计量经济学习题及全部答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计量经济学》习题(一)
一、判断正误
1在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法。
()
2 •最小二乘法进行参数估计的基本原理是使残差平方和最小。
()
3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为(n-1 )o()
4•当我们说估计的回归系数在统计上是显著的,意思是说它显著地异于0。
()
5.总离差平方和(TSS)可分解为残差平方和(ESS与回归平方和(RSS)之和,其中残差平方和(表示总离
差平方和中可由样本回归直线解释的部分。
()
6•多元线性回归模型的F检验和t检验是一致的。
()
7•当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。
()
&如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关。
(:
9•在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。
()
10. DW.检验只能检验一阶自相关。
()
二、单选题
1 •样本回归函数(方程)的表达式为()o
A • Y=01X i u i
B • E(Y/X i)= 0 i X
C• Y:? =0?X
i e D • £= ? ?X i
2.下图中“ {
”
所指的距离是()。
A •随机干扰项
B •残差
C • Y的离差D・Y的离差3•在总体回归方程E(Y/X)= o i X中,i表示()o
2
4•可决系数R是指()o ESS)
A .当X增加一个单位时, Y增加1个单位
B •当X增加一个单位时, Y平均增加i个单位
C •当Y增加一个单位时, X增加i个单位
D •当Y增加一个单位时, X平均增加i个单位
C • Cov(U i ,U j )=0 (i j)
D • U i : N(0,1)
A •剩余平方和占总离差平方和的比重
B •总离差平方和占回归平方和的比重
C •回归平方和占总离差平方和的比重
D •回归平方和占剩余平方和的比重
2
5•已知含有截距项的三元线性回归模型估计的残差平方和为 e =800,估计用的样本容量为
24,则随
机误差项5的方差估计量为(
)。
D . 36.36
,n 为样本容量,ESS 为残差平方和,RSS 为回归平 F 统计量为( )。
RSS/k
ESS(n k 1)
l RSS/k C • F =1
TSS (n k 1)
7•对于模型Y =彳 ?X j e ,以 误的是()。
A • =0.8 , DW . =0.4 C •
=0, DW.=2
l ESS D . F =
TSS
表示e 与e 1之间的线性相关系数(
B • = 0.8, DW.= 0.4 D •
=1 , DW.=0
&在线性回归模型
Y 0
1人
... k X ki U i k 3 ;如果X 2
X 3 X 1,则表明模型中存在()。
A •异方差
B •多重共线性
C •自相关
D •模型误设定
9 •根据样本资料建立某消费函数
Y = 0
1
X i U i ,其中丫为需求量,X 为价格。
为了考虑“地区”(农
村、城市)和“季节”(春、夏、秋、冬)两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数 为()。
A • 2
B • 4
C • 5
D • 6
10 •某商品需求函数为C?i =100.50 55.35D i 0.45X i ,其中C 为消费,X 为收入,虚拟变量
A ・ G = 155.85 0.45X i
B •( ? = 100.50 0.45X i
C • (? = 100.50 55.35X i
D •( ? =100.95 55.35X
三、多选题
1 • 一兀线性回归模型
丫= 0
1
X i U i 的基本假定包括(
)。
A • E(u i ) =0
B • Var(u i )=
2
(常数)
A • 33.33
B . 40
C • 38.09
6•设k 为回归模型中的参数个数(不包括截距项) 方和。
则对总体回归模型进行显著性检验时构造的 RSS
TSS t 2,3丄,n ),则下面明显错
1城镇家庭
0农村家庭
,所有参数均检验显著,则城镇家庭的消费函数为(
E. X为非随机变量,且Cov(X i,uJ=0
2•由回归直线Y?= ?X j估计出来的Y?()。
A •是一组平均数
B •是实际观测值Y i的估计值
C •是实际观测值Y均值的估计值
D •可能等于实际观测值Y
E.与实际观测值Y之差的代数和等于零
3. 异方差的检验方法有()
A .图示检验法
B • Glejser检验
C • ^Vhite 检验
D • DW/.检验
E • Goldfeld Quandt 检验
4 •下列哪些非线性模型可以通过变量替换转化为线性模型()。
A •2
Y = 0 1X i u i B• 1/Y= o 1(1/ X i) u
C
In Y= 0 11n X j u i D• Y = AK i L i e ui
•
E •Y i= o 1e1X1i2e 2X2i u
5•在线性模型中引入虚拟变量,可以反映()。
A .截距项变动
B .斜率变动C.斜率与截距项冋时变动
D .分段回归E.以上都可以
四、简答题
1 •随机干扰项主要包括哪些因素?它和残差之间的区别是什么?
2•简述为什么要对参数进行显著性检验?试说明参数显著性检验的过程。
3.简述序列相关性检验方法的共同思路。
五、计算分析题
1 •下表是某次线性回归的EViews输出结果,根据所学知识求出被略去部分的值(用大写字母标示)写出过
,并程(保留3位小数)。
Depe ndent Variable: Y
Method: Least Squares
In eluded observatio ns: 13
2•用Goldfeld Quandt 方法检验下列模型是否存在异方差。
模型形式如下:
其中样本容量n =40,按X i 从小到大排序后,去掉中间10个样本,并对余下的样本按 X i 的大小等分为 ESS =0.360、ESS 2=0.466,写出检验步骤( =0.05)。
VAD 2,第三产业增加值一一VAD 3,结果为:
AV =35.116 0.028VAD 1 0.048VAD 2 0.228VAD 3
R 2 =0.993, F =1189.718 (0.540) ( 1.613 )
(7.475)
DW .=2.063
试简要分析回归结果。
五、证明题
求证:一元线性回归模型因变量模拟值
Y?的平均值等于实际观测值 Y 的平均值,即Y?=Y 。
《计量经济学》习题(二)
、判断正误(正确划“V” ,错误划“X” )
1. 残差(剩余)项 e 的均值e =( e ):n =0。
()
2•所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自的真值。
()
3 •样本可决系数高的回归方程一定比样本可决系数低的回归方程更能说明解释变量对被解释变量的解释
能力。
()
4 •多元线性回归模型中解释变量个数为
k ,则对回归参数进行显著性检验的 t 统计量的自由度一定是
n k 1 ° ()
5•对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值。
()
6•若回归模型存在异方差问题,可以使用加权最小二乘法进行修正。
()
7 •根据最小二乘估计,我们可以得到总体回归方程。
()
&当用于检验回归方程显著性的
F 统计量与检验单个系数显著性的 t 统计量结果矛盾
时,可以认为出现了严重的多重共线性(
)
9•线性回归模型中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的。
( ) 10・一般情况下,用线性回归模型进行预测时,单个值预测与均值预测相等,且置信区间也相同。
()
二、单选题
Y i = 0
i
Xn
2
X 21
3
X 31 U i
两组,分别作回归,得到两个残差平方和
3•有人用广东省1978—2005年的财政收入(AV )作为因变量, 用三次产业增加值作
为自变量,进行了三元线性回归。
第一产业增加值 VAD 1,第二产业增加值
F 分布百分位表(
9 •根据样本资料建立某消费函数如下
丫= 0
1
X i U i ,其中丫为需求量,X 为价格。
为了考虑“地区”
(农村、城市)和“季节” (春、夏、 秋、冬)
两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的 1 •针对同一经济指标在不同时间发生的结果进行记录的数据称为(
)
A ・面板数据
B •截面数据
C •时间序列数据
D •以上都不是
2 •下图中“{”
3•在模型丫= 0
jnX i U i 中,参数1的含义是(
A • X 的绝对量变化,引起 丫的绝对量变化
B • 丫关于X 的边际变化
C • X 的相对变化,引起丫的平均值绝对量变化
D • 丫关于X 的弹性
误差项U i 方差的估计量为(
D • 0.5
A •随机干扰项
B •残差
C • 丫的离差
4 •已知含有截距项的三元线性回归模型估计的残差平方和为
2
e =90,估计用的样本容量为 19,则随机
A • 4.74
B • 6
C • 5.63 5 •已知某一线性回归方程的样本可决系数为
A • 0.64
B • 0.8
C • 0.4
D • 5
0.64,则解释变量与被解释变量间的相关系数为( 0.32
6.用一组有 20个观测值的样本估计模型
丫= 0
1X i u i ,在
0.05的显著性水平下对 1的显著性作
t 检
验,则
1显著异于零的条件是对应
t 统计量的取值大于(
A • 10.05 (20)
B • t 0.025(20)
C . t o.05(18)
D
• t 0.025(18)
7 •对于模型Y =
?X 1i
'k
X
ki
e
i ,
统计量一(Y?2Y)2/k 服从()
(Y i Y?) /(n k 1)
A • t(n k)
B • t(n k 1)
C . F(k 1,n k)
D • F(k, n k 1)
&如果样本回归模型残差的一阶自相关系数
为零,那么DW.统计量的值近似等于(
Y ?的离
差
1城镇豕庭
10.设消费函数为C i = o
2D i X i U i ,其中C 为消费,X 为收入,虚拟变量D 亠一宀宀
i 0
2 j j
j
0农村家庭
当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭具有同样的消费行为(
)
线性关系显著,则可能出现的情况包括(
A .
1 =
2 =0
1=0,
C .参数估计值的经济检验
D .参数估计值的统计检验
E . DW.检验
4. 线性回归模型存在异方差时,对于回归参数的估计与检验正确的表述包括(
)
A . OLS 参数估计量仍具有线性性
B . OLS 参数估计量仍具有无偏性
C . OLS 参数估计量不再具有效性(即不再具有最小方差) D. 一定会低估参数估计值的方差
5. 关于虚拟变量设置原则,下列表述正确的有(
)
A. 当定性因素有 m 个类型时,引入 m 1个虚拟变量
B .当定性因素有 m 个类型时,引入 m 个虚拟变量会产生多重共线性问题
C .虚拟变量的值只能取 0和1
D .在虚拟变量的设置中,基础类别一般取值为 0 E. 以上说法都正确 四、 简答题
1 .简述计量经济学研究问题的方法。
2. 简述异方差性检验方法的共同思路。
3. 简述多重共线性的危害。
五、 计算分析题 1 .下表是某次线性回归的
EViews 输出结果,被略去部分数值(用大写字母标示)
,根据所学知识解答下
列各题(计算过程保留 3位小数)。
(本题12分) Depe ndent Variable: Y
个数为()
A . 2
B . 4
C . 5
A . 1=0, 2 =0
B . 1=0,
2
C .
1
0, 2 =0
三、多选题
1•以Y 表示实际观测值,
Y?表示用OLS 法回归后的模拟值,e 表示残差,则回归直线满足(
)
A .通过样本均值点 (X,Y)
B . (Y
Y)2=0 C . Cov (X j ,e )=0
Y? E .
e X j =0
2 .对满足所有假定条件的模型
Y =
1
X 1
2
X 2i
U j 进行总体显著性检验,如果检验结果显示总体
2 =0
3. F 列选项中,哪些方法可以用来检验多重共线性
A . Glejser 检验
B .两个解释变量间的相关性检验
Method: Least Squares In eluded observatio ns: 18
(
1
)
T
S
S
2.有人用美国1960-1995年36年间个人实际可支配收入 (X )和个人实际消费支出(丫)的数据(单位:
百亿美元)建立收入一消费模型
Y i = o 1X i u ,估计结果如下:
丫?= 9.429 0.936X i
t :
(-3.77) (125.34)
2
R = 0.998, F = 15710.39, DW.=0.52
(1)检验收入一消费模型的自相关状况( 5%显著水平); (2)用适当的方法消除模型中存在的问题。
五、证明题
证明:用于多元线性回归方程显著性检验的 F 统计量与可决系数
满足如下关系:
《计量经济学》习题(三)
一、 判断对错
()1、在研究经济变量之间的非确定性关系时,回归分析是惟一可用的分析方法。
()2、对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值。
)3、OLS 回归方法的基本准则是使残差平方和最小。
()4、在存在异方差的情况下,
OLS 法总是高估了估计量的标准差。
)5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为( n-1 )。
()6、线性回归分析中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性 的。
()7、当我们说估计的回归系数在统计上是显著的,意思是说它显著异于
0。
()&总离差平方和(TSS )可分解为残差平方(ESS )和与回归平方和(RSS ), 其中残差平方(ESS )表示
总离差平方和可由样本回归直线解释的部分。
()9、所谓OLS 估计量的无偏性,是指回归参数的估计值与真实值相等。
()10、当模型中解释变量均为确定性变量时,则可以用
DW 统计量来检验模型的随机误差项所有
形式的自相关性。
二、 单项选择
A
1、回归直线
Y t = ?0+ ?1X t 必然会通过点(
)
A 、( 0,0);
B 、( X ,丫 );
C 、( X ,0 );
D 、( 0,丫)。
R 2
DW 检验临界值表(
2、针对经济指标在同一时间所发生结果进行记录的数据列,称为( A 、面板数据;B 、截面数据;C 、时间序列数据;D 、时间数据。
3、如果样本回归模型残差的一阶自相关系数 p 接近于0,那么DW 统计量的值近似等于( )A 、0
B 、1
C 、2
D 、4
4、 若回归模型的随机误差项存在自相关,则参数的 OLS 估计量()
A 、无偏且有效
B 、有偏且非有效
C 、有偏但有效
D 、无偏但非有效
5、 下列哪一种检验方法不能用于异方差检验( )
A 、戈德菲尔德—夸特检验;
B 、DW 检验;
C 、White 检验;
D 、戈里瑟检验。
6、 当多元回归模型中的解释变量存在完全多重共线性时,下列哪一种情况会发生(
)
A 、OLS 估计量仍然满足无偏性和有效性;
B 、OLS 估计量是无偏的,但非有效;
C 、OLS 估计量有偏且非有效;
D 、无法求出OLS 估计量。
7、 DW 检验法适用于(
)的检验
A 、一阶自相关
B 、高阶自相关
C 、多重共线性
D 都不是
&在随机误差项的一阶自相关检验中,
若DW = 1.92,给定显著性水平下的临界值 d L =1.36, d u =1.59 ,
则由此可以判断随机误差项( )
A 、存在正自相关
B 、存在负自相关
C 、不存在自相关
D 、无法判断
9、 在多元线性线性回归模型中,解释变量的个数越多,则可决系数
R 2 ()
A 、越大;
B 、越小;
C 、不会变化;
D 、无法确定
10、 在某线性回归方程的估计结果中,若残差平方和为
10,回归平方和为 40,则回归方程的拟合优 度为
()
A 、0.2
B 、0.6
C 、0.8
D 、无法计算。
三、简答与计算
1、 多元线性回归模型的基本假设有哪些?
2、 计量经济模型中的随机误差项主要包含哪些因素?
3、 简答经典单方程计量模型的异方差性概念、后果以及修正方法。
4、简述方程显著性检验(F 检验)与变量显著性检验(t 检验)的区别?。
5、对于一个三元线性回归模型,已知可决系数 於=0.9,方差分析表的部份结果如下:
(5)求方程总体显著性检验的 F 统计量; 四、案例分析
F 表是中国某地人均可支配收入(INCOME )与储蓄(SAVE )之间的回归分析结果(单位:元)
Depe ndent Variable: SAVE Method: Least Squares Sample: 1 31 In cluded observati ons: 31
(1) 样本容量是多少?
(2) 总离差平方和 TSS 为多少? (3) 残差平方和ESS 为多少?
(4) 回归平方和 RSS 和残差平方和 ESS 的自由度各为多少?
C-695.1433118.0444 -5.8888270.0000
INCOME0.0877740.004893 ——
R-squared0.917336Mean depe ndent var1266.452
Adjusted R-squared0.914485S.D.dependent var846.7570
S.E. of regressi on247.6160Akaike info criterion13.92398
Sum squared resid1778097.Schwarz criteri on14.01649
Log likelihood-213.8216F-statistic321.8177
Durbin-Wats on stat 1.892420Prob(F-statistic)0.000000
1请写出样本回归方程表达式,然后分析自变量回归系数的经济含义
2、解释样本可决系数的含义
3、写出t检验的含义和步骤,并在5%的显著性水平下对自变量的回归系数进行t检验(临界值
t o.025(29)=2.O5)。
4、下表给出了White异方差检验结果,试在5%的显著性水平下判断随机误差项是否存在异方差。
5、下表给出LM序列相关检验结果(滞后1期),试在5%的显著性水平下判断随机误差项是否存在一阶自相关。
《计量经济学》习题(四)
一、判断对错
()1、一般情况下,在用线性回归模型进行预测时,个值预测与均值预测结果相等,且它们的置信区间也相同。
()2、对于模型Y i=时0X ii+伦X2i+……+侏X ki+卩i, i=1,2,……,n;如果X2=X5 +X6, 则模型必然存在解释变量的多重共线性问题。
()3、OLS回归方法的基本准则是使残差项之和最小。
()4、在随机误差项存在正自相关的情况下,OLS法总是低估了估计量的标准差。
)5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为( n-1 )。
()6、一元线性回归模型的F检验和t检验是一致的。
()7、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关。
()&在近似多重共线性下,只要模型满足OLS的基本假定,则回归系数的最小二乘估计量仍然
是一BLUE估计量。
()9、所谓参数估计量的线性性,是指参数估计量是解释变量的线性组合。
()10、拟合优度的测量指标是可决系数R2或调整过的可决系数,R2越大,说明回归方程对样本
的拟合程度越高。
二、单项选择
1 •在多元线性回归模型中,若两个自变量之间的相关系数接近于1,则在回归分析中需要注意模型的
()问题。
A、自相关;
B、异方差;
C、模型设定偏误;
D、多重共线性。
2、在异方差的众多检验方法中,既能判断随机误差项是否存在异方差,又能给出异方差具体存在形
式的检验方法是()
A、图式检验法;
B、DW检验;
C、戈里瑟检验;
D、White检验。
3、如果样本回归模型残差的一阶自相关系数p接近于1那么DW统计量的值近似等于()
A、0
B、1
C、2
D、4
4、若回归模型的随机误差项存在异方差,则参数的OLS估计量()
A、无偏且有效
B、无偏但非有效
C、有偏但有效
D、有偏且非有效
5、下列哪一个方法是用于补救随机误差项自相关问题的()
A、OLS ;
B、ILS ;
C、WLS ;
D、GLS。
6、计量经济学的应用不包括:()
A、预测未来;
B、政策评价;
C、创建经济理论;
D、结构分析。
7、L M检验法适用于()的检验
A、异方差;
B、自相关;
C、多重共线性;D都不是
&在随机误差项的一阶自相关检验中,若DW = 0.92,给定显著性水平下的临界值d L=1.36, d u=1.59 , 则由此可以判断随机误差项()
A、存在正自相关
B、存在负自相关
C、不存在自相关
D、无法判断
9、在多元线性线性回归模型中,解释变量的个数越多,则调整可决系数R2 3 4()
A、越大;
B、越小;
C、不会变化;
D、无法确定
10、在某线性回归方程的估计结果中,若残差平方和为10,总离差平方和为100,则回归方程的拟合优度为
()
A、0.1;
B、0.90;
C、0.91 ;
D、无法计算。
三、简答与计算
1、多元线性回归模型的基本假设有哪些?
2、简述计量经济研究的基本步骤
3、简答经典单方程计量模型自相关概念、后果以及修正方法。
4、简述对多元回归模型Y 0 1X1i 2X2:... k X ki U i进行显著性检验(F检验)的基本步骤
2 回归平方和RSS为多少?
3 残差平方和ESS为多少?
4 回归平方和RSS和总离差平方和TSS
的自由度各为多少?(5)求方程总体显著性检验的F统计量;
四、实验
F表是某国1967 —1985年间GDP与出口额(EXPORT)之间的回归分析结果(单位:亿美元):
Depe nde nt Variable: EXPORT
Method: Least Squares
Sample: 1967 1985
In eluded observati ons: 19
5、对于一个五元线性回归模型,已知可决系数氏=0.6,方差分析表的部份结果如下:
(1)样本容量是多少?
Variable Coefficie n
t
Std. Error t-Statistic Prob. C -2531.831 270.8792 -9.346714 0.0000
GDP
0.281762
0.009355
——
R-squared
0.981606 Mean depe ndent var 5530.842 Adjusted R-squared 0.980524 S.D.dependent var 1295.273 S.E. of regressi on 180.7644 Akaike info criterion 13.33157 Sum squared resid 555487.9 Schwarz criteri on 13.43098 Log likelihood -124.6499 F-statistic
907.2079 Durbin-Wats on stat
0.950536 Prob(F-statistic)
0.000000
1请写出样本回归方程表达式,然后分析自变量回归系数的经济含义 2、 解释样本可决系数的含义 3、 写出t 检验的含义和步骤,并在 5%的显著性水平下对自变量的回归系数进行 t 检验(临界值
t o.025(17)=2.11 )。
4、 下表给出了 White 异方差检验结果,试在 5%的显著性水平下判断随机误差项是否存在异方差。
5、下表给出LM 序列相关检验结果(滞后 1期),试在5%的显著性水平下判断随机误差项是否存在一阶 自相关。
《计量经济学》习题(五)
「、判断正误(正确划“V”,错误划“ x ”)
( )1、最小二乘法进行参数估计的基本原理是使残差平方和最小。
(
)2、一般情况下,用线性回归模型进行预测时,个值预测与均值预测相等,且置信区间也相同。
3、 如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关。
4、 若回归模型存在异方差问题,应使用加权最小二乘法进行修正。
( )5、多元线性回归模型的 F 检验和t 检验是一致的。
6、 D W 检验只能检验随机误差项是否存在一阶自相关。
7、 总离差平方和(TSS )可分解为残差平方 (RSS )和与回归平方和(ESS ),其中残差平方(RSS )
表示总离差平方和可由样本回归直线解释的部分。
( )8、拟合优度用于检验回归方程对样本数据的拟合程度,其测量指标是可决系数或调整后的可决
系数。
( )9、对于模型 Y 0
1
X 1i ... n X ni U i i 1,2,..., n ;如果 X 2 X 3 X 1,则模型必然存 在解释变量的多重共线
性问题。
(
)10、所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自真值。
二、单项选择
1、回归直线Y? ? ?X i必然会通过点()
A、(0,0)
B、(X,Y)
C、(X,0)
D、(0,Y)
2、某线性回归方程的估计的结果,残差平方和为20,回归平方和为80,则回归方程的拟合优度为()
A、0.2
B、0.6
C、0.8
D、无法计算
3、针对经济指标在同一时间所发生结果进行记录的数据列,称为()
A、面板数据
B、截面数据
C、时间序列数据
D、时间数据
4、对回归方程总体线性关系进行显著性检验的方法是()
A、Z检验
B、t检验
C、F检验
D、预测检验
5、如果DW统计量等于2,那么样本回归模型残差的一阶自相关系数p近似等于()
A、0
B、-1
C、1
D、0.5
6、若随机误差项存在异方差,则参数的普通最小二乘估计量()
A、无偏且有效
B、有偏且非有效
C、有偏但有效
D、无偏但非有效
7、下列哪一种方法是用于补救随机误差项的异方差问题的()
A、OLS ;
B、ILS ;
C、WLS
D、GLS
8、如果某一线性回归方程需要考虑四个季度的变化情况,那么为此设置虚拟变量的个数为()
A、1
B、2
C、3
D、4
9、样本可决系数R5 6 7 8 9越大,表示它对样本数据拟合得()
A、越好
B、越差
C、不能确定
D、均有可能
10、多元线性回归模型中,解释变量的个数越多,可决系数R2()
A、越大;
B、越小;
C、不会变化;
D、无法确定
三、简答题
1、简述计量经济学的定义。
2、多元线性回归模型的基本假设有哪些?
3、简答异方差概念、后果以及修正方法。
4、简述t检验的目的及基本步骤。
四、计算
对于一个三元线性回归模型,已知可决系数R2 0.8,方差分析表的部份结果如下:
5样本容量是多少?
6总变差TSS为多少?
(3)残差平方和RSS为多少?
8ESS和RSS的自由度各为多少?
9求方程总体显著性检验的F统计量值。
《计量经济学》习题(六)-案例题
一、根据美国各航空公司航班正点到达的比率X (%和每10万名乘客投诉的次数Y进行回归,EViews输
出结果如下:
Depe ndent Variable: Y
Method: Least Squares
Sample: 1 9
In cluded observati ons: 9
(1斜率的解释等, 显著性水平均取0.05)。
(2)按标准书写格式写出回归结果。
以下是某次线性回归的EViews输出结果,部分数值已略去(用大写字母标示)
,但它们和表中其它特
定数值有必然联系,分别据此求出这些数值,并写出过程。
(保留3位小数)
Depe ndent Variable: Y Method: Least Squares Sample: 1 13
In cluded observati ons: 13
(1)求A的值。
(2)求B的值。
(3)求C的值。
三、用1970-1994年间日本工薪家庭实际消费支出Y与实际可支配收入X(单位:103日元)数据估计线性模型Y= °1X u,然后用得到的残差序列e t绘制以下图形。
(1)试根据图形分析随机误差项之间是否存在自相关?若存在,是正自相关还是负自相关?
14
亡①
|« n
-IO 一 答:图形显示,随机误差项之间存在着相关性,且为正的自相关。
(2)此模型的估计结果为 试用DW 检验法检验随机误差 项之间是否存在自相关。
四、用一组截面数据估计消费(鸟一收入(X )方程Y =
1X
J O J = 注:abs[e (t )] 表示e (t )的绝对
值。
(2)其次,用 White 法进行检验。
的结果为 (1)根据回归的残差序列 e (t )图分析本模型是否存在异方差? 若给定显著水平 n
k=1 k=2 d L d u d L d u 24
1.27 1.45 1.19 1.55 25 1.29 1.45 1.21 1.55 26
1.30 1.46 1.22 1.55 27
1.31
1.47
1.24
1.56
u
附表:DW 检验临界值表( =0.05
) F-statistic 6.301373 Probability 0.003370 Obs*R-squared
10.86401
Probability
0.004374
EViews 输出结果见下表: White Heteroskedasticity Test: Variable Coefficie nt
S
;td. Error t-Statistic
Prob.
C -10.03614 1 31.1424 -6. 076529 0.0045
X 0.165977 1 .619856 5.102464 0.0064
X A 2 0.001800 C
.004587 8.392469 0.0002
Depe nde nt Variable: RESIDE Method: Least Squares Sample: 1 60 0.05,以上结果能否说明该模型存在异方差?查卡方分布临界值的自由度是多少?
五、下图描述了残差序列 {e t }与其滞后一期值{©,}之间的散点图,试据此判断随机误差项之间是否存在 自相关?若存在,则是正自相关还是负自相关?
六、在一多元线性回归模型中,为检验解释变量之间是否存在多重共线性问题,以解释变量 变量,对其余解释变量进行辅助回归,得到可决系数 R 2 0.95。
试计算变量 捲的方差扩大因子VIF !,并
根据经验判断解释变量间是否存在多重共线性问题? 七、下表是中国某地人均可支配收入( INCOME )与储蓄(SAVE )之间的回归分析结果(单位:元) :
Sample: 1 31
In eluded observati ons: 31
Variable Coeffieie n
t
Std. Error t-Statistie Prob. C -695.1433 118.0444 -5.888827
0.0000 INCOME
0.087774
0.004893
—
一 R-squared
0.917336 Mean depe ndent var 1266.452 Adjusted R-squared
0.914485 S.D.dependent var 846.7570 S.E. of regressi on 247.6160 Akaike info eriterion 13.92398 Sum squared resid 1778097. Sehwarz eriteri on 14.01649 Log likelihood -213.8216 F-statistie 321.8177 Durbin-Wats on stat
1.892420 Prob(F-statistie)
0.000000
1、 请写出样本回归方程表达式,然后分析自变量( INCOME )回归系数的经济含义
2、 解释可决系数的含义
3、 若给定显著性水平
5%,试对自变量(I N C O M E )的回归系数进行显著性检验(已知
t o.o25(29) 2.045)
4、在
5%的显著性水平下,查 n 31的DW 临界值表得d L 1.363,d u 1.496,试根据回归结果
判断随机误差项是否存在一阶自相关?
5、下表为上述回归的 White 检验结果,在 存在异方差?
White Heteroskedastieity Test:
e(t-1)
治作为被解释
5%的显著性水平下,试根据P 值检验判断随机误差项是否
F-statistie
Obs*R-squared
5.819690 Probability 9.102584 Probability
0.007699 0.010554
《计量经济学》习题(一)答案
、判断正误
1.(x)
2. ( V)
3.(V)
4.( V )
5.(X)
6.(x)
7. ( X)
8.( X)
9.( V ) 10.(V)
_ 、单选: 题(每小题 1.5 分, 共15分)
1.(D) 。
2. ( B)o
3.( B )o
4. ( C )o、
5.( B ) o
6.(B) 0
7. ( B)o
8.( B )o
9. ( B )o10.( A ) o
三、多选题
1. ( ABCE )
2. ( BCDE )
3. ( ABCE )
4. ( ABCD )
5. ( ABCDE )。
四、简答题
1•随机干扰项主要包括哪些因素?它和残差之间的区别是什么?
答:随机干扰项包括的主要因素有:(1)众多细小因素的影响;(2)未知因素的影响;(3)数据测量
误差或残缺;(4)模型形式不完善;(5)变量的内在随机性。
随机误差项羽残差不同,残差是样本观测值与模拟值的差,即e=Y Y?。
残差项是随机误差项的
估计。
2•简述为什么要对参数进行显著性检验?试说明参数显著性检验的过程。
答:最小二乘法得到的回归直线是对因变量与自变量关系的一种描述,但它是不是恰当的描述呢?一般会用与样本点的接近程度来判别这种描述的优劣,而当获得以上问题的肯定判断之后,还需要确定每一个参数的可靠程度,即参数本身以及对应的变量该不该保留在方程里,这就有必要进行参数的显著性检验。
这种检验是确定各个参数是否显著地不等于零。
检验分为三个步骤:
①提出假设:原假设H。
:i 0 ;备择假设H- i 0
?
②在原假设成立的前提下构造统计量:t i ~t(n k 1)
Se ?
③给定显著性水平,查t分布表求得临界值t /2(n k 1),把根据样本数据计算出的t统计量值
t 与t /2(n k 1)比较:
若t t/2(n k 1),则拒绝原假设H0,即在给定显著性水平下,解释变量X j对因变量有
显著影响;
若t t/2(n k 1),则不能拒绝原假设H0,即在给定显著性水平下,解释变量X i对因变
量没有显著影响•
3•简述序列相关性检验方法的共同思路。
答:由于自相关性,使得相对于不同的样本点,随机干扰项之间存在相关关系,那么检验自相关
性,首先根据OLS法估计残差,将残差作为随机干扰项的近似估计值,然后检验这些近似估计值之间
的相关性以判定随机干扰项是否存在序列相关。
各种检验方法就是在这个思路下发展起来的。
五、计算分析题。