IGBT感应加热电源的原理和优势
IGBT高频感应加热逆变电源原理
IGBT高频感应加热逆变电源原理(一)摘要本文以IGBT高频感应加热电源为研究对象,首先介绍了课题的背景,国内外高频感应加热电源的发展现状及选题意义,同时对电力电子器件的发展也做了简要的介绍,并简述了本课题所做工作的主要内容。
本文从感应加热的基本原理出发,对感应加热电源中的电流型逆变器和电压型逆变器作了比较分析,对感应加热电源常用的两种拓扑结构进行了分析,重点介绍了关于串联型感应加热的特点,由于其具有结构简单、加热效率高、设备体积小等优点,得出串联型逆变器拓扑更适合高频感应加热电源的结论,因此成为本课题的选定方案,也是整机制做的理论基础。
并分析了感应加热电源的各种调功方式,对谐振槽路基本理论进行了详细的分析。
整机制做首先要选择合适的器件,在本文对主要器件的参数、结构特性、驱动要求等进行了详细的说明。
在选择合适器件的基础上,设计出了整机的结构,其中包括整流环节、逆变环节、驱动技术、保护措施等。
在现场进行了大量的试验,选定电源的控制与保护等重要环节的实现方案,并对试验波形进行了测试和分析,通过现场的应用来验证了以上理论的正确性。
论文最后,对本课题所做的工作作了一个简单的总结。
第1章绪论§1.1 选题意义由于电磁感应加热具有加热效率高、升温快、可控性好,且易于实现机械化、自动化等优点,感应加热变频电源装置已越来越广泛的应用于熔炼、透热、淬火、弯管、焊接、加热等工业领域,已取得了明显的经济效益和社会效益。
感应加热变频电源装置的发展方向是沿着大容量、高频率、高效率、智能化,并以提高可靠性、拓宽用途为目标。
80年代出现的绝缘栅双极晶体管(IGBT)因具有开关频率高、驱动功率小、通态压降小、电流密度大等优点而得到越来越广泛的应用[1]。
在此之前,晶闸管中频电源和电子管式高频电源装置是应用于感应加热的主要产品,但它们都有体积庞大,价格昂贵,能耗大,效率偏低的共同缺点。
国外市场早在九十年代初就已出现IGBT感应加热变频电源。
IGBT电源技术说明
IGBT电源技术说明主要优点:采用三回路振荡电路,输出效率高、性能稳定、负载适应性强;微机控制调压电源,输出功率可平滑调节,并随时检测、显示设备运行情况;设有三级过电流保护及水流保护等保护装置。
功率可以平滑调整,频率可以分段调整。
1、设备组成部分:感应加热电源主要由主机柜、电容器柜、水电保护系统、淬火变压器等部分组成。
2、电源的主要技术参数振荡功率:1200KW;振荡频率:5~20KHz;分段控制使用电源:三相380V(±10%) 50Hz;直流电压稳定精度:±1%;3、电源的工作原理及主要电路的说明3.1、IGBT晶体管电源工作原理的说明本设备采用了大功率晶体管式(IGBT)振荡器,将50Hz工频电流变为5~20KHZ的中频/超音频电流。
工作原理感应加热电源采用交——直——交变频原理,三相50Hz输入电压经过整流器成为脉动的直流电压,再经过滤波器成为平滑直流电压,而逆变器则由于开关器件的开关作用将直流电压变成不同频率的交流电压供负载使用。
其整体结构框图如图1所示。
图1 超音频感应加热系统整体结构框图图中以U d为中心分为整流电源和逆变振荡两部分,整流部分通过电流PI 调节器和电压PI调节器实现了电压稳定调节和电流限制调节,并有故障检测及显示。
逆变振荡部分利用单片机实现他激/自激转换及产生逆变驱动信号。
逆变器正常工作时,逆变触发脉冲的控制信号取自负载槽路,工作于自激状态,然而当逆变器尚未投入运行时,无法从槽路取得控制信号。
此外,逆变器在起动以后,工作于自激状态,均能适应实际负载。
一般逆变器的起动采用两种方法,一种为他激起动,其原理是先让逆变触发器发出频率与负载振荡回路的谐振频率相近的脉冲,去触发逆变桥功率元件,使负载回路逐渐建立起振荡后,再由他激转成自激工作。
采用此法所需设备简单,可大大降低装置的造价。
但是,必须预先知道负载的谐振频率,并且在更换负载时,要重新校正起动频率,使之和负载频率相近。
igbt元件的工作原理和应用
IGBT元件的工作原理和应用1. 引言在现代电力电子技术中,IGBT(绝缘栅双极型晶体管)是一种重要的元件,具有高电压、高电流和高开关速度等特点。
本文将介绍IGBT元件的工作原理和应用。
2. IGBT工作原理IGBT是一种由MOSFET(金属-氧化物半导体场效应晶体管)和BJT(双极型晶体管)组成的混合型元件。
其工作原理可以分为以下几个步骤:1.输入信号引发控制端电压:控制端的电压作用下,形成子结和耗尽区的条件。
2.条件形成轉移区:控制端电压作用下,在轉移区域存在大电容,电荷会在下一个周期传播到发射区,IGBT结束通导状态。
3.发射区的导通:一旦适当的控制电流和电压施加后,MOS管中的电子开始导通,激活BJT的发射层。
4.提供辅助电压以维持MOS的导通:一旦电子开始导通,就必须通过辅助电压维持MOS的导通,以防止MOS关闭。
综上所述,IGBT的工作原理是通过不断改变控制端电压,并在MOS和BJT之间建立通路来控制导通和截止。
3. IGBT的应用IGBT作为一种重要的电子元件,广泛应用于各个领域。
以下是几个常见的应用领域:3.1 电力传输和变换IGBT在电力传输和变换领域起着重要作用,主要应用于交流换流器、逆变器和直流调节器等设备中。
IGBT的高电压和高电流承受能力,使其能够在电力系统中进行高效的能量转换和传输。
3.2 光伏发电系统在光伏发电系统中,IGBT用于逆变器中,将光伏电池板产生的直流电转换为交流电,以供电网使用或直接驱动电动设备。
3.3 汽车电子系统IGBT在汽车电子系统中的应用越来越广泛,用于电动车的控制系统、混合动力汽车的驱动系统和燃油喷射系统等。
IGBT的高开关速度和高电压能力使其适用于汽车中的高频电子设备。
3.4 变频空调在变频空调中,IGBT用于控制压缩机的工作,以实现空调系统的制冷和加热功能。
IGBT的高效能转换和低能耗使其成为变频空调系统的关键组成部分。
3.5 高速列车在高速列车领域,IGBT被用作高压变流器,用于控制高速列车的起动、制动和稳定运行。
IGBT工作原理和工作特性
IGBT工作原理和工作特性1. IGBT的基本原理IGBT(Insulated Gate Bipolar Transistor)是一种高压、高速开关设备,结合了MOSFET和双极晶体管(BJT)的特性。
它具有MOSFET的高输入阻抗和BJT的低导通压降。
2. IGBT的结构IGBT由N型衬底、P型衬底和N型增强层组成。
增强层上有一个PN结,形成NPN三极管结构,而P型衬底连接到集电极。
3. IGBT的工作原理当IGBT的栅极电压为零时,栅极-源极结处形成反向偏置,导通区域被截断。
当栅极电压大于阈值电压时,栅极-源极结处形成正向偏置,导通区域开始形成导电通道,电流开始流动。
4. IGBT的工作特性(1)低导通压降:IGBT的导通压降较低,可以减少功耗和热损耗。
(2)高输入阻抗:IGBT的栅极电流非常小,输入阻抗较高,可以减少输入功率和电流。
(3)高开关速度:IGBT的开关速度较快,可以实现高频率开关操作。
(4)大功率处理能力:IGBT能够处理大功率电流和高电压。
(5)可靠性:IGBT具有较高的可靠性和稳定性,适用于各种工业应用。
5. IGBT的应用领域(1)电力电子:IGBT广泛应用于电力变换器、逆变器、交流调速器等领域。
(2)电动车:IGBT用于电动车的电机驱动系统,提供高效率和高性能。
(3)可再生能源:IGBT在太阳能和风能转换系统中用于能量转换和电网连接。
(4)工业自动化:IGBT用于工业机器人、自动化控制系统和电力工具等。
6. IGBT的优势和劣势(1)优势:高压能力、低导通压降、高开关速度、可靠性高、适用于大功率应用。
(2)劣势:对静电放电敏感、温度敏感、需要驱动电路。
7. IGBT的发展趋势(1)高集成度:将多个IGBT芯片集成在一个封装中,提高功率密度和可靠性。
(2)低损耗:减少导通和开关损耗,提高能效。
(3)高温特性:提高IGBT在高温环境下的工作能力。
(4)低成本:降低生产成本,推动IGBT技术的普及和应用。
电磁炉igbt工作原理
电磁炉igbt工作原理电磁炉是一种使用电磁感应原理进行加热的厨房电器。
它使用高频电源产生的高频电流通过线圈产生交变磁场,使放在上面的锅具内部产生涡流,从而将锅具加热。
电磁炉内部主要由功率调节器、中频电路、线圈和悬浮感应电磁铁四个部分组成。
功率调节器是电磁炉控制功率输出的关键部分。
它通过检测锅具的温度和用户设定的加热功率,控制中频电路输出的电流大小,从而实现对加热功率的调节。
常见的功率调节方式有脉宽调制和频率调制。
脉宽调制是通过控制中频电路输出的脉冲波的占空比来调节加热功率大小。
频率调制则是通过改变中频电路的工作频率来实现功率调节。
中频电路是电磁炉的核心部件,它由功率管、IGBT(绝缘栅双极型晶体管)和其他电子元件组成。
中频电路负责将220V的交流电转换成数千赫兹甚至上百万赫兹的高频交流电。
高频交流电通过线圈产生交变磁场,进而在放在上面的锅具内部产生涡流,从而实现加热。
中频电路的关键部件是IGBT,它是一种功率管,具有高电压、高电流和高开关速度的特点。
IGBT通过开关控制电流的导通和切断,从而实现功率调节。
线圈是电磁炉用于产生交变磁场的部分,通常由铜导线绕成。
线圈中的电流随着中频电路的工作而变化,产生交变磁场,进而感应导体内部的涡流。
线圈的设计需要考虑电流的大小和频率,以及与锅具之间的磁耦合效应。
悬浮感应电磁铁是一种用于支撑锅具的装置。
它由导体和电磁铁组成,放在电磁炉的工作平台上。
电磁铁在通电时会产生磁场,通过磁感应定律感应导体内的涡流,从而使导体受到磁场的反作用力,从而支撑锅具。
利用这种原理,锅具可以悬浮在电磁炉上方,不直接接触电磁炉的表面,避免了传统炉灶的接触式加热,有效降低了热损失和热辐射,提高了加热效率。
总的来说,电磁炉利用高频电源产生的高频电流,通过线圈产生交变磁场,感应锅具内部的涡流,从而将锅具加热。
功率调节器用于控制加热功率的大小,中频电路实现电能的转换和放大,线圈产生交变磁场,悬浮感应电磁铁用于支撑锅具。
如何正确选择igbt感应加热设备
如何正确选择IGBT感应加热设备感应加热是由感应加热设备输出高频电流,通过感应圈产生交变磁场,贯穿放在感应圈中的金属工件形成涡流,使之迅速加热,而感应圈本身不产生热量,已经有几十年的历史。
90年代中期以IGBT模块为核心全固态感应加热设备开始出现,与电子管高频设备和可控硅感应加热设备相比,节能10%-40%。
一经面市,就以其节能环保、加工质量高、操作方便、运行安全可靠、维修费用少等诸多优势成为目前小型金属加热领域最理想的加热方式。
不同的频率的感应加热设备,产生不同的加热效果,决定了加热质量的好坏;功率大小,决定工件的加热速度和加工效率,所以,根据工件的加热要求,选择正确的频率和功率显得非常重要。
一、如何选则频率感应加热设备,根据输出频率不同,大致可以分为:超高频、高频、超音频、中频等。
不同的加热工艺要求需要的频率不同,如果频率选择错误不能满足加热要求,如加热时间慢、工作效率低、加热不均匀、温度达不到要求,容易造成工件的损坏。
正确选择频率,首先,要了解产品的加热工艺要求,大概说来有以下几种情况:1、工件透热,例如:紧固件、标准件、汽配、五金工具、索具、麻花钻的热镦热轧等,工件直径越大,频率应越低。
如:Φ4 mm以下,适用高频、超高频(100-500KHz)Φ4-16,mm 适用高频(50-100 KHz)Φ16-40 mm 适用超音频(10-50 KHz)Φ40 mm以上适用中频(0.5-10 KHz)2、热处理,轴类、齿轮、淬火及不锈钢制品退火等等,以淬火为例,工件要求淬火层越浅,频率应越高,淬火层越深,频率应越低。
如:淬火层为02.-0.8mm 适用100-250 KHz 超高频、高频1.0-1.5mm 适用40-50 KHz高频、超音频1.5-2.0mm 适用20-25 KHz超音频2.0-3.0mm 适用8-20 KHz超音频、中频3.0-5.0mm 适用4-8 KHz中频5.0-8.0mm 适用2.5-4 KHz中频3、钎焊,钎头、车刀、铰刀、铣刀、钻头等及不锈钢锅底不同材料的复合焊接,焊接体积越大,频率越应降低,以车刀焊接为例,如:20 mm以下刀具,适用50-100 KHz 高频20 --30mm以上刀具适用10-50 KHz 高频、超音频30 mm以上刀具,适用1-8 KHz 中频。
感应加热电源原理
感应加热电源原理感应加热电源原理什么是感应加热电源?感应加热电源是一种用于产生高频电流的设备,通过高频电流在导体中产生涡流,从而实现加热效果。
它通常由三个部分组成:功率电源、功率调节电路和感应加热线圈。
感应加热原理感应加热是基于法拉第电磁感应定律的原理。
当感应加热电源输出高频电流时,感应加热线圈中会产生一个交变的磁场。
这个磁场会穿透到被加热的物体中,使得物体内部产生涡流。
在涡流的作用下,物体的内部会迅速发热。
感应加热电源的工作原理感应加热电源通过功率电源提供一定频率和电压的交流电。
然后通过功率调节电路,将交流电转换为高频电流。
最后,高频电流被输送到感应加热线圈中,产生强大的磁场。
感应加热线圈的设计感应加热线圈是感应加热电源的重要组成部分,其设计直接影响加热效果。
感应加热线圈通常由一根导线绕成,绕制的方式可以是螺旋形、环形、鼓形等。
在设计感应加热线圈时,需要考虑物体的形状、大小以及加热效率等因素。
感应加热电源的应用感应加热电源广泛应用于工业生产中的加热过程。
以下是一些常见的应用场景:•金属热处理:感应加热电源可以用于淬火、回火、退火等金属热处理工艺中。
•电磁感应加热炉:感应加热电源可以用于电磁感应加热炉,用于熔化金属、烧结陶瓷等材料。
•管道加热:感应加热电源可以用于管道加热,用于管道的预热、热弯曲等工艺。
总结感应加热电源是一种利用高频电流产生磁场,从而实现加热效果的设备。
通过感应加热原理,它可以广泛应用于金属热处理、电磁感应加热炉以及管道加热等领域。
在设计感应加热线圈时,需要考虑物体的形状、大小以及加热效率等因素,以确保加热效果的良好。
感应加热电源的应用为工业生产带来了许多便利和效益。
IGBT工作原理
IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管)是一种高压高功率开关器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理、结构和特点。
一、IGBT的结构:IGBT由N型沟道MOSFET和双极晶体管BPT组成。
其结构包括P型衬底、N 型沟道、P型基区、N型漏极、N+型源极、N+型漏极、P+型栅极和金属接触等部分。
IGBT的结构使其具备了MOSFET的低功耗特点和BPT的高电压承受能力。
二、IGBT的工作原理:1. 关态(关断状态):当IGBT的栅极电压低于阈值电压时,栅极与沟道之间的PN结处于反向偏置,形成一个绝缘层,导致沟道中没有电流流动。
此时,IGBT处于关断状态,电流无法通过。
2. 开态(导通状态):当栅极电压高于阈值电压时,栅极与沟道之间的PN结正向偏置,绝缘层消失,电流可以流经沟道。
此时,IGBT处于导通状态。
3. 开关过程:在IGBT导通状态下,当控制电压施加在栅极上时,栅极与沟道之间的PN结会形成一个导电通道,这样电流就可以通过IGBT。
当控制电压从高电平变为低电平时,导电通道会被关闭,电流无法通过IGBT。
三、IGBT的特点:1. 高压承受能力:IGBT能够承受较高的电压,通常可达数千伏。
2. 低导通压降:IGBT导通时的电压降低,能够减小功率损耗。
3. 高开关速度:IGBT具有较快的开关速度,能够实现高频率开关。
4. 低驱动功率:IGBT的驱动电流较小,能够降低功耗。
5. 可靠性高:IGBT具有较高的可靠性和较长的寿命。
四、应用领域:IGBT广泛应用于电力电子领域,主要用于高压高功率的开关电源、变频器、逆变器、电力传输、电动车辆、风力发电、太阳能发电等设备中。
总结:IGBT是一种高压高功率开关器件,具有高压承受能力、低导通压降、高开关速度、低驱动功率和高可靠性的特点。
通过控制栅极电压,可以实现IGBT的开关功能。
DSP+IGBT感应加热电源
4
在国外,数字技术在感应加热领域早已成熟应用, 已经全面替代模拟设备。而在国内,数字感应加热 设备的应用已经开始,越来越多的企业开始从事数 字设备的研发、制造、应用,也必将成为未来行业 发展的趋势。 感应加热电源广泛应用于金属热处理、淬火、透热、 熔炼、焊接、热套、半导体材料炼制、塑料热合、 烘烤和提纯等场合,利用在高频磁场作用下产生的 感应电流引起导体自身发热而进行加热。感应加热 与气体燃烧加热或者通电加热相比,具有显著节能、 非接触、速度快、效率高、工序简单、容易实现自 动化等显著优点。
3) 谐振频率和相位自动准确跟踪
4) 完善的限制保护措施
5) 双通道的中频和高频感应加热控制技术
10
越来越多的企业开始从事数字设备的研发、制造、应用,也必将成 为未来行业发展的趋势。数字式感应加热已具备如下的特点: 1、输出更为平稳,不会出现冷板电流下降的情况,加热更为 均匀; 2、多级保护,提高频繁启停工作状态下设备的可靠性,故障 率低,减少维修成本; 3、5段电流加热控制,使加热工艺设计更为灵活; 4、全面自动化兼容,可直接与PLC连接控制; 5、可存储10种工件加热参数,便于转产;
15
系统采用ZCS电路实现高频低损耗IGBT逆变,在DSP 的控制下,能快速精准地跟踪负载的变化,及时调 整逆变频率和相位;消除了目前普遍存在的IGBT逆 变容易脱离ZCS模式的缺陷,因此解决了IGBT容易损 坏的问题。较模拟式控制方式相比,系统在跟踪速 度、跟踪精度、综合保护能力、效率等性能上均明 显提高。 系统具有“自动”和“手动”两套独立的控制策略, 即使控制电路局部故障,“手动”模式仍能保证电 源继续工作,因此进一步提高系统可靠性和连续运 行能力。“手动”模式下提供恒电流运行模式以及 基本的限制保护功能;“自动”模式下可提供恒电 流、恒功率、温度闭环、分段定时等更多运行模式, 并提供更先进的其它功能。
IGBT中频炉为什么节能?
IGBT中频炉节能介绍IGBT中频炉电源控制部分原理及优势:(1)IGBT中频电源是一种采用串联谐振式的中频感应加热炉,它的逆变器件为一种新型IGBT模块(绝缘栅双极型晶体管,德国生产),它主要用于熔炼普通碳素钢、合金钢、铸钢、有色金属。
它具有熔化速度快、节能、高次谐波污染低等优点。
(2)IGBT中频电源为一种恒功率输出电源,加少量料即可达到满功率输出,并且始终保持不变,所以熔化速度快;因逆变部分采用串联谐振,且逆变电压高,所有IGBT 中频比普通可控硅中频节能;IGBT中频采用调频调功,整流部分采用全桥整流,电感和电容滤波,且一直工作在500V,所以IGBT中频产生高次谐波小,对电网产生污染工低。
(3)节能型IGBT晶体管中频电源比传统可控硅中频电源可节能15%-25%,节能的主要原因有以下几下方面:A、逆变电压高,电流小,线路损耗小,此部分可节能15%左右,节能型IGBT晶体管中频电源逆变电压为2800V,而传统可控硅中频电源逆变电压仅为750V,电流小了近4倍,线路损耗大大降低。
B、功率因数高,功率因数始终大于0.98,无功损耗小,此部分比可控硅中频电源节能3%-5%。
由于节能型IGBT晶体管中频电源采用了半可控整流方式,整流部分不调可控硅导通角,所以整个工作过程功率因数始终大于0.98,无功率损耗小。
C、炉品热损失小,由于节能型IGBT晶体管中频电源比同等功率可控硅中频电源一炉可快15分钟左右,15分钟的时间内炉口损失的热量可占整个过程的3%,所以此部分比可控硅中频可节能3%左右。
(4)高次谐波干扰:高次谐波主要来自整流部分调压时可控硅产生的毛刺电压,会严重污染电网,导致其他设备无法正常工作,而节能型IGBT晶体管中频电源的整流部分采用半可控整流方式,直流电压始终工作在最高,不调导通角,所以它不会产生高次谐波,不会污染电网、变压器,开关不发热,不会干扰工厂内其他电子设备运行。
(5)恒功率输出:可控硅中频电源采用调压调功,而节能型IGBT晶体管中频电源采用调频调功,它不受炉料多少和炉衬厚薄的影响,在整个熔炼过程中保持恒功率输出,尤其是生产不锈钢、铜、铝等不导磁物质时,更显示它的优越性,熔化速度快,炉料元素烧损少,降低铸造成本。
IGBT高频感应加热逆变电源原理(五)
IGBT高频感应加热逆变电源原理(五)第五章高频感应加热电源的整机设计§5.1 主电路原理框图主电路原理图如图5-1所示:采用不可控三相二极管全桥整流,电解电容器滤波,IGBT单相全桥逆变,输出采用变压器隔离及阻抗变换后输出到感应器对工件进行加热处理。
§5.2 整流主电路的设计本电源采用三相桥式不可控整流电路,电路结构简单,成本低,并可大大减小直流电压的纹波。
Ud=2.34U2=2.34*220=514.8V。
§5.3 逆变电路的设计§5.3.1 逆变器控制的原理串联谐振型逆变器也称电压谐振型逆变器,其结构如图5-1所示。
串联谐振型逆变器的输出电压为近似方波。
由于电路工作于谐振频率附近,此时振荡电路对于基波具有最小阻抗,所以负载电流接近于正弦波;同时为避免逆变器上、下桥臂间的直通,换流必须遵循先关断后开通的原则,在关断与开通间必须留有足够的死区时间[22]。
图5-2和图5-3分别示出感性负载和容性负载的输出波形。
当串联谐振型逆变器在低端失谐状态时(容性负载),它的工作波形见图5-3,由图可见,工作于容性负载状态时,输出电流的相位超前于电压相位,因此在负载电压仍为正电压时,电流先过零,上、下桥臂间的换流则从上(下)桥臂的二极管换至下(上)桥臂的IGBT,由于逆变管寄生的反并联二极管具有较慢的反向恢复特性,使得在换流时会产生较大的反向恢复电流,而使器件产生较大的开关损耗,而且在二极管反向恢复电流迅速下降至零时,会在与逆变管串联的寄生电感中产生很大的感应电势,而使逆变管受到很高电压尖峰的冲击。
当串联谐振型逆变器在高端失谐状态时(感性负载),它的工作波形见图5-2。
由图可见,工作于感性负载状态时,输出电流的相位滞后于电压相位,其换流过程是这样进行的,当上(下)桥臂的逆变管关断后,负载电流换至下(上)桥臂的反并联二极管中,在滞后一个死区时间后,下(上)桥臂的逆变管加上开通脉冲等待电流自然过零后从二极管换至同桥臂的逆变管。
各种IGBT式感应加热电源性能比较-节能篇
各种IGBT式感应加热电源性能比较上海巴玛克电气技术有限公司李南坤主要内容:本文通过分析现行感应加热产品普遍存在的效率低、可靠性差等问题的原因,对比介绍引进技术的Atec系列高效率数字式全空冷感应加热电源,并介绍其关键技术和节能情况。
关键词:感应加热电源、数字式、效率、节能、可靠性一. 前言感应加热电源广泛应用于金属热处理、淬火、退火、透热、熔炼、焊接、热套、半导体材料炼制、塑料热合、烘烤和提纯等场合;利用在高频磁场作用下产生的感应电流引起导体自身发热而进行加热。
感应加热与炉式加热、燃烧加热或者电热丝加热相比,具有显著节能、非接触、速度快、工序简单、容易实现自动化等优点。
感应加热电源主要由整流单元、逆变单元、谐振输出单元、和感应器四部分组成。
其中整流单元将工频三相交流电压转换成直流电压;逆变单元电能变换成为几千至上百千赫兹的高频电能;谐振输出单元一端连接逆变器,另一端连接感应器,经隔离和阻抗匹配,通过谐振的方法在感应器中产生强大的高频电流。
加热时,感应器在工件中感生高频电流,因此导体迅速被加热。
早期的感应加热设备中,逆变单元所需的高频逆变器件决定了装置的形式,它经历了从电子管、晶闸管到目前普遍采用IGBT的发展历程。
早期设备以大功率真空电子管为核心构成单级自激振荡器,把高压直流电能转换成高频交流电能,由于电压变换环节较多、电子管转换效率低,设备的总体效率一般在50%以下,电能和水的消耗非常大,目前已趋淘汰。
与电子管设备相比,晶闸管式感应加热设备的效率大为提高,达到90%左右,但其谐振频率较低、逆变换流部分相当复杂、损耗仍然较大,且功率因数低,目前仅适用于超大功率场合应用。
而采用IGBT或MOSFET的感应加热设备总体效率在90%以上,谐振频率可达数百千赫兹,且结构大为简化,设备可靠性、功率因数等其它品质均得以提高。
在目前主流的IGBT式感应加热产品中,仍有较多的电路和结构方式差异。
从整流单元看有可控整流方式和不可控整流方式;从逆变单元看有脉宽调制逆变方式和斩波调压逆变方式;从谐振输出单元看有并联谐振方式和串联谐振方式。
IGBT中频电源原理
IGBT 中频电源的原理工频加热技术与其它各种物理加热技术相比,确实具有较高的效率,但存在一些明显的不足。
在现代工业的金属熔炼、热处理、焊接等过程中,感应加热被广泛应用。
感应加热是根据电磁感应原理,利用工件中涡流产生的热量进行加热的,它加热效率高、速度快、可控性好,易于实现高温和局部加热[1]。
随着电力电子技术的不断 成熟,感应加热技术得到了迅速发展。
本文设计的70KW /500HZ 中频感应加热电源采用IGBT 串联谐振式逆变电路,能够实现频率自动,电路结构简单,高效节能。
2.1 整流电路的设计中频电源采用三相全控桥式整流电路,它的输出电压调节范围大而移相控制角的变化范围小,有利于系统的自动调节,输出电压的脉动频率较高可以减轻直流滤波环节的负担[2]。
根据设计要求:额定输出功率P =70KW ,输出频率f =500HZ ,进线电压U IN =380V ,取逆变器的变换效率η=0.9。
1) 确定电压额定值U RRM考虑到其峰值、波动、雷击等因I T(AV)=0.368×I d额定电压1600V ,额定电流200A 的整流模块。
2.2 逆变电路的设计逆变电路是由全控器件IGBT 构 成的串联谐振式逆变器,两组全控器件V 1、V 4和V 2、V 3交替导通,输出所需要的交流电压。
IGBT 的主要参数有最高集射极电压(额定电压)、集射极电流等[3]。
1) 确定电压额定值U CEPIGBT 的输入端与电容相并联,起到了缓冲波动和干扰的作用,因此安全系数不必取得很大,一般取安全系数α=1.1平波后的直流电压:E d =380V ×2×α=590V关断时的峰值电压:U CESP =(590×1.15+150)×α=912V式中1.15为电压保护系数, 150为L t i d d 引起的尖峰电压。
令U CEP ≥U CESP ,并向上靠拢IGBT 等级,取U CEP =1200V 。
通俗易懂讲解IGBT的工作原理和作用
通俗易懂讲解IGBT的工作原理和作用IGBT(Insulated Gate Bipolar Transistor)即绝缘栅双极晶体管,是一种常用的功率半导体器件,具有高电压、高电流和高开关速度的特点。
它广泛应用于交流调速、电源逆变、电机驱动等领域,具有重要的作用。
本文将通俗易懂地介绍IGBT的工作原理和作用。
一、IGBT的工作原理IGBT是由N沟道型MOS(Metal Oxide Semiconductor)场效应晶体管与PNP型双极晶体管组成。
它结合了MOSFET和双极晶体管的优点,在导通时具有较低的导通压降,而在关断时具有较高的击穿电压。
其工作原理如下:1. 导通状态:在IGBT导通状态下,当控制电压Ugs大于门极阈值电压Uth时,N沟道型MOSFET处于导通状态,形成通道,电流可以从集电极到源极流动。
由于N沟道型MOSFET的导通电阻较小,因此导通时的压降很小。
2. 关断状态:当控制电压Ugs小于门极阈值电压Uth时,N沟道型MOSFET无通道,不导电,IGBT进入关断状态。
此时,通过控制电压Uce(集电-发射极电压)可以实现IGBT的关断。
由于PNP型双极晶体管的存在,即使在较高的Uce下,IGBT也能承受较高的电压。
IGBT的工作原理可以用一个自锁开关的例子来解释。
N沟道型MOSFET相当于自锁开关的门锁,控制门锁的状态可以实现导通和关断;PNP型双极晶体管相当于自锁开关的钥匙,即使是在关断状态下,只要插入钥匙(提供较高的Uce),开关仍然可以打开。
二、IGBT的作用IGBT作为一种高性能的功率开关器件,其作用主要体现在以下几个方面:1. 电流调节:IGBT能够调节高电压和高电流,广泛应用于交流调速和电源逆变等领域。
在交流调速中,IGBT可以根据输入信号的变化,控制电机的转速和输出功率。
2. 电源逆变:IGBT可实现DC/AC逆变,将直流电源转换为交流信号,用于交流电源转换、逆变焊机等领域。
igbt感应加热电源的原理和优势
IGBT感应加热电源的原理和优势IGBT中频电源控制部分的原理和优势:解释:当总功率是2500KW的时候,每个炉体为2200KW,并且可以在300KW到2200KW 范围内随意调整,但是总功率不能超过2500KW.双变频器电气图纸1.串联谐振中频感应炉采用IGBT中频电源。
IGBT中频电源是一种新型的IGBT逆变器模块(绝缘栅双极型晶体管,德国生产)主要用来熔炼碳钢,合金钢,铸钢,有色金属。
IGBT中频电源具有加热速度快,节能环保的特点。
2.IGBT中频电源作为恒功率电源,即使添加少量的金属也可达到全功率输出,并且保持恒定不变,因此加热速度快。
采用串联谐振变压器,变压器电压高,所有的IGBT中频电源比可控硅电源节能。
IGBT采用频率调控系统调整频率,整流部分包括全桥整流器,感应器和电容滤波器,它在500v的条件下工作,因此IGBT中频电源产生极少的低次谐波,低网格污染。
3.IGBT中频电源比可控硅中频电源节约电能15%-25%,原因有以下几个方面:A.逆变器电压高,电流,电路损失低,这部分可以节约电能15%。
IGBT中频电源变压器的功率是2800v,传统的可控硅中频电源变压器的功率是750v,电流减小了四倍,线路损失降低了。
B.高功率因素,功率因素大于0.98,无功损耗小,这部分比可控硅中频电源节约电能3% -5%。
IGBT 采用全桥式整流,整流部分不调整可控硅传导角,所以整个过程的功率因素大于0.98,无功损耗小。
C.炉体热损耗小,同功率条件下,IGBT比可控硅每批次快15分钟。
在路出口的热损失占整个过程的3%。
因此这部分比可控硅中频电源节约3%的能量。
4.高次谐波干扰:当可控硅产生电压峰值的时候整流器的高次谐波调整电压。
电压电网会被严重污染导致其他的设备不能工作,IGBT中频电源整流器部分采用全桥整流器。
直流电压总是在最高程度工作,不需要调整传导角,因此不会产生高次谐波,不会污染电网,变压器,交换器不会被加热,不会干扰其他电子器件的工作。
感应加热电源IGBT驱动及保护电路设计
感应加热电源IGBT驱动及保护电路设计摘要本文以感应加热电源IGBT驱动及保护电路为研究对象,阐述感应加热电源的现状与发展趋势、感应加热电源的优点、应用和基本原理。
其中,IGBT(绝缘栅双极晶体管)是一种复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件,它同时具有MOSFET的高速开关及电压驱动特性和双极晶体管的低饱和电压特性,易实现较大电流的能力,既具有输入阻抗高、工作速度快、热稳定性好和驱动电路简单的优点,又具有通态电压低、耐压高和承受电流大的优点。
近年来IGBT成为电力电子领域中尤为瞩目的电力电子器件,并得到越来越广泛的应用。
本文分析了感应加热电源的总体结构和介绍了IGBT的基本结构、工作原理、驱动电路,同时简要概括了IGBT模块的选择方法和保护措施等,通过对IGBT的学习,来探讨IGBT在当代感应加热领域的广泛应用和发展前景。
关键词:感应加热电源,绝缘栅双极晶体管,IGBT驱动电路,IGBT保护电路。
Induction heating power IGBT drive and protective circuitdesignABSTRACTBased on the induction heating power IGBT drive and protection circuit as the research object, this paper present situation and the development trend of induction heating power supply, the advantages of induction heating power supply, the application and the basic principle. Among them, the IGBT (insulated gate bipolar transistor) is a kind of composite power field effect tube and the advantage of the power transistor and produce a new type of composite device, it also has a high-speed switching and voltage of the MOSFET drive characteristic and low of the bipolar transistor saturation voltage characteristic, easy to realize large current capacity, not only has high input impedance, working speed, good thermal stability and drive circuit, the advantages of simple and has a low voltage state, the advantages of high voltage and current under the big. In recent years the IGBT as power electronics is particularly outstanding in the field of power electronics, and get more and more widely used.This paper analyzes the overall structure of induction heating power supply, and introduces the basic structure, working principle of IGBT, drive circuit, and briefly summarizes the IGBT module selection method and protection measures, etc., through the study of IGBT, to explore the IGBT are widely used in the field of contemporary induction heating and development prospects.KEY WORDS: Induction heating power supply, insulated gate bipolar transistor, IGBT drive circuit, protection circuit for IGB目录前言 (1)第1章感应加热电源的原理 (2)1.1 感应加热电源的基本知识 (2)1.1.1感应加热电源的优点及应用 (2)1.1.2 感应加热电源的基本原理 (2)1.1.3感应加热中的三种效应和穿透深度 (2)1.2 感应加热电源发展现状及趋势 (3)1.2.1感应加热电源频率划分 (3)1.2.2国外高频感应加热电源发展现状 (3)1.2.3国内高频感应加热电源发展现状 (4)1.2.4感应加热电源的IGBT (4)1.3本文研究的内容及任务 (4)1.3.1课题主要研究内容 (4)1.3.2课题目的和要求 (5)第2章IGBT的基本结构和工作原理 (6)2.1 IGBT的工作特性 (6)2.1.1 IGBT的基本结构 (6)2.1.2 IGBT的工作原理 (8)2.1.3 IGBT的工作特性 (8)2.2 IGBT工作原理 (10)2.2.1 IGBT工作方法 (10)2.2.2 导通 (11)2.2.3关断 (11)2.2.4 阻断与闩锁 (12)2.3 英飞凌FZ400R12KS4 (12)2.4 IGBT驱动电路 (12)2.4.1分立元件驱动电路 (13)2.4.2光电耦合器驱动电路 (13)2.4.3脉冲变压器直接驱动IGBT的电路 (14)2.4.4专用集成驱动电路 (14)第3章IGBT的保护电路设计 (16)3. 1 IGBT过压保护电路 (16)3.1.1 IGBT栅极过压保护电路 (16)3.1.2 集电极与发射极间的过压保护电路 (17)3.1.3 直流过电压 (18)3.1.4 浪涌过电压 (18)3.1.5 IGBT开关过程中的过电压 (18)3.2 IGBT过流短路保护电路 (19)3.2.1 IGBT过流保护的分类 (19)3.2.2 过流保护检测电路 (20)3.2.3 过流和短路保护措施 (20)3.3 IGBT过热保护电路 (21)3.4 IGBT欠压保护电路 (22)第4章IGBT的驱动电路 (23)4.1 IGBT的驱动要求 (23)4.2 驱动电路的隔离方式 (23)4.2.1隔离的重要性: (23)4.2.2. 集成光电隔离驱动模块HCPL-316J (23)4.2.2器件特性 (24)4.4.3芯片管脚及其功能介绍 (24)4.4.4 内部逻辑电路结构分析 (26)4.5 IGBT驱动电路 (27)第5章辅助直流稳压电源 (29)5.1辅助直流稳压电源方案的选择 (29)5.2本次设计用的电源 (29)5.2.1 18伏, 15伏稳压电压电源 (29)5.2.2 ±12伏,±5伏双路稳压电源 (30)5.2.3 元器件选择及参数计算 (31)第6章功能仿真 (33)结论..................................................................... 错误!未定义书签。
IGBT工作原理
IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor)是一种高压、高功率开关器件,广泛应用于工业电力电子领域。
它结合了MOSFET的高输入阻抗和BJT的低导通压降,具有低开关损耗和高开关速度的优点。
本文将详细介绍IGBT的工作原理。
1. IGBT结构:IGBT由P型衬底、N型衬底和P型上层构成。
其中,N型衬底被分为N+区和N-区,P型上层被分为P+区和P-区。
N+区和P+区分别作为漏极和源极,N-区和P-区形成P-N结,是IGBT的主导电流区域。
2. IGBT工作原理:当IGBT的栅极施加正向电压时,栅极结与源极结之间形成正向偏置,使N-区的空间电荷区域扩展,导致P-N结区域的电导增加。
此时,IGBT处于导通状态,漏极和源极之间形成低阻抗通路,电流可以流过。
3. IGBT关断过程:当IGBT的栅极施加负向电压时,栅极结与源极结之间形成反向偏置,使N-区的空间电荷区域收缩,导致P-N结区域的电导减小。
此时,IGBT处于关断状态,漏极和源极之间形成高阻抗断路。
为了加速IGBT的关断过程,通常会在栅极上施加负向脉冲。
4. IGBT的三个工作区域:IGBT的工作可以分为三个区域:饱和区、过渡区和截止区。
- 饱和区:当栅极电压高于临界电压时,IGBT处于饱和区。
此时,漏极和源极之间的电阻很低,电流可以自由流动。
- 过渡区:当栅极电压在临界电压附近时,IGBT处于过渡区。
此时,漏极和源极之间的电阻会逐渐增加,电流流动受到一定限制。
- 截止区:当栅极电压低于临界电压时,IGBT处于截止区。
此时,漏极和源极之间的电阻非常高,电流无法流动。
5. IGBT的优点:- 低导通压降:IGBT的导通压降比MOSFET低,可以减小功率损耗。
- 高开关速度:IGBT的开关速度比BJT快,可以提高系统响应速度。
- 高输入阻抗:IGBT的输入阻抗比MOSFET高,可以减小驱动功耗。
- 高耐压能力:IGBT可以承受较高的电压,适用于高压应用场景。
感应加热设备工作原理
感应加热设备工作原理感应加热设备是一种利用感应加热原理进行热处理、熔炼和加热的设备。
其工作原理基于法拉第电磁感应定律,通过变化的磁场在导体中产生涡流,从而使导体加热。
本文将介绍感应加热设备的工作原理和应用。
一、工作原理感应加热设备的工作原理主要有以下几个步骤:1.电源供电:感应加热设备需要外部的电源供电,通常使用交流电源。
电源会经过控制装置进行调节和控制。
2.高频电源:交流电源经过高频发生器产生高频电流,一般采用数十kHz到数百kHz的高频。
高频电流通过线圈产生变化的磁场。
3.感应线圈:感应线圈是一个绕制在绝缘材料上的线圈,是将高频电流转换为变化的磁场的关键部件。
4.感应加热对象:感应加热对象通常是导电体,如金属。
当感应线圈中通入高频电流时,会在感应加热对象内部产生涡流。
5.涡流产生的热量:涡流通过在导体中流动磁场的响应电流产生磁场耗损,从而将电能转变为热能。
这个过程使得感应加热对象加热。
二、应用领域感应加热设备在诸多领域中得到广泛应用,下面以几个典型例子进行介绍。
1.金属加热处理:感应加热设备可用于金属材料的加热处理,如热处理、淬火和回火。
通过控制加热时间和温度,可以改变金属材料的组织结构和性能。
2.电磁炉:感应加热设备可以用于电磁炉的加热。
它可以实现高效、快速的加热效果,不仅更安全可靠,还能减少能源浪费。
3.电焊设备:感应加热设备广泛应用于电焊设备中。
利用感应加热原理可以提供高效的加热能量,提高焊接效率和质量。
4.医疗领域:感应加热设备也用于医疗领域,如高频电疗仪和电热贴。
它们可以通过感应加热原理实现局部热疗,促进血液循环和缓解疼痛。
5.工业熔炼:感应加热设备在工业领域中也有重要应用,如金属熔炼和玻璃熔融。
感应加热可提供高温的加热能量,使材料迅速熔化。
三、优点和发展趋势感应加热设备相比传统的加热方式有很多优点。
首先,它可以实现快速加热,提高工作效率。
其次,感应加热对环境友好,无污染。
另外,感应加热设备的控制性能高,能实现精确的温度控制。
200KW-IGBT中频感应加热设备应用说明
JZ-200/4:每小时加热产量:500kg;
JZ-300/3:每小时加热产量:750kg;
JZ-500/2:每小时加热产量:1250kg;
生产节拍(每小时加热件数)=每小时产量/工件单重。
(2)根据工件大小选频率
直径Φ20~Φ40mm 工件一般推荐频率为 4KHz;直径Φ40~Φ60mm 的工件推荐频率为
比亚特自动化焊接工艺
(3)电路特征:主器件采用 IGBT 模块,电路采用不控全桥整流,电容滤波,桥式逆
变,串联谐振输出。和老式中频采用可控硅并联谐振有根本的不同。
(4)节电原理:不可控整流,整流电路全导通。高功率因数,电压型串联谐振等,决
定了本设备大幅度省电。
二、比亚特自动化设备选型和参数确定
选型依据
各种因素综合起来,决定了本设备比可控硅中频节电 20%左右,节电效果好。
-5比亚特自动化焊接工艺
以上图片显示的是比亚特自动化焊接工艺以及设备
根据客户工件尺寸,可以做长形炉体,方形炉体,扁形炉体。 根据客户工件尺寸,产量高低,来匹配功率大小。
备注:以上说明仅供参考,具体结合实际生产情况来确定工艺
-6比亚特自动化焊接工艺
型号
进水温度
水压
出水温度
水流量
BS-N3
5-35℃
0.2-0.3MPa
≤55℃
16-28 m3/h
第三部分 比亚特自动化节能原理及实际效果 一、节电原理 首先是采用新型 IGBT 器件,不采用可控硅;IGBT 为自关断器件,本身比可控硅损耗小。再 一个就是采用串联谐振,串联谐振为电压型谐振,比并联谐振节电。采用前级不可控全桥整 流,省去了庞大的电抗器,不会在整流段引起波形的变形,没有关断角的削波现象,并且用 大电容滤波,因此谐波数小,降低了对电网的干扰,提高了功率因数。本设备功率因数很高, 高达 95%以上,无功很小。 1、IGBT 比可控硅节能 10%。 2、串联比并联节能 10%。 3、无变压器比有变压器节能, 4、全整流比半整流节能, 5、感应圈设计好更节能
感应加热用IGBT超音频电源
感应加热用IGBT超音频电源
1引言
感应加热是将工件直接加热,它具有效率高,作业条件好,温度容易控制,金属烧损小,无需预热等优点。
传统的感应加热设备应用的电力电子器件是电子管和快速晶闸管。
电子管电压高,稳定性差,幅射强,效率低,已经到了淘汰的边缘,但它频率高,功率大,所以在市场上仍有一席之地。
快速晶闸管是目前应用的主力军,它耐压高,电流大,抗过流、过压能力较强。
但它只能工作在10000Hz以下,这使其使用范围受到了限制。
IGBT是一种复合功率器件,它集双极型功率晶体管和功率MOSFET的优点于一体,具有电压型控制,输入阻抗大、驱动功率小,控制电路简单,开关损耗小,通断速度快,工作频率较高,元件容量大。
它不仅达到了晶闸管不能达到的频率(60kHz以上),而且正在逐步取代快速晶闸管。
国外1kHz~80kHz 的感应加热已广泛应用IGBT,这是感应加热电源的发展方向。
图1为国外各
种功率器件的应用。
2IGBT电源结构及工作原理
21主电路采用并联谐振式逆变器,主电路如图2所示。
图1各种功率器件的应用
图2主电路原理图
电流源并联谐振逆变器具有负载适应性强,抗负载短路能力强等优点,该设备的波形较好,有利于提高装置的效率和可靠性。
主电路为三相全波不控整流加滤波,再经斩波后输入给逆变器。
由于采用IGBT斩波频率较高(约为20kHz),输出波形较好,电抗器尺寸将可缩小为原来的1/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IGBT感应加热电源的原理和优势
IGBT中频电源控制部分的原理和优势:
解释:当总功率是2500KW的时候,每个炉体为2200KW,并且可以在300KW到2200KW 范围内随意调整,但是总功率不能超过2500KW.
双变频器电气图纸
1.串联谐振中频感应炉采用IGBT中频电源。
IGBT中频电源是一种新型的IGBT逆变器模块(绝缘栅双极型晶体管,德国生产)主要用来熔炼碳钢,合金钢,铸钢,有色金属。
IGBT中频电源具有加热速度快,节能环保的特点。
2.IGBT中频电源作为恒功率电源,即使添加少量的金属也可达到全功率输出,并且保持恒定不变,因此加热速度快。
采用串联谐振变压器,变压器电压高,所有的IGBT中频电源比可控硅电源节能。
IGBT采用频率调控系统调整频率,整流部分包括全桥整流器,感应器和电容滤波器,它在500v的条件下工作,因此IGBT中频电源产生极少的低次谐波,低网格污染。
3.IGBT中频电源比可控硅中频电源节约电能15%-25%,原因有以下几个方面:
A.逆变器电压高,电流,电路损失低,这部分可以节约电能15%。
IGBT中频电源变压器的功率是2800v,传统的可控硅中频电源变压器的功率是750v,电流减小了四倍,线路损失降低了。
B.高功率因素,功率因素大于0.98,无功损耗小,这部分比可控硅中频电源节约电能3% -5%。
IGBT 采用全桥式整流,整流部分不调整可控硅传导角,所以整个过程的功率因素大于0.98,无功损耗小。
C.炉体热损耗小,同功率条件下,IGBT比可控硅每批次快15分钟。
在路出口的热损失占整个过程的3%。
因此这部分比可控硅中频电源节约3%的能量。
4.高次谐波干扰:当可控硅产生电压峰值的时候整流器的高次谐波调整电压。
电压电网会被严重污染导致其他的设备不能工作,IGBT中频电源整流器部分采用全桥整流器。
直流电压总是在最高程度工作,不需要调整传导角,因此不会产生高次谐波,不会污染电网,变压器,交换器不会被加热,不会干扰其他电子器件的工作。
5.恒功率输出:可控硅中频电源带有电压和电流调节器,IGBT采用频率和功率调节器,它不会受炉料和炉衬厚度的影响。
在加热过程中保持恒功率输出,尤其是在生产不锈钢,铜料,
铝料和其它非磁性物质的时候,IGBT电源具有高超的工作效率。
炉衬烧损减少,降低了铸造成本。