多普勒综合实验报告

合集下载

多普勒声速实验-实验报告

多普勒声速实验-实验报告

多普勒声速实验--实验报告DH-DPL系列多普勒效应及声速综合实验实验报告一:实验目的多普勒效应是一种与波动紧密相关的物理现象.利用多普勒效应可以测量运动物体的速度,但目前许多高校使用的多普勒效应实验仪集成化和智能化程度太高,实验时需要学生动手操作的环节太少;信号的转换、传输和处理过程不透明,不利于学生在实验过程中细致观察各种物理现象,分析测量误差的来源等,难以满足深入培养学生自主动手能力和观察分析能力的需要.本实验以商用超声多普勒实验系统(杭州大华DH -DPL1)的导轨模块作为开发平台,以模拟乘法器作为测量系统的核心单元;实验过程中学生需自行搭建信号拾取和处理电路,并利用示波器观察各个环节的信号波形,有助于培养学生得动手能力,并加深对多普勒效应及对模拟电子实验的理解。

二:实验原理根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器收到的信号频率f为:f = f0 (u + v1 cosα1 ) / (u - v2 cosα2 ) (1)式中f0为声源发射频率, u为声速, v1 为接收器运动速率, v2 为声源运动速率,α1 是声源与接收器连线与接收器运动方向之间的夹角,α2 是声源与接收器连线与声源运动方向之间的夹角.在实验过程中,声源保持不动,接收换能器在导轨上沿声源与接收换能器连线方向上运动,则从式(1)可以得到接收换能器上得到的信号频率为:f = f0 (1 + v/u) (2)式中v为接收换能器的运动速度,当向着声源运动时, v取正,反之取负.利用式(2)可以得到接收换能器的运动速度为:v = u(f - f0 ) /f0 = uΔf/f0 ………..(3) 式中Δf = f - f0为多普勒频移.在本研究中,采用的信号处理电路如图1所示,其中模拟乘法器采用了AD633,其信号的输入输出关系为:W =(x1 - x2 ) (y1 - y2 )/10+ z (4)若输入到AD633的信号为x1 = E1 cos(2πf0 t +φ1 ) , y1 = E2 cos(2πft +φ2 ) , x2、y2 以及z均接地,则AD633的输出为:W =E1 E2{cos[2π(f + f0 ) t +φ2 +φ1 ] /20+cos[2π(f - f0 ) t +φ2 -φ1 ]} (5)其中包含了两路信号的和频分量与差频分量. 利用低通滤波器可以提取出其中的差频分量,即多普勒频移,从而计算出接收换能器的运动速度.在实际测量过程中,由于接收换能器与声源(发射换能器)的距离在不断变化过程中,因此接收换能器输出信号的幅度不是恒定值. 为了保证乘法器的输出信号幅度稳定,本研究中采用OA1组成的限幅放大电路,使输入到乘法器的信号幅度保持恒定值,以便于观察.因为本实验中只关心输出信号的频率,因此对接收换能器输出信号幅度的处理不会影响到实验结果.利用OA2构建的有源低通滤波器,可以有效提取出多普勒频移信号.三:实验仪器本研究所使用的机械平台是杭州大华出品的DH-DPL1多普勒效应实验仪的导轨. 在该装置中,超声发射换能器固定于导轨一端,接收换能器则安装在由步进电机控制的小车上,可以在接收与发射换能器连线方向上做匀速直线运动,运动速度最高可达47 cm /s. 在靠近导轨两端处有限位开关,用于防止小车运动时出现过冲. 在导轨中段则有一光电门,可用于检测固定在小车上的U型挡光片的速度,从而与利用超声多普勒方法测到的小车运动速度比对,验证多普勒效应的公式. 本设计方案中使用的主要观察和测量工具是数字存储示波器. 使用这种示波器的主要原因是因为在实验过程中,小车的运动距离及时间有限,必须在其运动过程中及时将有关的信号波形储存,以便进行分析计算.本实验中采用了Tektronix m TDS1002B数字示波器,而超声发射换能器的激励信号则来自Agilentm 33220A数字信号发生器.四:试验内容及操作步骤1,按图示电路图连接电路,将示波器调至正常工作状态;2,检查电路,接通电源,调节输入信号的频率,使发射信号与接收信号发生谐振,记录此时的信号频率,约为37kHz;3,调节小车的速度,使小车在轨道上运动,用数字采集卡记录输出信号的波形;4,在电脑上处理信号,读出多普勒频移Δf及小车经过光电门挡板时的时间t1和t2;5,对原始数据进行列表,分别利用多普勒公式和光电门实验计算小车的速度,进行比较,验证声波的多普勒公式。

多普勒效应综合实验报告

多普勒效应综合实验报告

多普勒效应综合实验报告1. 引言说起多普勒效应,大家可能觉得这名字听起来有点复杂,其实它跟我们的日常生活可有着千丝万缕的联系。

想象一下,你在路边悠闲地等车,突然一辆救护车呼啸而过,哔哔的警报声从远到近,接着又从近到远,听起来像是在和你打招呼似的。

这就是多普勒效应的真实写照,它让我们更好地理解声音是如何传播的。

这次实验,我们就是要深入探讨这个现象,看看它背后的奥秘。

2. 多普勒效应的原理2.1 基本概念多普勒效应,其实就是当声音源或观察者相对运动时,听到的声音频率发生变化的现象。

简单来说,如果一个物体朝你移动,你会听到比它实际发出的音调更高的声音;反之,如果它远离你,声音就会变低。

就像我们听到的那辆救护车,刚开始的时候它的声音尖锐得像是要冲破天空,离开时却变得温柔得多,像是在对我们说“再见”。

2.2 生活中的例子生活中其实随处可见多普勒效应的影子。

比如,当你在运动的时候,听到路边有人喊你的名字,声调总是高低起伏。

再想想过马路的时候,汽车急速驶来,那个轰鸣声让你不得不一闪而过,转身后再听到的声音则像是懒洋洋地说“我已经走远了”。

这些体验其实都在说明着多普勒效应的奇妙。

3. 实验过程3.1 准备工作这次实验我们准备了一些简单的设备,包括音频发生器、麦克风、扬声器和测量工具。

首先,我们设定一个音频频率,比如说440赫兹,这是一个标准的A音,听起来可亲切了。

接着,我们就要开始进行不同速度的实验,看看音频的变化。

3.2 实验步骤我们让扬声器固定在一个地方,然后把它调到一定的音频频率。

之后,一个同学(我们叫他“小明”吧)开始以不同的速度朝扬声器走近,或者远离。

每当他经过扬声器时,我们用麦克风记录下他听到的音频频率。

实验进行得相当顺利,小明从“飞奔”到“慢走”,记录下的数据一目了然。

通过这些数据,我们开始分析频率变化的规律,嘴上不敢说“哇,原来真有这么神奇”,但心里早就惊叹不已了。

4. 数据分析4.1 结果展示经过一番努力,我们得到了多个数据点,像是小明快速接近扬声器时,频率明显升高,而他远离时,频率又骤降。

多普勒效应综合实验报告

多普勒效应综合实验报告

多普勒效应综合实验报告多普勒效应综合实验报告引言多普勒效应是一种物理现象,描述了当光线或声音经过运动的物体时,其频率和波长会发生变化的现象。

本实验旨在通过多种实验方法验证多普勒效应,并探讨其在实际应用中的重要性。

实验一:声音的多普勒效应实验目的:验证声音在运动源和观察者之间相对运动时所产生的多普勒效应。

实验步骤:1. 准备一辆发出固定频率声音的小车和一个固定的听音器。

2. 将小车以一定速度向听音器移动,并记录每次移动的距离。

3. 同时记录听音器接收到的声音频率。

4. 重复实验多次,以获得更准确的数据。

实验结果:根据实验数据,当小车以不同速度向听音器移动时,听音器接收到的声音频率会发生变化。

当小车接近听音器时,声音频率增高;当小车远离听音器时,声音频率降低。

实验分析:这种现象可以通过多普勒效应来解释。

当小车向听音器移动时,声音波长相对于听音器缩短,导致声音频率增高。

相反,当小车远离听音器时,声音波长相对于听音器延长,导致声音频率降低。

实验二:光的多普勒效应实验目的:验证光在运动源和观察者之间相对运动时所产生的多普勒效应。

实验步骤:1. 准备一束激光和一个运动的反射镜。

2. 将激光照射到反射镜上,并记录反射光的频率。

3. 以一定速度移动反射镜,并记录每次移动的距离。

4. 同时记录反射光的频率变化。

5. 重复实验多次,以获得更准确的数据。

实验结果:根据实验数据,当反射镜以不同速度运动时,反射光的频率会发生变化。

当反射镜接近观察者时,光频率增高;当反射镜远离观察者时,光频率降低。

实验分析:这种现象同样可以通过多普勒效应来解释。

当反射镜向观察者移动时,光波长相对于观察者缩短,导致光频率增高。

相反,当反射镜远离观察者时,光波长相对于观察者延长,导致光频率降低。

实验三:多普勒效应的应用多普勒效应在现实生活中有着广泛的应用。

以下是一些例子:1. Doppler Radar(多普勒雷达):多普勒效应被广泛用于气象预报和交通监测中。

多普勒效应实验实验报告

多普勒效应实验实验报告

实验名称:多普勒效应实验实验目的:1. 理解多普勒效应的原理和现象;2. 掌握多普勒效应的实验方法;3. 通过实验验证多普勒效应的存在;4. 分析实验数据,得出实验结论。

实验原理:多普勒效应是指当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化的现象。

当波源向接收器移动时,接收到的频率会升高;当波源远离接收器时,接收到的频率会降低。

实验仪器:1. 发射器:频率为f的连续波发生器;2. 接收器:频率计;3. 跟踪器:用于控制波源与接收器之间的相对运动;4. 移动平台:用于承载波源和接收器;5. 测量工具:尺子、计时器等。

实验步骤:1. 将发射器和接收器放置在移动平台上,确保两者之间的距离为L;2. 设置发射器的频率为f,打开发射器;3. 通过跟踪器控制波源和接收器之间的相对运动,分别进行以下实验:a. 波源向接收器移动,记录接收器接收到的频率f1;b. 波源远离接收器,记录接收器接收到的频率f2;c. 接收器向波源移动,记录接收器接收到的频率f3;d. 接收器远离波源,记录接收器接收到的频率f4;4. 计算相对速度v,公式为v = (f1 - f) / f L;5. 计算相对速度v,公式为v = (f2 - f) / f L;6. 计算相对速度v,公式为v = (f3 - f) / f L;7. 计算相对速度v,公式为v = (f4 - f) / f L;8. 分析实验数据,得出实验结论。

实验结果:1. 波源向接收器移动时,接收器接收到的频率f1高于原始频率f;2. 波源远离接收器时,接收器接收到的频率f2低于原始频率f;3. 接收器向波源移动时,接收器接收到的频率f3高于原始频率f;4. 接收器远离波源时,接收器接收到的频率f4低于原始频率f;5. 计算得到的相对速度v分别为v1、v2、v3、v4,符合多普勒效应的规律。

实验结论:通过实验验证了多普勒效应的存在,即当波源与接收器之间存在相对运动时,接收器接收到的波的频率会发生变化。

多普勒综合实验报告

多普勒综合实验报告

一、实验目的1. 理解多普勒效应的原理,掌握其应用领域。

2. 通过实验验证多普勒效应,了解其在实际应用中的表现。

3. 掌握多普勒效应的测量方法,学会利用多普勒效应进行速度测量。

4. 了解多普勒效应在医学、交通、气象等领域的应用。

二、实验原理多普勒效应是指当波源和观察者之间有相对运动时,观察者接收到的波的频率会发生变化。

具体来说,当波源向观察者靠近时,接收到的频率会变高;当波源远离观察者时,接收到的频率会变低。

多普勒效应的公式为:f' = f (v + vo) / (v + vs)其中,f'为观察者接收到的频率,f为波源频率,v为波速,vo为观察者速度,vs 为波源速度。

三、实验器材1. 多普勒频移仪2. 发射器3. 接收器4. 电脑5. 超声波发生器6. 超声波接收器四、实验步骤1. 将发射器和接收器分别固定在实验台上,确保它们之间的距离为已知值。

2. 使用超声波发生器产生频率稳定的超声波,并将其输入发射器。

3. 启动多普勒频移仪,将发射器发出的超声波输入接收器,同时记录接收器接收到的频率。

4. 调整发射器和接收器之间的距离,使它们之间有相对运动,例如让发射器向接收器靠近或远离。

5. 观察并记录接收器接收到的频率变化,分析多普勒效应。

6. 重复步骤4和5,分别记录不同速度下的频率变化。

7. 利用多普勒效应公式计算实际速度。

五、实验结果与分析1. 通过实验,观察到当发射器向接收器靠近时,接收器接收到的频率变高;当发射器远离接收器时,接收器接收到的频率变低。

这验证了多普勒效应的存在。

2. 根据实验数据,计算不同速度下的实际速度,并与理论值进行比较。

结果表明,多普勒效应可以用来测量速度,且测量结果与理论值基本吻合。

3. 分析多普勒效应在医学、交通、气象等领域的应用。

例如,在医学领域,多普勒效应可以用来测量血流速度;在交通领域,多普勒效应可以用来测量车辆速度;在气象领域,多普勒效应可以用来测量风速。

多普勒效应测声速实验报告(共7篇)

多普勒效应测声速实验报告(共7篇)

多普勒效应测声速实验报告(共7篇)【引言】多普勒效应是声波传播中较为重要的现象之一,广泛应用于医疗、气象、地质探测、防护等领域。

本实验通过制作测声速设备,利用多普勒效应来测量声速,并探讨了声速和温度、同济和介质类型的关系。

经过实验测量和数据处理,得出了一定的结论和启示。

【实验原理】在测量声速时,可以利用声波的多普勒效应来获得,即声波在静止的观测者听到的频率与声波源相对运动的速度有关,可表示为:f’ = f * (1 + v / V)其中f’为观测者听到的频率,f为声波源的频率,v为观测者和声波源之间的相对速度,V为声波在介质中的传播速度。

因此,通过测量声波在不同条件下的频率和相对速度,可以求出声速的大小。

【实验设备和方法】1. 实验设备(1)多功能信号源(2)示波器(3)麦克风(4)各种电缆及连接器(5)热水杯2. 实验方法(1)设置多功能信号源为振幅调制模式,调节频率为2kHz,输出一个正弦波信号。

(2)将麦克风稳定地放置在恒温水杯中,使水杯内的水温保持在40℃左右。

(3)将麦克风接到示波器上,将示波器设置为 X-Y 模式。

(4)调整多功能信号源的振幅和频率,使其输出符合要求。

(5)通过调节热水杯的温度,改变介质的密度和声速,记录各个状态下的频率、相对速度等数据。

(6)根据测量的数据计算声速,并探讨声速和温度、同济和介质类型的关系。

通过实验,我们得到了如下的实验数据:| 温度℃ | 频率f(Hz) | 相对速度v(m/s)||:--------:|:-----------:|:----------------:|| 30 | 1999.6 | 1.2 || 35 | 1999.8 | 1.4 || 40 | 2000.0 | 1.6 || 45 | 2000.2 | 1.8 || 50 | 2000.4 | 2.0 |根据公式f’ = f * (1 + v / V)和测量的数据可以计算出室温下的声速约为332.88 m/s,温度对声速的影响符合一定的规律:随温度升高,声速也会相应地升高。

多普勒效应 实验报告

多普勒效应 实验报告

多普勒效应实验报告一、实验目的1.了解多普勒效应的基本原理以及相关概念;2.利用多普勒效应来测量声源的速度;3.学习利用频率变化原理判断物体运动方向的方法。

二、实验原理多普勒效应是指当声源或接收器相对于空气运动时,其工作频率会发生变化的现象。

这是由于声波在空气中以有限速度传播,如果有物体相对于媒质自身运动,则声波的传播速度相对于物体而言会有差异,从而改变了声波的频率。

例如,当一个声源自身静止时,其工作频率为f0,但是当其向接收器方向移动时,由于声波传播速度相对于声源自身而言变快,所以接收器接收到的频率f1会变大;反之,当声源向远离接收器方向移动时,接收到的频率f2会变小。

多普勒效应还可以用来测量物体的速度和运动方向,例如利用多普勒雷达来测量飞机的速度和方向。

三、实验器材1.震荡器、扬声器;2.频率计、示波器;3.电源、电缆。

四、实验步骤1.连接实验线路,将示波器接收端接在扬声器上,将震荡器与扬声器固定在相距一定的地方(约1m);2.将震荡器的频率调整为f0,扬声器发出的声音的频率与震荡器的频率相同;3.移动扬声器,使其相对于震荡器和示波器运动,记录频率计显示的频率;4.测量不同距离下的频率,记录数据。

根据多普勒效应的公式计算出声源运动的速度。

五、实验结果在进行实验过程中,我们记录了不同距离下频率计显示的频率值,根据多普勒效应公式计算出了在此距离下的速度,并绘制出速度与距离的关系曲线(图1)。

从图中可以看出,当声源与接收器间的距离越远,测量得到的速度值越接近真实值。

此外,我们还利用多普勒效应来判断物体的运动方向。

当声源向接收器方向运动时,我们发现接收到的声音的频率较大;当声源远离接收器方向运动时,接收到的频率较小。

因此,通过观察频率变化可以判断物体的运动方向。

图1:声源速度与距离关系曲线六、实验分析从实验结果可以看出,多普勒效应是一种非常重要的物理现象,在实际应用中有很大的作用。

例如,利用多普勒雷达可以测量飞机、汽车等运动物体的速度和方向;利用多普勒医学成像可以观察人体内部的血流情况。

实验43 多普勒效应综合实验

实验43 多普勒效应综合实验
大学物理实验预习报告
姓名
实验班号
实验号
实验四十三多普勒效应综合实验
实验目的:满足什么条件时可以简化为 ?
2.简述验证多普勒效应的实验方案。
3.简述利用多普勒效应公式测声速的实验方案。
4.简述利用多普勒效应研究简谐振动的实验方案。
5.多普勒效应综合实验仪的主要组成部分有哪些?
2.列出数据记录表格:
教师签字:
月日
实验内容:
1.多普勒效应综合实验仪开机后,为什么首先要求输入室温。
2.验证多普勒效应,并利用多普勒效应公式测量声速的实验中,小车的使用应该注意什么事项?
3.利用多普勒效应研究自由落体运动的实验中,仪器使用的注意事项?
4.利用多普勒效应研究简谐振动的实验中,如何确定简谐运动的周期?
数据表格:
1.记录所用测量仪器的仪器误差:

多普勒效应实验报告

多普勒效应实验报告

多普勒效应实验报告一、实验目的1、观察并验证多普勒效应现象。

2、测量声速,并通过多普勒效应计算声源的运动速度。

3、深入理解多普勒效应的原理及其在实际生活中的应用。

二、实验原理多普勒效应是指当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化。

对于声波来说,如果声源向着观察者运动,观察者接收到的频率会升高;如果声源远离观察者运动,观察者接收到的频率会降低。

设声源的频率为 f₀,声速为 v,观察者相对于介质的速度为 v₀(靠近声源为正,远离声源为负),声源相对于介质的速度为 vs(靠近观察者为正,远离观察者为负),则观察者接收到的频率 f 为:当声源运动,观察者静止时:f = f₀×(v + v₀) /(v vs)当观察者运动,声源静止时:f = f₀×(v + v₀) / v当声源和观察者都运动时:f = f₀×(v + v₀) /(v vs)三、实验仪器1、信号发生器:用于产生稳定的音频信号。

2、扬声器:作为声源。

3、麦克风:用于接收声音信号。

4、数据采集卡:将麦克风接收到的模拟信号转换为数字信号,并传输给计算机。

5、计算机:用于控制实验、采集数据和进行数据分析。

四、实验步骤1、连接实验仪器将信号发生器的输出连接到扬声器,以提供声源信号。

将麦克风连接到数据采集卡的输入端口。

将数据采集卡插入计算机的 PCI 插槽,并安装驱动程序和相关软件。

2、软件设置打开计算机上的实验控制软件,设置采样频率、通道选择等参数。

选择合适的显示方式,以便观察和分析采集到的数据。

3、测量声速在实验环境中,让扬声器和麦克风保持固定距离。

信号发生器产生一个已知频率 f₀的正弦波信号,通过扬声器发出声音。

麦克风接收声音信号,并通过数据采集卡传输到计算机。

测量声音信号从扬声器发出到麦克风接收的时间差 t。

根据声速公式 v = d / t(其中 d 为扬声器和麦克风之间的距离),计算出声速 v。

多普勒效应综合实验报告及数据处理图

多普勒效应综合实验报告及数据处理图

多普勒效应综合实验(附数据处理图)(注:由于上传后文库中数据图看不清楚,须下载后才能看清楚) 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。

多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。

例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。

基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。

在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。

电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。

本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。

【实验目的】1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。

②自由落体运动,并由V-t关系直线的斜率求重力加速度。

③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。

④其它变速直线运动。

【实验原理】1、超声的多普勒效应根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:f = f0(u+V1cosα1)/(u–V2cosα2)(1)式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:f = f0(1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。

多普勒效应实验

多普勒效应实验

实验报告 多普勒效应综合实验物理科学与技术学院 13级弘毅班 20 吴雨桥 【实验目的】1.利用超声接收器运动速度与接收频率的关系验证多普勒效应并求声速。

2.利用多普勒效应测量物体运动过程中多个时间点的速度,得出物体在运动过程中的速度变化情况,借此研究:(1) 简谐振动。

可测量其振动周期等参数,并与理论值比较。

(2) 自由落体运动。

可以由v-t 关系直线的斜率求重力加速度。

(3) 匀加速直线运动。

测量力、质量与加速度的关系,验证牛顿第二定律。

【实验原理】1. 超声的多普勒效应。

根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,如右图所示。

则接收器接收到的频率f 为 1122cos cos u V f f u V αα+=- (1)其中u 为声速,f 0为声源发射频率。

若声源保持不动,运动物体上的接收器向声源方向以速度V 运动,测接收器接收到的频率f 为01V f f u ⎛⎫=⋅+ ⎪⎝⎭(2)当接收器向声源运动时,V 取正;反之取负。

若保持f 0不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,由(2)式知,作f-V 图可以验证多普勒效应,并由实验点做直线,其斜率k=f 0/u ,由此可以计算声速u=f 0/k 。

也可以由(2)解出01f V u f ⎛⎫=- ⎪⎝⎭,若已知声速u 及声源频率f 0,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按照上式算出接收器运动速率,由显示屏显示v-t 图像,并调阅相关数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

2. 研究简谐振动当质量为m 的物体受到大小与位移成正比,而方向指向平衡位置的力的作用时,若以物体的运动方向为x 方向,则运动方程为22d xm kx dt=-,该式描述的即为简谐振动。

当初始条件为t=0时,x=-A 0,V=dx/dt=0,则运动方程的解为00cos x A t ω=- ,对时间求导,可得速度方程000sin V A t ωω= 其中0ω=为振动系统的固有角频率。

多普勒效应综合实验报告结论

多普勒效应综合实验报告结论

多普勒效应综合实验报告结论1. 引言嘿,大家好,今天咱们聊聊多普勒效应,简单来说,就是声音和光在移动的时候的“魔法”。

想象一下,当救护车呼啸而过时,声音是高高低低,像是在跟你打招呼。

今天的实验,咱们就是要深度探讨这个现象,让大家听得懂、看得懂,甚至还要乐得起来!2. 实验内容2.1 实验目的首先,我们得明确实验的目的。

咱们想要探究的就是多普勒效应如何影响声音的频率。

简单来说,就是当声源靠近你时,声音变高;而当它远离时,声音又变低,这就像你在和朋友打电话时,他往前走,突然声音变得清晰又尖锐,接着又模糊了,感觉是不是有点儿好玩?2.2 实验步骤在实验中,我们首先准备了一个音响系统和一个可以移动的发声器。

然后让发声器在固定轨道上来回移动,同时我们用手机录下声音的变化。

过程中的每一个音符,都是在告诉我们多普勒效应的“秘密”。

当发声器往我们这边冲来时,声音就像过山车一样,急速上升;而它一转身,声音就“啪”地掉下来了,仿佛是被什么东西打了一下。

3. 结果分析3.1 数据观察通过录音,我们发现,确实如我们所料,声音的频率随着距离的变化而变化。

数据记录下来后,我们分析发现,这个变化幅度还真是让人惊讶,大家几乎都笑出声来,感叹声波的“脾气”真是变化多端。

这就好比一首歌曲的节奏,有时快、有时慢,让人忍不住想跟着哼哼。

3.2 实验结论最终,咱们得出的结论是,声源运动的方向和速度直接影响声音的频率变化,真是再明显不过的事儿了!就像打篮球,球员们的移动决定了篮球飞向的方向和速度一样,声波也在告诉我们,它的旅行同样有着独特的节奏。

换句话说,多普勒效应就像一场无声的音乐会,让我们听见了声波的舞蹈。

4. 总结所以,朋友们,通过这个实验,我们不仅了解了多普勒效应的基本原理,还体会到了科学的乐趣。

每一个音符都在呼唤我们去探索更深层次的奥秘,仿佛在说:“嘿,快来跟我一起跳舞吧!”未来,我们还会继续探索更多这样的“魔法”,让科学的世界变得更加丰富多彩。

多普勒实验报告总结

多普勒实验报告总结

一、实验背景多普勒效应是指当波源和观察者之间存在相对运动时,观察者接收到的波的频率与波源发出的频率不同的现象。

这一效应在声波、光波等领域均有广泛应用。

为了验证多普勒效应,我们进行了本次实验。

二、实验目的1. 理解多普勒效应的基本原理。

2. 通过实验验证多普勒效应的存在。

3. 掌握多普勒效应在声波测量中的应用。

4. 培养实验操作和数据处理能力。

三、实验原理1. 多普勒效应的基本原理:当波源和观察者之间存在相对运动时,观察者接收到的波的频率与波源发出的频率不同。

具体来说,当波源和观察者相互靠近时,观察者接收到的频率变高;当波源和观察者相互远离时,观察者接收到的频率变低。

2. 实验原理:本实验采用声波作为波源,通过测量接收器接收到的频率变化来验证多普勒效应。

实验过程中,我们将接收器固定在一定的位置,改变波源与接收器之间的距离,从而观察接收器接收到的频率变化。

四、实验器材1. 声波发生器:产生一定频率的声波。

2. 接收器:接收声波,并测量其频率。

3. 移动平台:用于改变波源与接收器之间的距离。

4. 数据采集系统:用于采集实验数据。

五、实验步骤1. 将声波发生器固定在实验台上,并调整其频率。

2. 将接收器固定在移动平台上,并调整其位置。

3. 逐渐改变波源与接收器之间的距离,记录接收器接收到的频率变化。

4. 重复上述步骤,分别记录不同距离下的频率变化。

5. 分析实验数据,验证多普勒效应。

六、实验结果与分析1. 实验数据:根据实验数据,我们可以发现,当波源与接收器相互靠近时,接收器接收到的频率逐渐升高;当波源与接收器相互远离时,接收器接收到的频率逐渐降低。

这充分验证了多普勒效应的存在。

2. 数据分析:通过对实验数据的分析,我们可以得出以下结论:a. 多普勒效应的存在与波源和观察者之间的相对运动速度有关;b. 实验过程中,波源与接收器之间的距离变化对多普勒效应的影响较大;c. 实验数据与理论计算结果基本一致。

七、实验结论1. 多普勒效应是客观存在的现象,在声波、光波等领域均有广泛应用。

多普勒综合效应实验报告

多普勒综合效应实验报告

一、实验目的1. 理解多普勒效应的基本原理和现象。

2. 通过实验验证多普勒效应在声波和电磁波中的存在。

3. 探究多普勒效应与波源和接收器相对运动速度的关系。

4. 熟悉实验仪器的使用方法和数据处理方法。

二、实验原理多普勒效应是指当波源和接收器之间存在相对运动时,接收器接收到的波的频率会发生变化。

这种现象不仅适用于声波,也适用于电磁波(包括光波)。

其基本原理可以概括为:- 当波源和接收器相向运动时,接收器接收到的频率高于波源频率,称为“蓝移”。

- 当波源和接收器背向运动时,接收器接收到的频率低于波源频率,称为“红移”。

- 相对运动速度越大,频率变化越明显。

三、实验仪器与设备1. 多普勒效应实验装置(包括声波发射器、声波接收器、频谱分析仪等)2. 电磁波发射器(如激光器)3. 电磁波接收器(如光电探测器)4. 秒表5. 计算器四、实验步骤1. 声波实验:- 将声波发射器和接收器固定在实验装置上,确保两者之间有一定的距离。

- 调整声波发射器的频率,使接收器能够接收到稳定的声波信号。

- 逐步改变接收器的运动速度,记录不同速度下接收器接收到的频率值。

- 分析数据,验证多普勒效应在声波中的存在。

2. 电磁波实验:- 将电磁波发射器和接收器固定在实验装置上,确保两者之间有一定的距离。

- 调整电磁波发射器的频率,使接收器能够接收到稳定的电磁波信号。

- 逐步改变接收器的运动速度,记录不同速度下接收器接收到的频率值。

- 分析数据,验证多普勒效应在电磁波中的存在。

五、实验结果与分析1. 声波实验结果:- 实验结果显示,随着接收器运动速度的增加,接收到的声波频率逐渐升高,符合多普勒效应的蓝移现象。

- 通过计算不同速度下的频率变化量,可以得出多普勒效应与相对运动速度的关系。

2. 电磁波实验结果:- 实验结果显示,随着接收器运动速度的增加,接收到的电磁波频率逐渐降低,符合多普勒效应的红移现象。

- 通过计算不同速度下的频率变化量,可以得出多普勒效应与相对运动速度的关系。

多普勒效应综合实验报告

多普勒效应综合实验报告

一、实验目的1. 理解多普勒效应的基本原理和现象;2. 掌握多普勒效应的测量方法;3. 通过实验验证多普勒效应的存在;4. 掌握数据处理和分析方法,提高实验技能。

二、实验原理多普勒效应是指波源和接收器之间有相对运动时,接收器接收到的波的频率发生改变的现象。

当波源向接收器移动时,接收到的频率变高;当波源远离接收器时,接收到的频率变低。

多普勒效应广泛应用于声波、光波等多种波动现象中。

本实验采用声波多普勒效应,通过测量声波频率的变化来验证多普勒效应的存在。

实验中,声源发出一定频率的声波,接收器接收声波并测量其频率。

当声源和接收器之间有相对运动时,接收到的频率将发生改变。

三、实验仪器与设备1. 发射器:超声波发生器,频率可调;2. 接收器:超声波接收器;3. 测量仪器:示波器、频率计;4. 支撑架:用于固定发射器和接收器;5. 距离测量工具:卷尺。

四、实验步骤1. 将发射器和接收器固定在支撑架上,确保两者之间的距离保持不变;2. 打开超声波发生器,调节频率为设定值;3. 开启示波器和频率计,记录接收器接收到的频率;4. 改变发射器和接收器之间的相对位置,分别向左、向右移动,记录不同位置下的频率;5. 重复步骤4,分别向上、向下移动,记录不同方向下的频率;6. 对比不同位置和方向下的频率变化,分析多普勒效应现象。

五、实验数据与处理1. 记录不同位置和方向下的频率数据;2. 根据多普勒效应公式计算频率变化量;3. 分析频率变化量与相对速度之间的关系。

六、实验结果与分析1. 实验结果表明,当发射器和接收器之间有相对运动时,接收到的频率会发生改变,验证了多普勒效应的存在;2. 通过计算频率变化量,发现频率变化量与相对速度成正比,符合多普勒效应公式;3. 分析实验误差,可能来源于声源频率的波动、测量仪器的精度等因素。

七、实验结论1. 多普勒效应是波源和接收器之间相对运动时,接收到的波的频率发生改变的现象;2. 通过实验验证了多普勒效应的存在,并计算出频率变化量与相对速度之间的关系;3. 本实验有助于加深对多普勒效应的理解,提高实验技能。

多普勒效实验报告

多普勒效实验报告

一、实验目的1. 深入理解多普勒效应的基本原理。

2. 通过实验验证多普勒效应在声波和光波中的表现。

3. 掌握多普勒效应在实际应用中的重要性。

二、实验原理多普勒效应是指当波源与观测者之间有相对运动时,观测者接收到的波的频率会发生变化的现象。

这种现象在声波和光波中都有体现。

当波源远离观测者时,接收到的频率会降低,称为红移;当波源靠近观测者时,接收到的频率会升高,称为蓝移。

三、实验器材1. 多普勒效应实验装置2. 发射器3. 接收器4. 波源(如扬声器)5. 激光发生器6. 光接收器7. 移动平台8. 示波器9. 计时器四、实验步骤1. 实验准备(1)搭建实验装置,将发射器、接收器、波源和移动平台连接好。

(2)调整实验装置,确保发射器、接收器和波源之间的距离合适。

2. 实验过程(1)首先进行声波实验,将波源(扬声器)放置在发射器处,接收器放置在接收器处。

启动实验装置,记录接收器接收到的频率。

(2)然后进行光波实验,将激光发生器放置在发射器处,光接收器放置在接收器处。

启动实验装置,记录光接收器接收到的频率。

(3)接下来进行相对运动实验,将波源和接收器分别放置在移动平台上,启动实验装置,分别记录不同相对速度下的接收频率。

3. 数据处理(1)计算声波和光波的频率变化量,并与理论值进行比较。

(2)分析相对运动实验中不同速度下的接收频率,验证多普勒效应。

五、实验结果与分析1. 声波实验根据实验数据,计算声波频率变化量为△f1,与理论值进行比较。

实验结果显示,声波频率变化量与理论值基本吻合,验证了声波多普勒效应。

2. 光波实验根据实验数据,计算光波频率变化量为△f2,与理论值进行比较。

实验结果显示,光波频率变化量与理论值基本吻合,验证了光波多普勒效应。

3. 相对运动实验根据实验数据,分析不同速度下的接收频率,验证多普勒效应。

实验结果显示,随着相对速度的增加,接收频率逐渐增大,符合多普勒效应的规律。

六、实验结论1. 多普勒效应在声波和光波中都有体现,实验结果与理论值基本吻合。

大物实验报告-多普勒效应

大物实验报告-多普勒效应

大物实验报告多普勒效应实验4.12 多普勒效应实验报告一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及其机械能转化的规律。

实验仪器ZKY-DPL-3 多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)声波的多普勒效应假设一个点声源的振动在各向同性且均匀的介质中传播,当声源相对于介质静止不动时,各个波面可以组成个同心圆,声波的频率f0、波长λ0以及波速u0表示为f0=u0/λ0现将接收器测得的声波频率、波长和波速分别称为观测频率、观测波长和观测波速,并分别记为f、λ、u,可表示为f=u/λ当接收器以一定的速度向声源运动时,接收器所测得的各个球面波的观测波长λ仍等于λ0,测得的观测波速u 变为u0+v0,因此有f=(u0+v0)/λ0f=(1+v/u0)*f0式中,v0表示声源相对介质静止时,接收器与声源的相对运动速率,接收器朝向声源运动为正值,反之为负值。

同样地,如果接收器相对于介质静止,而声源以速率v’朝向接收器运动,此时接收器所测得的观测波长为λ'可表示为(u0-v')*T,其中,T为声源的振动周期。

同时,由于接收器相对于介质处于静止状态,其测得的观测波速u'仍等于u0,则接收器测得的观测频率为f'=u’/λ’=u0*f0/(u0-v’)对于更为普遍的情况,当声源与接收器之间的相对运动如图所示时,可以得到接收器的观测频率f为f=f0*(u0+v1*cosθ1)/(u0-v2*cosθ2)此式是具有普适性的多普勒效应公式。

三、实验步骤(要求与提示:限400字以内)1、超声的多普勒效应1.1 连接好实验仪器,使滑车牵引绳绕过滑轮与滑车驱动电动机后两端与滑车的前后端相连,并调整好滑车牵引绳的松紧。

多普勒应用实验报告

多普勒应用实验报告

一、实验目的1. 理解多普勒效应的基本原理及其在物理现象中的应用。

2. 通过实验验证多普勒效应,观察相对运动速度与接收频率之间的关系。

3. 探究多普勒效应在特定条件下的应用,如医学诊断、交通监测、航空航天等领域。

二、实验原理多普勒效应是指当声源或接收器发生相对运动时,接收到的频率会发生变化。

具体来说,当声源远离接收器时,接收到的频率会降低;当声源靠近接收器时,接收到的频率会升高。

这种现象广泛应用于声学、光学等领域。

三、实验仪器与材料1. 多普勒效应综合实验仪(ZKY-DPL-3)2. 超声接收器3. 钩码4. 电子天平5. 量筒6. 电磁式测速仪7. 激光测距仪8. 计算机9. 数据采集软件四、实验步骤1. 实验一:验证多普勒效应(1)将多普勒效应综合实验仪放置在实验台上,调整好仪器,确保其稳定。

(2)在实验仪上设置合适的参数,如声源频率、接收器灵敏度等。

(3)将钩码悬挂在实验仪的固定装置上,用电子天平测量钩码的质量。

(4)在实验仪上设置不同速度的相对运动,观察并记录接收到的频率变化。

(5)分析数据,验证多普勒效应。

2. 实验二:研究相对运动速度与接收频率之间的关系(1)根据实验一的结果,确定相对运动速度与接收频率之间的关系。

(2)在实验仪上设置不同速度的相对运动,观察并记录接收到的频率变化。

(3)分析数据,研究相对运动速度与接收频率之间的关系。

3. 实验三:多普勒效应在医学诊断中的应用(1)使用多普勒效应综合实验仪模拟医学诊断中的场景。

(2)观察并记录接收到的频率变化,分析其与人体生理参数之间的关系。

(3)验证多普勒效应在医学诊断中的应用。

4. 实验四:多普勒效应在交通监测中的应用(1)使用多普勒效应综合实验仪模拟交通监测中的场景。

(2)观察并记录接收到的频率变化,分析其与车辆速度之间的关系。

(3)验证多普勒效应在交通监测中的应用。

5. 实验五:多普勒效应在航空航天中的应用(1)使用多普勒效应综合实验仪模拟航空航天中的场景。

多普勒效应的实验报告

多普勒效应的实验报告

多普勒效应的实验报告实验目的与要求: 1. 加深对多普勒效应的了解2.测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。

实验原理和内容: 1、 声波的多普勒效应2、 实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。

3、 设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:4、⎪⎪⎭⎫⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。

5、 然后分多种情况考虑多普勒效应的发生:6、 声源运动速度为S V ,介质和接收点不动7、 假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。

8、 则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:9、⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p Sω10、 可见接收器接收到的频率变为原来的SM 11-, 即: 11、12、 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为14、 介质不动,声源运动速度为SV ,接收器运动速度为r V ,可得接收器接收到的频率为16、 介质运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川理工学院实验报告
成绩
学号:11101030233
班级:网络工程一班
实验班编号:
姓名:赵鸿平
实验名称:
多普勒效应综合实验
实验目的:
1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关
系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或
调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:
①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。

②自由落体运动,并由V-t关系直线的斜率求重力加速度。

③简谐振动,可测量简谐振动的周期等参数,并与理论值比较
实验仪器:
多普勒效应综合实验仪由实验仪
实验原理:
1、超声的多普勒效应
根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:
f = f0(u+V1cosα1)/(u–V2cosα2)(1)
式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:
f = f0(1+V/u)(2)
当接收器向着声源运动时,V取正,反之取负。

若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。

由(2)式可解出:
V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

数据记录:(要求在实验前画出实验表格)
实验步骤
1. 自由落体运动验证牛顿第二定律:
(1)设定好实验仪器为实验做准备;
(2)按“确认”后,磁铁释放,接收器组件拉动砝码作垂直方向的运动。

测量完成后,显示屏上出现测量结果。

(3)在结果显示界面中用 键选择“返回”,“确认”后重新回到测量设置界面。

按以上程序进行新的测量。

于matlab7.14对实验数据进行处理
T=0.1:0.05:0.4;%将时间区间设置为向量
V1=[0.74 1.23 1.7 2.21 2.68 3.18 3.64];
V2=[0.72 1.17 1.65 2.18 2.65 3.13 3.61];
V3=[0.76 1.25 1.71 2.24 2.73 3.21 3.66];
V4=[0.71 1.19 1.64 2.17 2.66 3.15 3.62];%J将实验获得的速度数据列为矩阵cftool%运用拟合工具箱对实验数据进行拟合拟合结果分别如下截图所示
x=0.1:0.05:0.4;
y1=9.707*x-0.2682;
y2=9.7*x-0.2279;
y3=9.764*x-0.2782;
y4=9.743*x-0.2129;%由拟合数据列得拟合函数
subplot(221)%以下为拟合函数与实验数据的绘图
plot(x,y1, T,V1,'r*')
axis([0.1 0.4 0.5 3.7] )
legend('拟合曲线','实验数据点','location','best') title('第一次实验数据')
xlabel('时间t/s')
ylabel('时间点出速度v(m/s)')
subplot(222)
plot(x,y2,T,V1,'k*')
axis([0.1 0.4 0.5 3.7] )
legend('拟合曲线','实验数据点','location','best') title('第二次实验数据')
xlabel('时间t(s)')
ylabel('时间点出速度v(m/s)')
subplot(223)
plot(x,y3 ,T,V1,'m*')
axis([0.1 0.4 0.5 3.7] )
legend('拟合曲线','实验数据点','location','best') title('第三次实验数据')
xlabel('时间t(s)')
ylabel('时间点出速度v(m/s)')
subplot(224)
plot(x,y4 ,T,V1,'b*')
axis([0.1 0.4 0.5 3.7] )
legend('拟合曲线','实验数据点','location','best') title('第四次实验数据')
xlabel('时间t(s)')
ylabel('时间点出速度v(m/s)')
g=[9.707 9.7 9.764 9.743];
averG=sum(g)/4 %g的平均值
averG =9.7285
g=[9.707 9.7 9.764 9.743];
g0=9.793;
k=(g0-g)/g0 %获得试验数据百分误差
k =0.0088 0.0095 0.0030 0.0051
误差分析:
1.电流值选择过小对实验影响很大
2.温度要选定对实验数据的测定有影响
3.躯体的触摸对接收装置的接收数据有影响
体会建议:
1.注意接收装置与发射装置保持通讯,是实验成功的关键;
2.对实验设定要仔细,以免设定数据对,实验结果产生大的影响;
3.测量时要尽量减少身体触碰接收装置的接收部位,以免对实验产生影响。

相关文档
最新文档