢架,若AA1=A1A2=A2A3=…=A7A8=A8A,则∠A的度数是.15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为.16.(3分)已知一组数据3,4,1,a,2,a的平均数为2,则这组数据的中位数是.17.(3分)已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.18.(3分)如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.三.解答题19.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;20.(6分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.21.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.22.(8分)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.23.(9分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)A B甲 3 8 622乙 5 4 402 (1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?24.(9分)如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.25.(10分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.26.(10分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.2020年湖南省中考数学押题卷参考答案与试题解析一.选择题(每小题3分,满分36分)1.【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.2.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选:D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.3.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.4.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D 符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】利用平方根的定义得到3即为,比较被开方数大小即可.【解答】解:∵,∴3>,∵,∴,∴,故选:B.【点评】此题考查了实数的大小比较,关键是利用平方根的定义得到3即为解答.7.【分析】先通分,再依据法则计算可得.【解答】解:原式=+==,故选:A.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式加减运算法则.8.【分析】将第2个方程代入第1个方程,再去括号即可得.【解答】解:将x=y﹣1代入3x﹣y=7,得:3(y﹣1)﹣y=7,去括号,得:3y﹣3﹣y=7,故选:D.【点评】本题考查了解二元一次方程的代入法.代入法解二元一次方程组的一般步骤:(1)变形组中的一个方程,用含一个未知数的代数式表示出另一个未知数;(2)代入另一个方程;(3)求解方程得未知数的值;(4)把该值代入变形后的方程,求出另一个未知数的值.9.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.10.【分析】将点A,点B,点C坐标代入解析式求出对应的函数值,即可求解.【解答】解:∵点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,∴y1=2,y2=﹣3,y3=6,∴y2<y1<y3,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,将点A,点B,点C坐标代入解析式求出对应的函数值是本题的关键.11.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=1,AE=3BE,∴AE=3,AB=AD=4,∴DE==5,故PB+PE的最小值是5.故选:A.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题时,确定PB+PE的值最小时点P的位置是关键.12.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(每小题3分,满分18分)13.(3分)﹣的系数是﹣,次数是 3 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:﹣的系数是:﹣,次数是:3.故答案为:﹣;3.【点评】此题主要考查了单项式,关键是掌握单项式相关定义.14.(3分)如图钢架中,焊上等长的7根钢条来加固钢架,若AA1=A1A2=A2A3=…=A7A8=A8A,则∠A的度数是20°.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AA4A5,∠AA5A4,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AA1=A1A2=A2A3=…=A7A8=A8A,∴∠A=∠AA2A1=∠AA7A8=x,∴∠A2A1A3=∠A2A3PA1=2x,∴∠A3A2A4=∠A2A4A3=3x,…,∠A4PA3A5=∠A4A5A3=4x,∴∠AA4A5=4x,∠AA5A4=4x,在△AA4A5中,∠A+∠AA4A5+∠AA5A4=180°,即x+4x+4x=20°,解得x=20°,即∠A=20°.故答案为:20°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.15.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AD=CD,再根据等边对等角可得∠A=∠ACD,然后利用锐角的正切值等于对边比邻边列式计算即可得解.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴AD=CD,∴∠A=∠ACD,∴tan∠ACD=tan∠A===.故答案为:.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,锐角三角函数的定义,熟记性质并求出∠A=∠ACD是解题的关键.16.(3分)已知一组数据3,4,1,a,2,a的平均数为2,则这组数据的中位数是 1.5 .【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:由题意知3+4+1+a+2+a=2×6,解得:a=1,则这组数据为1,1,1,2,3,4,所以这组数据的中位数是=1.5,故答案为:1.5.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.17.(3分)已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是m≥﹣.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.(3分)如图,AC是⊙O的直径,弦BD⊥AO,垂足为点E,连接BC,过点O作OF⊥BC,垂足为F,若BD=8cm,AE=2cm,则OF的长度是cm.【分析】根据垂径定理求出BE,根据相交弦定理求出EC,根据勾股定理求出BC,根据垂径定理、勾股定理计算,得到答案.【解答】解:∵BD⊥AO,∴BE=ED=BD=4,由相交弦定理得,EA•EC=EB•ED,即2×EC=4×4,解得,EC=8,∴AC=10,由勾股定理得,BC==4,∵OF⊥BC,∴CF=BC=2,∴OF==(cm),故答案为:.【点评】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分弦是解题的关键.三.解答题19.(6分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;【分析】本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4﹣(2﹣2)+4×,=1+4﹣2+2+2,=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.21.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是40 人;(2)图2中α是54 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有330 人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)由×360°=54°,40×35%=14;即可求得答案;(3)首先求得这40名学生自主学习时间不少于1.5小时的百分比,然后可求得该校九年级学生自主学习时间不少于1.5小时的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(8分)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.【分析】根据AAS证明△ABM≌△EFA,可得结论.【解答】证明:∵四边形ABCD为正方形,∴∠B=90°,AD∥BC,(2分)∴∠EAF=∠BMA,∵EF⊥AM,∴∠AFE=90°=∠B,(4分)在△ABM和△EFA中,∵,∴△ABM≌△EFA(AAS),(5分)∴AB=EF.(6分)【点评】本题考查了正方形的性质、三角形全等的性质和判定,熟练掌握三角形全等的判定是关键.23.(9分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)A B甲 3 8 622乙 5 4 402 (1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?【分析】(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y 元/个,根据总价=单价×数量结合甲、乙两校购买篮球所花费用及购买数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据A种型号的篮球数量小于B种型号的篮球及购买总费用不多于1000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可求出结论.【解答】解:(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y元/个,根据题意得:,解得:.答:A种型号的篮球的销售单价为26元/个,B种型号的篮球的销售单价为68元/个.(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据题意得:,解得:≤m<10.又∵m为整数,∴m=9.答:A种型号的篮球采购9个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(9分)如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.【分析】(1)根据垂径定理证明CD⊥AB,由PC∥AB,可得PC⊥CD,可得结论;(2)证明△FEP∽△PED,得,则PE2=EF•ED,同理得:△ECF∽△EDC,则EC2=EF•ED,可得CE=PE;(3)根据平行线分线段成比例定理得:,,则,可得GH=BG,证明△DHG≌△FBG(ASA),得DH=BF=2,作辅助线,根据等腰三角形三线合一得:,分别由勾股定理计算各线段的长,最后由三角函数定义可得结论.【解答】(1)证明:∵CD是⊙O的直径,∴CD⊥AB,又∵PC∥AB,∴PC⊥CD,∴PC为⊙O的切线;……(3分)(2)∵PC∥AB,∴∠EPF=∠PAB,∠FDB=∠PAB,∴∠EPF=∠FDB,∵∠PEF=∠DEP,∴△FEP∽△PED,∴,∴PE2=EF•ED,连接CF,同理得:△ECF∽△EDC,∴,即EC2=EF•ED,∴CE2=PE2,∴CE=PE;……(7分)(3)∵PC∥AB,∴,,∴,由(2)知:CE=PE,∴GH=BG,∴∠HGD=∠BGF,∠DHG=∠FBG=90°,∴△DHG≌△FBG(ASA),∴DH=BF=2,又AO=OF,AH=HB,∴OH=BF=1,∴OD=3,CD=6,连接OB,过点O作OM⊥DB,则OB=OD=3,∴,∴,,∴,又PC∥AB,∴,∴,∴,∴MP=5,在Rt△POM中,tan∠APD===……(10分)【点评】本题考查了切线的判断和性质,三角形全等的判定和性质,相似三角形的判断和性质,平行线分线段成比例定理,三角函数等,第三问有难度,作出辅助线构建直角三角形,根据平行线分线段成比例定理和勾股定理求各边的长是解题的关键.25.(10分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)①根据相似三角形的判定,可得答案,②根据相似三角形的性质,可得PM与ME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为,解得,抛物线的解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),∴当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME.26.(10分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【分析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。

2020年中考数学押题卷三(附答案)

2020年中考数学押题卷三(附答案)

2020年中考数学押题卷三(附答案)注意事项:1. 本试卷共5页,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣6的倒数是()A.B.﹣C.6 D.﹣62.89岁的侯云德院士获得2017年国家最高科学技术奖,这位著名的医学病毒学专家发现最小的病毒的半径仅有0.000009毫米,将0.000009用科学记数法表示应是()A.9×10﹣6B.9×10﹣5C.0.9×10﹣6D.0.9×10﹣53.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣1 B.a•b>0 C.﹣b<0<﹣a D.|a|>|b| 4.如图,下列水平放置的几何体中,左视图不是矩形的是()A. B. C.D.5.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.36.下列4个点,不在反比例函数y=﹣图象上的是()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.( 3,2)7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨)3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差8.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④9.若一个正六边形的边心距为2,则该正六边形的周长为()A.24B.24 C.12D.410.如图,⊙O中,AC为直径,MA,MB分别切⊙O于点A,B,∠BAC=25°,则∠AMB的大小为()A.25°B.30°C.45°D.50°11.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>112.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13. 若关于x的分式方程133x mx x-=--无解,则m=_________.14. 函数12y xx=+-的定义域是 .15.如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是。

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题(含答案解析)

2020年中考数学压轴题一、选择题1.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)2.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣二、填空题3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC =PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O 到△MNG三个顶点的距离和的最小值是.三、解答题5.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.6.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接PA,点P在运动过程中,PA﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.【答案与解析】一、选择题1.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.2.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF =2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.二、填空题3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD =5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则PA+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO 的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴PA+PC=GP+PC=GC=PE∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,三、解答题5.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=PA′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.6.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=PA﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=PA﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,PA﹣有最大值为,2020年中考数学压轴题一、选择题1.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°2.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题3.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第3题第4题4.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.2.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP=3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题3.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.4.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x 即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.2020年中考数学压轴题一、选择题1.已知函数y =ax 2+bx +c 的图象的一部分如图所示,则a +b +c 取值范围是( )A .﹣2<a +b +c <0B .﹣2<a +b +c <2C .0<a +b +c <2D .a +b +c <22.如图所示,矩形OABC 中,OA =2OC ,D 是对角线OB 上的一点,OD =OB ,E 是边AB 上的一点.AE =AB ,反比例函数y =(x >0)的图象经过D ,E 两点,交BC 于点F ,AC 与OB 交于点M .EF与OB 交于点G ,且四边形BFDE 的面积为.下列结论:①EF ∥AC ;②k =2;③矩形OABC 的面积为;④点F 的坐标为(,)正确结论的个数为( )A .1个B .2个C .3个D .4个 二、填空题 3.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,与x 轴的一个交点为A (﹣1,0),点B 在抛物线上,且与点C 关于抛物线的对称轴对称.已知一次函数y =kx +b 的图象经过A ,B 两点,根据图象,则满足不等式(x +2)2+m ≤kx +b 的x 的取值范围是 .4.如图,AE=4,以AE 为直径作⊙O ,点B 是直径AE 上的一动点,以AB 为边在AE 的上方作正方形ABCD ,取CD 的中点M ,将△ADM 沿直线AM 对折,当点D 的对应点D ´落在⊙O 上时,BE 的长为 .三、解答题5.在平面直角坐标系xOy 中,有不重合的两个点Q (x 1,y 1)与P (x 2,y 2).若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 轴或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q 与点P 之间的“折距”,记做D PQ .特别地,当PQ 与某条坐标轴平EA OB D CM D´行(或重合)时,线段PQ的长即点Q与点P之间的“折距”.例如,在图1中,点P(1,﹣1),点Q(3,﹣2),此时点Q与点P之间的“折距”D PQ=3.(1)①已知O为坐标原点,点A(3,﹣2),B(﹣1,0),则D AO=,D BO=.②点C在直线y=﹣x+4上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=3x+6上以动点.请你直接写出点E与点F之间“折距”D EF的最小值.6.如图1,在矩形ABCD中,AB=4,BC=5,点E在AD上,ED=3.动点P从点B出发沿BC方向以每秒3个单位的速度向点C运动,过点P作PF∥CE,与边BA交于点F,过点F作FG∥BC,与CE交于点G,当点F与点A重合时,点P停止运动,设点P运动的时间为t秒.(1)用含t的代数式分别表示线段BF和PF的长度,则有BF=,PF=.(2)如图2,作点D关于CE的对称点D′,当FG恰好过点D′时,求t的值.(3)如图3,作△FGP的外接圆⊙O,当点P在运动过程中.①当外接圆⊙O与四边形ABCE的边BC或CE相切时,请求出符合要求的t的值;②当外接圆⊙O的圆心O落在△FGP的内部(不包括边上)时,直接写出t的取值范围.【答案与解析】一、选择题1.【分析】函数y=ax2+bx+c的图象开口向下可知a小于0,由于抛物线顶点在第一象限即抛物线对称轴在y轴右侧,当x=1时,抛物线的值必大于0由此可求出a的取值范围,将a+b+c用a表示出即可得出答案.【解答】解:由图象可知:a<0,图象过点(0,1),所以c=1,图象过点(﹣1,0),则a﹣b+1=0,当x=1时,应有y>0,则a+b+1>0,将a﹣b+1=0代入,可得a+(a+1)+1>0,解得a>﹣1,所以,实数a的取值范围为﹣1<a<0.又a+b+c=2a+2,∴0<a+b+c<2.故选:C.2.【分析】设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,证明=即可判断①;表示出D和E的坐标,根据系数k的几何意义求得k的值即可判断②;求得B的坐标,求得矩形OABC的面积即可判断③;求得F的坐标即可判断④.【解答】解:设E(a,b),F(m,n),则a=OA=BC,b=AE,CF=m,n=CO=AB,∴B(a,n),∵E,F在反比例函数y=上,∴ab=mn,∴BC•AE=CF•AB,∴=,∴EF∥AC,故①正确;∵OD=OB,AE=AB,∴D(a,n),E(a,n),∵OA=2OC,∴a=2n,∴B(2n,n),D(n,n),E(2n,n),∵反比例函数y=经过点F,E,∴k=mn=2n•n,∴m=n,∴F(n,n),∴BF=2n﹣n=n,BE=n,∵四边形BFDE的面积=S△BDF+S△BDE=,∴×n×(n﹣n)+×n×(2n﹣n)=,解得n=,∴E(3,),F(,)∴k=3×=2,故②④正确;∵B(3,),∴矩形OABC的面积为,故③正确;故选:A.二、填空题3.【分析】将点A代入抛物线中可求m=﹣1,则可求抛物线的解析式为y=x2+4x+3,对称轴为x=﹣2,则满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1.【解答】解:抛物线y=(x+2)2+m经过点A(﹣1,0),∴m=﹣1,∴抛物线解析式为y=x2+4x+3,∴点C坐标(0,3),∴对称轴为x=﹣2,∵B与C关于对称轴对称,点B坐标(﹣4,3),∴满足(x+2)2+m≤kx+b的x的取值范围为﹣4≤x≤﹣1,故答案为﹣4≤x≤﹣1.4.三、解答题5.【分析】(1)①D AO=|3﹣0|+|﹣2﹣0|=5,即可求解;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,即可求解;(2)EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,即可求解.【解答】解:(1)①D AO=|3﹣0|+|﹣2﹣0|=5,同理D BO=1,故答案为:5,1;②设点C(m,4﹣m),则D CO=|m|+|m﹣4|,当0≤m≤4时,D CO最小,最小值为4;(2)如图2,过点E分别作x、y轴的平行线交直线y=﹣x+4于F1、F2,则EF1是“折距”D EF的最小值,即求EF1的最小值即可,当点E在y轴左侧于平行于直线y=﹣x+4的直线相切时,EF1最小,如图3,将直线y=﹣x+4向右平移与圆相切于点E,平移后的直线与x轴交于点G,连接OE,设原直线与x、y轴交于点M、N,则点M、N的坐标分别为(﹣2,0)、点N(0,6),则MN=2,则△MON∽△GEO,则,即,则GO=,EF1=MG=2﹣=.6.【分析】(1)由△PFB∽△ECD,得==,由此即可解决问题.(2)如图2中,由△D′MG∽△CDE,得=,求出MG,根据PF=CG=CM﹣MG,列出方程即可解决问题.(3)①存在.如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG,由PB=MF=MG=FG=PC,得到3t=(5﹣3t),即可解决问题.如图5中,当⊙O与BC相切时,连接GO,延长GO交PF于M,连接OF、OP,由△FGM∽△PFB,得=,列出方程即可解决问题.②求出两种特殊位置t的值即可判断.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠D=90°,AD∥BC,在Rt△ECD中,∵∠D=90°,ED=3.CD=4,∴EC==5,∵PF∥CE,FG∥BC,∴四边形PFGC是平行四边形,∴∠FPB=∠ECB=∠DEC,∴△PFB∽△ECD,∴==,∴==,∴BF=4t,PF=5t,故答案为4t,5t.(2)如图2中,∴D、D′关于CE对称,∴DD′⊥CE,DM=MD′,∵•DE•DC=•EC•DM,∴DM=D′M=,CM==,由△D′MG∽△CDE,得=,∴=,∴MG=,∴PF=CG=CM﹣MG,∴5t=﹣,∴t=.∴t=时,D′落在FG上.(3)存在.①如图4中,当⊙O与BC相切时,连接OP延长PO交FG于M,连接OF、OG.∵OP⊥BC,BC∥FG,∴PO⊥FG,∴FM=MG由PB=MF=MG=FG=PC,得到3t=(5﹣3t),解得t=.如图5中,当⊙O与EC相切时,连接GO,延长GO交PF于M,连接OF、OP.∵OG⊥EC,BF∥EC,∴GO⊥PF,∴MF=MP=t,∵△FGM∽△PFB,∴=,∴=,解得t=.综上所述t=或时,⊙O与四边形ABCE的一边(AE边除外)相切.②如图6中,当∠FPG=90°时,由cos∠PCG=cos∠CED,∴=,∴t=,如图7中,当∠FGP=90°时,∴=,∴t=,观察图象可知:当<t<时,外接圆⊙O的圆心O落在△FGP的内部.2020年中考数学压轴题一、选择题1.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣82.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值二、填空题3.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF 最大时,S△ADE=.第3题第4题4.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.三、解答题5.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D 运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.6.已知,如图,二次函数y=ax2+2ax﹣3a(a>0)图象的顶点为C与x轴交于A、B两点(点A在点B 左侧),点C、B关于过点A的直线l:y=kx﹣对称.(1)求A、B两点坐标及直线l的解析式;(2)求二次函数解析式;(3)如图2,过点B作直线BD∥AC交直线l于D点,M、N分别为直线AC和直线l上的两动点,连接CN,NM、MD,求D的坐标并直接写出CN+NM+MD的最小值.【答案与解析】一、选择题1.【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示出点D的纵坐标和点E的横坐标,由三角形相似和对称,可求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∴AF:EG=BD:BE,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.2.【分析】A、根据等边三角形ABC的内心的性质可知:AO平分∠BAC,根据角平分线的定理和逆定理得:FO平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF =∠EOG,可证明△DOF≌△GOF≌△GOE,△OAD≌△OCG,△OAF≌△OCE,可得AD=CG,AF=CE,从而得△ADF≌△CGE;B、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC﹣S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,可作判断.【解答】解:A、连接OA、OC,∵点O是等边三角形ABC的内心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+S△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,过O作OH⊥AC于H,∴S△OFG=•FG•OH,由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确;故选:D.二、填空题3.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH ≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.4.【分析】过点O作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点O作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×OE=2×3,解得OE=,∴⊙O的半径是.故答案为:.三、解答题5.【分析】(1)根据两边成比例夹角相等即可证明两三角形相似;(2)如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.首先证明△GFN≌△FHM,想办法求出点H的坐标,构建方程即可解决问题;(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.推出点H在直线y=x+上运动,根据垂线段最短即可解决问题;【解答】(1)证明:如图1中,∵△ABE,△BGF都是等腰直角三角形,∴==,∵∠ABE=∠GBF=45°,∴∠ABG=∠EBF,∴△ABG∽△EBF.(2)解:如图构建如图平面直角坐标系,作HM⊥AD于M,GN⊥AD于N.设AM交BG于K.∵△GFH是等腰直角三角形,∴FG=FH,∠GNF=∠GFH=∠HMF=90°,∴∠GFN+∠HFM=90°,∠HFM+∠FHM=90°,∴∠GFN=∠FHM,∴△GFN≌△FHM,∴GN=FM,FN=HM,∵△ABG∽△EBF,∴==,∠AGB=∠EFB,∵∠AKG=∠BKF,∴∠GAN=∠KBF=45°,∵EF=t,∴AG=t,∴AN=GN=FM=t,∴AM=2+t,HM=FN=2+t,∴H(2+t,4+t),当点H在直线CD上时,2+t=10,解得t=.(3)由(2)可知H(2+t,4+t),令x=2+t,y=4+t,消去t得到y=x+.∴点H在直线y=x+上运动,如图,作CH垂直直线y=x+垂足为H.根据垂线段最短可知,此时CH的长最小,易知直线CH的解析式为y=﹣3x+30,由,解得,∴H(8,6),∵C(10,0),∴CH==2,∴HC最小值是2.6.【分析】(1)令二次函数解析式y=0,解方程即求得点A、B坐标;把点A坐标代入直线l解析式即求得直线l.(2)把二次函数解析式配方得顶点C(﹣1,﹣4a),由B、C关于直线l对称可知AB=AC,用a表示AC的长即能列得关于的方程.求得a有两个互为相反数的解,由二次函数图象开口向上可知a>0,舍去负值.(3)①用待定系数法求直线AC解析式,由BD∥AC可知直线BD解析式的k与AC的k相同,再代入点B坐标即求得直线BD解析式.把直线l与直线BD解析式联立方程组,求得的解即为点D坐标.②由点B、C关于直线l对称,连接BN即有B、N、M在同一直线上时,CN+MN=BN+MN=BM最小;作点D关于直线AC的对称点Q,连接DQ交直线AC于点E,可证B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ最小,CN+NM+MD最小值=BM+MD最小值=BQ.由直线AC垂直平分DQ且AC∥BD可得BD⊥DQ,即∠BDQ=90°.由B、D坐标易求BD的长;由B、C关于直线l 对称可得l平分∠BAC,作DF⊥x轴于F则有DF=DE,所以DQ=2DE=2DF=4;利用勾股定理即求得BQ的长.【解答】解:(1)当y=0时,ax2+2ax﹣3a=0解得:x1=﹣3,x2=1∴点A坐标为(﹣3,0),点B坐标为(1,0)∵直线l:y=kx﹣经过点A∴﹣3k﹣=0 解得:k=﹣∴直线l的解析式为y=﹣x﹣(2)∵y=ax2+2ax﹣3a=a(x+1)2﹣4a∴点C坐标为(﹣1,﹣4a)∵C、B关于直线l对称,A在直线l上∴AC=AB,即AC2=AB2∴(﹣1+3)2+(﹣4a)2=(1+3)2解得:a=±(舍去负值),即a=∴二次函数解析式为:y=x2+x﹣(3)∵A(﹣3,0),C(﹣1,﹣2),设直线AC解析式为y=kx+b∴解得:∴直线AC解析式为y=﹣x﹣3∵BD∥AC∴设直线BD解析式为y=﹣x+c把点B(1,0)代入得:﹣+c=0 解得:c=∴直线BD解析式为y=﹣x+∵解得:∴点D坐标为(3,﹣2)如图,连接BN,过点D作DF⊥x轴于点F,作D关于直线AC的对称点点Q,连接DQ交AC于点E,连接BQ,MQ.∵点B、C关于直线l对称,点N在直线l上∴BN=CN∴当B、N、M在同一直线上时,CN+MN=BN+MN=BM,即CN+MN的最小值为BM∵点D、Q关于直线AC对称,点M在直线AC上∴MQ=MD,DQ⊥AC,DE=QE∴当B、M、Q在同一直线上时,BM+MD=BM+MQ=BQ,即BM+MD的最小值为BQ∴此时,CN+NM+MD=BM+MD=BQ,即CN+NM+MD的最小值为BQ∵点B、C关于直线l对称∴AD平分∠BAC∵DF⊥AB,DE⊥AC∴DE=DF=|y D|=2∴DQ=2DE=4∵B(1,0),D(3,﹣2)∴BD2=(3﹣1)2+(﹣2)2=16∵BD∥AC∴∠BDQ=∠AEQ=90°∴BQ=∴CN+NM+MD的最小值为8.2020年中考数学压轴题一、选择题1.如图,在等腰△ABC中,AB=AC,把△ABC沿EF折叠,点C的对应点为O,连接AO,使AO平分∠BAC,若∠BAC=∠CFE=50°,则点O是()A.△ABC的内心B.△ABC的外心C.△ABF的内心D.△ABF的外心2.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.二、填空题3.如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'BCD′,且A′D′与CD相交于CD边的中点E,若AB=4,则△ECD′的面积是.4.如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.三、解答题5.如图,把矩形ABCD沿AC折叠,使点D与点E重合,AE交BC于点F,过点E作EG∥CD交AC于点G,交CF于点H,连接DG.(1)求证:四边形ECDG是菱形;(2)若DG=6,AG=,求EH的值.6.如图,已知△BAC为圆O内接三角形,AB=AC,D为⊙O上一点,连接CD、BD,BD与AC交于点E,且BC2=AC•CE①求证:∠CDB=∠CBD;②若∠D=30°,且⊙O的半径为3+,I为△BCD内心,求OI的长.【答案与解析】一、选择题1.【分析】连接OB、OC,根据AB=AC,AO平分∠BAC,∠BAC=50°,可得AO是BC的垂直平分线,∠BAO=∠CAO=25°,得OB=OC,根据折叠可证明∠OAC=∠OCA=25°,得OA=OC,进而OA=OB=OC,可得点O是三角形ABC的外心.【解答】解:如图,连接OB、OC,∵AB=AC,AO平分∠BAC,∴AO是BC的垂直平分线,∴OB=OC,∵∠BAC=50°,AO平分∠BAC,∴∠BAO=∠CAO=25°,根据折叠可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=100°,∴∠FCO=(180°﹣100°)=40°,∵AB=AC,∠BAC=50°,∴∠ACB=(180°﹣50°)=65°,∴∠OCA=∠ACB﹣∠FCO=65°﹣40°=25°,∴∠OAC=∠OCA=25°,∴OA=OC,∴OA=OB=OC,∴O是△ABC的外心.故选:B.2.【分析】过F作FN⊥BC,交BC延长线于N点,连接AC,构造直角△EFN,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,根据相似三角形的对应边成比例,求得NE=CD=,运用正方形性质,可得出△CNF是等腰直角三角形,从而求出CE.【解答】解:如图,过F作FN⊥BC,交BC延长线于N点,连接AC.∵DE的中点为G,EG绕E顺时针旋转90°得EF,∴DE:EF=2:1.∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∴CE:FN=DE:EF=DC:NE=2:1,∴CE=2NF,NE=CD=.∵∠ACB=45°,∴当∠NCF=45°时,A、C、F在一条直线上.则△CNF是等腰直角三角形,∴CN=NF,∴CE=NE=×=,∴CE=时,A、C、F在一条直线上.故选:D.二、填空题3.【分析】作A'F⊥BC于F,则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,A'F=AB=2,得出∠D'=∠A'BC=30°,得出BF=A'F=2,由矩形和平行四边形的性质得出BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,得出CD⊥A'D',得出A'F∥CD,证出四边形A'ECF 是矩形,得出CE=A'F=2,A'E=CF,证出DE=BF=2,即可得出答案.【解答】解:作A'F⊥BC于F,如图所示:则∠A'FB=90°,根据题意得:平行四边形A′BCD′的面积=BC•A'F=BC•AB,∴A'F=AB=2,∴∠D'=∠A'BC=30°,∴BF=A'F=2,∵四边形ABCD是矩形,四边形A′BCD′是平行四边形,∴BC=AD=A'D',A'D'∥AD∥BC,CD⊥BC,∴CD⊥A'D',∴A'F∥CD,∴四边形A'ECF是矩形,∴CE=A'F=2,A'E=CF,∴DE=BF=2,∴△ECD的面积=DE×CE=×2×2=2;4.【分析】首先,需要证明线段B1B2就是点B运动的路径(或轨迹),如图1所示.利用相似三角形可以证明;其次,证明△APN∽△AB1B2,列比例式可得B1B2的长.【解答】解:如图1所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,BB i,∵AO⊥AB1,AP⊥AB i,∴∠OAP=∠B1AB i,又∵AB1=AO•tan30°,AB i=AP•tan30°,∴AB1:AO=AB i:AP,∴△AB1B i∽△AOP,∴∠B1B i=∠AOP.同理得△AB1B2∽△AON,∴∠AB1B2=∠AOP,∴∠AB1B i=∠AB1B2,∴点B i在线段B1B2上,即线段B1B2就是点B运动的路径(或轨迹).由图形2可知:Rt△APB1中,∠APB1=30°,∴,Rt△AB2N中,∠ANB2=30°,∴=,∴,∵∠PAB1=∠NAB2=90°,∴∠PAN=∠B1AB2,∴△APN∽△AB1B2,∴==,∵ON:y=﹣x,∴△OMN是等腰直角三角形,∴OM=MN=,∴PN=,∴B1B2=,综上所述,点B运动的路径(或轨迹)是线段B1B2,其长度为.故答案为:.。

2020年九年级中考数学仿真押题卷附答案(一)

2020年九年级中考数学仿真押题卷附答案(一)

2020年九年级中考数学仿真押题卷附答案(一)学校:_________姓名:_________班级:________成绩:_________(满分120分 考试时间120分钟)一、选择题:(本大题共6小题,每小题2分,共12分。

) 1.(﹣)-1=( ) A . B .3 C .﹣ D .﹣3【答案】D【解析】(﹣)-1=-3.故选:D . 2.下列计算中正确的是( ) A .1212-=- B .22()(2324)39a b a b a b ---=- C .3a a a -=-- D .422()=a a a ÷--【答案】C【解析】A. 1221-=-,错误; B. 22()(2329)34a b a b b a ---=-,错误;C.3a a a -=--,正确; D. 422()=a a a ÷---,错误;故选C .3.一副直角三角板有不同的摆放方式,图中满足∠α与∠β相等的摆放方式是( )A .B .C .D .【答案】B【解析】选项B 中,∠α、∠β都与中间的锐角互余,根据同角的余角相等可得∠α=∠β, 故选:B .4.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣1【答案】B【解析】∵O为原点,AC=1,OA=OB,点C所表示的数为a,∴点A表示的数为a﹣1,∴点B表示的数为:﹣(a﹣1),故选:B.5.如图,⊙O与正六边形OABCDE的边OA,OE分别交于点F,G,点M为劣弧FG的中点.若FM=4.则点O到FM的距离是()A.4 B.C.D.【答案】C【解析】连接ON,过O作OH⊥FM于H,∵正六边形OABCDE,∴∠FOG=120°,∵点M为劣弧FG的中点,∴∠FOM=60°,∵OH⊥FM,OF=OM,∴∠OFH=60°,∠OHF=90°,FH=FM=2,∴OH=FH=2,故选:C.6.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连结CE,BE,则CE2+BE2的最大值是()A.4 B.5 C.6 D.4+2【答案】C【解析】∵∠AOC=90°,∴AC是直径∵点A,B,C均在坐标轴上,OB=OC=OA=1,∴A(0,1),B(-1,0),C(1,0);∴11,22D⎛⎫⎪⎝⎭,AC=2,设点E的坐标为(m,n),∵点E在D上,∴(m−12)2+(n−12)2=12,∴m2+n2=m+n①,∵B(-1,0),C(1,0),∴CE2+BE2=(m-1)2+n2+(m+1)2+n2=2(m2+n2)+ 2 ∵m2+n2是表示D上的任意一个点E到原点的距离,∴当点E是射线OD和D的交点时,m2+n2的值最大∵11,22D⎛⎫⎪⎝⎭,∴直线OD解析式为y=x,∴m=n,将m=n代入①得,m=n=1,∴CE2+BE2最大值为2×(12+12)+ 2=6,故选C.二、填空题(本大题共10小题,每小题2分,共20分.)7.比较大小:﹣﹣.【答案】>【解析】∵≈﹣1.41,﹣=﹣1.5,∴﹣>﹣.故答案为:>.8.分解因式(a-b)(a-9b)+4ab的结果是____.【答案】(a-3b)2【解析】(a-b)(a-9b)+4ab=a2-10ab+9b2+4ab= a2-6ab+9b2=(a-3b)2.故答案为(a-3b)2.9.若关于x的方程+=2有增根,则m的值是.【答案】0.【解析】方程两边都乘以(x﹣2)得,2﹣x﹣m=2(x﹣2),∵分式方程有增根,∴x﹣2=0,解得x=2,∴2﹣2﹣m =2(2﹣2),解得m =0.故答案为:0.10.如图所示,点C 位于点A 、B 之间(不与A 、B 重合),点C 表示12x ﹣,则x 的取值范围是_____.【答案】102x -<< 【解析】根据题意得:11-2 2x <<,解得:102x -<<, 则x 的范围是102x -<<,故答案为:102x -<< 11.已知关于x 的一元二次方程mx 2﹣2x+1=0有两个不相等的实数根,那么m 的取值范围是 【答案】m <1且m≠0 .【解析】∵关于x 的一元二次方程mx 2﹣2x+1=0有两个不相等的实数根, ∴,解得:m <1且m≠0.故答案为:m <1且m≠0.12.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 . 【答案】5【解析】∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°, ∴多边形的内角和是900﹣360=540°,∴多边形的边数是:540°÷180°+2=3+2=5. 故答案为:5.13.如图,在菱形ABCD 中,对角线AC 、BD 交于点O,过点A 作AH ⊥BC 于点H,已知BO=4,S 菱形ABCD =24,则AH= .【答案】【解析】∵四边形ABCD 是菱形,∴BO=DO=4,AO=CO ,AC ⊥BD ,∴BD=8, ∵S 菱形ABCD =AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S 菱形ABCD =BC×AH=24,∴AH=;故答案为:.14.如图,点A 、B 、C 、D 在⊙O 上,B 是的中点,过C 作⊙O 的切线交AB 的延长线于点E .若∠AEC=84°,则∠ADC =_____°.【答案】64【解析】连接BD 、BC ,∵B 是的中点,∴,∴∠BDC =∠ADB=∠ADC ,∵四边形ABCD 是圆内接四边形,∴∠EBC =∠ADC , ∵EC 是⊙O 的切线,切点为C ,∴∠BCE =∠BDC =∠ADC ,∵∠AEC =84°,∠AEC+∠BCE+∠EBC =180°,∴84°+∠ADC+∠ADC =180°, ∴∠ADC =64°.故答案为64.15.如图,点A 在反比例函数11(0)y x x =>的图像上,点B 在反比例函数2(x 0)ky x=<的图像上,AB ⊥y 轴,若△AOB 的面积为2,则k 的值为____.【答案】-3【解析】如图,设AB 与y 轴交于点C , ∵点A 在反比例函数11(0)y x x =>的图像上,点B 在反比例函数2(x 0)ky x=<的图像上,AB ⊥y 轴, ∴S △OAC =12,S △OBC =2k ,∵△AOB的面积为2,∴S△AOB= S△OAC+ S△OBC=12+2k=2,解得:k=±3,∵反比例函数2(x0) kyx=<的图象在第二象限,∴k=-3.故答案为:-316.在△ABC中,AB=5,AC=4,BC=3.若点P在△ABC内部(含边界)且满足PC≤PA≤PB,则所有点P组成的区域的面积为_____.【答案】【解析】分别作AB,AC的垂直平分线,交AB于点E,交AC于点F,交AC于点D,∵若点P在△ABC内部(含边界)且满足PC≤PA≤PB,∴点P在△DEF内部(含边界),∵DE⊥AC,EF⊥AB,∴△DEF是直角三角形,△AEF是直角三角形,∵AB=5,AC=4,BC=3,∴AD=2,AE=2.5,DE=1.5,∵AE2=AD•AF,∴AF=,∴DF=,∴△DEF的面积为;三、解答题(本大题共10小题,共88分.)17.(6分)计算112x xx x ⎛⎫⎛⎫++÷-⎪ ⎪⎝⎭⎝⎭【答案】11 xx+ -【解析】原式=22121x x xx x++-÷=2(1)(1)(1)x xx x x+⋅+-=11xx+-.18.(8分)(1)解方程组1321y x x y =+⎧⎨-=-⎩ ;(2)请运用解二元一次方程组的思想方法解方程组213x y x y +=⎧⎨+=⎩. 【答案】(1)12x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩.【解析】(1)1321y x x y =+⎧⎨-=-⎩①②把①代入②得:3x ﹣2(x+1)=﹣1, 解得:x =1.把x =1代入y ①得:y =2.∴方程组的解为12x y =⎧⎨=⎩ ,(2)22+=1+3x y x y ⎧⎨=⎩①②由①得:x =1﹣y ③把③代入②得:1﹣y+y 2=3, 解得:y 1=﹣1,y 2=2,把y 1=﹣1,y 2=2分别代入③得: 得:x 1=2,x 2=﹣1, ∴方程组的解为2-1x y =⎧⎨=⎩或-12x y =⎧⎨=⎩. 19.(7分)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE ∥AB ,EB ∥CD ,连接DE 交BC 于点O .(1)求证:DE =BC ;(2)如果AC =5,tan ∠ACD =,求DE 的长.【答案】(1)见解析;(2)10.【解析】(1)证明:在四边形CDBE中,CE∥AB,EB∥CD,∴四边形CDBE为平行四边形,∵CD⊥AB,∴∠CDB=90°,∴平行四边形CDBE为矩形,∴DE=BC;(2)解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠CBA=90°,∴∠CBA=∠ACD,∴tan∠BCA=,即=,∵AC=5,∴BC=10,∴DE=10.20.(8分)某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.【答案】(1)见解析(2)中位数22.5万,众数21万;(3)见解析【解析】(1)∵被调查的总人数为=40人,∴不称职的百分比为×100%=10%,基本称职的百分比为×100%=25%,优秀的百分比为1﹣(10%+25%+50%)=15%,则优秀的人数为15%×40=6,∴得26分的人数为6﹣(2+1+1)=2,补全图形如下:(2)由折线图知称职与优秀的销售员职工人数分布如下:20万4人、21万5人、22万4人、23万3人、24万4人、25万2人、26万2人、27万1人、28万1人,则称职与优秀的销售员月销售额的中位数为=22.5万、众数为21万;(3)月销售额奖励标准应定为23万元.∵称职和优秀的销售员月销售额的中位数为22.5万元,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为23万元.21.(8分)一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色外没有任何区别.小王通过大量反复试验(每次取一个球,放回搅匀后取第二个)发现,取得黑球的频率稳定在0.4左右.(1)请你估计袋中黑球的个数;(2)若小王取出的第一个球是白球,将它放在桌上,闭上眼睛从袋中余下的球中再任意一个球,取出红球的概率是多少?【答案】(1)8;(2)【解析】(1)估计袋中黑球的个数为20×0.4=8(个);(2)小王取出的第一个球是白球,则袋子中还剩余19个球,其中红球有6个,所以从袋中余下的球中再任意一个球,取出红球的概率是22.(8分)如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.【答案】(1)5 (2)1【解析】(1)∵,DC⊥AB,∴AC=BC,DC经过圆心,设拱桥的桥拱弧AB所在圆的圆心为O,∵AB=8,∴AC=BC=4,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,∵OD⊥AB,∴∠ACO=90°,在Rt△ACO中,∵OA2=AC2+OC2,∴R2=(R﹣2)2+42,解之得R=5.答:桥拱所在圆的半径长为5米.(2)设OD与EF相交于点G,联结OE,∵EF∥AB,OD⊥AB,∴OD⊥EF,∴∠EGD=∠EGO=90°,在Rt△EGD中,,∴EG=3DG,设水面上升的高度为x米,即CG=x,则DG=2﹣x,∴EG=6﹣3x,在Rt△EGO中,∵EG2+OG2=OE2,∴(6﹣3x)2+(3+x)2=52,化简得x2﹣3x+2=0,解得x1=2(舍去),x2=1,答:水面上升的高度为1米.23.(8分)在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)的图象交于A、B点,与y轴交于点C,其中点A的坐标为(﹣2,3)(1)求一次函数和反比例函数的解析式;(2)如图,若将点C沿y轴向上平移4个单位长度至点F,连接AF、BF,求△ABF的面积.【答案】(1)一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=﹣;(2)10【解析】解:(1)把(﹣2,3)分别代入y=﹣x+1,与y=中,有3=2+b,=3,解得b=1,k=﹣6,∴一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=﹣;(2)一次函数的解析式为y=﹣x+1,当x=0时,y=1,∴C(0,1),若将点C向上平移4个单位长度得到点F,则CF=4.∵一次函数y=﹣x+b的图象与反比例函数y=(k≠0)的图象交于A、B两点∴解得,,∴B(3,﹣2),A(﹣2,3)∴S△ABF=×4×(2+3)=10.24.(8分)如图,要在江苏省某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程工程需尽快完成.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.求甲、乙两工程队单独完成此项工程所需的天数.【答案】(1)不会;(2)20,30.【解析】(1)NM不穿过原始森林保护区.理由如下:作CD⊥AB于D,设CD=x米,∵∠CAD=45°,∴AD=CD=x米,∵∠DCB=60°,∴BD=CD•tan∠DCB=x,∵AD+BD=AB,∴x+x=600,解得,x=300(﹣1)≈219.6>200.∴MN不会穿过森林保护区.(2)设甲工程队单独完成此项工程需要y天,则乙工程队单独完成此项工程需要(y+10)天.根据题意得:+=,解得:y=20.经检验知:y=20是原方程的根.则y+10=30.答:甲、乙两工程队单独完成此项工程所需的天数分别是20天、30天.25.(8分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出该矩形材料面积的最大值;如果不能,说明理由.【答案】(1)30 (2)当x=5.5时,S的最大值为30.25.【解析】(1)①若所截矩形材料的一条边是BC,如图1所示,过点C作CF⊥AE于点F,又∵∠A=∠B=90°,∴四边形ABCF为矩形,∵AB=AE=6,BC=5,∴S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示,过点E作EF∥AB交CD于点F,FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠DCB=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30.(2)能,如图3,在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG⊥FM 于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∴MG=BC=5,BM=CG,∵∠DCB=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.26.(9分)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【答案】(1)x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)y=(x﹣2)2+3(3)抛物线向下平移或距离,其顶点落在OP上.【解析】(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1代入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.如图,当点A′在平行于x轴的D点的特征线时,设A′(p,3),则OA′=OA=4,OE=3,EA′==,∴A′F=4﹣,设P(4,c)(c>0),在Rt△A′FP中,(4﹣)2+(3﹣c)2=c2,∴c=,∴P(4,)∴直线OP解析式为y=x,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.27.(11分)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线的对称轴是直线x=1.(1)求抛物线的函数表达式;(2)抛物线与直线y=﹣x﹣1交于A、E两点,P点在x轴上且位于点B的左侧,若以P、B、C为顶点的三角形与△ABE相似,求点P的坐标;(3)F是直线BC上一动点,M为抛物线上一动点,若△MBF为等腰直角三角形,请直接写出点M的坐标.【答案】(1)y=﹣x2+2x+3.(2)点P的坐标为(,0)或(﹣,0);(3)点M的坐标为(﹣1,0)或(﹣2,﹣5).【解析】解:(1)∵抛物线的对称轴是直线x=1,且过点A(﹣1,0),∴点B的坐标为(3,0).将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴抛物线的函数表达式为y=﹣x2+2x+3.(2)联立直线AE和抛物线的函数关系式成方程组,得:,解得:,,∴点E的坐标为(4,﹣5),∴AE==5.∵点B的坐标为(3,0),点C的坐标为(0,3),∴∠CBO=45°,BC=3.∵直线AE的函数表达式为y=﹣x﹣1,∴∠BAE=45°=∠CBO.设点P的坐标为(m,0),则PB=3﹣m.∵以P、B、C为顶点的三角形与△ABE相似,∴=或=,∴=或=,解得:m=或m=﹣,∴点P的坐标为(,0)或(﹣,0).(3)∵∠CBO=45°,∴存在两种情况(如图2).①取点M1与点A重合,过点M1作M1F1∥y轴,交直线BC于点F1,∵∠CBM1=45°,∠BM1F1=90°,∴此时△BM1F1为等腰直角三角形,∴点M1的坐标为(﹣1,0);②取点C′(0,﹣3),连接BC′,延长BC′交抛物线于点M2,过点M2作M2F2∥y轴,交直线BC于点F2,∵点C、C′关于x轴对称,∠OBC=45°,∴∠CBC′=90°,BC=BC′,∴△CBC′为等腰直角三角形,∵M2F2∥y轴,∴△M2BF2为等腰直角三角形.∵点B(3,0),点C′(0,﹣3),∴直线BC′的函数关系式为y=x﹣3,联立直线BC′和抛物线的函数关系式成方程组,得:,解得:,,∴点M2的坐标为(﹣2,﹣5).综上所述:点M的坐标为(﹣1,0)或(﹣2,﹣5).。

2020年江西省中考数学押题试卷及答案解析

2020年江西省中考数学押题试卷及答案解析

2020年江西省中考数学押题试卷一.选择题(共6小题,满分18分,每小题3分)1.若|﹣4|<a,则a的值可以是()A.﹣3B.﹣2C.0D.52.下列计算中正确的是()A.3x2+2x=5x3B.﹣3(x﹣4)=﹣3x+12C.(﹣3x)2•4x2=﹣12x4D.x6÷x2=x33.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.4.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1 5.如图,将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,DB的延长线交EF 于点H,则∠DHE的大小为()A.90°B.95°C.100°D.105°6.如图,直线y=x+b(b>0)分别交x轴、y轴于点A、B,直线y=kx(k<0)与直线y =x+b(b>0)交于点C,点C在第二象限,过A、B两点分别作AD⊥OC于D,BE⊥OC于E,且BE+BO=8,AD=4,则ED的长为()A.2B.C.D.1二.填空题(共6小题,满分18分,每小题3分)7.函数y=中,自变量x的取值范围是.8.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.9.如图,2008年北京奥运会圆了所有中国人的百年奥运梦,开幕式上奇特的点火式为世界所惊.(图中为奥运会中所用的圣火盆),其中圣火盆高120cm,盆体深20cm,立柱高110cm,CD=60cm.盆口圆的直径AB=.10.若一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2的值是.11.如图1的长方形ABCD中,E在AD上,沿BE将A点往右折成如图2所示,再作AF ⊥CD于点F,如图3所示,若AB=2,BC=3,∠BEA=60°,则图3中AF的长度为.12.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为.三.解答题(共5小题,满分30分,每小题6分)13.(6分)(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.14.(6分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.15.(6分)已知线段AC.(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.16.(6分)在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外完全相同,将球摇匀,从中任取1球.(1)请按取出不同颜色球的概率从小到大的顺序排列;(2)怎样改变各颜色球的数目,使取出每一种颜色的球的概率相等.17.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;四.解答题(共3小题,满分24分,每小题8分)18.(8分)国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.最喜欢的锻炼项目人数打球120跑步a游泳b跳绳30其他c(1)这次问卷调查的学生总人数为,人数a+c=;(2)扇形统计图中,n=,“其他”对应的扇形的圆心角的度数为度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?19.(8分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)当y2>y1时,求x的取值范围;(3)求点B到直线OM的距离.20.(8分)如图,安徽江准集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线L且AE=25cm,手臂AB=BC=60cm,末端操作器CD=35cm,AF∥直线L.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD =60°,求末端操作器节点D到地面直线L的距离.(结果保留根号)五.解答题(共2小题,满分18分,每小题9分)21.(9分)如图,已知AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD ∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的周长.22.(9分)如图,在菱形ABCD中,∠BAD=120°,点E在对角线BD上,将线段CE绕点C顺时针旋转120°,得到CF,连接DF.(1)求证:△BCE≌△DFC.(2)若BC=2.求四边形ECFD的面积,六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.2020年江西省中考数学押题试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.若|﹣4|<a,则a的值可以是()A.﹣3B.﹣2C.0D.5【分析】根据绝对值的性质进行判断.【解答】解:因为|﹣4|=4,|﹣4|<a,所以a的值可以是5.故选:D.2.下列计算中正确的是()A.3x2+2x=5x3B.﹣3(x﹣4)=﹣3x+12C.(﹣3x)2•4x2=﹣12x4D.x6÷x2=x3【分析】直接利用合并同类项法则以及单项式乘以多项式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、3x2+2x,无法计算,故此选项错误;B、﹣3(x﹣4)=﹣3x+12,正确;C、(﹣3x)2•4x2=36x4,故此选项错误;D、x6÷x2=x4,故此选项错误;故选:B.3.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,据此可得答案.【解答】解:从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B.4.不等式组的解集为()A.﹣4<x<﹣1B.﹣4≤x<﹣1C.﹣4≤x≤﹣1D.﹣4<x≤﹣1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+5≥1得x≥﹣4,解不等式>,得:x<﹣1,则不等式组的解集为﹣4≤x<﹣1,故选:B.5.如图,将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,DB的延长线交EF 于点H,则∠DHE的大小为()A.90°B.95°C.100°D.105°【分析】由旋转的性质和正方形的性质可得∠BAE=35°,∠E=90°,∠ABD=45°,由四边形的内角和定理可求解.【解答】解:∵将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,∴∠BAE=35°,∠E=90°,∠ABD=45°,∴∠ABH=135°,∴∠DHE=360°﹣∠E﹣∠BAE﹣∠ABH=360°﹣135°﹣35°﹣90°=100°,故选:C.6.如图,直线y=x+b(b>0)分别交x轴、y轴于点A、B,直线y=kx(k<0)与直线y =x+b(b>0)交于点C,点C在第二象限,过A、B两点分别作AD⊥OC于D,BE⊥OC于E,且BE+BO=8,AD=4,则ED的长为()A.2B.C.D.1【分析】分别令y=0,x=0来求直线y=x+b(b>0)与x轴负半轴、y轴正半轴的交点A、B的坐标,根据全等三角形的判定和性质以及勾股定理即可得到结论.【解答】解:当y=0时,x+b=0,解得,x=﹣b,∴直线y=x+b(b>0)与x轴的交点坐标A为(﹣b,0);当x=0时,y=b,∴直线y=x+b(b>0)与y轴的交点坐标B为(0,b);∴OA=OB,∵AD⊥OC于D,BE⊥OC于E,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠EOB,在△DAO和△BOE中,∴△DAO≌△EOB,∴OD=BE,AD=OE=4,∵BE+BO=8,∴OB=8﹣BE,∵OB2=BE2+OE2,∴(8﹣BE)2=BE2+42,∴BE=3,∴DE=OE﹣OD=AD﹣BE=1,故选:D.二.填空题(共6小题,满分18分,每小题3分)7.函数y=中,自变量x的取值范围是x>﹣2且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x+2≥0;分母不等于0,可知:x2+x﹣2≠0,解(x﹣1)(x+2)≠0,即x≠1,x≠﹣2;则就可以求出自变量x的取值范围.【解答】解:根据题意得:x+2≥0且x2+x﹣2≠0,解得:x>﹣2且x≠1.8.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 5.5×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.9.如图,2008年北京奥运会圆了所有中国人的百年奥运梦,开幕式上奇特的点火式为世界所惊.(图中为奥运会中所用的圣火盆),其中圣火盆高120cm,盆体深20cm,立柱高110cm,CD=60cm.盆口圆的直径AB=80cm.【分析】作OF⊥CD,垂足为F,交AB于点P,交狐AB于E,连接OB、OD设⊙O的半径为r,在Rt△OFD中运用勾股定理求出OF的值.再次运用勾股定理在Rt△OPB中求出PB的值,最后求得AB的值.【解答】解:如图,作OF⊥CD,垂足为F,交AB于点P,交狐AB于E,连接OB、OD设⊙O的半径为r,依题意可知:PF=120﹣110=10cm,EF=20﹣10=10(cm),DF=CD=30cm.在Rt△OFD中,OD=r,OF=r﹣10,DF=30,∴r2=(r﹣10)2+302∴r=50cm在Rt△OPB中OB=50,OP=50﹣20=30.∴BP=cm∴AB=2BP=80cm即盆口圆的直径AB=80cm.故答案为:80cm.10.若一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2的值是﹣2.【分析】两根之积等于即可解决问题.【解答】解:∵一元二次方程x2+x﹣2=0的解为x1、x2,∴x1•x2=﹣2.故答案为﹣2.11.如图1的长方形ABCD中,E在AD上,沿BE将A点往右折成如图2所示,再作AF ⊥CD于点F,如图3所示,若AB=2,BC=3,∠BEA=60°,则图3中AF的长度为3﹣.【分析】如图3中,作AH⊥BC于H,求出BH,CH即可解决问题.【解答】解:如图3中,作AH⊥BC于H.由题意在Rt△ABH中,AB=2,∠AHB=90°,∠ABH=30°,∴BH=AB•cos30°=,∴CH=BC﹣BH=,∵AF⊥CD,∴∠AHC=∠C=∠AFC=90°,∴四边形AFCH是矩形,∴AF=CH=3﹣.故答案为3﹣.12.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为或5﹣.【分析】如图1,先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;如图2,当DE=OD=时,当△OED是等腰三角形,于是得到结论.【解答】解:当OE=DE时,当△OED是等腰三角形,如图1,连接OA,在矩形ABCD 中,CD=AB=3,AD=BC=5,∠BAD=90°,在Rt△ABD中,根据勾股定理得,BD=,∵O是BD中点,∴OD=OB=OA=,∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴=,∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴()2=5(5﹣x),∴x=,即:AE=;如图2,当DE=OD=时,当△OED是等腰三角形,∴AE=5﹣;当OD=OE=时,当E与点A重合,不合题意舍去,综上所述,当△OED是等腰三角形时,AE的长为或5﹣;故答案为:或5﹣.三.解答题(共5小题,满分30分,每小题6分)13.(6分)(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.【分析】(1)直接利用乘法公式化简进而合并同类项即可;(2)直接利用多项式的乘法运算进而结合整式的混合运算法则计算得出答案.【解答】解:(1)原式=2(m2+2m+1)﹣(4m2﹣1)=2m2+4m+2﹣4m2+1=﹣2m2+4m+3;(2)原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=时,原式=2+=.14.(6分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.【分析】(1)由垂直得出∠AFE=∠AGC=90°,则∠AEF+∠EAF=90°,∠GAC+∠ACG =90°,由∠EAF=∠GAC得出∠AEF=∠ACG,即可得出结论;(2)由△ADE∽△ABC得出=,求出AB=BE+AE=7,则=,求出AC=,则CD=AC﹣AD=.【解答】(1)证明:AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∴∠AEF+∠EAF=90°,∠GAC+∠ACG=90°,∵∠EAF=∠GAC,∴∠AEF=∠ACG,∵∠EAD=∠CAB,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴=,∵AD=BE=4,AE=3,∴AB=BE+AE=4+3=7,∴=,解得:AC=,∴CD=AC﹣AD=﹣4=.15.(6分)已知线段AC.(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.【分析】(1)作AC的垂直平分线,垂足为O,然后截取OB=OD即可;(2)根据菱形的性质得AC⊥BD,OA=OC=4,OB=OD=3,再利用勾股定理计算出AD.【解答】解:(1)如图所示,四边形ABCD即为所求作的菱形;(2)∵AC=8,BD=6,且四边形ABCD是菱形,∴AO=4,DO=3,且∠AOD=90°,则AD===5.16.(6分)在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外完全相同,将球摇匀,从中任取1球.(1)请按取出不同颜色球的概率从小到大的顺序排列;(2)怎样改变各颜色球的数目,使取出每一种颜色的球的概率相等.【分析】(1)根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.(2)由于袋子中有三种颜色的6个球,要从袋子中随机取出一个球,使取出每种颜色的球的概率都相等,可知每一种球的概率都是,据此不难得出一个方案.【解答】解:(1)根据题意,袋子中共6个球,其中有1个白球,2个黄球和3个红球,故将球摇匀,从中任取1球,①恰好取出白球的可能性为,②恰好取出黄球的可能性为=,③恰好取出红球的可能性为=,故这些事件按发生的可能性从小到大的顺序排列是①<②<③.(2)将其中一个红球变成白球,可使取出每种颜色的球的概率都相等.此题答案不唯一.17.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;【分析】(1)根据全等三角形的判定和性质以及矩形的判定解答即可;(2)根据全等三角形的性质和勾股定理解答即可.【解答】证明:(1)∵AB⊥OM于B,DE⊥ON于E,∴∠ABO=∠DEA=90°.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL)∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=3,设AD=x,则OA=x,AE=OE﹣OA=9﹣x.在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,解得x=5.∴AD=5.即AB、AD的长分别为3和5.四.解答题(共3小题,满分24分,每小题8分)18.(8分)国家教育部提出“每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查“你最喜欢的锻炼项目是什么?”,规定从“打球”,“跑步”,“游泳”,“跳绳”,“其他”五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.最喜欢的锻炼项目人数打球120跑步a游泳b跳绳30其他c(1)这次问卷调查的学生总人数为300,人数a+c=90;(2)扇形统计图中,n=10,“其他”对应的扇形的圆心角的度数为18度;(3)若该年级有1200名学生,估计喜欢“跳绳”项目的学生大约有多少人?【分析】(1)用打球的人数除以所占的百分比求出总人数,用总人数乘以游泳的人数所占的百分比,求出游泳的人数,再用总人数减去打球、游泳和跳绳的人数,即可求出a+c;(2)应跳绳的人数除以总人数即可求出n的值,再用360°乘以“其他”所占的百分比即可得出“其他”对应的扇形的圆心角的度数;(3)用总人数乘以“跳绳”所占的百分比即可.【解答】解:(1)这次问卷调查的学生总人数为120÷40%=300(人),游泳的人数有300×20%=60(人),则a+c=300﹣120﹣60﹣30=90(人),故答案为:300,90;(2)=10%,则n=10;“其他”对应的扇形的圆心角的度数为360°×(1﹣20%﹣25%﹣40%﹣10%)=18°;故答案为:10,18;(3)由于在调查的300名学生中,喜欢“跳绳”项目的学生有30名,所占的比例为10%,所以,该年级1200名学生中估计喜欢“跳绳”项目的有1200×10%=120人.19.(8分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)当y2>y1时,求x的取值范围;(3)求点B到直线OM的距离.【分析】(1)先把M(﹣2,m)代入y=﹣x﹣1求出m得到M(﹣2,1),然后把M点坐标代入y=中可求出k的值,从而得到反比例函数解析式;(2)通过解方程组得反比例函数与一次函数的另一个交点坐标为(1,﹣2),然后写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可;(3)设点B到直线OM的距离为h,然后利用面积法得到••h=1,于是解方程即可,【解答】解:(1)把M(﹣2,m)代入y=﹣x﹣1得m=2﹣1=1,则M(﹣2,1),把M(﹣2,1)代入y=得k=﹣2×1=﹣2,所以反比例函数解析式为y=﹣;(2)解方程组得或,则反比例函数与一次函数的另一个交点坐标为(1,﹣2),当﹣2<x<0或x>1时,y2>y1;(3)OM==,S△OMB=×1×2=1,设点B到直线OM的距离为h,••h=1,解得h=,即点B到直线OM的距离为.20.(8分)如图,安徽江准集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线L且AE=25cm,手臂AB=BC=60cm,末端操作器CD=35cm,AF∥直线L.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD =60°,求末端操作器节点D到地面直线L的距离.(结果保留根号)【分析】如图,作BH⊥AF于H,延长CD交AF于J,交EL于M,则四边形AEMJ是矩形,四边形BFJG是矩形.解直角三角形求出DM即可.【解答】解:如图,作BH⊥AF于H,延长CD交AF于J,交EL于M,则四边形AEMJ 是矩形,四边形BFJG是矩形.在Rt△ABF中,∵∠BAF=45°,AB=60cm,∴BH=GJ=30(cm),∵BG∥FJ,∴∠GBA=∠BAF=45°,∵∠CBA=75°,∴∠CBG=30°,∴CG=BC=30(cm),∴DM=CM﹣CD=CG+GJ+JM﹣CD=30+30+25﹣35=(20+30)(cm),五.解答题(共2小题,满分18分,每小题9分)21.(9分)如图,已知AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD ∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的周长.【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD 垂直即可.(2)阴影部分的周长可由CD+BC+扇形OBD的弧长求得;扇形的半径和圆心角已求得,那么关键是求出平行四边形CD的长,可通过证四边形ABCD是平行四边形,得出CD =AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD,∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°,∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD,又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O的半径为1,AB是⊙O的直径,∴AB=2,∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=2,由(1)知:△AOD是等腰直角三角形,∵OA=OD=1,∴BC=AD=,∴图中阴影部分的周长=CD+BC+=2++.22.(9分)如图,在菱形ABCD中,∠BAD=120°,点E在对角线BD上,将线段CE绕点C顺时针旋转120°,得到CF,连接DF.(1)求证:△BCE≌△DFC.(2)若BC=2.求四边形ECFD的面积,【分析】(1)由菱形的性质可得BC=CD,∠A=∠BCD=120°,由旋转的性质可得CF =CE,∠ECF=120°=∠BCD,由“SAS”可证△BCE≌△DFC;(2)如图,连接AC交BD于O,由菱形的性质可得AC⊥BD,AO=CO,BO=DO,∠BCA=60°,由直角三角形的性质可求CO=,BO=CO=3,即可求S△BCD=×6×=3,由全等三角形的性质可求解.【解答】解:(1)∵四边形ABCD是菱形,∴BC=CD,∠A=∠BCD=120°∵将线段CE绕点C顺时针旋转120°,得到CF,∴CF=CE,∠ECF=120°=∠BCD,∴∠BCE=∠DCF,且BC=CD,EC=CF,∴△BCE≌△DFC(SAS)(2)如图,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠BCA=60°,∵BC=2,∴CO=,BO=CO=3,∴BD=6,∴S△BCD=×6×=3,∵△BCE≌△DFC∴S△BEC=S△CDF,∴S△BCD=S四边形ECFD=3.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【分析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A 是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).。

2020年黑龙江省哈尔滨市中考数学押题试卷及答案解析

2020年黑龙江省哈尔滨市中考数学押题试卷及答案解析

2020年黑龙江省哈尔滨市中考数学押题试卷一、选择题(共10小题,每小题3分,满分30分)1.下列实数中,无理数是()A.﹣B.πC.D.|﹣2|2.下列计算正确的是()A.2a+3a=6a B.a2+a3=a5C.a8÷a2=a6D.(a3)4=a7 3.下面的图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.若反比例函数y=的图象经过点(﹣2,﹣5),则该函数图象位于()A.第一、二象限B.第二、四象限C.第一、三象限D.第三、四象限5.下面的几何体中,主视图为三角形的是()A.B.C.D.6.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°7.如图,在△ABC中,点D、E分AB、AC边上,DE∥BC,若AD:AB=3:4,AE=6,则AC等于()A.3B.4C.6D.88.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到l210辆,则该厂四、五月份的月平均增长率为()A.12.1%B.20%C.21%D.10%9.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=6,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.1B.2C.D.310.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了前半程,为了不迟到他加快了速度,以每分钟45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)与他行走的时间t(分)(t>15)之间的函数关系正确的是()A.y=30t(t>15)B.y=900﹣30t(t>15)C.y=45t﹣225(t>15)D.y=45t﹣675(t>15)二、填空题(共10小题,每小题3分,满分30分)11.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示为.12.函数中,自变量x的取值范围是.13.计算:=.14.不等式组的解集为.15.因式分解:x2﹣4y2=.16.已知扇形半径是9cm,弧长为4πcm,则扇形的圆心角为度.。

2020年中考数学押题卷及答案(九)

2020年中考数学押题卷及答案(九)

2020年中考数学押题卷及答案(九)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣2的相反数是()A.﹣B.C.﹣2 D.22.如图是一个几何体的三视图,这个几何体是()A.三棱锥B.三棱柱C.长方体D.圆柱体3.下列计算正确的是()A.a2+a2=a4B.(﹣a2)3=a6C.(a+b)2=a2+1 D.8ab2÷(﹣2ab)=﹣4b4.如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是()A.30°B.40°C.50° D.60°5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.4a+3b=0 B.4a﹣3b=0 C.3a﹣4b=0 D.3a+4b=06.如图,点O是△ABC的两条中线CD和BE的交点,连接DE,则S:S△BOC的值为()△DOEA.B.C.D.7.点A(a,2﹣a)是一次函数y=2x+m图象上一点,若点A在第一象限,则m的取值范围是()A.﹣2<m<4 B.﹣4<m<2 C.﹣2≤m≤4 D.﹣4≤m≤2 8.如图,△ABC内接于半径为5的⊙O,BC=8.则∠A的正切值等于()A.B.C.D.9.如图,四边形ABCD是菱形,对角线AC,BD交于点O,AC=8,BD=6,DH⊥AB于点H,且DH与AC交于G,则OG长度为()A.B.C.D.10.平面直角坐标系中,点P的坐标为(3,3),将抛物线y=﹣x2+2x+3沿水平方向或竖直方向平移,使其经过点P,则平移的最短距离为()A.1 B.C.D.3二、填空题(共4小题,每小题3分,计12分)11.以下各数:①﹣1;②;③;④;⑤1.010010001…(相邻两个1之间依次多一个0),其中是无理数的有.(只填序号)12.A.一个半径为2的正六边形,其边心距是.B.用科学计算器计算:3﹣2sin26°17′≈.(结果精确到0.01)13.如图,在平面直角坐标系中,菱形OABC的顶点A在y轴的正半轴上,点B在函数y=的图象上,若∠ABC=60°,且菱形OABC的面积为6,则k的值为.14.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:﹣3﹣2+|1﹣|﹣×.16.(5分)解分式方程:=﹣2.17.(5分)如图,在Rt△ABC中,∠ACB=90°,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)18.(5分)苛中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为t分钟),将调查统计的结果分为四个等级:Ⅰ级(0≤t≤20)、Ⅱ级(20≤t≤40)、Ⅲ级(40≤t≤60)、Ⅳ级(t>60).将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:所抽取学生每天“诵读经典”情况统计图(1)请补全上面的条形图.(2)所抽查学生“诵读经典”时间的中位数落在级.(3)如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人?19.(5分)如图,在平行四边形ABCD中,E为BC边上一点,且∠B=∠AEB.求证:AC=DE.20.(7分)小颖、小华和小林想测量小区门口路灯的高度.如图,相邻的两盏路灯AC、BD高度相等,某天晚上,小颖站在E点处,此时她身后的影子的顶部刚好接触到路灯AC的底部;小华站在F点处,此时他身后影子的顶部刚好接触到路灯BD的底部.这时,小林测得EF=10.2米,已知AB=20米,小颖身高ME=1.6米,小华身高NF=1.75米,AC、BD、ME、NF均与地面垂直.请你根据以上数据计算路灯的高度.(结果精确到0.1米)21.(7分)为了追求更舒适的出行体验,利用网络呼出专车的打车方式受到大众欢迎.据了解在非高峰期时,某种专车所收取的费用y (元)与行驶里程x(km)的函数关系如图所示,请根据图象解答下列问题:(1)求y与x之间的函数关系式.(2)若专车低速行驶(时速≥12km/h),每分钟另加0.4元的低速费(不足1分钟的部分按1分钟计算).某乘客有一次在非高峰期乘坐专车,途中低速行驶了6分钟,共付费32元,求这位乘客乘坐专车的行驶里程.22.(7分)某超市为庆祝开业,举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的四个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有擞字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)若李阿姨第一次取出的小球上的数字为4,求李阿姨能获得50元代金券的概率.(2)假如你参加了该超市开业当天的一次抽奖活动,请用列表或画树状图的方法,求你能中奖的概率.23.(8分)如图所示,△ABC中,点D是AB上一点,且AD=CD,以CD为直径的⊙O交BC于点E,交AC于点F,且点F是半圆CD的中点.(1)求证:AB与⊙O相切.(2)若tanB=2,AB=6,求CE的长度.24.(12分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线L经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请求出点F的坐标;若不存在,请说明理由.25.(12分)问题发现:(1)如图①,点A和点B均在⊙O上,且∠AOB=90°,点P和点Q 均在射线AM上,若∠APB=45°,则点P与⊙O的位置关系是;若∠AQB<45°,则点Q与⊙O的位置关系是.问题解决:如图②、图③所示,四边形ABCD中,AB⊥BC,AD⊥DC,∠DAB=135°,且AB=1,AD=2,点P是BC边上任意一点.(2)当∠APD=45°时,求BP的长度.(3)是否存在点P,使得∠APD最大?若存在,请说明理由,并求出BP的长度;若不存在,也请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣2的相反数是()A.﹣B.C.﹣2 D.2【解答】解:﹣2的相反数是2.故选:D.2.如图是一个几何体的三视图,这个几何体是()A.三棱锥B.三棱柱C.长方体D.圆柱体【解答】解:由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.故选:B.3.下列计算正确的是()A.a2+a2=a4B.(﹣a2)3=a6C.(a+b)2=a2+1 D.8ab2÷(﹣2ab)=﹣4b【解答】解:A、原式=2a2,不符合题意;B、原式=﹣a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=﹣4b,符合题意,故选D4.如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是()A.30°B.40°C.50° D.60°【解答】解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.4a+3b=0 B.4a﹣3b=0 C.3a﹣4b=0 D.3a+4b=0【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=4b,可得:3a+4b=0,故选D6.如图,点O是△ABC的两条中线CD和BE的交点,连接DE,则S:S△BOC的值为()△DO EA.B.C.D.【解答】解:∵点O是△ABC的两条中线CD和BE的交点,∴DE∥BC,而且=,∴△DOE~△BOC,∴S△DOE:S△BOC=.故选:C.7.点A(a,2﹣a)是一次函数y=2x+m图象上一点,若点A在第一象限,则m的取值范围是()A.﹣2<m<4 B.﹣4<m<2 C.﹣2≤m≤4 D.﹣4≤m≤2【解答】解:∵点A(a,2﹣a)是一次函数y=2x+m图象上一点,∴2﹣a=2a+m,∴m=2﹣3a.∵点A在第一象限,∴,∴0<a<2,∴﹣6<﹣3a<0,∴﹣4<2﹣3a<2.即m的取值范围是﹣4<m<2.故选B.8.如图,△ABC内接于半径为5的⊙O,BC=8.则∠A的正切值等于()A.B.C.D.【解答】解:连接CO并延长交⊙O于D,则CD=10,∵CD是直径,∴∠DBC=90°,∵DC=10,BC=8,∴BD===6,∴tan ∠D===,∵∠A=∠D ,∴∠A 的正切值等于;故选D .9.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC=8,BD=6,DH ⊥AB 于点H ,且DH 与AC 交于G ,则OG 长度为( )A .B .C .D .【解答】解:∵四边形ABCD 是菱形,∴BD ⊥AC ,BO=BD=3,AO=AC=4,在Rt △AOB 中,可求得AB=5,∴5DH=AC•BD ,即5DH=×6×8,解得DH=,在Rt △BDH 中,由勾股定理可得BH===,∵∠DOG=∠DHB ,∠ODG=∠HDB ,∴△DOG∽△DHB,∴=,即=,解得OG=,故选B.10.平面直角坐标系中,点P的坐标为(3,3),将抛物线y=﹣x2+2x+3沿水平方向或竖直方向平移,使其经过点P,则平移的最短距离为()A.1 B.C.D.3【解答】解:y=﹣x2+2x+3=﹣(x﹣2)2+5,当延水平方向平移时,纵坐标和P的纵坐标相同,把y=3代入得:3=﹣x2+2x+3,解得:x=0或4,根据平移x=0舍去,平移的最短距离是4﹣3=1,当延竖直方向平移时,横坐标和P的横坐标相同,把x=3代入得:y=﹣×32+2×3+3=,平移的最短距离是﹣3=,即平移的最短距离是1,故选A.二、填空题(共4小题,每小题3分,计12分)11.以下各数:①﹣1;②;③;④;⑤1.010010001…(相邻两个1之间依次多一个0),其中是无理数的有②⑤③.(只填序号)【解答】解:②;③,⑤1.010010001…(相邻两个1之间依次多一个0)是无理数,故答案为:②⑤③.12.A.一个半径为2的正六边形,其边心距是.B.用科学计算器计算:3﹣2sin26°17′≈ 2.11.(结果精确到0.01)【解答】解:A、正六边形的中心角度数为:360°÷6=60°,∴边心距为边长为2的等边三角形的高,∴边心距为:B、原式=3﹣2sin26.283°≈2.11故答案为:A、;B、2.1113.如图,在平面直角坐标系中,菱形OABC的顶点A在y轴的正半轴上,点B在函数y=的图象上,若∠ABC=60°,且菱形OABC的面积为6,则k的值为﹣9.【解答】解:作BC⊥x轴于点D,设CD=a,∵∠ABC=60°,∴∠OCD=60°,∴∠CDO=90°,∠COD=30°,∴OC=2a,OD=,∵菱形OABC的面积为6,∴,解得,a2=,∵点B的坐标为(﹣a,3a),点B在函数y=的图象上,∴,解得,k=﹣3=,故答案为:﹣9.14.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故答案为:.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:﹣3﹣2+|1﹣|﹣×.【解答】解:原式=﹣+﹣1﹣=﹣+﹣1﹣4=﹣﹣3.16.(5分)解分式方程:=﹣2.【解答】解:去分母得:1﹣x=﹣1﹣2x+6,解得:x=4,经检验x=4是分式方程的解.17.(5分)如图,在Rt△ABC中,∠ACB=90°,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)【解答】解如图所示:,△ACD和△CDB即为所求.18.(5分)苛中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为t分钟),将调查统计的结果分为四个等级:Ⅰ级(0≤t≤20)、Ⅱ级(20≤t≤40)、Ⅲ级(40≤t≤60)、Ⅳ级(t>60).将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:所抽取学生每天“诵读经典”情况统计图(1)请补全上面的条形图.(2)所抽查学生“诵读经典”时间的中位数落在Ⅱ级.(3)如果该校共有1200名学生,请你估计该校平均每天“诵读经典”的时间不低于40分钟的学生约有多少人?【解答】解:(1)根据题意得:20÷40%=50(名),∴Ⅲ级的人数为50﹣(13+20+7)=10(名),(2)所抽查学生“诵读经典”时间的中位数落在Ⅱ级;故答案为:Ⅱ;(3)根据题意得:1200×34%=408(人),则该校平均每天“诵读经典”的时间不低于40分钟的学生约有408人.19.(5分)如图,在平行四边形ABCD中,E为BC边上一点,且∠B=∠AEB.求证:AC=DE.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB,∵∠AEB=∠B,∴AB=AE,∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD,∴AC=DE.20.(7分)小颖、小华和小林想测量小区门口路灯的高度.如图,相邻的两盏路灯AC、BD高度相等,某天晚上,小颖站在E点处,此时她身后的影子的顶部刚好接触到路灯AC的底部;小华站在F点处,此时他身后影子的顶部刚好接触到路灯BD的底部.这时,小林测得EF=10.2米,已知AB=20米,小颖身高ME=1.6米,小华身高NF=1.75米,AC、BD、ME、NF均与地面垂直.请你根据以上数据计算路灯的高度.(结果精确到0.1米)【解答】解:设AE=x,则BF=20﹣10.2﹣x,∵ME∥BD,∴△AME∽△BAD,∴,即,∴x=,∵NF∥AC,∴△BNF∽△BCA,∴,即=,∴x=9.8﹣,∴=9.8﹣,∴BD≈6.8,答:路灯的高度为6.8米.21.(7分)为了追求更舒适的出行体验,利用网络呼出专车的打车方式受到大众欢迎.据了解在非高峰期时,某种专车所收取的费用y (元)与行驶里程x(km)的函数关系如图所示,请根据图象解答下列问题:(1)求y与x之间的函数关系式.(2)若专车低速行驶(时速≥12km/h),每分钟另加0.4元的低速费(不足1分钟的部分按1分钟计算).某乘客有一次在非高峰期乘坐专车,途中低速行驶了6分钟,共付费32元,求这位乘客乘坐专车的行驶里程.【解答】解:(1)设y与x之间的函数关系式为y=kx+b.当0<x≤3时,y=12;当x≥3时,将(3,12)、(8,23)代入y=kx+b,,解得:,∴此时y=2.2x+5.4.综上所述:y与x之间的函数关系式为y=.(2)当y=2.2x+5.4=32﹣0.4×6时,x=11.答:这位乘客乘坐专车的行驶里程为11千米.22.(7分)某超市为庆祝开业,举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的四个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有擞字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)若李阿姨第一次取出的小球上的数字为4,求李阿姨能获得50元代金券的概率.(2)假如你参加了该超市开业当天的一次抽奖活动,请用列表或画树状图的方法,求你能中奖的概率.【解答】解:(1)∵李阿姨第一次取出的小球上的数字为4,两次所得的数字之和为8,则可获得50元代金券一张,∴李阿姨能获得50元代金券的概率=;(2)列表得:5(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.23.(8分)如图所示,△ABC中,点D是AB上一点,且AD=CD,以CD为直径的⊙O交BC于点E,交AC于点F,且点F是半圆CD的中点.(1)求证:AB与⊙O相切.(2)若tanB=2,AB=6,求CE的长度.【解答】解:(1)连接DF,∵CD为⊙O的直径,∴∠CFD=90°,∵点F是半圆CD的中点,∴CF=DF,∴∠ACD=45°,∵AD=CD,∴∠A=∠ACB=45°,∴∠ADC=90°,∴AB与⊙O相切;(2)∵CD⊥AB,tanB=2,∴CD=2BD,∵AD=CD,∴AB=3BD,∵AB=6,∴BD=2,CD=4,∴BC=2,∵BD与⊙O相切,∴BD2=BE•BC,∴BE==,∴CE=BC﹣BE=.24.(12分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线L经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请求出点F的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线的函数表达式为;∵,∴抛物线的对称轴为直线x=3.又抛物线与x轴交于A,B两点,点A的坐标为(﹣2,0).∴点B的坐标为(8,0),设直线L的函数表达式为y=kx.∵点D(6,﹣8)在直线L上,∴6k=﹣8,解得k=﹣,∴直线L的函数表达式为y=﹣x,∵点E为直线L和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E的坐标为(3,﹣4);(2)抛物线上存在点F,使△FOE≌△FCE.∵OE=CE=5,∴FO=FC,∴点F在OC的垂直平分线上,此时点F的纵坐标为﹣4,∴x2﹣3x﹣8=﹣4,解得x=3±,∴点F的坐标为(3﹣,﹣4)或(3+,﹣4).25.(12分)问题发现:(1)如图①,点A和点B均在⊙O上,且∠AOB=90°,点P和点Q 均在射线AM上,若∠APB=45°,则点P与⊙O的位置关系是点P 在⊙O上;若∠AQB<45°,则点Q与⊙O的位置关系是点Q在⊙O外.问题解决:如图②、图③所示,四边形ABCD中,AB⊥BC,AD⊥DC,∠DAB=135°,且AB=1,AD=2,点P是BC边上任意一点.(2)当∠APD=45°时,求BP的长度.(3)是否存在点P,使得∠APD最大?若存在,请说明理由,并求出BP的长度;若不存在,也请说明理由.【解答】解:(1)如图①中,∵∠APQ=∠AOB=45°,∴点P在⊙O上,∵∠AQB<45°,∴点Q在⊙O外.故答案为点P在⊙O上,点Q在⊙O外.(2)如图2中,如图构造等腰直角三角形△AOD,与O为圆心作⊙O交BC于P、P′,易知∠APD=∠AP′D=45°.延长DO交BC于H,∵∠DAB=135°,∠DAO=45°,∴∠OAB=∠B=90°,∴OA∥BC,∴∠DOA=∠OHB=90°,∴四边形ABHO是矩形,∴AB=OH=1,OA=BH,∵AD=2,∴OA=OD=OP=OP′=2,在Rt△OPH和Rt△OP′H中,易知HP=HP′==,∴BH=OA=2,∴BP′=2﹣,PB=2+.(3)如图③中,存在.作线段AD的垂直平分线,交AD于E,交BC于F,点O在EF上,以OA为半径作⊙O,当⊙O与BC相切于点P时,∠APD最大,理由:在BC上任意取一点M,连接MA、MD,MD交⊙O于N,连接AN.∵∠AND>∠AMD,∠APD=∠AND,∴∠APD>∠AND,连接OP,延长DA交CB的延长线于点G.∵AB⊥BC,∠DAB=135°,∴∠G=∠EFG=45°,∴△ABG,△EFG都是等腰直角三角形,∵AB=BG=1,∴AG=,∵AD=2,OE⊥AD,∴AE=ED=,∴EG=EF=2,GF=EG=4,设OP=PF=r,则OF=r,OE=EF﹣OF=2﹣r,在Rt△AOE中,AE2+OE2=OA2,∴()2+(2﹣r)2=r2,解得r=4﹣或4+(舍弃),∴BP=GF﹣GB﹣PF=4﹣1﹣r=﹣1.。

2020年中考数学押题卷及答案(六)

2020年中考数学押题卷及答案(六)

2020年中考数学押题卷及答案(六)一、选择题(每小题3分,共30分)1.(3分)π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个2.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1083.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a7 4.(3分)由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.5.(3分)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤26.(3分)如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25°B.35°C.15° D.50°7.(3分)已知一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限.8.(3分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.49.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个10.(3分)如图,AD是△ABC的中线,E,F分别是AD和A D延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②△ABD和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)因式分解:x3﹣x2+=.12.(3分)已知|a﹣2007|+=a,则a﹣20072的值是.13.(3分)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是.14.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).15.(3分)如图,已知一次函数y=kx﹣4k+5的图象与反比例函数y=(x>0)的图象相交于点A(p,q).当一次函数y的值随x的值增大而增大时,p的取值范围是.16.(3分)把抛物线y=﹣x2向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的距离是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简再求值:其中x是不等式组的整数解.18.(8分)如图所示,把一张矩形纸片沿对角线折叠.(1)重合部分是什么图形?试说明理由;(2)若CD=1,BC=,求△FED的面积.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)已知:关于x的方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若α,β是这个方程的两个实数根,求:的值;(3)根据(2)的结果你能得出什么结论?21.(9分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.22.(9分)如图,在△ABC中,BC=a,AC=b,AB=c,⊙D与BC、AC、AB都相切,切点分别是E、F、G,BA、ED的延长线交于点H,a、b 是关于x的方程x2﹣(c+4)x+4c+8=0的两个根.(1)求证:△ABC是直角三角形;(2)若25asin∠BAC=9c,求四边形CEDF的面积.23.(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H 关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选B.2.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×108【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.3.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6 D.2a3•a4=2a7【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选D4.(3分)由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.【解答】解:如图所示:故选A.5.(3分)对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤2【解答】解:,解①得x≤4,解②得x>﹣2.5,所以不等式组的解集为﹣2.5<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4.故选B.6.(3分)如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25°B.35°C.15° D.50°【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.7.(3分)已知一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=的图象在()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限.【解答】解:∵一次函数y=kx+b的图象经过第二、三、四象限,∴k<0,b<0,∴kb>0,∴反比例函数y=的图象位于第一、三象限内.故选C.8.(3分)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故选(C)9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个【解答】解:①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,所以﹣=﹣1,b=2a,当x=﹣3时,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以此选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;④由图象得:当x>﹣1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D.10.(3分)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF≌CDE;②△ABD和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD的面积=△ACD的面积,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故①②正确∴∠F=∠CED,∠DEC=∠F,∴BF∥CE,故③正确,∵∠FBD=35°,∠BDF=75°,∴∠F=180°﹣35°﹣75°=70°,∴∠DEC=70°,故④正确;综上所述,正确的是①②③④4个.故答案为:D.二、填空题(每小题3分,共18分)11.(3分)因式分解:x3﹣x2+=x(x﹣)2.【解答】解:x3﹣x2+=x(x2﹣x+)(提取公因式)=x(x﹣)2(完全平方公式).12.(3分)已知|a﹣2007|+=a,则a﹣20072的值是2008.【解答】解:∵|a﹣2007|+=a,∴a≥2008.∴a﹣2007+=a,=2007,两边同平方,得a﹣2008=20072,∴a﹣20072=2008.13.(3分)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是5.【解答】解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴(2+5+x+y+2x+11)=(x+y)=7,解得y=9,x=5,∴这组数据的众数是5.故答案为5.14.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是8πcm2(结果保留π).【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.15.(3分)如图,已知一次函数y=kx﹣4k+5的图象与反比例函数y=(x>0)的图象相交于点A(p,q).当一次函数y的值随x的值增大而增大时,p的取值范围是<p<4.【解答】解:一次函数y=kx﹣4k+5中,令x=4,则y=5,故一次函数y=kx﹣4k+5的图象经过点(4,5),如图所示,过点(4,5)分别作y轴与x轴的垂线,分别交反比例函数图象于B点和C点,把y=5代入y=,得x=;把x=4代入y=,得y=,所以B点坐标为(,5),C点坐标为(4,),因为一次函数y的值随x的值增大而增大,所以点A(p,q)只能在B点与C点之间的曲线上,所以p的取值范围是<p<4.故答案为:<p<4.16.(3分)把抛物线y=﹣x2向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的距离是.【解答】解:所得抛物线为y=﹣x2+2,当y=0时,﹣x2+2=0,解得x=±,∴两个交点之间的距离是|﹣﹣|=.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简再求值:其中x是不等式组的整数解.【解答】解:原式=[﹣]•=•=,由不等式,得到﹣1<x<1,由x为整数,得到x=0,则原式=﹣1.18.(8分)如图所示,把一张矩形纸片沿对角线折叠.(1)重合部分是什么图形?试说明理由;(2)若CD=1,BC=,求△FED的面积.【解答】解:(1)重合部分是等腰三角形.∵四边形ABCD是矩形,∴AD∥BC,∴∠DBC=∠ADB.又∵∠DBC=∠DBF,∴∠DBF=∠ADB.∴FB=FD.(2)∵四边形ABCD是矩形,∴∠DEB=∠C=∠A=90°,AB=ED,又∠AFB=∠EFD,∴△ABF≌△EDF.∴EF=AF.设EF=x,则x2+1=(﹣x)2解得x=.∴S△FED=.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.(8分)已知:关于x 的方程x 2+2x ﹣k=0有两个不相等的实数根. (1)求k 的取值范围;(2)若α,β是这个方程的两个实数根,求:的值;(3)根据(2)的结果你能得出什么结论? 【解答】解:(1)△=4+4k , ∵方程有两个不等实根, ∴△>0, 即4+4k >0 ∴k >﹣1(2)由根与系数关系可知α+β=﹣2, αβ=﹣k ,∴=,(3)由(1)可知,k >﹣1时,的值与k 无关.21.(9分)如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m 米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n 米,请你计算出该建筑物的高度.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.22.(9分)如图,在△ABC中,BC=a,AC=b,AB=c,⊙D与BC、AC、AB都相切,切点分别是E、F、G,BA、ED的延长线交于点H,a、b 是关于x的方程x2﹣(c+4)x+4c+8=0的两个根.(1)求证:△ABC是直角三角形;(2)若25asin∠BAC=9c,求四边形CEDF的面积.【解答】(1)证明:∵a、b是关于x的方程x2﹣(c+4)x+4c+8=0的两个根,∴a+b=c+4,ab=4c+8,∴(a+b)2=(c+4)2,即a2+2ab+b2=c2+8c+16,∴a2+b2=c2,∴△ABC是直角三角形;(2)解:连DB,如图∵25asin∠BAC=9c,即sin∠BAC=,在Rt△ABC中,sin∠BAC=,∴=,∴25a2=9c2,∴3c=5a,设c=5x,则a=3x,b=4x,∴5x+4x=3x+4x+4,解得x=2,∴a=6,b=8,c=10,∵⊙D与BC、AC、AB都相切,切点分别是E、F、G,∴DE=DF=DG,DE⊥BC,DG⊥AB,∴四边形DECF为正方形,设DE=DF=DG=R,∵S△ABC+S梯形DECA=S△BED+S△DAB,∴×6×8+×(R+8)×R=×(6+R)×R+×10×R,解得R=6,∴四边形CEDF的面积=R2=36.23.(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【解答】解:(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x ﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元),综上所述,y与x(1≤x<15)之间的函数关系式为:y=,第10天时销售利润最大;(3)设第15天在第14天的价格基础上可降a元,由题意得:380﹣127.5≤(8.1﹣4.1﹣a)(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a)﹣115,a≤0.5,答:第15天在第14天的价格基础上最多可降0.5元.24.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H 关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax 2+ax +b 有一个公共点M (1,0), ∴a +a +b=0,即b=﹣2a ,∴y=ax 2+ax +b=ax 2+ax ﹣2a=a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣);(2)∵直线y=2x +m 经过点M (1,0), ∴0=2×1+m ,解得m=﹣2, ∴y=2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0, ∴(x ﹣1)(ax +2a ﹣2)=0,解得x=1或x=﹣2,∴N 点坐标为(﹣2,﹣6), ∵a <b ,即a <﹣2a , ∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x﹣)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学押题试卷(附答案)
一、单选题(共11题;共22分)
1.下列运算正确的是()
A. a3•a3=2a3
B. a0÷a3=a﹣3
C. (ab2)3=ab6
D. (a3)2=a5
2.2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为()
A. 362×102
B. 3.62×104
C. 3.62×105
D. 0.362×105
3.将一枚硬币抛掷两次,则这枚硬币两次反面都朝上的概率为()
A. B. C. D.
4.有理数a,b,c在数轴上的位置如图所示,下面结论正确的是( ).
A. c>a
B. c>0
C. |a|<|b|
D. a-c<0
5.如图,直线y=﹣x与反比例函数y= 的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y= 的图象于另一点C,则的值为()
A. 1:3
B. 1:2
C. 2:7
D. 3:10
6.已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,平移后C点的坐标是()
A. (5,-2)
B. (1,-2)
C. (2,-1)
D. (2,-2)
7.如图,无法保证△ADE与△ABC相似的条件是()
A. ∠1=∠C
B. ∠A=∠C
C. ∠2=∠B
D.
8.已知点E在半径为5的⊙O上运动,AB是⊙O的弦且AB=8,则使△ABE的面积为8 的点E共有()个
A. 1
B. 2
C. 3
D. 4
9.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()
A. B. C. D.
10.计算:=()
A. B. C. D. 0
11.如图,在矩形ABCD中,DE⊥AC于E,∠EDC∶∠EDA=1∶3,且AC=10,则DE的长度是()
A. 3
B. 5
C.
D.
二、填空题(共4题;共4分)
12.多项式9x2+1加上单项式________后,能成为一个含x的三项式的完全平方式.
13.如图,设∠1=x°,∠2=y°,且∠1的度数比∠2的度数的2倍多10°,则可列方程组为________ .
14.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一
支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)
为双曲线的“眸”,为双曲线的“眸径”当双曲线的眸径为6时,的值为________. 15.如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D 为OB的中点,△AOD的面积为6,则k的值为________.
三、解答题(共6题;共69分)
16.解下列方程:(1)
解:,
x(x-3)=0,
x=0,x-3=0,
∴x=0,x=3
(1).
17.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为________,中位数在第________组;
②频数分布直方图补充完整________;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
18.将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为.
(1)根据上图,将表格补充完整:
(2)设张白纸黏合后的总长度为,则与之间的关系式是________;
(3)你认为白纸黏合起来总长度可能为吗?为什么?
19.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
20.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点
E.
(1)求证:DE是⊙O的切线;
(2)若AC=10,BC=16,求DE的长.
21.如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
答案
一、单选题
1. B
2. B
3. D
4. C
5.A
6. B
7. B
8.C
9. D 10. C 11. D
二、填空题
12.±6x或x413.14.15.16
三、解答题
16. (1)解:.
∵a=5,b=-4,c=-1,
∴b2-4ac=(-4)2-4×5×(-1)=36>0,
∴x= ,
∴.
17.(1)12;3;
(2)解:×100%=44%,
答:本次测试的优秀率是44%;
(3)解:设小明和小强分别为A、B,另外两名学生为:C、D,
则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)
所以小明和小强分在一起的概率为:.
18. (1)
(2)y=35x+5
(3)当y=2018时,2018=35x+5,解得x=57.5,不满足要求,∴不存在19.(1)解:设反比例函数解析式为y= ,
把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,
∴反比例函数解析式为y= ;
把A(3,m)代入y= ,可得3m=6,
即m=2,
∴A(3,2),
设直线AB 的解析式为y=ax+b,
把A(3,2),B(﹣2,﹣3)代入,可得,
解得,
∴直线AB 的解析式为y=x﹣1
(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方
(3)解:存在点C.
如图所示,延长AO交双曲线于点C1,
∵点A与点C1关于原点对称,
∴AO=C1O,
∴△OBC1的面积等于△OAB的面积,
此时,点C1的坐标为(﹣3,﹣2);
如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于
△OBC1的面积,
∴△OBC2的面积等于△OAB的面积,
由B(﹣2,﹣3)可得OB的解析式为y= x,
可设直线C1C2的解析式为y= x+b',
把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',
解得b'= ,
∴直线C1C2的解析式为y= x+ ,
解方程组,可得C2(,);
如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y= x+ ,
把A(3,2)代入,可得2= ×3+ ,
解得=﹣,
∴直线AC3的解析式为y= x﹣,
解方程组,可得C3(﹣,﹣);
综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).
20.(1)证明:连接OD、AD,
∵AC为⊙O的直径,∴∠ADC=90°,
∵AB=AC,
∴点D是BC的中点,∵O是AC的中点,
∴OD是△ABC的中位线,∴OD∥AB,
∴∠ODE=∠BED,∵DE⊥AB,
∴∠ODE=90°,∴DE是⊙O的切线;
∴CD= BC=8,(2)解:∵AB=AC,且∠ADC=90°,
∠B=∠C,
∴AD= =6,
∵∠BED=∠CDA,
∴△BED∽△CDA,
∴= ,即= ,
∴AC=4.8.
21. (1)解:∵点A(﹣1,0)在抛物线上,
∴,
解得,
∴抛物线的解析式为.
∵,
∴顶点D的坐标为
(2)解:△ABC是直角三角形.理由如下:
当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.
当y=0时,,∴x1=﹣1,x2=4,则B(4,0),
∴OA=1,OB=4,∴AB=5.
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,
∴AC2+BC2=AB2,∴△ABC是直角三角形
(3)解:作出点C关于x轴的对称点C′,则C'(0,2).
连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM 的周长最小.
设直线C′D的解析式为y=ax+b(a≠0),则

解得,
∴.
当y=0时,,则,∴.。

相关文档
最新文档