2010年吉林省中考数学试卷及解析
2010年吉林省中考数学试卷解析
2010年吉林省中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题2分,满分20分)1.(2分)(2010•吉林)如图,数轴上点A所表示的数是.【考点】:实数与数轴的关系M118.【难易度】:容易题【分析】:根据数轴有点A所表示的数是﹣2.【解答】:答案-2【点评】:此题考查了实数与数轴上的点的对应关系,熟知数轴上的点表示的是一个实数是解题的关键.2.(2分)(2010•吉林)在中国上海世博会园区中,中国馆的总占地面积为65200m2,则这一数据用科学记数法表示为m2.【考点】:科学记数法M11C.【难易度】:容易题.【分析】:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂。
【解答】:答案6.52×104m2.【点评】:此题主要考查了科学记数法.科学记数法是将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,解答的关键是要正确确定a的值以及n的值.3.(2分)(2010•吉林)若单项式3x2y n与﹣2x m y3是同类项,则m+n=5.【考点】:整式的概念M11M.【难易度】:容易题【分析】:由同类项的定义:所含字母相同,相同字母的指数也相同的两个(或多个)单项式叫做同类项,因为单项式3x2y n与﹣2x m y3是同类项,则m=2,n=3,所以m+n=5.【解答】:答案5.【点评】:此题考查了同类项的概念,熟知同类项的概念是解答此题的关键。
4.(2分)(2014•抚州)计算:﹣=.【考点】:二次根式的化简M11E.【难易度】:容易题.【分析】:将二次根式化为最简得,原式=3﹣,合并同类二次根式得3﹣=2.【解答】:答案为:2.【点评】:本题主要考查二次根式的化简,关键在于运算法则的应用,注意最后要把结果化为最简二次根式,即根号下的数不能再次开方.5.(2分)(2010•吉林)不等式2x﹣3>1的解集是.【考点】:一元一次不等式(组)的解及解集M12K.【难易度】:容易题【分析】:移项合并同类项得到2x>4,两边同时除以2得x>2,则不等式的解集是x>2.【解答】:答案x>2.【点评】:本题主要考查对不等式的性质,能熟练应用不等式解题,掌握和理解解一元一次不等式知识点和不等式的性质是解此题的关键.6.(2分)(2010•吉林)方程的解是x=.【考点】:解可化为一元一次方程的分式方程M12B.【难易度】:容易题.【分析】:由题目所给式子有,分式方程的最简公分母是x(x+4),方程两边同时乘以最简公分母,得x+4=5x,则x=1,又x(x+4)=1(1+4)=4≠0,故原分式方程的解为x=2【解答】:答案1.【点评】:此题考查了解分式方程,解分式方程一般是将分式方程转化整式方程进行求解,注意解分式方程一定要验根.7.(2分)(2011•枣庄)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【考点】:解直角三角形M32E.【难易度】:容易题【分析】:由图知,∠B=30°,∠ACB=90°,因为AB=14cm,所以AC=7cm,∠ACB=∠AED=90°,则BC∥DE,又∠ADE=90°,所以△ACF是等腰直角三角形,因此AC=CF=7cm,故S△ACF=×7×7=(cm2)【解答】:答案为:.【点评】:本题考查了解直角三角形,由已知条件得出△ACF是等腰直角三角形是解答本题的关键.8.(2分)(2010•吉林)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=50°,动点P在弦BC上,则∠PAB可能为度(写出一个符合条件的度数即可).【考点】:圆心角与圆周角M343;三角形内(外)角和M321.【难易度】:容易题.【分析】:连接AC,因为AB是⊙O的直径,由圆周角定理有∠ACB=90°,而∠ABC=50°,则∠CAB=90°﹣∠ABC=40°,又P在BC上运动,0°≤∠PAB≤40°,即只需要取一个满足范围的值即可,如20°【解答】:答案20°.【点评】:此题主要考查了圆周角定理的推论:半圆(或直径)所对的圆周角是直角,三角形的内角和,连接AC得出∠ACB=90°是解答此题的关键.9.(2分)(2010•吉林)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A′处,若OA长为25cm,则长为cm(结果保留π).【考点】:圆的相关计算M34D.【难易度】:容易题【分析】:由题意,根据弧长公式计算有==.【解答】:答案.【点评】:本题主要考查了弧长公式,熟知弧长公式是解答本题的关键.10.(2分)(2010•吉林)用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n的代数式表示).【考点】:列代数式M11H.【难易度】:中等题.【分析】:由图可知,第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;由此有后一个图案中正三角形的个数都比前一个图案中正三角形的个数多4个.因此有第n个图案正三角形个数为2+(n ﹣1)×4+4=2+4n=4n+2【解答】:答案为:4n+2.【点评】:本题主要考查图形的变化规律,找出图形之间的变化规律是解答本题的关键.二、选择题(共6小题,每小题3分,满分18分)11.(3分)(2010•吉林)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是()A .B.C.D.【考点】:绝对值M113.【难易度】:容易题.【分析】:由题意可知绝对值最小的一个即为最接近标准的足球,而|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|.【解答】:答案C.【点评】:此题主要考查绝对值,明确题意以及能够正确比较绝对值的大小是解答本题的关键.12.(3分)(2010•吉林)某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 3 11 8 6 4该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是()A .平均数B.众数C.中位数D.方差【考点】:中位数、众数M214.【难易度】:容易题.【分析】:由题意,想要了解哪种女鞋的销售量最大,即要知道哪种女鞋销售的最多,由众数是数据中出现次数最多的数,因此应关注这组数据中的众数【解答】:答案B.【点评】:此题主要考查了众数的概念,熟知统计相关计量的概念是解答此类题型的关键。
历年吉林省中考数学试卷(含答案)
2017年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣22.(2分)如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.3.(2分)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6D.(ab)2=ab24.(2分)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2分)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°6.(2分)如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB 交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)7.(3分)2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.8.(3分)苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).9.(3分)分解因式:a2+4a+4=.10.(3分)我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.11.(3分)如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为.12.(3分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.13.(3分)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).14.(3分)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b 与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为.三、解答题(每小题5分,共20分)15.(5分)某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.16.(5分)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.17.(5分)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.(5分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.四、解答题(每小题7分,共28分)19.(7分)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:(1)根据上表中的数据,将下表补充完整:(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.(7分)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.21.(7分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.(7分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.五、解答题(每小题8分,共16分)23.(8分)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD 沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.(8分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.六、解答题(每小题10分,共20分)25.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A 出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC 重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.26.(10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y 随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.2017年吉林省中考数学试卷参考答案与试题解析一、单项选择题(每小题2分,共12分)1.(2分)(2017•吉林)计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【分析】根据有理数乘方的定义计算即可.【解答】解:原式=1.故选A.【点评】本题考查有理数的乘方,记住乘方法则是解题的关键.2.(2分)(2017•吉林)如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【分析】根据正六棱柱的俯视图为正六边形,即可得出结论.【解答】解:正六棱柱的俯视图为正六边形.故选B.【点评】本题考查了简单几何体的三视图,熟记正六棱柱的三视图是解题的关键.3.(2分)(2017•吉林)下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6D.(ab)2=ab2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)a2与a3不是同类项,故A错误;(B)原式=a5,故B错误;(D)原式=a2b2,故D错误;故选(C)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(2分)(2017•吉林)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出原不等式的解集,再根据解集即可求出结论.【解答】解:∵x+1≥2,∴x≥1.故选A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(2分)(2017•吉林)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°【分析】由AB=BD,∠B=40°得到∠ADB=70°,再根据三角形的外角的性质即可得到结论.【解答】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键,注意三角形外角性质的应用.6.(2分)(2017•吉林)如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【分析】根据勾股定理,可得OB的长,根据线段的和差,可得答案.【解答】解:由勾股定理,得OB==13,CB=OB﹣OC=13﹣5=8,故选:D.【点评】本题考查了切线的性质,利用勾股定理得出OB的长是解题关键.二、填空题(每小题3分,共24分)7.(3分)(2017•吉林)2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为8.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:84 000 000=8.4×107,故答案为:8.4×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2017•吉林)苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克0.8x元(用含x的代数式表示).【分析】按8折优惠出售,就是按照原价的80%进行销售.【解答】解:依题意得:该苹果现价是每千克80%x=0.8x.故答案是:0.8x.【点评】本题考查了列代数式.解题的关键是理解“按8折优惠出售”的含义.9.(3分)(2017•吉林)分解因式:a2+4a+4=(a+2)2.【分析】利用完全平方公式直接分解即可求得答案.【解答】解:a2+4a+4=(a+2)2.故答案为:(a+2)2.【点评】此题考查了完全平方公式法分解因式.题目比较简单,注意要细心.10.(3分)(2017•吉林)我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是同位角相等,两直线平行.【分析】关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定定理即可得出结论.【解答】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.【点评】本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.11.(3分)(2017•吉林)如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为1.【分析】B′C=5﹣B′D.在直角△AB′D中,利用勾股定理求得B′D的长度即可.【解答】解:由旋转的性质得到AB=AB′=5,在直角△AB′D中,∠D=90°,AD=3,AB′=AB=5,所以B′D===4,所以B′C=5﹣B′D=1.故答案是:1.【点评】本题考查了旋转的性质,矩形的性质.解题时,根据旋转的性质得到AB=AB′=5是解题的关键.12.(3分)(2017•吉林)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为9m.【分析】由条件可证明△OCD∽△OAB,利用相似三角形的性质可求得答案.【解答】解:∵OD=4m,BD=14m,∴OB=OD+BD=18m,由题意可知∠ODC=∠OBA,且∠O为公共角,∴△OCD∽△OAB,∴=,即=,解得AB=9,即旗杆AB的高为9m.故答案为:9.【点评】本题主要考查相似三角形的应用,证得三角形相似得到关于AB的方程是解题的关键.13.(3分)(2017•吉林)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为π+1(结果保留π).【分析】由五边形ABCDE可得出,AB=BC=CD=DE=EA=1、∠A=∠D=108°,利用弧长公式可求出、的长度,再根据周长的定义,即可求出阴影部分图形的周长.【解答】解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=π,=++BC=π+1.∴C阴影故答案为:π+1.【点评】本题考查了正多边形和圆、弧长公式以及周长的定义,利用弧长公式求出、的长度是解题的关键.14.(3分)(2017•吉林)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为1.【分析】根据题意可以得到相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,解得,,故答案为:1.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,列出相应的方程组.三、解答题(每小题5分,共20分)15.(5分)(2017•吉林)某学生化简分式+出现了错误,解答过程如下:原式=+(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第一步开始出错的,其错误原因是分式的基本性质;(2)请写出此题正确的解答过程.【分析】根据分式的运算法则即可求出答案.【解答】解:(1)一、分式的基本性质用错;(2)原式=+==故答案为:(1)一、分式的基本性质用错;【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.(5分)(2017•吉林)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.【分析】设隧道累计长度为x km,桥梁累计长度为y km,根据“隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设隧道累计长度为x km,桥梁累计长度为y km,根据题意得:,解得:.答:隧道累计长度为126km,桥梁累计长度为216km.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.17.(5分)(2017•吉林)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.(5分)(2017•吉林)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.四、解答题(每小题7分,共28分)19.(7分)(2017•吉林)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:(1)根据上表中的数据,将下表补充完整:(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.【分析】(1)根据算术平均数、众数、中位数的定义解答;(2)根据平均数意义进行解答.【解答】解:(1)=(7.2+9.6+9.6+7.8+9.3)=8.7(万元)把乙按照从小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;中位数为9.7万元.丙中出现次数最多的数为9.9万元.故答案为:8.7,9.7,9.9;(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.【点评】本题考查了众数、中位数、加权平均数的定义,学会分析图表是解题的关键.20.(7分)(2017•吉林)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.【点评】本题主要考查作图﹣应用与设计作图,熟练掌握等腰三角形的定义和平行四边形的判定是解题的关键.21.(7分)(2017•吉林)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【分析】在Rt△AOC中,求出OA、OC,在Rt△BOC中求出OB,即可解决问题.【解答】解:由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.22.(7分)(2017•吉林)如图,在平面直角坐标系中,直线AB与函数y=(x >0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【分析】(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.【解答】解:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S=AC•BE=×4×2=4,△ABC即△ABC的面积为4.【点评】本题主要考查反比例函数与一次函数的交点问题,根据三角形的面积求得点A的坐标及待定系数法求函数解析式是解题的关键.五、解答题(每小题8分,共16分)23.(8分)(2017•吉林)如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为4;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【分析】(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(2)先判定四边形ABC'D'是菱形,再根据边长AB=AD=,即可得到四边形ABC'D′的周长为4;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【解答】解:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=AD=,∴四边形ABC'D′的周长为4,故答案为:4;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+或2+3.【点评】本题主要考查了菱形的判定与性质,矩形的性质以及勾股定理的运用,解题时注意:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.24.(8分)(2017•吉林)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为10cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【分析】(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x 的取值范围;(3)利用一次函数图象结合水面高度的变化得出t的值.【解答】解:(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,故正方体的棱长为10cm;故答案为:10;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,10),B(28,20),∴,解得:,∴线段AB对应的解析式为:y=x+(12≤x≤28);(3)∵28﹣12=16(s),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.【点评】此题主要考查了一次函数的应用,正确利用函数图象获取正确信息是解题关键.六、解答题(每小题10分,共20分)25.(10分)(2017•吉林)如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ 与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为x cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【分析】(1)国际已知条件得到∠AQP=45°,求得PQ=AP=2x,由于D为PQ中点,于是得到DQ=x;(2)如图①,延长FE交AB于G,由题意得AP=2x,由于D为PQ中点,得到DQ=x,求得GP=2x,列方程于是得到结论;(3)如图②,当0<x≤时,根据正方形的面积公式得到y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,根据正方形和三角形面积公式得到y=﹣x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=,得到x=,于是得到结论.【解答】解:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x ,∵D 为PQ 中点,∴DQ=x ,故答案为:x ;(2)如图①,延长FE 交AB 于G ,由题意得AP=2x ,∵D 为PQ 中点,∴DQ=x ,∴GP=2x ,∴2x +x +2x=4,∴x=;(3)如图②,当0<x ≤时,y=S 正方形DEFQ =DQ 2=x 2,∴y=x 2;如图③,当<x ≤1时,过C 作CH ⊥AB 于H ,交FQ 于K ,则CH=AB=2,∵PQ=AP=2x ,CK=2﹣2x ,∴MQ=2CK=4﹣4x ,FM=x ﹣(4﹣4x )=5x ﹣4,∴y=S 正方形DEFQ ﹣S △MNF =DQ 2﹣FM 2,∴y=x 2﹣(5x ﹣4)2=﹣x 2+20x ﹣8,∴y=﹣x 2+20x ﹣8;如图④,当1<x <2时,PQ=4﹣2x ,∴DQ=2﹣x ,∴y=S △DEQ =DQ 2,∴y=(2﹣x )2,∴y=x 2﹣2x +2;(4)当Q 与C 重合时,E 为BC 的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=,PB=1,∴AP=3,∴2x=3,∴x=,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<.【点评】本题考查了等腰直角三角形的性质,正方形的性质,图形面积的计算,正确的作出图形是解题的关键.26.(10分)(2017•吉林)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y 随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【分析】【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P在C的左侧或F的右侧部分时,设P[m,],根据h≥1,列不等式解出即可;②如图③,作对称轴由最大面积小于1可知:点P不可能在DE的上方;③P与O或A重合时,符合条件,m=0或m=4.【解答】解:【问题】∵抛物线y=a(x﹣2)2﹣经过原点O,∴0=a(0﹣2)2﹣,a=,故答案为:;【操作】:如图①,抛物线:y=(x﹣2)2﹣,对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+如图②,图象G对应的函数解析式为:y=;【探究】:如图③,由题意得:当y=1时,(x﹣2)2﹣=0,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(x﹣2)2+=0,解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x 增大而增大;【应用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,=DE•h≥1,∵S△PDE∴h≥1;①当P在C的左侧或F的右侧部分时,设P[m,],∴h=(m﹣2)2﹣﹣1≥1,(m﹣2)2≥10,m﹣2≥或m﹣2≤﹣,m≥2+或m≤2﹣,②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,),∴HM=﹣1=<1,∴点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P不可能在CO(除O点)、OD、EA(除A点)、AF上,∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣或m≥2+.【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、对称性、二次函数的性质、图形和坐标特点、折叠的性质;运用了数形结合的思想和分类讨论的思想,应用部分有难度,根据面积的条件,先求出底边的长和确定高的取值是关键.。
吉林中考数学试题含答案及解析
2018年吉林省中考数学试卷一、选择题共6小题;每小题2分;满分12分1.2.00分计算﹣1×﹣2的结果是A.2 B.1 C.﹣2 D.﹣32.2.00分如图是由4个相同的小正方体组成的立体图形;它的主视图是A.B.C.D.3.2.00分下列计算结果为a6的是A.a2 a3B.a12÷a2C.a23D.﹣a234.2.00分如图;将木条a;b与c钉在一起;∠1=70°;∠2=50°;要使木条a与b平行;木条a旋转的度数至少是A.10° B.20° C.50° D.70°5.2.00分如图;将△ABC折叠;使点A与BC边中点D重合;折痕为MN;若AB=9;BC=6;则△DNB的周长为A.12 B.13 C.14 D.156.2.00分我国古代数学着作孙子算经中有“鸡兔同笼”问题:“今有鸡兔同笼;上有三十五头;下有九十四足;问鸡兔各几何.”设鸡x只;兔y只;可列方程组为A.B.C.D.二、填空题共8小题;每小题3分;满分24分7.3.00分计算:= .8.3.00分买单价3元的圆珠笔m支;应付元.9.3.00分若a+b=4;ab=1;则a2b+ab2= .10.3.00分若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;则m的值为.11.3.00分如图;在平面直角坐标系中;A4;0;B0;3;以点A为圆心;AB长为半径画弧;交x轴的负半轴于点C;则点C坐标为.12.3.00分如图是测量河宽的示意图;AE与BC相交于点D;∠B=∠C=90°;测得BD=120m;DC=60m;EC=50m;求得河宽AB= m.13.3.00分如图;A;B;C;D是⊙O上的四个点;=;若∠AOB=58°;则∠BDC= 度.14.3.00分我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”;记作k;若k=;则该等腰三角形的顶角为度.三、解答题共12小题;满分84分15.5.00分某同学化简aa+2b﹣a+ba﹣b出现了错误;解答过程如下:原式=a2+2ab﹣a2﹣b2第一步=a2+2ab﹣a2﹣b2第二步=2ab﹣b2第三步1该同学解答过程从第步开始出错;错误原因是;2写出此题正确的解答过程.16.5.00分如图;在正方形ABCD中;点E;F分别在BC;CD上;且BE=CF;求证:△ABE≌△BCF.17.5.00分一个不透明的口袋中有三个小球;上面分别标有字母A;B;C;除所标字母不同外;其它完全相同;从中随机摸出一个小球;记下字母后放回并搅匀;再随机摸出一个小球;用画树状图或列表的方法;求该同学两次摸出的小球所标字母相同的概率.18.5.00分在平面直角坐标系中;反比例函数y=k≠0图象与一次函数y=x+2图象的一个交点为P;且点P的横坐标为1;求该反比例函数的解析式.19.7.00分如图是学习分式方程应用时;老师板书的问题和两名同学所列的方程.根据以上信息;解答下列问题.1冰冰同学所列方程中的x表示;庆庆同学所列方程中的y表示;2两个方程中任选一个;并写出它的等量关系;3解2中你所选择的方程;并回答老师提出的问题.20.7.00分如图是由边长为1的小正方形组成的8×4网格;每个小正方形的顶点叫做格点;点A;B;C;D均在格点上;在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.1请用圆规画出点D→D1→D2→D经过的路径;2所画图形是对称图形;3求所画图形的周长结果保留π.21.7.00分数学活动小组的同学为测量旗杆高度;先制定了如下测量方案;使用工具是测角仪和皮尺;请帮助组长林平完成方案内容;用含a;b;α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤1用测得∠ADE=α;2用测得BC=a米;CD=b米.计算过程22.7.00分为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况;质检员进行了抽样调查;过程如下;请补全表一、表二中的空白;并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋;测得实际质量单位:g如下:甲:400;400;408;406;410;409;400;393;394;395乙:403;404;396;399;402;402;405;397;402;398整理数据:表一质量g 频数393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411种类甲30013乙0150分析数据:表二种类平均数中位数众数方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是填甲或乙;说明你的理由.23.8.00分小玲和弟弟小东分别从家和图书馆同时出发;沿同一条路相向而行;小玲开始跑步中途改为步行;到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家;两人离家的路程ym与各自离开出发地的时间xmin之间的函数图象如图所示1家与图书馆之间的路程为m;小玲步行的速度为m/min;2求小东离家的路程y关于x的函数解析式;并写出自变量的取值范围;3求两人相遇的时间.24.8.00分如图①;在△ABC中;AB=AC;过AB上一点D作DE∥AC交BC于点E;以E为顶点;ED为一边;作∠DEF=∠A;另一边EF交AC于点F.1求证:四边形ADEF为平行四边形;2当点D为AB中点时; ADEF的形状为;3延长图①中的DE到点G;使EG=DE;连接AE;AG;FG;得到图②;若AD=AG;判断四边形AEGF的形状;并说明理由.25.10.00分如图;在矩形ABCD中;AB=2cm;∠ADB=30°.P;Q两点分别从A;B同时出发;点P沿折线AB﹣BC运动;在AB上的速度是2cm/s;在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动;过点P作PN⊥AD;垂足为点N.连接PQ;以PQ;PN为邻边作 PQMN.设运动的时间为xs; PQMN与矩形ABCD 重叠部分的图形面积为ycm21当PQ⊥AB时;x= ;2求y关于x的函数解析式;并写出x的取值范围;3直线AM将矩形ABCD的面积分成1:3两部分时;直接写出x的值.26.10.00分如图;在平面直角坐标系中;抛物线y=ax2+2ax﹣3aa<0与x轴相交于A;B两点;与y轴相交于点C;顶点为D;直线DC与x轴相交于点E.1当a=﹣1时;抛物线顶点D的坐标为;OE= ;2OE的长是否与a值有关;说明你的理由;3设∠DEO=β;45°≤β≤60°;求a的取值范围;4以DE为斜边;在直线DE的左下方作等腰直角三角形PDE.设Pm;n;直接写出n 关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题共6小题;每小题2分;满分12分1.2.00分计算﹣1×﹣2的结果是A.2 B.1 C.﹣2 D.﹣3分析根据“两数相乘;同号得正”即可求出结论.解答解:﹣1×﹣2=2.故选:A.点评本题考查了有理数的乘法;牢记“两数相乘;同号得正;异号得负;并把绝对值相乘”是解题的关键.2.2.00分如图是由4个相同的小正方体组成的立体图形;它的主视图是A.B.C.D.分析找到从正面看所得到的图形即可;注意所有的看到的棱都应表现在主视图中.解答解:从正面看易得第一层有3个正方形;第二层最右边有一个正方形.故选:B.点评本题考查了三视图的知识;主视图是从物体的正面看得到的视图.3.2.00分下列计算结果为a6的是A.a2 a3B.a12÷a2C.a23D.﹣a23分析分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.解答解:A、a2 a3=a5;此选项不符合题意;B、a12÷a2=a10;此选项不符合题意;C、a23=a6;此选项符合题意;D、﹣a23=﹣a6;此选项不符合题意;故选:C.点评本题主要考查幂的运算;解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.2.00分如图;将木条a;b与c钉在一起;∠1=70°;∠2=50°;要使木条a与b平行;木条a旋转的度数至少是A.10° B.20° C.50° D.70°分析根据同位角相等两直线平行;求出旋转后∠2的同位角的度数;然后用∠1减去即可得到木条a旋转的度数.解答解:如图.∵∠AOC=∠2=50°时;OA∥b;∴要使木条a与b平行;木条a旋转的度数至少是70°﹣50°=20°.故选:B.点评本题考查了旋转的性质;平行线的判定;根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.5.2.00分如图;将△ABC折叠;使点A与BC边中点D重合;折痕为MN;若AB=9;BC=6;则△DNB的周长为A.12 B.13 C.14 D.15分析由D为BC中点知BD=3;再由折叠性质得ND=NA;从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.解答解:∵D为BC的中点;且BC=6;∴BD=BC=3;由折叠性质知NA=ND;则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12;故选:A.点评本题主要考查翻折变换;解题的关键是掌握翻折变换的性质:折叠是一种对称变换;它属于轴对称;折叠前后图形的形状和大小不变;位置变化;对应边和对应角相等.6.2.00分我国古代数学着作孙子算经中有“鸡兔同笼”问题:“今有鸡兔同笼;上有三十五头;下有九十四足;问鸡兔各几何.”设鸡x只;兔y只;可列方程组为A.B.C.D.分析根据题意可以列出相应的方程组;从而可以解答本题.解答解:由题意可得;;故选:D.点评本题考查由实际问题抽象出二元一次方程组;解答本题的关键是明确题意;列出相应的方程组.二、填空题共8小题;每小题3分;满分24分7.3.00分计算:= 4 .分析根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根;即为这个数的算术平方根;由此即可求出结果.解答解:∵42=16;∴=4;故答案为4.点评此题主要考查了算术平方根的定义;算术平方根的概念易与平方根的概念混淆而导致错误.8.3.00分买单价3元的圆珠笔m支;应付3m 元.分析根据总价=单价×数量列出代数式.解答解:依题意得:3m.故答案是:3m.点评本题考查列代数式;解答本题的关键是明确题意;列出相应的代数式.9.3.00分若a+b=4;ab=1;则a2b+ab2= 4 .分析直接利用提取公因式法分解因式;再把已知代入求出答案.解答解:∵a+b=4;ab=1;∴a2b+ab2=aba+b=1×4=4.故答案为:4.点评此题主要考查了提取公因式法分解因式;正确找出公因式是解题关键.10.3.00分若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;则m的值为﹣1 .分析由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;可知其判别式为0;据此列出关于m的不等式;解答即可.解答解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;∴△=b2﹣4ac=0;即:22﹣4﹣m=0;解得:m=﹣1;故选答案为﹣1.点评本题考查了根的判别式;解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.3.00分如图;在平面直角坐标系中;A4;0;B0;3;以点A为圆心;AB长为半径画弧;交x轴的负半轴于点C;则点C坐标为﹣1;0 .分析求出OA、OB;根据勾股定理求出AB;即可得出AC;求出OC长即可.解答解:∵点A;B的坐标分别为4;0;0;3;∴OA=4;OB=3;在Rt△AOB中;由勾股定理得:AB==5;∴AC=AB=5;∴OC=5﹣4=1;∴点C的坐标为﹣1;0;故答案为:﹣1;0;点评本题考查了勾股定理和坐标与图形性质的应用;解此题的关键是求出OC的长;注意:在直角三角形中;两直角边的平方和等于斜边的平方.12.3.00分如图是测量河宽的示意图;AE与BC相交于点D;∠B=∠C=90°;测得BD=120m;DC=60m;EC=50m;求得河宽AB= 100 m.分析由两角对应相等可得△BAD∽△CED;利用对应边成比例可得两岸间的大致距离AB.解答解:∵∠ADB=∠EDC;∠ABC=∠ECD=90°;∴△ABD∽△ECD;∴;;解得:AB=米.故答案为:100.点评此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.3.00分如图;A;B;C;D是⊙O上的四个点;=;若∠AOB=58°;则∠BDC= 29 度.分析根据∠BDC=∠BOC求解即可;解答解:连接OC.∵=;∴∠AOB=∠BOC=58°;∴∠BDC=∠BOC=29°;故答案为29.点评本题考查圆周角定理;圆心角、弧、弦之间的关系等知识;解题的关键是熟练掌握基本知识;属于中考常考题型.14.3.00分我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”;记作k;若k=;则该等腰三角形的顶角为36 度.分析根据等腰三角形的性质得出∠B=∠C;根据三角形内角和定理和已知得出5∠A=180°;求出即可.解答解:∵△ABC中;AB=AC;∴∠B=∠C;∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”;记作k;若k=;∴∠A:∠B=1:2;即5∠A=180°;∴∠A=36°;故答案为:36.点评本题考查了三角形内角和定理和等腰三角形的性质;能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.三、解答题共12小题;满分84分15.5.00分某同学化简aa+2b﹣a+ba﹣b出现了错误;解答过程如下:原式=a2+2ab﹣a2﹣b2第一步=a2+2ab﹣a2﹣b2第二步=2ab﹣b2第三步1该同学解答过程从第二步开始出错;错误原因是去括号时没有变号;2写出此题正确的解答过程.分析先计算乘法;然后计算减法.解答解:1该同学解答过程从第二步开始出错;错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;2原式=a2+2ab﹣a2﹣b2=a2+2ab﹣a2+b2=2ab+b2.点评考查了平方差公式和实数的运算;去括号规律:①a+b+c=a+b+c;括号前是“+”号;去括号时连同它前面的“+”号一起去掉;括号内各项不变号;②a﹣b ﹣c=a﹣b+c;括号前是“﹣”号;去括号时连同它前面的“﹣”号一起去掉;括号内各项都要变号.16.5.00分如图;在正方形ABCD中;点E;F分别在BC;CD上;且BE=CF;求证:△ABE≌△BCF.分析根据正方形的性质;利用SAS即可证明;解答证明:∵四边形ABCD是正方形;∴AB=BC;∠ABE=∠BCF=90°;在△ABE和△BCF中;;∴△ABE≌△BCF.点评本题考查正方形的性质全等三角形的判定等知识;解题的关键是熟练掌握基本知识;属于中考常考题型.17.5.00分一个不透明的口袋中有三个小球;上面分别标有字母A;B;C;除所标字母不同外;其它完全相同;从中随机摸出一个小球;记下字母后放回并搅匀;再随机摸出一个小球;用画树状图或列表的方法;求该同学两次摸出的小球所标字母相同的概率.分析列表得出所有等可能的情况数;再找出两次摸出的小球所标字母相同的情况数;即可求出其概率.解答解:列表得:A B CA A;A B;A C;AB A;B B;B C;BC A;C B;C C;C由列表可知可能出现的结果共9种;其中两次摸出的小球所标字母相同的情况数有3种;所以该同学两次摸出的小球所标字母相同的概率==.点评此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果;适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.5.00分在平面直角坐标系中;反比例函数y=k≠0图象与一次函数y=x+2图象的一个交点为P;且点P的横坐标为1;求该反比例函数的解析式.分析先求出P点的坐标;再把P点的坐标代入反比例函数的解析式;即可求出答案.解答解:∵把x=1代入y=x+2得:y=3;即P点的坐标是1;3;把P点的坐标代入y=得:k=3;即反比例函数的解析式是y=.点评本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征;能求出P点的坐标是解此题的关键.19.7.00分如图是学习分式方程应用时;老师板书的问题和两名同学所列的方程.根据以上信息;解答下列问题.1冰冰同学所列方程中的x表示甲队每天修路的长度;庆庆同学所列方程中的y表示甲队修路400米所需时间;2两个方程中任选一个;并写出它的等量关系;3解2中你所选择的方程;并回答老师提出的问题.分析1根据两人的方程思路;可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;2根据题意;可找出:冰冰甲队修路400米所用时间=乙队修路600米所用时间;庆庆乙队每天修路的长度﹣甲队每天修路的长度=20米;3选择两个方程中的一个;解之即可得出结论.解答解:1∵冰冰是根据时间相等列出的分式方程;∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程;∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.2冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米选择一个即可.3选冰冰的方程:=;去分母;得:400x+8000=600x;移项;x的系数化为1;得:x=40;检验:当x=40时;x、x+20均不为零;∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20;去分母;得:600﹣400=20y;将y的系数化为1;得:y=10;经验:当y=10时;分母y不为0;∴y=10;∴=40.答:甲队每天修路的长度为40米.点评本题考查了分式方程的应用;找准等量关系;正确列出分式方程是解题的关键.20.7.00分如图是由边长为1的小正方形组成的8×4网格;每个小正方形的顶点叫做格点;点A;B;C;D均在格点上;在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.1请用圆规画出点D→D1→D2→D经过的路径;2所画图形是轴对称对称图形;3求所画图形的周长结果保留π.分析1利用旋转变换的性质画出图象即可;2根据轴对称图形的定义即可判断;3利用弧长公式计算即可;解答解:1点D→D1→D2→D经过的路径如图所示:2观察图象可知图象是轴对称图形;故答案为轴对称.3周长=4×=8π.点评本题考查作图﹣旋转变换;弧长公式、轴对称图形等知识;解题的关键是理解题意;正确画出图形;属于中考常考题型.21.7.00分数学活动小组的同学为测量旗杆高度;先制定了如下测量方案;使用工具是测角仪和皮尺;请帮助组长林平完成方案内容;用含a;b;α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤1用测角仪测得∠ADE=α;2用皮尺测得BC=a米;CD=b米.计算过程分析在Rt△ADE中;求出AE;再利用AB=AE+BE计算即可;解答解:1用测角仪测得∠ADE=α;2用皮尺测得BC=a米;CD=b米.3计算过程:∵四边形BCDE是矩形;∴DE=BC=a;BE=CD=b;在Rt△ADE中;AE=ED tanα=a tanα;∴AB=AE+EB=a tanα+b.点评本题考查解直角三角形的应用﹣仰角俯角问题;解题的关键是学会添加常用辅助线;构造直角三角形解决问题.22.7.00分为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况;质检员进行了抽样调查;过程如下;请补全表一、表二中的空白;并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋;测得实际质量单位:g如下:甲:400;400;408;406;410;409;400;393;394;395乙:403;404;396;399;402;402;405;397;402;398整理数据:表一质量g 频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲30 3 013乙0 3 15 1 0分析数据:表二种类平均数中位数众数方差甲401.5400 40036.85乙400.8402402 8.56得出结论:包装机分装情况比较好的是乙填甲或乙;说明你的理由.分析整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义;方差小分装质量较为稳定即可得.解答解:整理数据:表一质量g 频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410;∴甲组数据的中位数为400;乙组数据中402出现次数最多;有3次;∴乙组数据的众数为402;表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:表二知;乙包装机分装的奶粉质量的方差小;分装质量比较稳定;所以包装机分装情况比较好的是乙.故答案为:乙.点评本题考查了众数、中位数以及方差;掌握众数、中位数以及方差的定义及数据的整理是解题的关键.23.8.00分小玲和弟弟小东分别从家和图书馆同时出发;沿同一条路相向而行;小玲开始跑步中途改为步行;到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家;两人离家的路程ym与各自离开出发地的时间xmin之间的函数图象如图所示1家与图书馆之间的路程为4000 m;小玲步行的速度为200 m/min;2求小东离家的路程y关于x的函数解析式;并写出自变量的取值范围;3求两人相遇的时间.分析1认真分析图象得到路程与速度数据;2采用方程思想列出小东离家路程y与时间x之间的函数关系式;3两人相遇实际上是函数图象求交点.解答解:1结合题意和图象可知;线段CD为小玲路程与时间函数图象;折现O﹣A ﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m;小玲步行速度为2000÷10=200m/s故答案为:4000;2002∵小东从离家4000m处以300m/min的速度返回家;则xmin时;∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤3由图象可知;两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.点评本题是一次函数实际应用问题;考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.24.8.00分如图①;在△ABC中;AB=AC;过AB上一点D作DE∥AC交BC于点E;以E为顶点;ED为一边;作∠DEF=∠A;另一边EF交AC于点F.1求证:四边形ADEF为平行四边形;2当点D为AB中点时; ADEF的形状为菱形;3延长图①中的DE到点G;使EG=DE;连接AE;AG;FG;得到图②;若AD=AG;判断四边形AEGF的形状;并说明理由.分析1根据平行线的性质得到∠BDE=∠A;根据题意得到∠DEF=∠BDE;根据平行线的判定定理得到AD∥EF;根据平行四边形的判定定理证明;2根据三角形中位线定理得到DE=AC;得到AD=DE;根据菱形的判定定理证明;3根据等腰三角形的性质得到AE⊥EG;根据有一个角是直角的平行四边形是矩形证明.解答1证明:∵DE∥AC;∴∠BDE=∠A;∵∠DEF=∠A;∴∠DEF=∠BDE;∴AD∥EF;又∵DE∥AC;∴四边形ADEF为平行四边形;2解: ADEF的形状为菱形;理由如下:∵点D为AB中点;∴AD=AB;∵DE∥AC;点D为AB中点;∴DE=AC;∵AB=AC;∴AD=DE;∴平行四边形ADEF为菱形;故答案为:菱形;3四边形AEGF是矩形;理由如下:由1得;四边形ADEF为平行四边形;∴AF∥DE;AF=DE;∵EG=DE;∴AF∥DE;AF=GE;∴四边形AEGF是平行四边形;∵AD=AG;EG=DE;∴AE⊥EG;∴四边形AEGF是矩形.点评本题考查的是平行四边形、矩形、菱形的判定;掌握它们的判定定理是解题的关键.25.10.00分如图;在矩形ABCD中;AB=2cm;∠ADB=30°.P;Q两点分别从A;B同时出发;点P沿折线AB﹣BC运动;在AB上的速度是2cm/s;在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动;过点P作PN⊥AD;垂足为点N.连接PQ;以PQ;PN为邻边作 PQMN.设运动的时间为xs; PQMN与矩形ABCD 重叠部分的图形面积为ycm21当PQ⊥AB时;x= s ;2求y关于x的函数解析式;并写出x的取值范围;3直线AM将矩形ABCD的面积分成1:3两部分时;直接写出x的值.分析1当PQ⊥AB时;BQ=2PB;由此构建方程即可解决问题;2分三种情形分别求解即可解决问题;3分两种情形分别求解即可解决问题;解答解:1当PQ⊥AB时;BQ=2PB;∴2x=22﹣2x;∴x=s.故答案为s.2①如图1中;当0<x≤时;重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中;当<x≤1时;重叠部分是四边形PQEN.y=2﹣x+2tx×x=x2+x③如图3中;当1<x<2时;重叠部分是四边形PNEQ.y=2﹣x+2×x﹣2x﹣1=x2﹣3x+4;综上所述;y=.3①如图4中;当直线AM经过BC中点E时;满足条件.则有:tan∠EAB=tan∠QPB;∴=;解得x=.②如图5中;当直线AM经过CD的中点E时;满足条件.此时tan∠DEA=tan∠QPB;∴=;解得x=;综上所述;当x=s或时;直线AM将矩形ABCD的面积分成1:3两部分.点评本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识;解题的关键是学会用分类讨论的思想思考问题;学会用方程的思想解决问题;属于中考压轴题.26.10.00分如图;在平面直角坐标系中;抛物线y=ax2+2ax﹣3aa<0与x轴相交于A;B两点;与y轴相交于点C;顶点为D;直线DC与x轴相交于点E.1当a=﹣1时;抛物线顶点D的坐标为﹣1;4 ;OE= 3 ;2OE的长是否与a值有关;说明你的理由;3设∠DEO=β;45°≤β≤60°;求a的取值范围;4以DE为斜边;在直线DE的左下方作等腰直角三角形PDE.设Pm;n;直接写出n 关于m的函数解析式及自变量m的取值范围.分析1求出直线CD的解析式即可解决问题;2利用参数a;求出直线CD的解析式求出点E坐标即可判断;3求出落在特殊情形下的a的值即可判断;4如图;作PM⊥对称轴于M;PN⊥AB于N.两条全等三角形的性质即可解决问题;解答解:1当a=﹣1时;抛物线的解析式为y=﹣x2﹣2x+3;∴顶点D﹣1;4;C0;3;∴直线CD的解析式为y=﹣x+3;∴E3;0;∴OE=3;故答案为﹣1;4;3.2结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a;∴C0;﹣3a;D﹣1;﹣4a;∴直线CD的解析式为y=ax﹣3a;当y=0时;x=3;∴E3;0;∴OE=3;∴OE的长与a值无关.3当β=45°时;OC=OE=3;∴﹣3a=3;∴a=﹣1;当β=60°时;在Rt△OCE中;OC=OE=3;∴﹣3a=3;∴a=﹣;∴45°≤β≤60°;a的取值范围为﹣≤a≤﹣1.4如图;作PM⊥对称轴于M;PN⊥AB于N.∵PD=PE;∠PMD=∠PNE=90°;∠DPE=∠MPN=90°;∴∠DPM=∠EPN;∴△DPM≌△EPN;∴PM=PN;PM=EN;∵D﹣1;﹣4a;E3;0;∴EN=4+n=3﹣m;∴n=﹣m﹣1;当顶点D在x轴上时;P1;﹣2;此时m的值1;∵抛物线的顶点在第二象限;∴m<1.∴n=﹣m﹣1m<1.点评本题考查二次函数综合题、一次函数的应用、等腰直角三角形的性质、全等三角形的判定和性质、解直角三角形等知识;解题的关键是灵活运用所学知识解决问题;学会利用参数解决问题;学会添加常用辅助线;构造全等三角形解决问题;属于中考压轴题.。
历年吉林省中考数学试卷(持续更新中)
历年吉林省中考数学试卷(持续更新中)2012年吉林省中考数学试卷(试卷答案及解析下期见)一、选择题(每小题2分,共12分)1.(2分)在四个数0,﹣2,﹣1,2中,最小的数是()A.0 B.﹣2 C.﹣1 D.22.(2分)如图,有5个完全相同的小正方体组合成一个立方体图形,它的俯视图是()3.(2分)下列计算正确的是()A.3a﹣a=2 B.a2+2a2=3a2C.a2·a3=a6 D.(a+b)2=a2+b24.(2分)如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40° B.60° C.80° D.120°5.(2分)如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6 B.﹣3 C.3 D.66.(2分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()二、填空题(每小题3分,共24分)7.(3分)计算:﹣= .8.(3分)不等式2x﹣1>x的解集为.9.(3分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1= .10.(3分)若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为=1.5,=2.5,则芭蕾舞团参加演出的女演员身高更整齐(填:“甲”或“乙”).11.(3分)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB=度.12.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD= .13.(3分)如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为(写出一个符合条件的度数即可)14.(3分)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是.三、解答题(每小题5分,共20分)16.(5分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.17.(5分)如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.18.(5分)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.四、解答题(每小题7分,共28分)19.(7分)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则= ;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为.20.(7分)如图,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使成A,C,E一条直线(结果保留整数);(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)21.(7分)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.22.(7分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.五、解答题(每小题8分,共16分)23.(8分)如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.24.(8分)如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A 与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为km,货车从H到C往返2次的路程为km,这辆货车每天行驶的路程y= .当25<x≤35时,这辆货车每天行驶的路程y= ;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?六、解答题(每小题10分,共20分)25.(10分)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t= s时,点P与点Q重合;(2)当t= s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.26.(10分)问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.特例探究填空:当m=1,n=2时,yE= ,yF= ;当m=3,n=5时,yE= ,yF= .归纳证明对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.。
2010年长春市中考数学试题及标准答案
2010年长春市初中毕业生学业考试数学试题一、选择题(每小题3分,共24分)1.错误!的相反数为( ) A .15B.-错误! C.5 D.-5 2.下列几何体中,主视图为右图是( )3.不等式2x-1≤5的解集在数轴上表示为( )4.今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天的最高气温的众数为( ) A .27°C B .29°C C .30°C D.31°C5.端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师买荷包x 个,五彩绳y个,根据题意,下面列出的方程组正确的是( )A.错误!B.错误! C.错误! D.错误! 6.如图,在△AB C中,∠C=90º,∠B =40º,A D是角平分线,则∠AD C=( ) A.25º B .50º C .65º D.70º7.如图,锐角△ABC 的顶点A、B 、C 均在⊙O 上,∠OAC =20º,则∠B =( ) A.40º B.60º C.70º D .80º 8.如图,平面直角坐标系中,OB 在x 轴上,∠AB O=90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y =\F( k ,x )(x >0)上,则k =( )A.2 B .3 C.4 D.6二、填空题(每小题3分,共18分)9.因式分解:a-a 2= .OBAD Cyx第8题图BACD第6题图A .B .C .D . A . B . C . D .0 0 0 3 3 2 2 BACO第7题图白城31-19°C松原 31-19°C 长春 31-19°C吉林31-17°C 延边 29-15°C 白山27-14°C四平 31-19°C 通化29-17°C 辽源30-17°C10.写一个比错误!小的正整数,这个整数是 (写出一个即可).11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款 元(用含有a的代数式表示).12.如图,双曲线y1=错误!(k1>0)与直线y 2=k 2x +b (k 2>0)的一个交点的横坐标为2,那么当x =3时,y 1 y 2(填“>”、“=”或“<”).13.如图,⊙P 与x轴切于点O,点P 的坐标为(0,1),点A 在⊙P上,并且在第一象限,∠APO =120º.⊙P 沿x 轴正方向滚动,当点A 第一次落在x轴上时,点A 的横坐标 为 (结果保留 ).14.如图,抛物线y =ax 2+c (a <0)交x 轴于点G 、F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B 、E,它们关于y 轴对称,点G 、B在y轴左侧.BA ⊥OG 于点A,BC ⊥O D于点C .四边形O AB C与四边形OD EF 的面积分别为6和10,则△A BG 与△BCD 的面积之和为 .三、解答题(每小题5分,共20分)15.先化简,再求值:(x +1)2-2x +1,其中x =2.16.一个不透明的口袋中装有红、黄、白小球各1个,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色放回,再随机摸出一个小球.请你用画树形图(或列表)的方法,求出两次摸出的小球颜色相同的概率.17.第16届亚运会将在广州举行.小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格.第14题图。
吉林省长春市中考数学试卷及答案(Word解析版)
吉林省长春市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(•长春)的绝对值等于()A.B.4C.D.﹣4考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣的绝对值等于,即|﹣|=.故选A.点评:本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个长方形,位于左边,第二层有2个长方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106B.1.4×107C.1.4×108D.0.14×108考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14 000 000有8位,所以可以确定n=8﹣1=7.解答:解:14 000 000=1.4×107.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(•长春)不等式2x<﹣4的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式分析:首先解不等式求得不等式的解集,根据数轴上点的表示法即可判断.解答:解:解不等式得:x<﹣2.故选D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D 在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°考点:平行线的性质;直角三角形的性质.分析:首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.解答:解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.点评:此题主要考查了平行线的性质,关键是掌握两直线平行同位角相等.6.(3分)(•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.7.(3分)(•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3考点:相似三角形的判定与性质.专题:探究型.分析:先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.解答:解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.8.(3分)(•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.5考点:一次函数图象上点的坐标特征;坐标与图形变化-平移分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3.又∵点A的对应点在直线y=x上一点,∴3=x,解得x=4.∴点A′的坐标是(4,3),∴AA′=4.∴根据平移的性质知BB′=AA′=4.故选C.点评:本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.二、填空题(每小题3分,共18分)9.(3分)(•长春)计算:a2•5a=5a3.考点:单项式乘单项式专题:计算题.分析:利用单项式乘单项式法则计算即可得到结果.解答:解:原式=5a3.故答案为:5a3.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.(3分)(•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).考点:列代数式分析:用两天接待的游客总人数除以天数,即可得解.解答:解:2天平均每天接待游客.故答案为:.点评:本题考查了列代数式,比较简单,熟练掌握平均数的求法是解题的关键.11.(3分)(•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.考点:垂径定理;正方形的性质.分析:根据正方形性质得出BC=7,∠OCB=90°,根据垂径定理得出CM=2BC,推出MN=4BC,代入求出即可.解答:解:∵四边形OABC是正方形,∴BC=7,∠OCB=90°,∴OC⊥MN,∴由垂径定理得:MN=2CM,∵点B是CM的中点,∴CM=2BC,∴MN=4BC=4×7=28,故答案为:28.点评:本题考查了垂径定理和正方形性质的应用,关键是推出MN=4BC.12.(3分)(•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.考点:全等三角形的判定与性质.分析:根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.解答:解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA,∴∠ADC=∠B=65°.故答案为:65.点评:本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.13.(3分)(•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k 的值为.考点:正多边形和圆;反比例函数图象上点的坐标特征.分析:连接OB,过B作BM⊥OA于M,得出等边三角形AOB,求出OB,根据锐角三角函数求出BM和OM,即可得出B的坐标,代入即可求出答案.解答:解:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=6,∴BM=OB•sin∠BOA=6×sin60°=3,OM=OB•COS60°=3,即B的坐标是(3,3),∵B在反比例函数位于第一象限的图象上,∴k=3×3=9,故答案为:9.点评:本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.14.(3分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.考点:二次函数图象上点的坐标特征.分析:先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度.解答:解:∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,=3,解得x=±3,∴B点坐标为(﹣3,3),C点坐标为(3,3),∴BC=3﹣(﹣3)=6.故答案为6.点评:本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)(•长春)先化简,再求值:,其中x=.考点:分式的化简求值专题:计算题.分析:将的分子因式分解,然后约分;再将(x﹣2)2展开,合并同类项后再代入求值即可.解答:解:原式==4x+x2﹣4x+4=x2+4.当x=时,原式==11.点评:本题考查了分式的化简求值,熟悉因式分解及约分、通分是解题的关键.16.(6分)(•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的情况数,找出两人摸出的求颜色相同的情况数,即可求出所求的概率.解答:解:列表如下:甲乙结果白红红白(白,白)(红,白)(红,白)白(白,白)(红,白)(红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中颜色相同的情况有4种,则P(两人摸出的球颜色相同)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)(•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.考点:分式方程的应用.分析:首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方即可.解答:解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.18.(7分)(•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.19.(7分)(•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)考点:解直角三角形的应用-仰角俯角问题分析:在Rt△CAE中,利用CD、DE的长和已知的角的度数,利用正弦函数可求得AC的长.解答:解:由题意知,DE=AB=2.17,∴CE=CD﹣DE=12.17﹣2.17=10.在Rt△CAE中,∠CAE=26°,sin∠CAE=,∴AC===≈22.7(米).答:岸边的点A与桥墩顶部点C之间的距离约为22.7米.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(7分)(•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.考点:条形统计图;用样本估计总体;扇形统计图专题:计算题.分析:(1)由条形统计图中的数据相加即可求出n名学生中剩饭的学生人数,除以剩饭学生所占的百分比即可求出学生的总数,即为n的值;(2)根据条形统计图得到剩饭2次以上的人数,除以n的值,即可求出结果;(3)根据(2)中求出的百分比,乘以1200即可得到结果.解答:解:(1)根据题意得:这n名学生中剩饭学生的人数为58+41+6=105(人),n的值为105÷70%=150,则这n名学生中剩饭的学生有105人,n的值为150;(2)根据题意得:6÷150×100%=4%,则剩饭2次以上的学生占这n名学生人数的4%;(3)根据题意得:1200×4%=48(人).则估计上周在学校食堂就餐的1200名学生中剩饭2次以上的约有48人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(8分)(•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.考点:一次函数的应用分析:(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论.解答:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.点评:本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.22.(9分)(•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.考点:全等三角形的判定与性质;正方形的判定与性质.分析:探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.解答:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,∵AE⊥CD,∠BCD=90°,∴四边形AFCE为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB和△AED中,,∴△AFB≌△AED(AAS),∴AF=AE,∴四边形AFCE为正方形,∴S四边形ABCD=S正方形AFCE=AE2=102=100;应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AF=AE=19,∴S四边形ABCD=S△ABC+S△ACD=BC•AE+CD•AF=×10×19+×6×19=95+57=152.故答案为:152.点评:本题考查了全等三角形的判定与性质,正方形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键;(2)作辅助线构造出全等三角形并把四边形分成两个三角形是解题的关键.23.(10分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))考点:二次函数综合题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式;(2)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入y=x2﹣x﹣2,即可求出m的值;(3)①先由旋转的性质得出点D的坐标为(m,﹣2),再根据二次函数的性质求出抛物线y=x2﹣x﹣2的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标;②以DN为直角边作等腰直角三角形DNE时,分别以D、N为直角顶点,在DN的两侧分别作出等腰直角三角形DNE,E点的位置分四种情况讨论.针对每一种情况,都可以先根据等腰直角三角形的性质求出点E的坐标,然后根据点E在直线x=上,列出关于m的方程,解方程即可求出m的值.解答:解:(1)∵抛物线经过点A(﹣1,0)、B(4,0),∴解得∴抛物线所对应的函数关系式为y=x2﹣x﹣2;(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴m2﹣m﹣2=2,解得m1=,m2=.∴点C在这条抛物线上时,m的值为或;(3)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线y=x2﹣x﹣2的对称轴为直线x=,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线y=x2﹣x﹣2的对称轴x=上,∴m﹣2=,解得m=;如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+2=,解得m=﹣;如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线y=x2﹣x﹣2的对称轴x=上,∴m=;如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+4=,解得m=﹣;综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=﹣或m=﹣或m=或m=.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,旋转的性质等知识,综合性较强,难度适中.其中(3)②要注意分析题意分情况讨论E点可能的位置,这是解题的关键.24.(12分)(•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.考点:四边形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分类讨论,当0<t<1时,当1<t<时,根据三角形的面积公式分别求出S 与t的函数关系式;(3)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(4)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.(2分)(2)当点P与点A重合时,BP=AB,t=1.当点P与点D重合时,AP=AD,8t﹣8=50,t=.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ==,∴QE===.∴S=﹣30t2+30t.当1<t≤时,如图②.S==,∴S=48t﹣48;(3)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM.∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC 时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。
2024年吉林省中考数学真题卷含答案解析
吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2 B.1 C.0 D.1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.8.因式分解:a 2﹣3a=_______.9.不等式组2030x x ->⎧⎨-<⎩的解集为______.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11.正六边形的每个内角等于______________°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =.16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:x16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2B.1C.0D.1-【答案】D【解析】【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯【答案】B【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:92040000000 2.0410⨯=故选B .3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同【答案】A【解析】【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=【答案】B【解析】【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键.分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==,故本选项不符合题意.故选:B .5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,2【答案】C【解析】【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒【答案】C【解析】【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.【答案】0(答案不唯一)【解析】【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案.【详解】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.因式分解:a 2﹣3a=_______.【答案】a (a ﹣3)【解析】【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.不等式组2030x x ->⎧⎨-<⎩的解集为______.【答案】23x <<##32x >>【解析】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.【答案】两点之间,线段最短【解析】【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.正六边形的每个内角等于______________°.【答案】120【解析】【详解】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.【答案】12【解析】【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒,AD BC =,再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =.【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.【答案】()22220.5x x +=+【解析】【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).【答案】11π【解析】【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360Sππ-==阴影,故答案为:11π.三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =.【答案】22a ,6【解析】【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =,当3a =原式223=⨯6=.16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.【答案】13【解析】【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.【答案】证明见解析【解析】【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.【答案】白色琴键52个,黑色琴键36个【解析】【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴白色琴键:361652+=(个),答:白色琴键52个,黑色琴键36个.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.【答案】(1)见解析(2)见解析【解析】【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E、F,作直线EF,则直线EF即为所求;、,作直线GH,则直线GH即为所求.(2)如图所示,取格点G H【小问1详解】解:如图所示,取格点E、F,作直线EF,则直线EF即为所求;,的中点;易证明四边形ABCD是矩形,且E、F分别为AB CD【小问2详解】、,作直线GH,则直线GH即为所求;解:如图所示,取格点G H.易证明四边形OGTH是正方形,点E为正方形OGTH的中心,则OE GH20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)36I R=(2)12A【解析】【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【小问1详解】解:设这个反比例函数的解析式为()0U I U R =≠,把()94,代入()0U I U R =≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.中华人民共和国20192023-年全国居民人均可支配收入及其增长速度情况如图所示.根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5②20192023年中,2020年全国居民人均可支配收入最低.【答案】(1)8485元(2)35128元(3)①【解析】【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【小问1详解】-=元,解:39218307338485-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485答:20192023元.【小问2详解】-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128解:20192023元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)【答案】218.3m【解析】【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △,tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DG AG DG EAD===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:以对称轴为基准向两边各取相同的长度/mmx 16.519.823.126.429.7凳面的宽度/mmy 115.5132148.5165181.5【分析数据】如图③,小组根据表中x ,y 的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【解析】【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【小问1详解】,解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;【小问2详解】解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【解析】【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+ 四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解;(4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题。
2010年吉林省长春市中考数学试题-推荐下载
k=( )
A.2
B.3
二、填空题(每小题 3 分,共 18 分)
9.因式分解:a-a2=
10.写一个比 5小的正整数,这个整数是
C.4
.
11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共 3200 元,其中 5 名
教师人均捐款 a 元,则该班学生共捐款
k1
12.如图,双曲线 y1= x (k1>0)与直线 y2=k2x+b(k2>0)的一个交点的横坐标为 2,那么
A,BC⊥OD 于点 C.四边形 OABC 与四边形 ODEF 的面积分别为 6 和 10,则△ABG
与△BCD 的面积之和为
三、解答题(每小题 5 分,共 20 分)
15.先化简,再求值:(x+1)2-2x+1,其中 x= 2.
.
16.一个不透明的口袋中装有红、黄、白小球各 1 个,小球除颜色外其余均相同.从口袋 中随机摸出一个小球,记下颜色放回,再随机摸出一个小球.请你用画树形图(或列表)的 方法,求出两次摸出的小球颜色相同的概率.
第 14 题图
F
x
17.第 16 届亚运会将在广州举行.小李预定了两种价格的亚运会门票,其中甲种门票共花 费 280 元,乙种门票共花费 300 元,甲种门票比乙种门票多 2 张,乙种门票价格是甲 种门票价格的 1.5 倍,求甲种门票的价格.
18.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心 O,另一边 所在直线与半圆交于点 D、E,量出半径 OC=5cm,弦 DE=8cm,求直尺的宽.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2010年吉林省长春市中考数学试卷
2010年吉林省长春市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)的相反数是()A.5B.C.﹣D.﹣52.(3分)下列物体中,主视图为图①的是()A.B.C.D.3.(3分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.4.(3分)今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天最高气温的众数为()A.27°C B.29°C C.30°C D.31°C5.(3分)端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师购买荷包x个,五彩绳y个,根据题意,下面列出的方程组正确的是()A.B.C.D.6.(3分)如图,△ABC中,∠C=90°,∠B=40°.AD是角平分线,则∠ADC的度数为()A.25°B.50°C.65°D.70°7.(3分)如图,锐角△ABC的顶点A,B,C均在⊙O上,∠OAC=20°,则∠B 的度数为()A.40°B.60°C.70°D.80°8.(3分)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()A.2B.3C.4D.6二、填空题(共6小题,每小题3分,满分18分)9.(3分)因式分解:a﹣a2=.10.(3分)写一个比小的正整数,这个正整数是.(写出一个即可).11.(3分)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款元.(用含有a的代数式表示).12.(3分)如图,双曲线y1=(k1>0)与直线y2=k2x+b(k2>0)的一个交点的横坐标为2.当x=3时,y1y2.(填“>”“<”“=”).13.(3分)如图,⊙P与x轴切于点O,点P的坐标为(0,1).点A在⊙P上,且位于第一象限,∠APO=120°.⊙P沿x轴正方向滚动,当点A第一次落在x 轴上时,点A的横坐标为.(结果保留π)14.(3分)如图,抛物线y=ax2+c(a<0)交x轴于点G,F,交y轴于点D,在x轴上方的抛物线上有两点B,E,它们关于y轴对称,点G,B在y轴左侧,BA⊥OG于点A,BC⊥OD于点C,四边形OABC与四边形ODEF的面积分别为6和10,则△ABG与△BCD的面积之和为.三、解答题(共12小题,满分78分)15.(5分)先化简,再求值:(x+1)2﹣2x+1,其中x=.16.(5分)一个不透明的口袋中装有红,黄,白小球各1个,小球除颜色外其余均相同,从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球,请你用画树形图(或列表)的方法.求出两次摸出小球的颜色相同的概率.17.(5分)第16届亚运会将在中国广州举行,小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格?18.(5分)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.19.(6分)(1)在图1中,以线段m为一边画菱形,要求菱形的顶点均在格点上;(2)在图2中,平移a,b,c中的两条线段,使它们与线段n构成以n为一边的等腰直角三角形.(画一个即可)20.(6分)如图,望远镜调节好后,摆放在水瓶地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=91cm,沿AB方向观测物体的仰角a=33°.望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm).[参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65].21.(6分)如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.22.(6分)小明参加卖报纸的社会实践活动,他调查了一个报亭某天A,B,C 三种报纸的销售量.并把调查结果绘制成如下条形统计图.(1)求该天A,C报纸的销售量各占这三种报纸销售量之和的百分比;(2)请绘制该天A,B,C三种报纸销售量的扇形统计图;(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份?23.(7分)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.24.(7分)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F 处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(﹣,)].25.(10分)如图1,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为y a,y b,y c(单位:升),时间为t(单位:分).开始时,B容器内有水50升,y a y c与t的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:(1)求t=3时,y b的值.(2)求y b与t的函数关系式,并在图2中画出其函数图象.(3)求y a:y b:y c=2:3:4时t的值.26.(10分)如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=x 交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y 轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.(1)求OA所在直线的解析式.(2)求a的值.(3)当m≠3时,求S与m的函数关系式.(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.2010年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)的相反数是()A.5B.C.﹣D.﹣5【解答】解:根据概念,(﹣)+()=0,则﹣的相反数是.故选:B.2.(3分)下列物体中,主视图为图①的是()A.B.C.D.【解答】解:A、主视图是等腰梯形,不符合题意;B、主视图为矩形,符合题意;C、主视图是等腰梯形,不符合题意;D、主视图是等腰三角形,不符合题意.故选:B.3.(3分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.【解答】解:解不等式得:x≤3,所以在数轴上表示为故选:A.4.(3分)今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天最高气温的众数为()A.27°C B.29°C C.30°C D.31°C【解答】解:数据为31℃,31℃,30℃,31℃,29℃,27℃,29℃,31℃,30℃,其中数据31℃出现4次,次数最多,所以众数是31℃.故选:D.5.(3分)端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师购买荷包x个,五彩绳y个,根据题意,下面列出的方程组正确的是()A.B.C.D.【解答】解:设王老师购买荷包x个,五彩绳y个,根据题意,得方程组.故选:B.6.(3分)如图,△ABC中,∠C=90°,∠B=40°.AD是角平分线,则∠ADC的度数为()A.25°B.50°C.65°D.70°【解答】解:∵∠C=90°,∠B=40°,∴∠BAC=90°﹣40°=50°,∵AD是角平分线,∴∠BAD=∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.故选:C.7.(3分)如图,锐角△ABC的顶点A,B,C均在⊙O上,∠OAC=20°,则∠B 的度数为()A.40°B.60°C.70°D.80°【解答】解:∵OA=OC,∠OAC=20°,∴∠OCA=∠OAC=20°.∴∠AOC=140°.∴∠B=∠AOC=70°.故选:C.8.(3分)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()A.2B.3C.4D.6【解答】解:易得OB=1,AB=2,∴AD=2,∴点D的坐标为(3,2),∴点C的坐标为(3,1),∴k=3×1=3.故选:B.二、填空题(共6小题,每小题3分,满分18分)9.(3分)因式分解:a﹣a2=a(1﹣a).【解答】解:原式=a(1﹣a).10.(3分)写一个比小的正整数,这个正整数是1.(写出一个即可).【解答】解:∵2<<3,∴比小的正整数有2,1.故答案为:1.11.(3分)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款(3200﹣5a)元.(用含有a的代数式表示).【解答】解:学生捐款数为:(3200﹣5a)元.12.(3分)如图,双曲线y1=(k1>0)与直线y2=k2x+b(k2>0)的一个交点的横坐标为2.当x=3时,y1<y2.(填“>”“<”“=”).【解答】解:由函数图象可知,当x>2时,函数y1=(k1>0)的图象在直线y2=k2x+b的下方,故当x=3时,y1<y2.故答案为:<.13.(3分)如图,⊙P与x轴切于点O,点P的坐标为(0,1).点A在⊙P上,且位于第一象限,∠APO=120°.⊙P沿x轴正方向滚动,当点A第一次落在x轴上时,点A 的横坐标为 .(结果保留π)【解答】解:弧OA= .14.(3分)如图,抛物线y=ax 2+c (a <0)交x 轴于点G ,F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B ,E ,它们关于y 轴对称,点G ,B 在y 轴左侧,BA ⊥OG 于点A ,BC ⊥OD 于点C ,四边形OABC 与四边形ODEF 的面积分别为6和10,则△ABG 与△BCD 的面积之和为 4 .【解答】解:由于抛物线的对称轴是y 轴,根据抛物线的对称性知:S 四边形ODEF =S 四边形ODBG =10;∴S △ABG +S △BCD =S 四边形ODBG ﹣S 四边形OABC =10﹣6=4.三、解答题(共12小题,满分78分)15.(5分)先化简,再求值:(x +1)2﹣2x +1,其中x= .【解答】解:原式=x 2+2x +1﹣2x +1=x 2+2;当 时,原式 .16.(5分)一个不透明的口袋中装有红,黄,白小球各1个,小球除颜色外其余均相同,从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球,请你用画树形图(或列表)的方法.求出两次摸出小球的颜色相同的概率.【解答】解:共9种情况,两次摸出小球的颜色相同的情况有3种情况,所以概率是.17.(5分)第16届亚运会将在中国广州举行,小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格?【解答】解:设甲种门票的价格为x元,根据题意,得,解得x=40.经检验,x=40是原方程的解,且符合题意,答:甲种门票的价格为40元.18.(5分)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.【解答】解:过点O作OM⊥DE于点M,连接OD.∴DM=.∵DE=8(cm)∴DM=4(cm)在Rt△ODM中,∵OD=OC=5(cm),∴OM===3(cm)∴直尺的宽度为3cm.19.(6分)(1)在图1中,以线段m为一边画菱形,要求菱形的顶点均在格点上;(2)在图2中,平移a,b,c中的两条线段,使它们与线段n构成以n为一边的等腰直角三角形.(画一个即可)【解答】(1)以下答案供参考:;(2).20.(6分)如图,望远镜调节好后,摆放在水瓶地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=91cm,沿AB方向观测物体的仰角a=33°.望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm).[参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65].【解答】解:过点A作AE⊥BC于点E.在Rt△ABE中,sina=.∵AB=153,a=33°,∴BE=AB•sin33°=153×0.54=82.62.∴BC=BE+EC=BE+AD=82.62+91=173.62≈173.6(cm).答:点B到水平地面的距离BC的长约为173.6cm.21.(6分)如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.【解答】解:∵四边形ABCD和四边形DEFG为矩形,∴∠DAF=∠DAB=90°,∠G=90°,DG=EF;∵EF=6,DH=5,∴GH=DG﹣DH=EF﹣DH=6﹣5=1.在Rt△ADH中,AD=4.∴AH===3;∵∠G=∠DAH=90°,∠FHG=∠DHA,∴△FGH∽△DAH,∴.∴.22.(6分)小明参加卖报纸的社会实践活动,他调查了一个报亭某天A,B,C 三种报纸的销售量.并把调查结果绘制成如下条形统计图.(1)求该天A,C报纸的销售量各占这三种报纸销售量之和的百分比;(2)请绘制该天A,B,C三种报纸销售量的扇形统计图;(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份?【解答】解:(1),,∴该天A,C报纸的销售量各占这三种报纸销售量之和的20%和30%;(2)A,B,C三种报纸销售量的扇形统计图如图所示:(3)100×20%=20(份),100×50%=50(份),100×30%=30(份),∴小明应购进A种报纸20份,B种报纸50份,C种报纸30份.23.(7分)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.【解答】(1)解:∠ACB=∠GCD.理由如下:∵AB=AC,∴∠ABC=∠ACB∵CG∥AB,∴∠ABC=∠GCD,∴∠ACB=∠GCD.(2)证明:∵四边形CDFE是平行四边形,∴EF∥CD.∴∠ACB=∠GEC,∠EGC=∠GCD.∵∠ACB=∠GCD,∴∠GEC=∠EGC,∴EC=GC,∵∠GCD=∠ACB,∴∠GCB=∠ECD.在△BCG和△DCE中∴△BCG≌△DCE.24.(7分)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F 处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(﹣,)].【解答】解:(1)由题意,得EF=AE=DE=BC=x,AB=30,∴BF=2x﹣30.(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°,∴∠BGF=∠F=45°.∴BG=BF=2x﹣30,∴S===.(3)S=.∵<,15<20<30,∴当x=20时,S有最大值,最大值为15025.(10分)如图1,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为y a,y b,y c(单位:升),时间为t(单位:分).开始时,B容器内有水50升,y a y c与t的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:(1)求t=3时,y b的值.(2)求y b与t的函数关系式,并在图2中画出其函数图象.(3)求y a:y b:y c=2:3:4时t的值.【解答】解:(1)当t=3时,A向B容器内注水3分钟,y b=50+4t=50+4×3=62;(2)分两段求解,当0≤t≤5,y b=50+4t;当5<t≤10,yb=50+4×5﹣10(t﹣5)=120﹣10t,∴y b与t的函数关系式<,再作出函数图象如下图所示:(3)由图象可以看出,y a:y b:y c=2:3:4,若0≤t≤5,取t=5,则y c=70,y b==50+4t,y a=35<40则不符合y a图象;若5<t≤10,取t=10,则y a=40,y b=120﹣10t,y c=10t+20,对照图象,符合函数图象,解得:t=6.26.(10分)如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=x 交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y 轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.(1)求OA所在直线的解析式.(2)求a的值.(3)当m≠3时,求S与m的函数关系式.(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.【解答】解:(1)设直线OA的解析式为y=kx,则有:3k=3,k=1;∴直线OA的解析式为y=x;(2)当x=6时,y=x=3,∴C(6,3);将C(6,3)代入抛物线的解析式中,得:36a+12=3,a=﹣;即a的值为﹣;(3)根据题意,D(3,0),B(6,0).∵点P的横坐标为m,PE∥y轴交OA于点E,∴E(m,m).当0<m<3时,如图1,S=S△OAB﹣S△OED=.当m>3时,如图2,S=S△OBE﹣S△ODA==3m﹣;(4)m=或或<.提示:如图3、RQ=RN时,m=3﹣;如图4、AD所在的直线为矩形RQMN的对称轴时,m=;如图5、RQ与AD重合时,重叠部分为等腰直角三角形,m=3;如图6、当点R落在AB上时,m=4,所以3≤m<4.。
2010年中考数学试卷 答案
内部使用 用毕收回2010年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:1012010|tan 603-⎛⎫-+-- ⎪⎝⎭°31=-+4分2=+ 5分14.(本小题满分5分)解:去分母,得322x x -=-.…………………………………………… 2分整理,得35x =.解得53x =.…………………………………………………………… 4分经检验,53x =是原方程的解.所以原方程的解是53x =.………………………………………………5分15.(本小题满分5分)证明:∵AB DC =,∴AC DB =.…………………………………………………………1分 ∵EA AD ⊥,FD AD ⊥,∴90A D ∠=∠=°.…………………………2分 在EAC △与FDB △中, EA FD A D AC DB=⎧⎪∠=∠⎨⎪=⎩,, ∴EAC FDB △≌△.………………………4分∴ACE DBF ∠=∠.……………………… 5分16.(本小题满分5分)解:由题意可知0∆=.即()()24410m ---=.FE解得5m =.………………………………………………………………………3分当5m =时,原方程化为2440x x -+=. 解得122x x ==.所以原方程的根为122x x ==.…………………………………………………5分17.(本小题满分5分)解法一:设生产运营用水x 亿立方米,则居民家庭用水()5.8x -亿立方米.… 1分依题意,得5.830.6x x -=+.………………………………………………2分 解得 1.3x =.…………………………………………………………………3分 5.8 5.8 1.3 4.5x -=-=.…………………………………………………… 4分答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.…………………5分解法二:设生产运营用水x 亿立方米,居民家庭用水y 亿立方米.………………1分依题意,得 5.830.6x y y x +=⎧⎨=+⎩……………………………………………………2分解这个方程组,得 1.34.5.x y =⎧⎨=⎩,………………………………………………4分答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.…………………5分18.(本小题满分5分)解:(1)令0y =,得32x =-.∴A 点坐标为302⎛⎫- ⎪⎝⎭,.…………………………………………………1分令0x =,得3y =.∴B 点坐标为()03,.……………………………………………………2分(2)设P 点坐标为()0x ,. 依题意,得3x =±.∴P 点坐标分别为()130P ,或()230P -,.……………………………3分 ∴1132733224ABP S ⎛⎫=⨯+⨯= ⎪⎝⎭△; 213933224ABP S ⎛⎫=⨯-⨯= ⎪⎝⎭△. ∴ABP △的面积为274或94.…………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解法一:分别作AF BC ⊥,DG BC ⊥,F 、G 是垂足.…………………1分∴90AFB DGC ∠=∠=°. ∵AD BC ∥,A∴四边形AFGD是矩形.∴AF DG=.∵AB DC=,∴Rt RtAFB DGC△≌△.∴BF CG=.∵2AD=,4BC=,∴1BF=.在Rt AFB△中,∵1 cos2BFBAB==,∴60B∠=°.∵1BF=,∴AF=.∵3AC=,由勾股定理,得AC=∴60B∠=°,AC=5分解法二:过A点作AE DC∥交BC于点E.………………1分∵AD BC∥,∴四边形AECD是平行四边形.∴AD EC=,AE DC=.∵2AB DC AD===,4BC=,∴AE BE EC AB===.可证BAC△是直角三角形,ABE△是等边三角形.∴90BAC∠=°,60B∠=°.在Rt ABC△中,tan60AC AB=⋅=°.∴60B∠=°,AC=5分20.(本小题满分5分)(1)证明:∵OD OC=,90DOC∠=°,∴45ODC OCD∠=∠=°.∵290DOC ACD∠=∠=°,∴45ACD∠=°.∴90ACD OCD OCA∠+∠=∠=°.∵点C在O上,∴直线AC是O的切线.………………2分(2)解:∵2OD OC==,90DOC∠=°,可求CD=.∵75ACB∠=°,45ACD∠=°,∴30BCD∠=°.作DE BC⊥于点E.∴90DEC∠=°.∴sin30DE DC=⋅=°∵45B∠=°,∴2DB=.………………………………………………………5分21.(本小题满分5分)解:(1)2008;28;…………………………………………………………2分(2)78%;………………………………………………………………3分(3)30;…………………………………………………………………4分图2EDB ACE AB CDOC 组30%B 组50%A 组20%……………………………………5分22.(本小题满分5分)解:(1)5,3分(2)4:5.………………………………………………………………5分解题思路示意图:B 2A 2D 1C 1B 1A 1DCBA五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分)解:(1)由题意得1=.解得k =.∴反比例函数的解析式为y =.………………1分 (2)过点A 作x 轴的垂线交x 轴于点C .在Rt AOC △中,OC 1AC =.可得2OA =,30AOC ∠=°.…………………2分由题意,30AOB ∠=°,2OB OA ==, ∴60BOC ∠=°.过点B 作x 轴的垂线交x 轴于点D .在Rt BOD △中,可得BD =1OD =.∴B点坐标为(1-.……………………………………………3分 将1x =-代入y =中,得y =∴点(1B -在反比例函数y =的图象上.………………4分(3)由y =得xy =∵点()6P m +在反比例函数y =的图象上,其中0m <,∴)6m+=5分∴210m ++=. ∵PQ x ⊥轴,∴Q 点的坐标为()m n ,.∵OQM △的面积是12, ∴1122OM QM ⋅=. ∵0m <,∴1mn =-.………………………………………………………6分∴22220m n n ++=.∴21n -=-.∴298n -+=.……………………………………………7分24.(本小题满分8分)解:(1)∵抛物线22153244m my x x m m -=-++-+经过原点, ∴2320m m -+=. 解得11m =,22m =. 由题意知1m ≠, ∴2m =.∴抛物线的解析式为21542y x x =-+.∵点()2B n ,在抛物线21542y x x =-+上,∴4n =.∴B 点的坐标为()24,.……………………………………………2分(2)①设直线OB 的解析式为1y k x =. 求得直线OB 的解析式为2y x =. ∵A 点是抛物线与x 轴的一个交点, 可求得A 点的坐标为()100,.设P 点的坐标为()0a ,,则E 点的坐标为()2a a ,. 根据题意作等腰直角三角形PCD ,如图1. 可求得点C 的坐标为()32a a ,.由C 点在抛物线上,得()21523342a a a =-⨯+⨯.即2911042a a -=.解得1229a =,20a =(舍去). ∴229OP =.………………………………………………………………4分② 依题意作等腰直角三角形QMN . 设直线AB 的解析式为2y k x b =+.由点()100A ,,点()24B ,,求得直线AB 的解析式为152y x =-+. 当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上, 有以下三种情况: 第一种情况:CD 与NQ 在同一条直线上,如图2所示.可证DPQ △为等腰直角三角形.此时OP 、DP 、AQ 的长可依次表示为t 、4t 、2t 个单位. ∴4PQ DP t ==.图1∴4210t t t ++=.∴107t =.第二种情况:PC 与MN 在同一条直线上,如图3所示. 可证PQM △为等腰直角三角形.此时OP 、AQ 的长可依次表示为t 、2t 个单位. ∴102OQ t =-.∵F 点在直线AB 上, ∴FQ t =. ∴2MQ t =.∴2PQ MQ CQ t ===. ∴2210t t t ++=. ∴2t =.第三种情况:点P 、Q 重合时,PD 、QM 在同一条直线上,如图4所示.此时OP 、AQ 的长可依次表示为t 、2t 个单位. ∴210t t +=.∴103t =.综上,符合题意的t 值分别为107,2,103.…………………………8分25.(本小题满分7分)解:(1)相等;…………………………………1分15°;………………………………………2分1:3.………………………………………3分(2)猜想:DBC ∠与ABC ∠度数的比值与(1)中结论相同.证明:如图2,作KCA BAC ∠=∠,过B 点作BK AC ∥交CK 于点K ,连结DK . ∵90BAC ∠≠°, ∴四边形ABKC 是等腰梯形. ∴CK AB =.∵DC DA =, ∴DCA DAC ∠=∠. ∵KCA BAC ∠=∠, ∴3KCD ∠=∠.∴KCD BAD △≌△. ∴24∠=∠,KD BD =. ∴KD BD BA KC ===. ∵BK AC ∥, ∴6ACB ∠=∠. ∵2KCA ACB ∠=∠, ∴5ACB ∠=∠. ∴56∠=∠. ∴KC KB =.∴KD BD KB ==. ∴60KBD ∠=°.图3图4图1D C BA 图2654321K A BC D∵6601∠=∠=-∠°,ACB∴212021°.BAC ACB∠=∠=-∠∵()()°°°,∠+-∠+-∠+∠=1601120212180∴221∠=∠.∴DBC∠度数的比值为1:3.………∠与ABC。
吉林省中考数学试题含答案
吉林省中考数学试题含答案2024年吉林省中考数学试题及答案一、选择题1、在下列四个数中,数值最大的是()。
A. π B. 2π C. 3π D. 4π2、若方程 x² + mx + 2 = 0 的两个实数根分别为 x1 和 x2 ,且 x1³ + x2³ = 7,则 m 的值为()。
A. -1 B. 1 C. -2 D. 23、等边三角形 ABC 的边长为 4,点 D 在边 AB 上,且∠ADC = 120°,则 AD 的长为()。
A. 2 B. 3 C. 4 D. 54、若点 P 在直线 y = x 上,且到原点的距离为√5,则 P 点的坐标为()。
A. (2,2) B. (-2,-2) C. (2,2)或(-2,-2) D. (1,1)或(-1,-1)二、填空题5、已知实数 a,b,c 满足 a² + b² = c²,且 a > b > c,则 |a|+|b|-|c| 的值为________。
51、在 Rt△ABC 中,∠C = 90°,斜边 AB = 5,一条直角边的长为2,则另一条直角边的长为________。
511、若 x + y = 5,则 (x² + y²) / 5 的值为________。
三、解答题8、已知二次函数 y = ax² + bx + c 的图象经过点 A(0,3),且对称轴为 x = -2,点 B 在抛物线上。
若 AB = 4√5,求点 B 的坐标。
81、在四边形 ABCD 中,∠A = 90°,∠B = 60°,AD = AB = 4,CD = 3。
求四边形 ABCD 的面积。
811、求根号下 (4 - sin²80°) 的值。
四、附加题11、在平面直角坐标系中,O 为原点,A(-3,0),B(0,4),C(3,0),D 为第一象限内一点,且∠DAO + ∠DCO = α,求 tanα的值。
2010年吉林省长春市中考数学试卷与答案
2010年黑龙江省齐齐哈尔市中考数学试卷-(word 整理版)一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 2. 下列图形中不是轴对称图形的是( )3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( )4. 方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =75. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活动.下根据表中所提供的信息,这50名同学捐款金额的众数是( ) A .15 B .30 C .50 D .206. 已知函数y =1x 的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥07. 直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,∠C =60º,AD =DC =22,则BC 的长为( )A . 3B .4 2C .3 2D .2 38. 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为6,sin B =13 ,则线段AC 的长是( )A .3B .4C .5D .69. 现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( ) A .3种 B .4种 C .5种 D .6种10.如图所示,已知△ABC 和△DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论要:①AE =BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC ,其中正确结论的个数( ) A .1个 B .2个 C .3个 D .4个 二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米. 12.函数y =x -1x +2中,自变量x 的取值范围是_______________.13.如图所示,E 、F 是矩形ABCD 对角线AC 上的两点,试添加一个条件:_______________,使得△ADF ≌△CBE .14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为14,需要往这个口袋再放入同种黑球_____________个.15.抛物线y =x 2-4x +m2 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是_______________.16.代数式3x 2-4x -5的值为7,则x 2- 43 x -5的值为_______________. 17.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.18.Rt △ABC 中,∠BAC =90º,AB =AC =2,以AC 为一边,在△ABC 外部作等腰直角三角形ACD ,则线段B D 的长为_______________. 19.已知关于x 的分式方程 a +2x +1=1的解是非正数,则a 的取值范围是_______________.20.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3 M2,对角线A1 M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n_______________.三、解答题(满分60分)21.5分)先化简:(a -2a—1a)÷1-a2a2+a,然后给a选择一个你喜欢的数代入求值.22.6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示.(1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标;(2)将菱形OABC绕原点O顺时针旋转90º,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B 旋转到B2的路径长.23.6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.24.7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a的值为__________,b的值为__________,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,25.8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y(万米3)与时间x(天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD的解析式.26.8分) .已知在Rt△ABC中,∠ABC=90º,∠A=30º,点P在AC上,且∠MPN=90º.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证t△PME∽t△PNF,得出PN=3PM.(不需证明)当PC=2PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.27.10分) .为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?28.10分) .如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.△ABP△AOB(1)求直线AM的解析式;(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2010年黑龙江省齐齐哈尔市中考数学试卷答案1. B2. C3. A4. D5. B6. C7. C8. B9. B10. D11. 1.01×10512. x ≥113. AF =CE 或AE =CF 或DF ∥BE 或∠ABE =∠CDF 等14. 215.(3,0) 16.-117. 4或5(答对一值得1分,多答不得分)18. 4或25或10 19. a ≤-1且a ≠-2 20. (1-12n ,12n )或另一书写形式(2n -12n ,12n )21.解:原式=a 2-2a +1a ÷ 1-a2a 2+a…………………………1分 =(a -1)2a ×a (a +1)(1-a ) (a +1)……………………2分=(1-a ) …………………………………………1分(a 取—1,1,0以外的任何数,计算正确均可得分)……1分 22.(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180 =22π…………………………2分23.解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分S △PAB =12 ×4×3=6 …………………………………………………1分 24.(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x <4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200 ×100%=35% ………1分 全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分 25.解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分y =kx +b ∵B (0,800),C (5,550)∴k =-50 b =800 ………………………………1分y AB =-50x +800 ……………………………………1分 当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分 (3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分 设直线AB 的解析式为: y =k 1x +b 1∴k 1=350 b 1=-3200 ………………………………1分 y AD =350x -3200 ……………………………………1分26.解:如图2,如图3中都有结论:PN =6PM ……………………………2分 选如图2: 在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F ∴四边形BFPE 是矩形 ∴∠EPF =90º, ∵∠EPM +∠MPF =∠FPN +∠MPF =90º可知∠EPM =∠FPN ∴△PFN ∽△PEM ……………………2分 ∴PF PE =PNPM …………………………………………………………1分 又∵Rt △AEP 和Rt △PFC 中:∠A =30º,∠C =60º∴PF =32 PC ,PE =12 PA ……………………………………………1分 ∴PN PM =PF PE =3PCPA ……………………………………………1分∵PC =2PA ∴PNPM = 6 即:PN =6PM ………………1分若选如图3,其证明过程同上(其他方法如果正确,可参照给分) 27.解:(1a 元,购进一件B 种纪念品需要b 元 (1)分………1分50元,购进一件B 种纪念品需要100元 (1)分(2x 个,购进B 种纪念品y 个……………………………………………………………2分解得20≤y ≤25 ……………………………………………………………………………1分∵y 为正整数 ∴共有6种进货方案 (1)分(3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) …………………………………………………2分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 (1)分W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元 (1)分28.解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b………………………………………………2分∴k =1 b =6 ………………………………………………………1分 ∴直线AM 的解析式为:y =x +6 ………………………………………1分 (2)P 1(-18,-12),P 2(6,12) ………………………………………………2分(3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185 )………………………………3分。
DA吉林省中考真题
吉林省2010年初中毕业生学业考试数学试卷参考答案及评分标准阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分. 一、填空题(每小题2分,共20分)1.2- 2.6.52410⨯ 3.5 4.5.2x > 6.17.492 8.大于或等于0并且小于或等于40的任意一个数皆可 9.25π310.42n +二、单项选择题(每小题3分,共18分)11.C 12.B 13.D 14.B 15.C 16.B 三、解答题(每小题5分,共20分)17.解:原式=2212111.(1)1x x x x x x x x x x --+-÷==--·(3分)当2x =时,原式=11.21=- (5分)评分说明:x 只要不取0和1,计算正确皆可得分.18.解:(1)② ①;(2分)(2)(5分)评分说明:(1)每填对一个得1分,填“V ”、“N ”不扣分. (2)作法1、作法2中不作虚线不扣分.19.解:设沙包落在A 区域得x 分,落在B 区域得y 分,(1分)根据题意,得3342232.x y x y +=⎧⎨+=⎩,(3分)解得97.x y =⎧⎨=⎩,(4分)第18题作法1 作法2 作法3393730.x y ∴+=+⨯=(5分)答:小敏的四次总分为30分. 20.解:(1)34; (3分)(2)1. (5分) 评分说明:(2)中填100%不扣分. 四、解答题(每小题6分,共12分)21.解:ADC ADF ADC CEB △≌△、△≌△、ADF CEB △≌(写出其中两对即可). (2分) 证法1:若选择ADC ADF △≌△,证明如下: AD 平分FAC CAD FAD ∠∴∠=∠,. (3分) 90AD CF ADC ADF ∴∠=∠= ⊥,°. (4分) 又AD AD = ,ADC ADF ∴≌. (6分) 证法2:若选择ADC CEB △≌△,证明如下: AD CE BE CE ⊥⊥ ,,90ADC CEB ∴∠=∠=°. (3分) 9090ACB ACD ECB ∠=∴∠+∠= ,°.又90ACD DAC DAC ECB ∠+∠=∴∠=∠ °,. (4分)又AC CB ADC CEB =∴ ,△≌△. (6分)评分说明:每正确写出一对全等三角形得1分. 22.解:(1)3 (2,1) 6; (3分) (2)如图,连接AC ,过点A 作AD BC ⊥于点D , 则2BC DC =. (4分) 由A (5,1)可得1AD =. 又2AC = ,∴在Rt ADC △中,DC =BC ∴=(6分)评分说明:(1)中每填对一个得1分.五、解答题(每小题7分,共14分) 23.解:(1)方案三;(2分)(2) (3分)(5分)第23题第22题(3)50030%150⨯=(名).(7分)答:七年级约有150名学生比较了解“低碳”知识. 评分说明:扇形图中每填对一个得1分.24.解:(1)在Rt DEF △中,90DEF DE BC ∠===°, 1.8,29F ∠=°.sin DE F DF =, 1.8 1.83.75 3.8sin sin 290.48DE DF F ∴===≈≈° (3分) (2)解法1:tan DE F EF = , 1.8 1.8 3.27.tan tan 290.55DE EF F ∴==≈≈° (5分)在Rt ABC △中,90ACB ∠=°.由45A ∠=°得 1.8.AC BC ==又0.5CE BD == ,1.80.5 3.27 5.6.AF AC CE EF ∴=++++≈≈(7分) 解法2:cos cos 29 3.750.87 3.26EF F EF DF DF=∴=⨯ ,·°≈≈. (5分)在Rt ABC △中,90ACB ∠=°.由45A ∠=°得 1.8.AC BC == 又0.5CE BD == ,1.80.5 3.26 5.6.AF AC CE EF ∴=++++≈≈ (7分)答:DF 长约为3.8m ,AF 约为5.6m.评分说明:(1)计算过程中不写“≈”不扣分. (2)求出 3.3EF ≈不扣分.(3)解法2中用 3.8DF =代入不扣分. 六、解答题(每小题8分,共16分) 25.(2)猜想:22BFD S b =△. (5分)证明:证法1:如图,BFD BCD BEF CEFD S S S S =+-△△△梯形 =2111()()222b a b a a b a ++-+ =212b . (8分) 证法2:如图,连接CF ,由正方形性质可知45DBC FCE ∠=∠=°,.BD CF ∴∥BFD ∴△与BCD △的BD 边上的高相等.212BFD BCD S S b ∴==△△.(8分)评分说明:(1)每填对一个得1分. (2)未写猜想但证明正确也可得满分. 26.解:(1)解法1:设火车行驶的速度为v 米/秒,根据题意,得 14120160.v =+解得20.v = (2分) 解法2:(120+160)÷14=20. (2分)答:火车行驶速度为20米/秒.FG DABC E第25题(2)①当06x <≤时,20y x =; (3分) ②当68x ≤≤时,120y =;(4分) ③解法1;当814x <≤时,120(20160)20280.y x x =--=-+ (6分) 解法2:当814x <≤时,1201602020280.y x x =+-=-+ (6分) 解法3:当84x <≤1时,20(14)20280.y x x =-=-+ (6分)(3) (8分)评分说明:(2)中自变量取值范围含或不含6、8均不扣分. 七、解答题(每小题10分,共20分)27.解:(1)设经过(10)(03)A B ,、,的直线AB 的解析式为3y kx =+。
吉林省历年中考数学试卷习题精选(丰富)
吉林省10年中考数学试卷一.选择题1. 如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )2. 某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .中位数B .众数C .平均数D .极差3. 如图,在矩形ABCD 中,AB =12cm ,BC =6cm .点E 、F 分别在AB 、CD 上,将矩形ABCD沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则整个阴影部分图形的周长为( )A .18cmB .36cmC .40cmD .72cm4. 如图,△ABC 中,∠C=45°,点D 在AB 上,点E 在BC 上.若AD=DB=DE ,AE=1,则AC 的长为( )A .B . 2C .D .A .B .C .D .A EBC FD A 1D 15. 如图,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD=50°,则∠AOC的度数为( )A . 40°B . 50°C . 80°D . 100°6. 如图,四边形ABCD 内接于⊙O ,若∠B =108°,则∠D 的大小为( )A .54°B .62°C .72°D .82°7. 将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A .23√3cmB .43√3cmC .√5cmD .2cm8. 如图,阴影部分是两个半径为1的扇形,若α=120°,β=60°,则大扇形与小扇形的面积之差为( )A .π3B .π6C .5π3D .5π6二.填空题1.如图,在▱ABCD中,BC=4m,E为AD的中点,F、G分别为BE、CD的中点,则FG= m.2.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.b<a<b.将此矩形纸3.如图,在矩形ABCD中,AB的长度为a,BC的长度为b,其中23片按下列顺序折叠,则C′D′的长度为(用含a、b的代数式表示).4.如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是(结果保留π)5.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.6.在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).7.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).8.我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为.9.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.10.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).11.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是.三.网格题4.在5×5的正方形网格①中,用三张长为3,宽为1的矩形纸片拼接成阴影部分.(1)阴影部分的周长为多少;(2)请用三张纸再拼接两种,(全等的属于同一种)与阴影部分周长相等,但不全等的图形,分别画在网格②,③中.5.如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点一画出△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形.(2)图②中所画的三角形与△ABC组成的图形是中心对称图形.(3)图③中所画的三角形与△ABC的面积相等,但不全等.6.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.7.图①、图②都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点.按下列要求画图:(1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个;(2)在图②中,以格点为顶点,画一个正方形,使其内部已标注的格点只有3个,且边长为无理数.8.图1,图2都是8×8的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图1中所画的平行四边形的面积为.9.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.10.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D 均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).11.图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段CD,其中A、B、C、D均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°.12.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.13.如图,⊙O 中,弦AB 、CD 相交于AB 的中点E ,连接AD 并延长至点F ,使DF =AD ,连接BC 、BF .(1)求证:△CBE ∽△AFB ; (2)当BE FB=58时,求CBAD的值.14.两个长为2cm ,宽为1cm 的长方形,摆放在直线l 上(如图①),CE =2cm ,将长方形ABCD 绕着点C 顺时针旋转α角,将长方形EFGH 绕着点E 逆时针旋转相同的角度. (1)当旋转到顶点D 、H 重合时,连接AG (如图②),求点D 到AG 的距离; (2)当α=45°时(如图③),求证:四边形MHND 为正方形.15.如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D 落在点E处,AE交⊙O于点F,连接OC、FC.(1)求证:CE是⊙O的切线.(2)若FC∥AB,求证:四边形AOCF是菱形.16.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.17.如图,在△ABC中,AB=BC.以AB为直径作圆⊙O交AC于点D,点E为⊙O上一点,连接ED并延长与BC的延长线交于点F.连接AE、BE,∠BAE=60°,∠F=15°,解答下列问题.(1)求证:直线FB是⊙O的切线;(2)若BE=√3cm,则AC=cm.18.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O 于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.19.如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=kx(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.20.如图①,直角三角形AOB中,∠AOB=90°,AB平行于x轴,OA=2OB,AB=5,反比例函数y=k x(x>0)的图象经过点A.(1)直接写出反比例函数的解析式;(2)如图②,P(x,y)在(1)中的反比例函数图象上,其中1<x<8,连接OP,过点O作OQ ⊥OP,且OP=2OQ,连接PQ.设点Q坐标为(m,n),其中m<0,n>0,求n与m的函数解析式,并直接写出自变量m的取值范围;(3)在(2)的条件下,若Q坐标为(m,1),求△POQ的面积.21.如图①,半径为R,圆心角为n°的扇形面积是S扇形=nπR2360,由弧长l=nπR180,得S扇形=nπR2360=12•nπR 180•R=12lR.通过观察,我们发现S扇形=12lR类似于S三角形=12×底×高.类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分叫做扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,AB̂的长为l1,CD̂的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=12×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?22.(1)如图1,在Rt△ABC中,∠ABC=90°,以点B为中心,把△ABC逆时针旋转90°,得到△A1BC1;再以点C为中心,把△ABC顺时针旋转90°,得到△A2B1C,连接C1B1,则C1B1与BC 的位置关系为;(2)如图2,当△ABC是锐角三角形,∠ABC=α(α≠60°)时,将△ABC按照(1)中的方式旋转α,连接C1B1,探究C1B1与BC的位置关系,写出你的探究结论,并加以证明;(3)如图3,在图2的基础上,连接B1B,若C1B1=23BC,△C1BB1的面积为4,则△B1BC的面积为.23.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C 处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)24.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.25.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.26.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.27.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.28.如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,▱ADEF的形状为;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.29.墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,(参考数据:sin43°与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).=0.68,cos43°=0.73,tan43°=0.93)30.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x (h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.31.性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4√3,则它的面积为;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).32.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=45,则四边形DCFG的面积为.33.如图所示,菱形ABCD的边长为6厘米,∠B=60度.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△APQ 与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是秒;(3)求y与x之间的函数关系式.34.如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.DF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M 的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm.解答下列问题:(1)直接写出当x=3时y的值;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,图形M成为等腰梯形?图形M成为三角形?(4)直接写出线段PQ在运动过程中所能扫过的区域的面积.35.如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm /s ,动点P 沿A ﹣B ﹣C ﹣E 的方向运动,到点E 停止;动点Q 沿B ﹣C ﹣E ﹣D 的方向运动,到点D 停止,设运动时间为xs ,△P AQ 的面积为ycm 2,(这里规定:线段是面积为0的三角形) 解答下列问题:(1)当x =2s 时,y = cm 2;当x =92s 时,y = cm 2. (2)当5≤x ≤14 时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出y =415S 梯形ABCD 时x 的值. (4)直接写出在整个运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.(备用图)(备用图)(备用图)36.如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s 的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t=s时,点P与点Q重合;(2)当t=s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.37.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、BC、AC 的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿A→F →D的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)(1)当点P运动到点F时,CQ=cm;(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;(3)当点P在线段FD上运动时,求y与x之间的函数关系式.38.如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B 运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ.设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=cm,AB与CD之间的距离为cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.39.两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N 之间距离的最小值.40.如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8√2cm,AD⊥BC于点D,点P从点A 出发,沿A→C方向以√2cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC 于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围.动点题+二次函数题一.解答题1.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.2.如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2√3cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x=;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.3.如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P以√2cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ 围成的图形面积为y(cm2).(1)AE=cm,∠EAD=°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=54cm时,直接写出x的值.(备用图)C BED A4.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.5.如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(﹣1,0),将矩形OABC绕原点O 顺时针方向旋转90度,得矩形OA′B′C′矩形设直线BB’与x轴交于点M,与y轴交于点N,抛物线经过点C,M,N点.解答下列问题:(1)设直线BB′表示的函数解析式为y=mx+n,求m,n;(2)求抛物线表示的二次函数的解析式;(3)在抛物线上求出使S△PB′C′=S矩形OABC的所有点P的坐标.6.矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别是O(0,0),B(0,3),D(﹣2,0),直线AB交x轴于点A(1,0).(1)求直线AB的解析式;(2)求过A、B、C三点的抛物线的解析式,并写出其顶点E的坐标;(3)过点E作x轴的平行线EF交AB于点F,将直线AB沿x轴向右平移2个单位,与x轴交于点G,与EF交于点H,请问过A、B、C三点的抛物线上是否存在点P,使得S△P AG=34S△PEH?若存在,求点P的坐标;若不存在,请说明理由.7.如图,抛物线l1:y=﹣x2平移得到抛物线l2,且经过点O(0,0)和点A(4,0),l2的顶点为点B,它的对称轴与l2相交于点C,设l1、l2与BC围成的阴影部分面积为S,解答下列问题:(1)求l2表示的函数解析式及它的对称轴,顶点的坐标.(2)求点C的坐标,并直接写出S的值.(3)在直线AC上是否存在点P,使得S△POA=12S?若存在,求点P的坐标;若不存在,请说明理由.【参考公式:抛物线y=ax2+bx+c的对称轴是x=−b2a,顶点坐标是(−b2a,4ac−b24a)】.8.问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为y E,y F.特例探究填空:当m=1,n=2时,y E=,y F=;当m=3,n=5时,y E=,y F=.归纳证明对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出y E与y F的大小关系;(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.9.如图①,在平面直角坐标系中,点P (0,m 2)(m >0)在y 轴正半轴上,过点P 作平行于x 轴的直线,分别交抛物线C 1:y =14x 2于点A 、B ,交抛物线C 2:y =19x 2于点C 、D .原点O 关于直线AB 的对称点为点Q ,分别连接OA ,OB ,QC 和QD .【猜想与证明】填表:m1 2 3 AB CD由上表猜想:对任意m (m >0)均有AB CD = .请证明你的猜想.【探究与应用】 (1)利用上面的结论,可得△AOB 与△CQD 面积比为 ;(2)当△AOB 和△CQD 中有一个是等腰直角三角形时,求△CQD 与△AOB 面积之差;【联想与拓展】如图②过点A 作y 轴的平行线交抛物线C 2于点E ,过点D 作y 轴的平行线交抛物线C 1于点F .在y 轴上任取一点M ,连接MA 、ME 、MD 和MF ,则△MAE 与△MDF 面积的比值为 .10.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=√10,直接写出l,P表示的函数解析式.11.如图①,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).(1)当m=﹣1,n=4时,k=,b=;当m=﹣2,n=3时,k=,b=;(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.①当m=﹣3,n>3时,求S△ACOS四边形AOED的值(用含n的代数式表示);②当四边形AOED为菱形时,m与n满足的关系式为;当四边形AOED为正方形时,m=,n=.12.如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点(1)当m=2时,a=,当m=3时,a=;(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当△APQ为等腰直角三角形时,a和n的关系式为;(4)利用(2)(3)中的结论,求△AOB与△APQ的面积比.13.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2−43经过原点O,与x轴的另一个交点为A,则a=.【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.14.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.15.如图,抛物线y=(x﹣1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C (0,﹣3).P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.16.如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.。
2012年吉林省中考数学试卷-答案
【解析】解:如图所示:
【解析】解:画树状图得:
ABC △
Y是矩形.∴ADCE
当2535x <≤时,100y =;如图所示:
22225
由于EF OA ∥,且EF OA ≠,所以四边形OFEA 是梯形.
【解析】【特例探究】【归纳证明】都是【拓展应用】(1)的特殊情况,因此以【拓展】(1)为例说明前三小问的思路:
已知A B ,的坐标,根据抛物线的解析式,能得到C D ,的坐标,进而能求出直线OC OD ,的解析式,也就能得出E F ,两点的坐标,再进行比较即可.
最后一小题也比较简单:总结前面的结论,能得出EF x ∥轴的结论,那么四边形OFEA 的面积可分作OEF OEA △,△两部分,根据给出的四边形和OFE △的面积比例关系,能判断出EF OA ,的比例关系,进而得出m n ,的比例关系,再对四边形OFEA 的形状进行判定.
【考点】二次函数综合题.。
吉林省中考数学真题及答案解析
202X年X省中考数学卷子参考答案与真题解析一、选择题〔每题2分,共12分〕1.〔202X•X〕在四个数0,﹣2,﹣1,2中,最小的数是〔〕A. 0 B.﹣2 C.﹣1 D. 22.〔202X•X〕如图,有5个完全相同的小正方体组合成一个立方体图形,它的俯视图是〔〕A.B.C.D.3.〔202X•X〕以下计算正确的选项是〔〕A. 3a﹣a=2 B.a2+2a2=3a2C.a2•a3=a6D.〔a+b〕2=a2+b2 4.〔202X•X〕如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是〔〕A. 40°B. 60°C. 80°D. 120°5.〔202X•X〕如图,菱形OABC的顶点B在y轴上,顶点C的坐标为〔﹣3,2〕,假设反比例函数y=〔x>0〕的图象经过点A,则k的值为〔〕A.﹣6 B.﹣3 C. 3 D. 66.〔202X•X〕某工厂现在平均每天比原方案多生产50台机器,现在生产600台机器所需的时间与原方案生产450台机器所需时间相同.设原方案每天生产x台机器,则可列方程为〔〕A.B.C.D.二、填空题〔每题3分,共24分〕7.〔202X•X〕计算:=.8.〔202X•X〕不等式2x﹣1>x的解集为.9.〔202X•X〕假设方程x2﹣x=0的两根为x1,x2〔x1<x2〕,则x2﹣x1=.10.〔202X•X〕假设甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为=1.5,=2.5,则芭蕾舞团参加演出的女演员身高更齐整〔填:“甲〞或“乙〞〕.11.〔202X•X〕如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB=度.12.〔202X•X〕如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=.13.〔202X•X〕如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为〔写出一个符合条件的度数即可〕14.〔202X•X〕如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.假设BC=10,BD=9,则△AED的周长是.三、解答题〔每题5分,共20分〕15.〔202X•X〕先化简,再求值:〔a+b〕〔a﹣b〕+2a2,其中a=1,b=.16.〔202X•X〕如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合局部的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y 的值.17.〔202X•X〕如图,有一游戏棋盘和一个质地均匀的正四面体骰子〔各面依次标有1,2,3,4四个数字〕.游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:假设棋子位于A处,游戏者所掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法〔或列表法〕求掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.18.〔202X•X〕在如下图的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发觉把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.〔1〕情境a,b所对应的函数图象分别是、〔填写序号〕;〔2〕请你为剩下的函数图象写出一个合适的情境.四、解答题〔每题7分,共28分〕19.〔202X•X〕在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.〔1〕假设A点的坐标为〔1,2〕,请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=;〔2〕假设点A的坐标为〔a,b〕〔ab≠0〕,则△ABC的形状为.20.〔202X•X〕如图,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻觅点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.〔1〕施工点E离D多远正好能使成A,C,E一条直线〔结果保存整数〕;〔2〕在〔1〕的条件下,假设BC=80m,求公路段CE的长〔结果保存整数〕.〔参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75〕21.〔202X•X〕为宣传节约用水,小明随机调查了某小区局部家庭5月份的用水情况,并将搜集的数据整理成如下统计图.〔1〕小明一共调查了多少户家庭?〔2〕求所调查家庭5月份用水量的众数、平均数;〔3〕假设该小区有400户居民,请你估量这个小区5月份的用水量.22.〔202X•X〕如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.〔1〕求证:△ADC≌△ECD;〔2〕假设BD=CD,求证:四边形ADCE是矩形.五、解答题〔每题8分,共16分〕23.〔202X•X〕如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影局部的周长和面积.24.〔202X•X〕如图1,A,B,C为三个超市,在A通往C的道路〔粗实线局部〕上有一D点,D与B有道路〔细实线局部〕相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现方案在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.〔1〕用含的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为km,货车从H到C往返2次的路程为km,这辆货车每天行驶的路程y=.当25<x≤35时,这辆货车每天行驶的路程y=;〔2〕请在图2中画出y与x〔0≤x≤35〕的函数图象;〔3〕配货中心H建在哪段,这辆货车每天行驶的路程最短?六、解答题〔每题10分,共20分〕25.〔202X•X〕如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合局部的面积为Scm2.〔1〕当t=s时,点P与点Q重合;〔2〕当t=s时,点D在QF上;〔3〕当点P在Q,B两点之间〔不包含Q,B两点〕时,求S与t之间的函数关系式.26.〔202X•X〕问题情境如图,在x轴上有两点A〔m,0〕,B〔n,0〕〔n>m>0〕.分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为y E,y F.特例探究填空:当m=1,n=2时,y E=2,y F=2;当m=3,n=5时,y E=15,y F=15.归纳证明对任意m,n〔n>m>0〕,猜测y E与y F的大小关系,并证明你的猜测.拓展应用〔1〕假设将“抛物线y=x2〞改为“抛物线y=ax2〔a>0〕〞,其他条件不变,请直接写出y E与y F的大小关系;〔2〕连接EF,AE.当S四边形OFEA=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.202X年X省中考数学卷子参考答案与真题解析一、选择题〔每题2分,共12分〕1.考点:有理数大小比拟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
C E B
D F 30º
45º
A
2
-3 A B
O C P
A A 1
吉林省2010初中毕业生学业考试
数学试题
一、填空题(每小题2分,共20分)
1.如图,数轴上点A 所表示的数是_______.
2.在中国上海世博会园区中,中国馆的总占地面积为65 200m 2
, 这一数据用科学记数法表示为_________________m 2.
3.若单项式3x 2y n 与2x m y 3是同类项,则m +n =_____________. 4.计算:27-3=_____________.
5.不等式2x -3>1的解集是_____________. 6.方程 1 x = 5
x +4
的解是x =_____________.
7.将一副三角尺如图所示叠放在一起,若AB =14cm,则阴影部分的面积是________cm 2.
8.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC =50º.动点P 在弦 BC 上,则∠P AB 可能为________度(写出一个..符合条件的度数即可). 9.如图,为拧紧一个螺母,将扳手顺时针旋转60º,扳手上一点A 转至
点A 1处.若OA 长为25cm,则AA 1⌒长为_________cm (结果保留 ).
10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个
图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为_____________(用含n 的代数式表示).
二、单项选择题(每小题3分,共18分)
11.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从
轻重的角度看,最接近标准的是( )
12尺码/厘米 22 22.5 23 23.5 24 24.5 25 销售量/双
1
2
3
11
8
6
4
该店经理如果想要了解哪种尺码女鞋销售量最大,那么他应关注的统计量是( ) A .平均数 B .众数 C .中位数 D .方差 13.如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图...
是( )
B . …
第一个图案
第二个图案
第三个图案
+0.9 -3.6 +2.5
-0.8 A .
B .
C .
D .
图②
图① O A y x
1
1 A C D E B
A E
B
C
F
D
A 1
D 1
A A A
B B B
小英 总分:34分 小丽 总分:32分
小华 总分:? 14.反比例函数y = k
x
的图象如图所示,则k 的值可能是( )
A .-1
B . 1
2
C .1
D .2
15.如图,在△ABC 中,∠C =90º,D 是AC 上一点,DE ⊥AB 于点E ,
若AC =8,BC =6,DE =3,则AD 的长为( ) A .3 B .4 C .5 D .6
16.如图,在矩形ABCD 中,AB =12cm,BC =6cm .点E 、F 分别在AB 、
CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则整个阴影部分图形的周长为( )
A .18cm
B .36cm
C .40cm
D .72cm
三、解答题(每小题5分,共20分)
17.先化简x -1x ÷(x -2x -1
x
),再任选一个适当的x 值代入求值.
18.观察右面两个图形,解答下列问题:
(1)其中是轴对称图形的为 ,是中 心对称图形的为 (填序号); (2)用尺规作图的方法画出其中轴对称图形的
对称轴(要求:保留作图痕迹,不写作法).
19.在课外活动期间,小英、小丽和小敏在操场上画出A 、B 两个区域,一起玩投沙包游戏.沙
包落在A 区域所得分值与落在B 区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.请求出小敏的四次总分.
20.下图分别是甲、乙两名同学手中的扑克牌两人在看不到对方牌的前提下,分别从对方手中
随机抽取一张牌,若牌上数字与自己手中某一张牌上数学相同,则组成一对. (1)若甲先从乙手中抽取一张,恰好组成一对的概率是__________; (2)若乙先从甲手中抽取一张,恰好组成一对的概率是__________.
四、解答题(每小题6分,共12分)
21.如图,在△ABC 中,∠ACB =90º,AC =BC ,CE ⊥BE ,CE 与AB 相交于点F ,AD ⊥CF 于点D ,且
AD 平分∠F AC .请写出图中两对..
全等三角形,并选择其中一对加以证明.
22.如图,在平面直角坐标系中,以A (5,1)为圆心,以2个单位长度为半径的⊙A 交x 轴于点B 、
C .解答下列问题:
(1)将⊙A 向左平移_________个单位长度与y 轴首次..
相切,得到⊙A 1.此时点A 1的坐标为_________,阴影部分的面积S =_________;
(2)求BC 的长.
五、解答题(每小题7分,共14分)
23.某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度.
(1)在确定调查方式时,团委设计了以下三种方案: 方案一:调查七年级部分女生; 方案二:调查七年级部分男生;
方案三:到七年级每个班去随机调查一定数量的学生. 请问其中最具有代表性的一个方案是______________;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示)请你根据图中信息,将其补充完整; (3)请你估计该校七年级约有多少名学生比较了解....
“低碳”知识
24.如图,在一滑梯侧面示意图中,BD ∥AF ,BC ⊥AF 于点C ,DE ⊥AF 于点E .BC =1.8m,BD =
0.5m,∠A =45º,∠F =29º.
(1)求滑道DF 的长(精确到0.1m );
(2)求踏梯AB 底端A 与滑道DF 底端F 的距离AF (精确到0.1m ). (参考数据:sin29º≈0.48,cos29º≈0.87,tan29º≈0.55)
六、解答题(每小题8分,共16分)
25.正方形ABCD 与正方形CEFG 的位置如图所示,点G 在线段CD 或CD 的延长线上.分别
连接BD 、BF 、FD ,得到△BFD .
(1)在图①~图③中,若正方形CEFG 的边长分别为1、3、4,且正方形ABCD 的边长均为3,正方形CEFG 的边长 1 3 4 △BFD 的面积
(2)若正方形CEFG 的边长为a ,正方形ABCD 的边长为b ,猜想S △BFD 的大小,并结合图③证明你的猜想.
A B
C D E
E F
G
A B
C D (G ) F A B
C D
E F
G 图①
图②
图③
26.一列长为120米的火车匀速行驶,经过一条长为160米的隧道,从车头驶入隧道入口到车尾
离开隧道出口共用14秒.设车头驶入隧道入口x 秒时,火车在隧道内的长度.......
为y 米. (1)求火车行驶的速度;
(2)当0≤x ≤14时,求y 与x 的函数关系式;
(3)在给出的平面直角坐标系中画出y 与x 的函数图象.
七、解答题(每小题10分,共20分)
27.矩形OBCD 在如图所示的平面直角坐标系中,其中三个顶点分别为O (0,0)、B (0,3)、D (-
2,0),直线AB 交x 轴于点A (1,0). (1)求直线AB 的解析式;
(2)求过A 、B 、C 三点的抛物线的解析式,并写出其顶点E 的坐标; (3)过点E 作x 轴的平行线EF 交AB 于点F .将直线AB 沿轴向右平移2个单位,与x 轴交于点G ,与EF 交于点H .请问过A 、B 、C 三点的抛物线上是否存在点P ,使得S △P AG =
3 4S △PEH
.若存在,求点P 的坐标;若不存在,
A D
B E F
C P
Q
A D B
E F C
(备用图)
28.如图,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm,BC =6cm,AE
=4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终为10cm 2.设EP =x cm,FQ =y cm,解答下列问题: (1)直接写出当x =3时y 的值;
(2)求y 与x 之间的函数关系,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中成能扫过的区域的面积.。