考研数学二答案

合集下载

考研_2020考研数学二真题及答案

考研_2020考研数学二真题及答案

e x -1ln 1+ x0 0⎰⎰0 2020考研数学二真题及答案一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1) 当 x → 0+时,下列无穷小量中最高阶是()(A )⎰ x (et 2-1)dt(B ) ⎰xln (1+ t2)dt(C )sin x sin t 2dt【答案】(D )1-cos x (D )sin t 2 dt【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。

(A )(⎰ x(e t 2-1)dt )' = e x-1 ~ x 2(B )(⎰ xln (1+ t 2)dt )' = ln (1+ x 2 )x(C ) (C)(⎰sin x sin t 2dt )' = sin (sin 2 x ) x 2(D )( 01-cos xdt )'=x 1 x 32经比较,选(D )(2) 函数 f (x ) =1 (e x-1)(x - 2)的第二类间断点的个数为( )(A )1(B )2 (C )3 (D )4【答案】(C )【解析】由题设,函数的可能间断点有 x = -1, 0,1, 2 ,由此1lim f (x ) = lim - 1= - e 2lim ln 1+ x = -∞ ;x →-1 x →-1 (e x -1)(x - 2) 3(e -1 -1) x →-11lim f (x ) = lim = - e -1 lim ln(1+ x ) = - 1 ; x →0 x →0 (e x -1)(x - 2) 2 x →0 x 2eex -1ln 1+ x sin t 2 sin(1- cos x )2 e x -1ln 1+ x ⎰2∂f ∂x -n - 2 x →2 x →2 (e x2 x →21lim f (x ) = lim= ln 21lim e x -1 = 0;x →1-1x →1- (e x-1)(x - 2) 1- e x →1- ;lim = ln 2 1lim e x -1 = -∞;x →1+ (e x-1)(x - 2) 1- e x →1+1e x -1 ln 1+ xe ln 3 1lim f (x ) = lim -1)(x - 2) = (e -1) lim x - 2 = ∞ 故函数的第二类间断点(无穷间断点)有 3 个,故选项(C )正确。

2023年考研数学(二)答案解析

2023年考研数学(二)答案解析

2023年全国硕士研究生统一入学考试数学(二)试题解析一、选择题:1-10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合要求的请将所选项前的字母填在答题纸指定位置上.1.【答案】:B【解析】:1ln()11lim lim limln(11x x x x e y x k e x x x)11lim()lim[ln()]lim [ln()1]11x x x b y kx x e x x e x x 11lim ln[1]lim (1)(1)x x x x e x e x e所以斜渐近线方程为:1y x e2.【答案】:D 【解析】:当0x时1()ln(f x dx x C 当0x 时()(1)cos (1)sin sin f x dx x xdx x x xdx2(1)sin cos x x x C 原函数在(,) 内连续,则在0x处1122lim ln(,lim(1)sin cos 1x x x C C x x x C C所以121C C ,令2C C ,则11C C,故ln(1,0()(1)sin cos ,0x C x f x dx x x x C x结合选项,令0C ,则()f x的一个原函数为ln(1,0()()(1)sin cos ,0x x f x dx F x x x x x3.【答案】:B【解析】:在(0,2 中,2sin x x 故12sin n n nx x x112n n y y111112()()2444n nn n n n n n y yy y x x x xlim0nn ny x,故n y 是n x 的高阶无穷小4.【答案】:C【解析】:微分方程"'0y ay by 的特征方程为20a b ,当240a b 时,特征方程有2个不同的实数根12, ,则12, 至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212xx y C eC e 在(,) 无界当240a b ,特征方程有2个相等的实根,1,22a若20C ,则微分方程的解212()ax y C C x e 在(,) 无界当240a b时,特征方程的根为1,222a i则通解为:212(cos sin )22ax y e C C 5.【答案】:C【解析】1)当0t 时,3sin cos ,sin 3x t dy t t ty t t dx;当0t 时,,sin sin sin x t dyt t t y t t dx;当0t 时,因为'00()(0)sin (0)lim lim 03x t f x f t tf x t'00()(0)sin (0)lim lim 0x t f x f t tf x t所以'(0)0f 2)0sin cos lim '()lim 0'(0)3x t t t t f x f;'00sin cos lim '()lim 0(0);3x t t t t f x f所以0lim '()'(0)0x f x f ,所以'()f x 在0x 处连续3)当0t 时,因为"00'()'(0)sin cos 2(0)lim lim 339x t f x f t t t f xt"00'()'(0)sin cos (0)lim lim 2x t f x f t t tf x t所以"(0)f 不存在6.【答案】:A【解析】当0 时,21211111()|(ln )(ln )(ln 2)f dx x x x所以211ln(ln 2)1111'()(ln ln 2)0(ln 2)(ln 2)(ln 2)f ,即01ln(ln 2)7.【答案】:C 【解析】方法一:已知 f x 没有极值点,等价于 '0fx 至多一个解, '220x f x x x a e 至多一个解即是:220x x a 至多一个解,那么判别式:4401a a ,另外曲线 y f x 有拐点,则等价于 ''2420x f x x x a e 有解,即是:164802a a ,则a 的取值范围是:12a 8.【答案】:D【解析】110000A E A E A E A E A B B B B B,另外:1234000X X A E E X X B E,解出111121340X X A A B X X B,则:0A E B****0B A A B A B9.【答案】:B【解析】:令:11221333y x x y x x y x ,22222212312121274,,4333y f x x x y y y y y y,可见规范形为2212y y 10.【答案】:D 【解析】根据题意,即是存在1234,,,k k k k ,使得11223344k k k k ,等价于求解12123434(,,,)0k k k k ,得到通解:12343111k k k k k,代入34,k k k k ,得到:15,8k k R二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.【解析】:注意到22220ln 1ln 11limlim1cos 11cos x x x x ax bx x x x bx x a e xe x,首先得到:1a ,另外根据等价无穷小替换, 2222001ln 12lim lim 1311cos 2x x x b x x x bx x e x,得到:2b ,则2ab 12.【解析】:根据230t x ,则弧长计算为:s,进行换元:2sin t ,原积分为: 23344cos 3s d13.【解析】:两边同时对想求导两次得式子222220zz z z z z z e e x x x x x x 将x=1,y=1,z=0带入,223=-2|z x 1,114.【解析】两边分别对x 求导,可得'911y ,所以'911y,所以法线斜率为11915.【解析】32323112122121111u+2u+21=++2=++x =2f x dx f x dx f x dx f x dx f d f x dx f x dx f x dx f x dx dx 16.【解析】:由已知(A)(A,b)34r r ,故A,b 0,即14440111101110A,b 1(1)122(1)11012001202a a a a a a a a baa b所以111280a a a b三、解答题:17~22小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.17.【解析】:(1)曲线L 在点 x,y P 处的切线方程为'y=y (X -x)Y ,令X=0,切线在y 轴上的截距为'Y y xy ,即'11y y x,解得 ln y x x c x ,由经过点 2,0e ,所以c=2,2ln y x x x 设曲线L 在点x,x(2lnx) 处的切线与坐标所围面积最小,此时切线方程为2ln =1-lnx (X -x)Y x x ,故切线与两坐标所围三角形面积为22ln 1x s x x令 3'20,s x x e ,由单调性知,最小值在32x e处取得,332s e e18.【解析】'cos 1'cos (,)0(((,)sin 0yx yy f x y e x x e x e k k f x y x ye y k y k 为奇数),为偶数),则''''cos ''cos 2(,)1(,)sin (,)(cos sin )xx y xy y yyf x y f x y yef x y xe y y ,代入1(,)e k 得2210,0A B AC B C e 故1(,)e k 不是极值点,代入(,)e k 得2210,0A B AC B C e且0A 故极小值为2(,)2e f e k ,其中k 为偶数.19.【解析】(1)由题设条件可知面积2111S (1)D x21112ln 1x t)(2)2222211111111arctan 11(14V dx dx dx x x x x x x20.【解析】332222002333222220011ln 33cos sin 11ln 2ln 21ln 2cos 3cos sin 223cos sin 23tan Ddxdy d r x y d dd3 21.【证明】(1)22111''()''()()(0)'(0)'(0),022f f f x f f x x f x x 介于与之间,则222''()()'(0),(0,)2f f a f a a a ,233''()()'(0),,0)2f f a f a a a (-,则223()()''()''()2a f a f a f f ,由()f x 在 ,a a 上具有2阶连续导数,故()f x 在 32, 上具有2阶连续导数,所以()f x 在 32, 上必存在最大值M 和最小值m ,使得 231''()''()2m f f M 由介值定理存在存在 32,(,)a a ,使得 23211''()''()''()()()2f f f f a f a a,得证.(2)设()f x 在x x 点处取得极值,则0'()0f x ,221100000010''()''()()()'()())()(),22f f f x f x f x x x x x f x x x x x介于与之间,220020''()()()(),,2f f a f x a x a x (),230030''()()()(),,2f f a f x a x a x (),222232003020''()''()1|()()||()()||''()|()|''()|()222f f f a f a a x a x f a x f a x 32(,),''()max{|''()|,|''()|}a a f f f ,故223020222001|()()||''()|()|''()|()2|''()|[()()]2|''()|2f a f a f a x f a x f a x a x a f命题得证。

2010-2019(10套)考研数学二真题和答案详细解析--答案直接附在每年题后面方便查阅

2010-2019(10套)考研数学二真题和答案详细解析--答案直接附在每年题后面方便查阅

1 1 0 (Ⅱ) β1 = 1 , β 2 = 2 , β3 = 3 ,若向量组(Ⅰ)和向量组(Ⅱ)等 2 + 3 a + 3 1 − a a
价,求 a 的取值,并将 β 用 α1 , α 2 , α 3 线性表示.
2 . ,使得 P AP 所以存在 P −1 1 = (α1 ,α 2 ,α 3 ) 1 =Λ = 2 −
(1)当 a 2 − 1 ≠ 0 ,即 a ≠ ±1 时, r (α1 , α 2 , α 3 ) 3, r ( β1 , β 2 , β3 ) 3 ,此时两个向 = = 量组必然等价,且 β3 =α1 − α 2 +α 3 .
1 1 1 1 0 1 (2)当 a =1时, (α1 , α 2 , α 3 , β1 , β 2 , β3 ) → 0 −1 1 0 2 2 0 0 0 0 0 0
6
17.
18.
I = ∫π dθ ∫
4 3 π 4 sin 2 θ 0
π π r sin θ 1 3 1 3 5 4 rdr = ∫π sin θ dθ = − ∫π4 sin 4 θ d cos θ r 2 4 2 4
2 1 3π 1 3π = − ∫π4 (1 − cos 2 θ ) d cos θ = − ∫π4 (1 − 2 cos 2 θ + cos 4 θ ) d cos θ 2 4 2 4
x2 2
{ x , y) =( 1 ≤ x ≤ 2 ,0 ≤ y ≤ y( x )},求 D 绕x 轴旋转一
周所得旋转体的体积. 18.(本题满分 10 分) 已知平面区域 D 满足
{(x , y ) | (x

2020考研数学二真题 附答案解析

2020考研数学二真题 附答案解析

t3t 2 2x10 2x ®0x (1- x )x d x e -1 ln |1+ x |-2x= -e -1 2ln | x +1| x = -e -1 2¥¥òarcsin u · 1 arcsin xx (1- x ) u 2(1- u 2)x ®01- u 2¶f¶x arcsin u d 0 p①(0,0)¶2 f¶x ¶y ¶f¶x②(0,0)①(0,0) = lim-1 不存在.(0,0)y ®0 y xy = 0(0,0)x = 0y = 0¶x ¶y6.设函数 f (x) 在区间[-2, 2] 上可导,且 f ¢(x) >f (x) > 0 ,则( )f (-2)> 1f (-1)f (0) f (-1)f (1) f (-1)f (2) f (-1) >e <e2 <e3答案:B解析:由 f ¢(x) >f (x) > 0知f ¢(x)- 1 > 0f (x)即(ln f (x) -x)¢> 0令F (x) = ln f (x) -x ,则 F (x)在[-2, 2]上单增因-2 <-1 ,所以 F (-2) <F (-1)即ln f (-2) + 2 < ln f (-1) + 1f (-1)>ef (-2)同理, -1 < 0, F (-1) <F (0)即ln f (-1) + 1 < ln f (0)f (0)e7.设四阶矩阵A=(a ij )不可逆,a12 的代数余子式A12 ¹0,a1,a2 ,a3 ,a4 为矩阵A的列向量 组. A* 为 A 的伴随矩阵.则方程组 A* x =0 的通解为( ).A.x=k1a1 +k2a2 +k3a3 ,其中k1 ,k2 ,k3 为任意常数B.x=k1a1 +k2a2 +k3a4 ,其中k1 ,k2 ,k3 为任意常数C.x=k1a1 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数.D.x=k1a2 +k2a3 +k3a4 ,其中k1 ,k2 ,k3 为任意常数 答案:C解析:∵A 不可逆11 2 3 3 4è øè ø ∴|A|=0 ∵ A 12¹ 0r ( A *) = 1∴ r ( A ) = 3∴ A * x = 0 的基础解系有 3 个线性无关的解向量.A *A =| A | E = 0∴A 的每一列都是 A *x = 0 的解又∵ A 12¹ 0∴a 1 ,a 3 ,a 4 线性无关∴ A *x = 0 的通解为 x = k a + k a + k a 8. 设 A 为 3 阶矩阵,a 1 ,a 2 为 A 属于特征值 1 的线性无关的特征向量,a 3 为 A 的属于特征 æ 1 0 0 ö 值-1 的特征向量,则满足P -1AP = ç 0 -1 0 ÷的可逆矩阵 P 可为( ).A. (a 1 +a 3 ,a 2 , -a 3 )B. (a 1 +a 2 ,a 2 , -a 3 )C. (a 1 +a 3 , -a 3 , -a 3 )D. (a 1 +a 2 , -a 3 , -a 2 )答案:D解析:A a 1 = a 1 , A a 2 = a 2A a 3 = -a 3ç ÷ ç 0 0 1 ÷æ 1 0 0 ö ! P -1AP = ç 0 -1 0 ÷ç ÷ ç 0 0 1 ÷\ P 的 1,3 两列为 1 的线性无关的特征向量a 1 +a 2 ,a 2 P 的第 2 列为 A 的属于-1 的特征向量a 3.∴∵24 分.请将答案写在答题纸指定位置上.,则 = .t =1tt tyyd 2 ydx 2t 2 +1t 2 +1dy 2dx 2ò)], )],(0,(0, 1 ,则 +¥y (x ) d x 0¶z ¶x ¶z ¶y0 òò= +¥y (x ) d x = - +¥ y ¢(x ) + 2 y ¢(x ) d x= -[ y ¢(x ) + 2 y (x )] +¥= [ y ¢(0) + 2 y (0)] = 1a 0 -1 114.行列式 a 1 -1 =-1 1 a 0解析:1 -1 0 a a 0 -1 1 a 0 -1 1 0 a 1 -1 = 0 a 1 -1 0 a -1 + a2 1 a -1+ a 2 1=0 a 1 -1 = - a 1 - 1 -1 1a 0 0 a a0 0 a aa a 2 - 2 1 = - a 2 -1 = a 4 - 4a 2.0 0 a三、解答题:15~23 小题,共 94 分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分 10 分)x 1+ x求曲线 y = (1+ x )x(x > 0) 的斜渐近线方程.解析: lim y x 1+ xlim= limx ®+¥ xx x xx ®+¥ (1+ x )x x x ®+¥ (1+ x )= ex l n xlim x ®+¥ ex ln(1+ x )= lim e x (ln x -ln(1+ x ))x ®+¥-1 1 a 0 -1 1 a 0 1 -1 0a 00 aaò=x ®+¥=x ®+¥=x ®+¥lim (y x ®+¥= lim æx ®+¥ è= lim x ®+¥= lim x ®+¥= ölim x ®+¥ø= ö x ®+¥÷ ø= lim e t ®0+ = lim e t ®0+ = 1 e -1 t ®0+ y = e -11e-1216.limf (x ) = 1,g ( x ) = 1f ( xt )dt , 求g '( x )x ®0 x续.并证明 g '(x )在x = 0 处连x = lim f (x ) = 0 x ®0ò0 f (u )du = 1 lim f (x ) = 1 0 x 2 2 x ®0 x 2 的极值y C = 0 -1+ 1x 2 +13 çx AC - 当 x = A = 1.AC - >1= -21618. ) ,并求直线 y = 1 ,与函数 f (x ) 所 y = 22+ 2 f æ1 è ) x x …②①´ 2f (x ) = x②V = p × ÷ 3 - p = 3 3 4 = p 2312 2 x 1+ x 2x 2 + y 2x 2 + y 2 xòò Ddxdy òò d(+ 2 2 òò x d 2 x 2 + y 2ò = 3 + 1)ù û20.分)t 2dt .f (x ) = (2 -x )e x 2 ;(1, 2), f (2) = ln 2 ×h e h 2 .F (x ) = f (x )(x - 2) = (x - 2) x e t 2dt 1 (2) = 0, 又F (x )在[1, 2]连续,(1, 2)上可导,(1, 2), 使得F '(x ) = 0e t 2 dt + (x - 2)e x 2 =f (x ) + (x - 2)e x 2x 2 .令 $h Î(1, 2)=f (2) = e=h e h 2 ln 22 21.分)f ¢(x ) > 0(x ³ 0) , f (x ) 的图象过原点 O的切线与 X 轴交于 T ,MP ^ x 轴,曲线 y = f (x ), MP , x 轴围成的面积与D 3:2,求曲线方程.坐标为(x , y ) ,则过 M 的切线方程为Y -令- y y ¢n 2 (2即xê úò0 f (t )d t = 3× × y 22 y整理并求导得令 y ¢ = p 3yy ¢ - 2 y ¢2 = 0y ¢ = d p 代入上式得d y3yp d p- 2 p 2 = 0d y2解得 p = C 1 y 32即 y ¢ = C 1 y 3d y = C d x1y 31 3y 3 = C 1x +C2 13 3 = C 1xy = Cx 3由 y (0) = 0 得C 2 = 0.22.(本题满分 11 分)设 二 次 型 f (x , x , x ) = x 2 + x 2 + x 2+ 2ax x + 2ax x + 2ax x经 可 逆 线 性 变 换 1 2 3 1 2 3 1 2 1 3 2 3æ x1 ö æ y 1 ö ç x ÷ = P ç y ÷ 得 g ( y , y , y ) = y2 + y 2 +4 y 2 + 2 y y .ç 2 ÷ ç 2 ÷ 1 2 3 1 2 3 12ç x ÷ ç y ÷ è 3 ø è 3 ø(1) 求 a 的值; (2) 求可逆矩阵 P. 解析:é1aa ùA = êa 1 a ú ê ú(1) 令 f (x 1, x 2 , x 3 ) 的矩阵 êëa a 1úûf ( y 1, y 2 , y 3 ) 的矩阵 é1 1 0ùB = ê1 1 0úêë0 0 4úû33 32 21 2 1 1 2 1 ëû ê 3 1 2 ê 3 z ï ú ìz 1 = y 1 + y 2 í 2 = 2 y 3 é1 1 0ù ï z 3 = y 2 ê ú 令î 即令P = ê0 0 2ú Z = P Y . 22 êë0 1 0úûf ( y , y , y ) = z 2 + z 2 则 1 2 3 1 2 .故P 1 X = P 2Y X = P -1PY P = P -1P .é 1 ù ê3 ú é1 1 0ù P -1 = ê02 1ú P = ê0 0 2 ú 1 ê3 ú 2 ê ú ê ê0 0 由于 êë ú ê0 1 0ú 1ú úû é1 2 2 ù ê ú 故 P = P -1P = ê0 14 ú ú ê0 1 0 ú ê úêë úû23.(本题满分 11 分)设 A 为 2 阶矩阵, P = (a , A a ) ,其中a 是非零向量且不是 A 的特征向量. (1)证明 P 为可逆矩阵.(2)若 A 2a + A a - 6a = 0 ,求 P -1AP ,并判断 A 是否相似于对角矩阵. 解析:(1)a ¹ 0 且 A a ¹ la . 故a与A a 线性无关. 则 r (a , A a ) = 2则 P 可逆.(2)法一:由已知有 A 2a = - A a + b a即 . 所以于是 AP = A (a , A a ) = ( A a , A 2a ) = ( A a , - A a + 6a )= (a , A a ) æ 0 6 ö,故有P -1 AP = æ 0 6 ö,! P 可逆 ç 1 -1÷ ç 1 -1÷ è ø è ø \可得A 与æ 0 6 ö相似,又 l -6 =(l + 3)"(l - 2)= 0 ç 1 -1÷ -1 l +1è øÞl 1 = -3,l 2 = 2\可得A 的特征值也为-3,2 于是 A 可相似对角化方法二 P -1AP 同方法一由 A 2a + A a - 6a = 0下面是证明 A 可相似对角化( A 2 + A - 6E )a = 0设( A + 3E )( A - 2E )a = 0由a ¹ 0得( A 2 + A - 6E )x = 0有非零解 故| ( A + 3E )( A - 2E ) |= 0得| A + 3E |= 0或| A - 2E |= 0若| ( A + 3E ) |¹ 0则有( A - 2E )a = 0故A a =2a 与题意矛盾故| A + 3E |= 0同理可得| A - 2E |= 0 于是 A 的特征值为l 1 = -3 l 2 = 2.A 有 2 个不同特征值故 A a 相似对角化。

2023考研数学二真题+详解答案解析(超清版)

2023考研数学二真题+详解答案解析(超清版)

2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。

考研数学二试题及答案

考研数学二试题及答案

2012年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数( )(A) 0 (B ) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i)当曲线上一点M沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

(i i)渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。

(i ii)注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。

在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '=( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n --(D) (1)!nn -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A .【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( ) (A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分也非必要条件 【答案】B【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x e t dt e xdx ππππππ-=-+⎰⎰223()312[]sin 0x x e e xdx I I πππ-=->⇒>⎰因此213I I I <<.故选D .(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A)12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D .(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dx y dxdy -=⎰⎰( )(A)π(B )2(C )-2ﻩ(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)DD f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰ 故选(D )(7)设1100c α⎛⎫⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B ) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A ) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C ) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵. 在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----==100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d ydx== .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。

2014-2015年考研数学二真题及答案解析

2014-2015年考研数学二真题及答案解析

精选文档2014 年全国硕士研究生入学一致考试数学二试题一、选择题 :1 8 小题,每题 4分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x 0时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则的取值范围是 ( ) (A) (2,)(B) (1,2)(C)(1,1)(D)(0, 1)22(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C) yxsin1(D)y x 2sin1xx(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x) f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x) (B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x) g ( x) (D) 当 f ( x)0 时, f (x)g ( x)(4) x t 2 7 上对应于 t1 的点处的曲率半径是()曲线t 2 4ty 1(A)10(B)10(C) 10 10(D) 5 1050100设函数 f ( x)arctan x ,若 f ( x)xf ( ) ,则 mil2(5) 0x 2()x(A)1(B) 2(C) 1(D)1323(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 22u阶连续偏导数, 且知足x y及2u 2u0 ,则()x2y2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得精选文档(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在 D 的内部获得,最大值在D 的界限上获得0 a b 0(7)a 0 0b 队列式c d 0 ()c 0 0 d(A) (adbc) 2(B)(adbc)2(C) a 2d2b 2c 2(D) b 2 c 2a 2d 2(8) 设 1, 2,3均为 3 维向量, 则对随意常数k, l ,向量组 1 k 3 , 2 l 3 线性没关是向量组1, 2,3 线性没关的( )(A) 必需非充足条件(B) 充足非必需条件(C) 充足必需条件(D) 既非充足也非必需条件二、填空题: 914小题,每题 4 分,共 24 分 . 请将答案写在答题纸 指定地点上 .1...((9)1dx__________.x 2 2x5(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x)2( x 1),x [0, 2] ,则 f 7)(__________.(11) 设 zz(x, y) 是由方程 e2 yzx y2z7确立的函数,则dz( 1 , 1 )__________.42 2(12) 曲线 rr ( ) 的极坐标方程是 r,则 L 在点 (r , )( , ) 处的切线的直角坐标方程是 __________.2 2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度 xx 22x 1, 则该细棒的质心坐标 x__________.(14) 设二次型 fx 1 , x 2 , x 3 x 12 x 2 2 2ax 1x 3 4x 2x 3 的负惯性指数为1,则 a 的取值范围为_______.三、解答题: 15~ 23 小题 , 共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证...明过程或演算步骤 . (15)( 此题满分 10 分)精选文档x 12e t 1 t dtt1求极限 lim x2 ln 1 .x 1x(16)( 此题满分10 分)已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .(17)( 此题满分10 分)设平面地区 D x, y 1 x2 y2 4, x 0, y 0 , 计算x sin x2 y2dxdy.x yD(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,z f (e x cosy) 知足 2 z 2z (4 z e x cos y) e2x,若x2 y2f (0) 0, f ' (0) 0,求 f (u) 的表达式.(19)( 此题满分 10 分)设函数 f ( x), g (x) 的区间 [a,b] 上连续,且 f (x) 单一增添, 0 g( x) 1.证明:(I) 0 xx a, x [ a, b] , g(t )dtaa bbg(t ) dtf (x)d x f ( x)g( x)dx .(II) aa a(20)( 此题满分 11 分)设函数 f (x) x , x 0,1 ,定义函数列 f ( x) f ( x), f ( x) f ( f (x)),,1 x 12 1f n (x) f ( f n 1 (x)), ,记 S n是由曲线 y f n ( x) ,直线x 1 及 x 轴所围成平面图形的面积,求极限 lim nS n.n(21)( 此题满分 11 分)已知函数 f ( x, y) 知足 f 2( y 1) ,且 f ( y, y) ( y 1) 2 (2 y)ln y, 求曲线 f ( x, y) 0y所围成的图形绕直线y 1旋转所成的旋转体的体积.精选文档(22)( 此题满分 11 分)1 2 34 设矩阵A 0 11 1 , E 为三阶单位矩阵 . 1 23(I) 求方程组 (II) 求知足Ax 0的一个基础解系;AB E 的全部矩阵 .(23)( 此题满分 11 分)1 1 1 0 0 1 1 110 2证明 n 阶矩阵与相像 .1 1 1 0 0 n2014 年全国硕士研究生入学一致考试数学二试题答案一、选择题 :1 8 小题,每题 4 分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则 的取值范围是 ( )(A)(2, )(B) (1,2)(C)(1,1) (D) (0, 1)【答案】 B22【分析】由定义lim ln (1 2x) lim (2 x)lim 2 x 1x 0x xxx 01 0 1 .所以,故精选文档12x2当 x0 时, (1 cos x) ~ 1 是比 x 的高阶无量小,所以10,即2.2应选 B(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C)y x sin1(D) yx2sin1xx【答案】 C11x sinsin【分析】对于 C 选项: limxlim1 lim x 1 0 1 .xxx xxlim[ x sin1x] limsin 1 0 ,所以 y x sin 1存在斜渐近线 yx .xxxx x应选 C(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x)f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x)(B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x)g ( x)(D) 当 f ( x) 0 时, f (x)g ( x)【答案】 D【分析】令 F ( x) g (x) f ( x)f (0)(1 x) f (1)x f ( x) ,则F (0) F (1) 0 ,F ( x) f (0) f (1) f ( x) , F ( x)f ( x) .若 f ( x) 0 ,则 F (x) 0 , F (x) 在 [0,1] 上为凸的 .又 F(0) F (1) 0 ,所以当 x [0,1] 时, F (x) 0 ,进而 g(x)f ( x) .应选 D.(4) 曲线x t 2 7上对应于 t1 的点处的曲率半径是()y t 2 4t 1(A)10(B)10(C) 10 10(D) 5 1050100【答案】 C精选文档【分析】dy t 12t 4 3dx 2t t 1d 2 ydy ' 2t 2 12 t 1dxt 12tt 1dxky ''1,R 1 10 10y '233k121 q 2应选 C2(5) 设函数 f ( x) arctan x ,若 f (x) xf ( ) ,则 milx2x(A) 1(B) 2(C) 1(D)13 23【答案】 D【分析】因为f ( x)f ' ( )1 2 ,所以 2x f (x) x1f (x)2x f (x)x arctanx1111 x 2lim lim lim lim x22 f ( x)2 arctanx 3x 23x 0 x 0 x x 0 x x 0应选 D.(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 2 阶连续偏导数, 且知足2u2u0 ,则及y 2x 2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得 (B) u(x, y) 的最大值和最小值都在 D 的内部上获得( )2ux y()(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在D 的内部获得,最大值在D 的界限上获得精选文档【答案】 A【分析】记 A2u 2 , B2u ,C2u2 , B 0, A, C 相反数xx yy则 =AC-B2 0 , 所以 u(x, y) 在 D 内无极值,则极值在界限处获得 .应选 A0 a b 0(7) a 0 0 b ( )队列式c d 0 0c 0 0 d(A) ( ad bc )2 (B) ( ad bc)2(C) a 2d 2 b 2 c 2(D) b 2c 2a 2 d 2【答案】 B【分析】由队列式的睁开定理睁开第一列0 a b 0 a b 0 a b 0 a 0 0 b a cd 0c 0 0 b 0 cd 0 0 0 dc dc0 0 dad (ad bc) bc(ad bc)(ad bc) 2 .(8) 设 a 1 , a 2 , a 3 均为三维向量,则对随意常数 k, l , 向量组 a 1 ka 3 , a 2 la 3 线性没关是向量组a 1, a 2 ,a 3 线性没关的( )(A) 必需非充足条件 (B) 充足非必需条件(C) 充足必需条件 (D) 既非充足也非必需条件【答案】 A1 0【分析】1k32l31231 .k l1 0) 记 A1k32l3 ,B123 ,C0 1.若1,2, 3 线性无k l精选文档关,则 r ( A) r ( BC ) r (C ) 2 ,故1k3,2l 3 线性没关 .) 举反例.令30 ,则1,2 线性没关,但此时1,2, 3 却线性有关 .综上所述, 对随意常数 k ,l ,向量1k3,2l 3 线性没关是向量1, 2,3 线性没关的必要非充足条件 . 应选 A二、填空题: 914 小题 , 每题 4 分, 共 24 分 . 请将答案写在答题纸 指定地点上 ....(9)11 dx __________.x 22x5【答案】38【分析】111x 1 111x 2dxx 1 2dx arctan 2 2 x 542132 428(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x) 2( x 1), x [0, 2] ,则 f 7)(__________.【答案】 1【分析】 f ' x 2 x 1 , x0,2 且为偶函数则 f ' x 2 x 1 ,x 2,0又 fxx 2 2x c 且为奇函数,故 c=0f xx 2 2x ,x2,0又f x 的周期为 4,f7 f1 1(11) 设 zz(x, y) 是由方程 e 2 yz x y 2z7 确立的函数,则 dz1 1)__________.4( ,2 2 【答案】1(dx dy)27【分析】对 e 2 yz x y 2z方程两边同时对 x, y 求偏导4精选文档e 2 yz2y z 1 zx xe 2 yz (2z 2 y z ) 2 yz 0y y当 x11z, y时 ,22故z1 11 , z 1 11 x ( 2,2)2 y ( 2 , 2 )2故dz1 11dx (1)dy1(dx dy)2 2222( , )(12) 曲线 lim nS n 的极坐标方程是 r,则 L 在点 (r , ) ( ,) 处的切线的直角坐标方程是n2 2__________.【答案】 y2 x2【分析】由直角坐标和极坐标的关系x r cos cosy r sin,sin于是 r ,, 2 , 对应于 x, y 0,,22切线斜率 dydycos sin dy ddx dxcossindxd20,2所以切线方程为 y2x 022x即y=2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度x x 2 2x 1, 则该细棒的质心坐标 x __________.【答案】1120精选文档1x dxx【分析】质心横坐标 x1 x dx1 1 x 2x 3 x 2 10 5x dx=2x 1 dxx3 311 2x 4 2 3 x 2 1 11 xx dx= x x2x 1 dx x 0 04 3 21211x 12=115203(13) 设二次型 f x 1 , x 2 , x 3x 1 2x 22 2ax 1 x 3 4x 2 x 3 的负惯性指数是 1 ,则 a 的取值范围_________.【答案】2,2f x 1, x 2 , x 3x 12a 2 x 32 x 224x 32【分析】配方法:ax 32x 3因为二次型负惯性指数为 1,所以 4 a 20 ,故 2 a 2.三、解答题: 15~ 23 小题,共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证 ... 明过程或演算步骤 .(15)( 此题满分 10 分)x 2 1et1 t dtt1求极限 lim1 .xx 2ln 1xx1dtx1dt【分析】1t 2 (e t 1) tlim1 t 2(e t 1) tlim1 )1xx 2ln(1xx2xx1lim[ x 2 (e x 1) x]x1 tttxlime1 t lim e1 lim t1 .tt 2t 02t t 0 2t 2(16)( 此题满分 10 分)精选文档已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .【分析】由 x2 y2 y 1 y ,得( y2 1) y 1 x2①此时上边方程为变量可分别方程,解的通解为1y3y x 1 x3 c3 3由 y(2) 0 得 c 2321 x当 y (x) 0 时,x 1 ,且有:x1, y ( x)01 x 1,y ( x)0x 1, y ( x)0所以 y(x) 在x 1 处获得极小值,在x 1 处获得极大值y( 1) 0, y(1) 1即: y(x) 的极大值为1,极小值为0.(17)( 此题满分10 分)设平面地区【分析】 D对于x, y 1 x2 y2x sin x2 y2D 4, x 0, y 0 , 计算x ydxdy .Dy x 对称,知足轮换对称性,则:xsin( x2 y2 ) ysin( x2 y2 )x y dxdyx ydxdyD DIxsin( x2 y2 ) 1 x sin( x2 y2 ) ysin( x2 y2 ) x ydxdy2 x y x ydxdy D D1 sin( x2 y2 )dxdy2 D精选文档1d2rdr2sin r 21 )1r(rd cos24 11 cos r r |122 cos rdr4 11 2 1 1sin r |124 34(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,zxcosy) 知足2z 2z(4 z e xcos y) e 2x,若f (e 2y 2xf (0)0, f ' (0) 0,求 f (u) 的表达式 .【分析】由 zfe x cos y , zf (e x cos y) e xcos y, zf (e x cos y)e x sin yxy2zf (e x cos y) e x cos y e x cos y f (e x cos y) e x cos y ,x 22 zf xxxsin yf (e xcos y)xcos yy 2( e cos y)e sin ye e2z2zxcos y e 2x由2+y 24z e,代入得,xfe x cos y e 2x[4 f e x cos y e x cos y]e 2 x即f e x cos y 4 f e x cos y e x cos y ,令 e x cos y=t , 得 f t 4 f tt特点方程24 0,2得齐次方程通解y c 1e 2tc 2e 2t精选文档设特解 y * at b ,代入方程得 a1 , b 0 ,特解 y * 1 t4 1 t4则原方程通解为 y=f tc 1e 2t c 2 e 2t4由 f0, f '0 0 ,得 c 11 ,c 21, 则16 16y=f u1 e2 u 1 e 2 u 1u . (19)(10 分)16 164此题满分设函数 f ( x), g( x) 在区间 [a,b] 上连续,且 f ( x) 单一增添, 0g ( x) 1 ,证明: ( I )xxa, x [ a,b] ,g(t) dt aab bg (t )dtf ( x)d xf ( x)g( x)dx.(II )aaa【分析】( I )由积分中值定理x dt gxa ,[ a, x]g ta0 g x 1 ,0 gx ax ax t dtxaga( II )直接由 0 g x1,获得x dtx1dt = x ag t aauau( II )令 F u f x g x dxaaaF ' u f u g uf aug t dtaug t dtf x dxg ug uf uf ag t dta由( I )知 0uu aaau g t dtg t d t uaa又因为 fx 单增,所以 fuf au0 g t dtaF ' u0, F u 单一不减, F uF a取 ub ,得 F b 0 ,即( II )建立 .(20)( 此题满分 11 分)设函数 f (x)x, x 0,1 ,定义函数列1 xf 1 ( x) f ( x), f 2 ( x) f ( f 1 ( x)), , f n ( x) f ( f n 1( x)),及 x 轴所围成平面图形的面积,求极限lim nS n .n【分析】 f 1 (x)x, f 2 ( x)x, f 3 ( x)x,1 x1 2x 1 3x精选文档,记 S n 是由曲线 y f n ( x) ,直线 x 1, f n ( x)x, 1 nxxx1 1S n 1 f n ( x) dx1 dx1n ndx11nxnx111 1 111 ln(11n1dxn1dx n n 2 nx) 0nx112 ln(1 n) n nlim nS n 1lim ln(1n) 1lim ln(1x) 1 lim1 1 0 1nnnxxx1 x(21)( 此题满分 11 分)已 知 函 数 f ( x, y) 满 足f 2 (y 1 ,) 且 f ( y, y)( y 2 1 )( 2y )求yl n 曲 线,yf ( x, y) 0 所围成的图形绕直线 y1 旋转所成的旋转体的体积 .【分析】因为f 2( y 1) ,所以 f ( x, y) y 2 2 y ( x), 此中 ( x) 为待定函数 .y又因为 f ( y, y)( y 1)22 y ln y, 则 ( y) 12 y ln y ,进而f ( x, y) y 2 2y 12 x ln x ( y 1)22 x ln x .令 f ( x, y)0, 可得 ( y 1)22 x ln x ,当 y1时, x 1 或 x 2 ,进而所求的体积为V2 y 1 22 2 x ln xdx1 dx12x 2ln xd2x12x 2 22ln x(2x )12 12ln 2 (2x x2 ) 124 (22)( 此题满分11 分)精选文档2xdx22ln 2 5 2ln 25.4 41 2 3 4设矩阵A 0 1 1 1 ,E为三阶单位矩阵.1 2 0 3(I)求方程组(II)求知足【分析】Ax 0的一个基础解系;AB E 的全部矩阵 B .1 2 3 4 1 0 0 1 2 3 4 1 0 0A E 01 110 1 0 01 110 1 01 2 0 3 0 0 1 0 4 3 1 1 0 11 2 3 4 1 0 0 1 0 0 1 2 6 10 1 1 1 0 1 0 0 1 0 2 1 3 1 ,0 0 1 3 1 4 1 0 0 1 3 1 4 1(I) Ax 0 的基础解系为1,2,3,1T(II) e1T T0,0,1T 1,0,0 , e2 0,1,0 , e3Ax e1的通解为x k1 2, 1, 1,0 T 2 k1, 1 2k1 , 1 3k1, k1 TAx e2的通解为x k2 6, 3, 4,0 T6 k2 , 3 2k2 , 4T3k2 , k2Ax e3的通解为x k3T1 k3,1 2k3,1T 1,1,1,0 3k3 , k32 k1 6 k2 1 k3B 1 2k1 3 2k2 1 2k3(k1 , k2 , k3为随意常数)1 3k1 4 3k2 1 3k3k1 k2 k3(23)( 此题满分11 分)1 1 1 0 0 11 1 1 0 0 2相像 .证明 n 阶矩阵与1 1 1 0 0 n11 【分析】已知 A1 1 21 ,,B =01n则 A 的特点值为 n , 0 ( n 1重 ).A 属于n 的特点向量为 (1,1, ,1)T ; r ( A) 1 ,故 Ax 0 基础解系有 n1个线性没关的解向量,即 An=属 于0 有 n 1 个 线 性 无 关 的 特 征 向 量 ; 故 A 相 似 于 对 角 阵.B 的特点值为 n , 0 ( n 1重 ) ,同理 B 属于0 有 n 1 个线性没关的特点向量,故 B 相似于对角阵.由相像关系的传达性,A 相像于B .2015 年全国硕士研究生入学一致考试数学二试题及答案分析一、选择题:( 1~ 8 小题 , 每题 4 分,共 32 分。

考研数学二答案解析

考研数学二答案解析

20
20
x
= − 1
2
1 x sin x2dx = 1 cos x2
0
4
1 0
=
1 4
(cos1−1)
1 −1 0 0
14. 已 知 矩 阵
A
=

−2
3
1 −2
−1 2
1

−1

Aij
表示
|
A|

(i,
j)
元的代数余子式,则

0
0
3
4

A11 − A12 = ___________.
【解析】 x − tan x ~ − x3 ,所以选 C. 3
2、设函数 y = x sin x + 2 cos x(− π x 3π) 的拐点 22
A. ( π , π ). 22
B. (0, 2).
C. (π, −2).
D. (3π , − 3π ). 22
【答案】C.
【解析】令 y = −x sin x = 0 ,可得 x = π ,因此拐点坐标为(π,− 2).
f (x) − f (0) x−0
= lim e2xln x −1
x→0+
x
2x ln x
= lim
= lim 2 ln x = − ,
x x→0+
x→0+
所以 f (0) 不存在,因此
f
(
x)
=
2x2x (1+
(
x
+
1)e
x
ln ,
x),
x 0, x 0.

f

2020考研数学二解析

2020考研数学二解析

D
x
∫ (20)设函数 f (x) = x et2 dx 1 (I)证:存在 ξ ∈ (1,2) ,f (ξ ) = (2 − ξ )eξ2 ; (II)证:存在η ∈ (1,2) ,f (2) = ln 2 ⋅ηeη2 .
2020 数学(二)真题 第 8 页 共 11 页
(21)设函数 f (x) 可导,且 f ′(x) > 0 ,曲线 y = f (x)(x 0) 经过坐标原点 O ,其 上任意一点 M 处的切线与 x 轴交于 T ,又 MP⊥x 轴于点 P ,已知由曲线 y = f (x) 直线 MP 以及 x 轴所围图形的面积与 ∆MTP 的面积之比恒为 3:2 , 求满足上述条件的曲线的方程.
∫ ∫ 【解析】A.
x (et2
0
−1) dt

x t 2 dt = x3 ;
0
3∫ B.xln( Nhomakorabea +
0
t3
)
dt

t
3 2
dt
= 2 x 52 ; 5
∫ ∫ C.
sin x sin t 2
0
dt

x t 2 dt = 1 x3 ;
0
3
D.
1−cos x
∫0
∫ sin3 t dt
1 x2 3
2 t2
+
y22
+
4 y32
+ 2 y1 y2
.
x3 y3
(I)求 a 的值;
(II)求可逆矩阵 P .
2020 数学(二)真题 第 10 页 共 11 页
(23)设 A 为二阶矩阵,P = (α ,Aα) ,其中 α 是非零向量且不是 A 的特征向量: (I)证明 P 为可逆矩阵; (II)若 A2α + Aα − 6α = 0 ,求 P −1AP ,并判断 A 是否相似于对角矩阵.

考研数学二试题及标准答案

考研数学二试题及标准答案

2002年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,e ,0,2arcsin e 1)(2tan x a x x xf xx在0=x 处连续,则=a ______.【答案】2-【考点】函数的左极限和右极限、函数连续的概念 【难易度】★★【详解】本题涉及到的主要知识点:若函数)(x f 在0x x =处连续,则有;)()(lim )(lim 00x f x f x f x x x x ==+-→→解析:tan 0001tan lim ()lim lim 2arcsin22x x x x e xf x x x+++→→→--=-== 20lim ()lim ,(0),xx x f x ae a f a --→→===()f x 在0x =处连续(0)(0)(0),f f f +-⇔==即 2.a =- (2)位于曲线xxe y -=,+∞<≤x 0下方,x 轴上方的无界图形的面积是______.【答案】1【考点】定积分的几何应用—平面图形的面积 【难易度】★★【详解】解析:所求面积为1)(00=-=+-=-==+∞-∞+-+∞--∞+∞+-⎰⎰⎰xx xx xedx e xee xd dx xe S .其中,()01lim lim lim =--=-+∞→+∞→-+∞→xx xx xx e e x xe洛必达.(3)微分方程02='+"y yy 满足初始条件10==x y,21|0='=x y 的特解是______.【答案】y =【考点】可降阶的高阶微分方程 【难易度】★★★【详解】本题涉及到的主要知识点:可降阶的高阶微分方程,若缺x ,则令dydp py p y =''=',. 解析:方法1:将20yy y '''+=改写为()0yy ''=,从而得1yy C '=.以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=.即21yy '=,改写为2()1y '=.解得2,y x C =+y =再以初值代入,1=""+且21C =.于是特解y =方法2:这是属于缺x 的类型(,)y f y y '''=.命,dp dp dy dpy p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dp ypp dy +=,得0p =或0dp y p dy+= 0p =即0dy dx =,不满足初始条件1'02y x ==,弃之, 由0dp yp dy +=按分离变量法解之,得1.C y 由初始条件11,'002y y x x ====可将1C 先定出来:1111,212C C ==.于是得12dy dx y =,解之,得22,y x C y =+=以01x y ==代入,得1=,所以应取“+”号且21C =.于是特解是y =(4)++++∞→nn n n π2cos 1πcos 1[1lim=++]πcos 1n n ______.【考点】定积分的概念 【难易度】★★★【详解】解析:记1n u n =11n i n ==所以011lim lim n n n n i u n →∞→∞===⎰11coscos22xxdx dx ππ===⎰12sin2x πππ==.(5)矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----222222220的非零特征值是______.【答案】4【考点】矩阵的特征值的计算 【难易度】★★【详解】解析:22222220222222E A λλλλλλλλ-=--=--200011(4)222λλλλλ==--故4λ=是矩阵的非零特征值.(另一个特征值是0λ=(二重))二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为1.0,则)1(f '=( ) (A )-1. (B )0.1.(C )1.(D )0.5.【答案】D【考点】导数的概念、复合函数的求导法则 【难易度】★★★【详解】本题涉及到的主要知识点: ①dy 为y ∆的线性主部; ②)()]([))]([(x g x g f x g f ''='; 解析:在可导条件下,0()x x dyy x o x dx=∆=∆+∆.当00x x dy dx =≠时0x x dy x dx =∆称为y ∆的线性主部, 现在2()2dy x f x x x dx '∆=∆,以1,0.1x x =-∆=-代入得(1)0.2dy x f dx'∆=⨯,由题设它等于0.1,于是(1)0.5f '=,应选(D ).(2)设函数)(x f 连续,则下列函数中必为偶函数的是( ) (A ).d )(20t t f x⎰(B ).d )(20t t f x⎰(C ).d )]()([0t t f t f t x--⎰(D ).d )]()([0t t f t f t x-+⎰【答案】D【考点】函数的奇偶性、积分上限的函数及其导数 【难易度】★★【详解】解析:[()()]t f t f t +-为t 的奇函数,[()()]xt f t f t dt +-⎰为x 的偶函数,(D )正确,(A )、(C )是x 的奇函数,(B )可能非奇非偶.例如()1f t t =+,均不选.(3)设)(x y y =是二阶常系数微分方程xqy py y 3e =+'+"满足初始条件=)0(y0)0(='y 的特解,则当0→x 时,函数)()1ln(2x y x +的极限 ( )(A )不存在. (B )等于1.(C )等于2.(D )等于3.【答案】C【考点】洛必达法则、佩亚诺型余项泰勒公式 【难易度】★★【详解】解析:方法1:220000ln(1)222limlim lim lim 2()()()()1x x x x x x x y x y x y x y x →→→→+==='''洛洛 方法2:由(0)(0)0,(0)1y y y '''===.由佩亚诺余项泰勒公式展开,有22()00()2x y x o x =+++,代入,有222000222ln(1)1lim lim lim 211()()()22x x x x x o x y x x o x x→→→+==++=. (4)设函数)(x f y =在),0(+∞内有界且可导,则( ) (A )当0)(lim =+∞→x f x 时,必有.0)(lim ='+∞→x f x(B )当)(lim x f x '+∞→存在时,必有.0)(lim ='+∞→x f x(C )当0)(lim 0=+→x f x 时,必有.0)(lim 0='+→x f x(D )当)(lim 0x f x '+→存在时,必有.0)(lim 0='+→x f x【答案】B【考点】导数的概念 【难易度】★★★★【详解】解析:方法1:排斥法 (A )的反例21()sin ,f x x x =它有界,221()sin 2cos ,lim ()0x f x x x f x x→+∞'=-+=,但lim ()x f x →+∞'不存在.(C)与(D)的反例同(A )的反例.0lim ()0x f x →+=,但0lim ()10x f x →+'=≠,(C )不成立;0lim ()10x f x →+'=≠,(D )也不成立.(A )、(C )、(D )都不对,故选(B ). 方法2:证明(B )正确.设lim ()x f x →+∞'存在,记为A ,求证0A =.用反证法,设0A ≠.若0A >,则由保号性知,存在00x >,当0x x >时()2Af x '>,在区间0[,]x x 上对()f x 用拉格朗日中值定理知,有00000()()()()()(),.2Af x f x f x x f x x x x x ξξ'=+->+-<<,x →+∞,从而有()f x →+∞,与()f x 有界矛盾.类似可证若0A <亦矛盾.(5)设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k ,必有( ) (A )321,,ααα21,ββ+k 线性无关. (B )321,,ααα21,ββ+k 线性相关. (C )321,,ααα21,ββk +线性无关. (D )321,,ααα21,ββk +线性相关.【答案】A【考点】向量的线性表示 【难易度】★★★【详解】解析:方法1:对任意常数k ,向量组123,,ααα,12k ββ+线性无关.用反证法,若123,,ααα,12k ββ+线性相关,因已知123,,ααα线性无关,故12k ββ+可由123,,ααα线性表出.设12112233k ββλαλαλα+=++,因已知1β可由123,,ααα线性表出,设为1112233l l l βααα=++代入上式,得2111222333()()()l l l βλαλαλα=-+-+-这和2β 不能由123,,ααα线性表出矛盾.故向量组123,,ααα,12k ββ+线性无关, 应选(A ).方法2:用排除法取0k =,向量组123,,ααα,12k ββ+即123,,ααα,2β线性相关不成立,排除(B ).取0k =,向量组123,,ααα,12k ββ+,即123,,ααα,1β线性无关不成立,排除(C ).0k ≠时,123,,ααα,12k ββ+线性相关不成立(证法与方法1类似,当1k =时,选项(A )、(D )向量组是一样的,但结论不同,其中(A )成立,显然(D )不成立.) 排除(D ).三、(本题满分6分)已知曲线的极坐标方程是θcos 1-=r ,求该曲线上对应于6π=θ处的切线与法线的直角坐标方程. 【考点】平面曲线的切线、平面曲线的法线 【难易度】★★★【详解】本题涉及到的主要知识点:①切线方程:)(000x x y y y -'=- ②法线方程:)(1000x x y y y -'-=- 解析:极坐标曲线1cos r θ=-化成直角坐标的参数方程为(1cos )cos (1cos )sin x y θθθθ=-⎧⎨=-⎩ 即2cos cos sin cos sin x y θθθθθ⎧=-⎨=-⎩ 曲线上6πθ=的点对应的直角坐标为31,,)2424-- 22666cos sin cos 1.sin 2cos sin dy dyd dx dxd ππθθπθθθθθθθθθ===+-===-+于是得切线的直角坐标方程为13(()2424y x --=--,即504x y -=法线方程为113()(()),24124y x --=---即1044x y +-+=. 四、(本题满分7分)设⎪⎪⎩⎪⎪⎨⎧≤≤+<≤-+=,10,)1e (e ,01,232)(22x x x x x x f x x 求函数t t f x F x d )()(1⎰-=的表达式. 【考点】定积分的分部积分法、积分上限的函数及其导数 【难易度】★★★ 【详解】解析: 当10x -≤<时2233213111()(2)().12222xx F x t t dt t t x x -=+=+=+--⎰ 当01x ≤<时,011()()()()xxF x f t dt f t dt f t dt --==+⎰⎰⎰23200000111()12(1)2(1)11021121111ln(1)ln(1)ln 202121t x x t t tx x t t x tt x x x te t t dt tde e x t dt xe dt e e e e x x x e e e e ----=++=---++=--+=--+++++=---+=---++++⎰⎰⎰⎰所以3211,1022()1ln ln 2,01112xx x x x x F x e x x e e ⎧+--≤<⎪⎪=⎨⎪-+-≤<⎪++⎩当当 五、(本题满分7分)已知函数)(x f 在),0(+∞内可导,1)(lim ,0)(=>+∞→x f x f x ,且满足,e ))()((lim 110x hh x f hx x f =+→ 求)(x f .【考点】导数的概念、一阶线性微分方程【难易度】★★★【详解】本题涉及到的主要知识点:e =∆+∆→∆10)1(lim ;∆-∆+='→∆)()(lim)(0x f x f x f ,其中∆可以代表任何形式;解析:11()ln h ()()()f x hx hf x f x hx ef x ⎛⎫+ ⎪⎝⎭⎛⎫+= ⎪⎝⎭,001()1()()lim ln lim ln(1)()()h h f x hx f x hx f x h f x h f x →→⎛⎫++-=+ ⎪⎝⎭001()()()()lim ln()lim ()()()()(),0.()h h f x hx f x x f x hx f x h f x f x f x x f x x f x →→+-+-=='=≠从而得到 1()1()()lim ()xf x hf x x h f x hx e ef x '→⎛⎫+= ⎪⎝⎭由题设于是推得()1()xf x f x x '=, 即 2()1()f x f x x'= 解此微分方程,得 11ln ()f x C x=-+ 改写成 1()xf x Ce-=再由条件lim ()1x f x →+∞=,推得1C =,于是得1().xf x e -=六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.【考点】旋转体的体积、一阶线性微分方程、函数的最大值与最小值 【难易度】★★★【详解】本题涉及到的主要知识点:dx x f V bax ⎰=)(2π解析:一阶线性微分方程21y y x'-=-,由通解公式有 22[]dx dx x x y eedx C ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭⎰⎰=-+⎰221[]x dx C x =-+⎰221(),12x C x Cx x x=+=+≤≤由曲线2y x Cx =+与1,2x x ==及x 轴围成的图形绕x 轴旋转一周所成的旋转体的体积为2222131157()()523V x Cx dx C C ππ=+=++⎰,令6215()052dV C dC π=+=,得75.124C =-又()0V C ''>,故75124C =-为V 的惟一极小值点,也是最小值点,于是所求曲线为275.124y x x =-七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD ,下部由二次抛物线与线段AB 所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为4:5,闸门矩形部分的高h 应为多少m (米)?【考点】定积分的物理应用—压力 【难易度】★★★★【详解】解析:建立坐标系,细横条为面积微元,面积微元2dA xdy =, 因此压力微元 2(1)dp gx h y dy ρ=+- 平板ABCD 上所受的总压力为 1102(1)hP gx h y dy ρ+=+-⎰其中以1x =代入,计算得 21P gh ρ=.抛物板AOB 上所受的总压力为 1202(1),P gx h y dy ρ=+-⎰其中由抛物线方程知x y =2124()315P g h ρ=+,由题意12:5:4P P =,即,251244()315h h =+解之得2h =(米)(13h =-舍去),即闸门矩形部分的高应为2m . 八、(本题满分8分) 设),2,1()3(,3011=-=<<+n x x x x n n n ,证明数列}{n x 的极限存在,并求此极限.【考点】数列的极限 【难易度】★★★【详解】解析:方法1:考虑(1)19(3)3343222n n n x x x ----==222933()4203322n n n x x x -+---==≤ 所以132n x +≤(当1,2,n =),即32n x ≤(当2,3,n =),数列{}2,3,n x n =有上界32.再考虑(2)21n n n x x x --==0.=≥ 2,3,n =.所以{}n x 单调增加.单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为.a(3)由1n x +a 2230,a a -=得32a =或0a =,但因0n x >且单调增,故0a ≠,所以3lim 2n n x →∞=.方法2:由103x <<知1x 及13x -()均为正数,故)211130(3).22x x x *<≤+-= 设302k x <≤,则113(3).22k k k x x x +≤+-= 由数学归纳法知,对任意正整数2n ≥有302n x <≤.210.n n n x x x +≤=≥-所以{}n x 单调增,单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为a .再由1n x +=两边命n →∞取极限,得a =32a =或0a =, 但因0n x >且单调增加,故0a ≠,所以32a =. 九、(本题满分8分)设b a <<0,证明不等式⋅<--<+ab a b a b b a a 1ln ln 222【考点】函数单调性的判别【难易度】★★★【详解】解析:左、右两个不等式分别考虑先证左边不等式,方法1:由所证的形式想到试用拉格朗日中值定理.ln ln 1(ln ),0.x b a x a b b a ξξξ=-'==<<<-而22112a b a b ξ>>+. 其中第二个不等式来自不等式222a b ab +>(当0a b <<时),这样就证明了要证明的左边.方法2:用单调性证,将b 改写为x 并移项,命222()()ln ln a x a x x a a x ϕ-=--+,有()0a ϕ=. 22222124()()()a ax x a x x a x a x ϕ-'=-+++222222()4()0()()x a ax x a x a x a x --=+>++(当0a x <<), 而推知当0x a >>时()0x ϕ>,以xb =代入即得证明.再证右边不等式,用单调性证,将b 改写为x 并移项,命()ln ln ),x x a x aφ=--有()0a φ=,及21()0,x x φ'==< 所以当0x a >>时,()0x φ<,再以x b =代入,便得ln ln ),b a b a-<-即ln ln b a b a -<-右边证毕. 十、(本题满分8分)设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(,0)0(,0)0(≠''≠'≠f f f .证明:存在惟一的一组实数321,,λλλ,使得当0→h 时,)0()3()2()(321f h f h f h f -++λλλ是比2h 高阶的无穷小.【考点】无穷小的比较,洛必达法则【难易度】★★★【详解】解析:方法1:由题目,去证存在唯一的一组123,,λλλ,12320()(2)(3)(0)lim 0h f h f h f h f L h λλλ→++-==由此知,分子极限应为0,由()f x 在0x =连续,于是推知,应有123 1.λλλ++= (1) 由洛必达法则,12320()(2)(3)(0)lim h f h f h f h f L hλλλ→++-=1230()2(2)3(3)lim 2h f h f h f h h λλλ→'''++= (2) 分子的极限为1231230lim(()2(2)3(3))(23)(0)h f h f h f h f λλλλλλ→''''++=++, 若不为0,则式(1)应为∞,与原设为0矛盾,故分子的极限应是0,即123230λλλ++= (3)对(2)再用洛必达法则,1231230()4(2)9(3)1lim (49)(0)22h f h f h f h L f λλλλλλ→''''''++''==++ 由(0)0f ''≠,故应有 123490λλλ++= (4)将(1)、(3)、(4)联立解之,由于系数行列式11112320,149=≠由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.方法2:由佩亚诺余项泰勒公式2211()(0)(0)(0)(),2f h f f h f h o h '''=+++ 222(2)(0)2(0)2(0)(),f h f f h f h o h '''=+++2239(3)(0)3(0)(0)(),2f h f f h f h o h '''=+++ 代入12320()(2)(3)(0)0lim h f h f h f h f h λλλ→++-=2123123123201(1)(0)(23)(0)(49)(0)2lim h f f h f h h λλλλλλλλλ→⎡'''++-++++++⎢=⎢⎢⎣ 2221122332()()()o h o h o h h λλλ⎤+++⎥⎦, 上面[]中第二项极限为0,所以第一项中应有1231231231230490λλλλλλλλλ++=⎧⎪++=⎨⎪++=⎩ 由于系数行列式11112320,149=≠由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.十一、(本题满分6分)已知B A ,为3阶矩阵,且满足E B B A 421-=-,其中E 是3阶单位矩阵.(1)证明:矩阵E A 2-可逆; (2)若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=200021021B ,求矩阵A . 【考点】逆矩阵的概念、矩阵的计算【难易度】★★★【详解】本题涉及到的主要知识点:若有E AB =则称B A ,互逆.解析:(1)由题设条件124A B B E -=-两边左乘A ,得 24B AB A =-即 24AB B A -= (2)4884(2)8A E B A E E A E E -=-+=-+(2)(4)8A E B E E --=1(2)(4)8A EB E E --=得证2A E -可逆(且11(2)(4)8A EB E --=-). (2) 方法1:由(1)结果知 111(2)(4)8(4)8A E B E B E --⎡⎤-=-=-⎢⎥⎣⎦18(4)2A B E E -=-+ 1204003204120040120002004002B E ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦[]3201001200104120010320100002001002001B E E ⎡--⎤⎡-⎤⎢⎥⎢⎥-=-→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦0101200101201308013001008800110011000022⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥→-→--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦ 11044100130100880011002⎡⎤-⎢⎥⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦故 11104413(4)0881002B E -⎡⎤-⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦10208(4)2110002A B E E -⎡⎤⎢⎥=-+=--⎢⎥⎢⎥-⎣⎦. 方法2:由题设条件 124A B B E -=-等式两边左乘A ,得 2(4)B A B E =-则12(4)A B B E -=-(求1(4)B E --过程见方法1) 11044120120220131212001201308840020020041002⎡⎤-⎢⎥---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦ 08002014401104008002⎡⎤⎡⎤⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦. 十二、(本题满分6分)已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4维列向量,其中432,,ααα线性无关,,2321ααα-=如果4321ααααβ+++=,求线性方程组β=Ax 的通解.【考点】线性方程组解的性质和解的结构、非齐次线性方程组的基础解系和通解【难易度】★★★★【详解】解析:方法1:由234,,ααα线性无关,及123420,αααα=-+即1234,,,αααα线性相关,及1234βαααα=+++知[][][]12341234,,,()3,,,,r r A r Ar ααααβααααβ==== 故Ax β=有解,且其通解为k ξη*+,其中k ξ是对应齐次方程0Ax =的通解,η*是Ax β=的一个特解,因 123420,αααα=-+故 []123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥=-+==⎢⎥⎢⎥⎣⎦故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦故[]1,1,1,1T η*=是Ax β=的一个特解,故方程组的通解为[][]1,2,1,01,1,1,1T Tk -+.(其中k 是任意常数)方法2:令[]1234,,,T x x x x x =则线性非齐次方程为 []112233441234,,,x x x x x ααααααααβ+++==已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+即方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)。

2023考研数学二真题及解析答案

2023考研数学二真题及解析答案

2023考研数学二真题及解析一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.曲线1ln e 1y x x=+ −的斜渐近线方程为( ). (A )e y x =+(B )1ey x =+(C )yx = (D )1ey x =−【答案】(B )【解析】方法1. 1ln e 11limlim x x y k x x →∞→∞=+==− ()()11lim lim ln e 1lim ln e ln 111e 1x x x b y x x x x x →∞→∞→∞=−=+−=++− −−()11lim e 1ex x x →∞=− 故曲线的斜渐近线方程为1ey x =+.故选(B ) 方法2. ()()11ln e 11ln 1e 1e 1y x x x x=+=++−−()11ln 1e 1e x x x x α =++=++ −,其中lim 0x α→∞=,故1e y x =+为曲线的斜渐近线. 【评注】由()11lim ln 1e 1e x x x →∞+= − ,知()11ln 1e 1ex x α +=+ − 【评注】1.由()11lim ln 1e 1e x x x →∞ += − ,知()11ln 1e 1e x x α +=+ −2.本题属于常规题:《基础班》《强化班》的例子不再对应列举,《答题模版班》思维定势19【例13】2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A) ), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤= +−>(C) ), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤= ++>【答案】 (D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C ==++∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫ 由于()F x 在0x =处可导性,故()F x 在0x =处必连续 因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln ,1.x x f x x x −< = ≥ 则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<=−≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= +−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.设数列{}{},n n x y 满足211111,sin ,2n n n n x y x x y y ++====()1,2,n = ,则当n →∞时( ) (A )n x 是n y 的高阶无穷小(B )n y 是n x 的高阶无穷小(C )n x 是n y 的等阶无穷小 (D )n x 是n y 的同阶但不等价无穷小 【答案】(B )【解析】由2111,,2n n y y y +==知2112nn y + =,则有112n n y y +<利用12sin n n n x x x π+=>,则1112n nx x π+<故21111111224444n n nn nn n n n n y y y y y x x x x x πππππ+−+− ≤=≤≤≤= 于是1110lim lim 04nn n n n y x +→∞→∞+ ≤≤= ,由夹逼准则lim 0nn ny x →∞=,选(B ) 【评注】本题属于今年难度较大的题,涉及到两个递推数列确定的无穷小的比较,涉及到不等式的放缩,有一定的综合性.4.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+.只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题5.设()y f x =由2,sin ,x t t y t t =+=确定,则( ) (A )()f x 连续,(0)f ′不存在 (B )(0)f ′存在,()f x ′在0x =不连续 (C )()f x ′连续,(0)f ′′不存在 (D )(0)f ′′存在,()f x ′′在0x =不连续 【答案】(C ) 【解析】0t ≥时3,sin ,x t y t t == ,即有sin 33x xy =.0t <时,sin ,x t y t t = =−,即有sin y x x =−.sin ,033sin ,0x x x y x x x ≥= −< ,显然有()f x 在0x =不连续,且(0)0f = 0x >时,sin cos 33(3)9x x x xf x =+′;0x <时,sin ()cos x f x x x ′=−−, 利用导数定义可得()0sin 0330lim 0x x xf x ++→−′==,()0sin 0lim 0x x x f x+−→−′==,即得(0)0f ′= 易验证()0lim ()lim ()00x x f x f x f +−→→′′===,即()f x ′在0x =连续()01sin cos 233930lim 9x x x xf x ++→+′′=,()0sin cos 0lim 2x x x x f x+−→−−′′==−,故(0)f ′′不存在 ,选(C ) 【评注】此题考查参数方程确定的分段函数,只要在参数方程中去掉绝对值的过程,就成了我们常规的分段函数求导的问题,无论是《基础班》第二讲例24,《强化班》第二讲例17. 6.若函数()()121d ln f x x x αα+∞+=∫在0αα=处取得最小值,则0α=( )(A )()1ln ln 2−(B )()ln ln 2−(C )1ln 2−(D )ln 2【答案】(A )【解析】反常积分的判别规律知11α+>,即0α>时反常积分()121d ln x x x α+∞+∫收敛此时()()()212111d ln ln f x x x x αααα+∞+∞+==−∫()11ln 2αα=令()()()2111ln ln 2ln 2ln 2f ααααα′=−−()2111ln ln 20ln 2ααα =−+= 得唯一驻点()1ln ln 2α=−,故选(A )【评注】此题是属于由反常积分确定的函数求最值的问题,积分本身不难,积分结果再求导,找驻点得结果.难度不大,只要基本计算能力过关,可轻松应对.《基础班》《强化班》相应问题得组合而已. 7.设函数()()2e xf x xa =+,若()f x 没有极值点,但曲线()f x 有拐点,则a 的取值范围是( )(A )[)0,1(B )[)1,+∞ (C )[)1,2 (D )[)2,+∞【答案】(C )【解析】()()2e xf x xa =+,()()22e x f x xa x ′=++,()()242e x f x xa x ′′=+++由()()211e x f x x a ′=++−,知10a −≥时,()0f x ′≥,此时()f x 无极值点.由()()222e x f x x a ′′=++−,知20a −<时,()f x ′′在2x =±的左右两侧变号,依题意有[)1,2a ∈,选(C )【评注】本题考查了极值点、拐点的必要条件与判定,题目本身是常规的,分开对这两个考点出题,在《基础班》和《强化班》都讲过,但这种问法有些学生可能会觉得很别扭.8.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B O B A(C )****−B A B A O A B (D )**** −B A A B O A B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− − ==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B ,选(D ) 【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B9.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y +(B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B ) 【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143=− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+222222322332323126616222x x x x x x x x x x x +++++− =+− ()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−,故选(B )【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型 123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ). (A)21y (B)2212y y + (C) 2212y y − (D) 222123y y y ++10.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k−(D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可 即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β = − ,2343β−=−时,求所有既可由21,αα线性表出, 又可21,ββ线性表出的向量。

2023年考研数学二真题及答案

2023年考研数学二真题及答案

2023年考研数学二真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlimln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦ 1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小【答案】B. 【解析】在0,2π⎛⎫⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444nnn n nn n ny y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭, 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e()a x y x C x C x -=+;②若240a b ->,则通解为2212()eeaa x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =,通解为12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t =+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf x t t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-,故(0)f ''不存在.故选C. 6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( )A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2-D.ln 2【答案】A. 【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)aa a ax f a x x x x x a a +∞+∞+∞-++===-=⎰⎰,则 2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a af a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e xf x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1) B.[1,)+∞ C.[1,2) D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e xf x x x a '=++有两个相等的实根或者没有实根,2()(42)e xf x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A B C.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B , 故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B.9. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,21121||134(7)131143141λλλλλλλ---=--=+-----A E21(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k=+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得TTTT1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-. 12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2= 2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =. 方程e 2z xz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32xz∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,20()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(l n )y x x C x =-,其中C 为任意常数. 又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭, 由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=,由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积. 【解】(1)222144sec 1d d tan sec sin t S x t t t t t ππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t t tππππ==--⎰⎰241cos 11lnln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y +⎰⎰.【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰ 32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数. (1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a a ξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a aη''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+, 其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<, 22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<, 两式相加可得212()()()()2f f f a f a a ξξ''''+-+=, 又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=, 即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=- 221020|()|()|()|()22f a x f a x ηη''''+-≤+ 220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=, 即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ. 【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E , (2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α; 1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α; 211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α, 令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭P AP Λ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学二答案精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2016年考研数学二答案【篇一:2016考研数学数学二试题(完整版)】ss=txt>一、选择:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合要求的.(1)设a1?x1),a2?,a31.当x0时,以上3个无穷小量按照从低阶到高阶拓排序是(a)a1,a2,a3.(b)a2,a3,a1.(c)a2,a1,a3.(d)a3,a2,a1.2(x1),x1,(2)已知函数f(x)则f(x)的一个原函数是 lnx,x1,(x1)2,x1.(x1)2,x1.(a)f(x)(b)f(x) x(lnx1),x(lnx1)1,x1.(x1)2,(x1)2,x1.(c)f(x)(d)f(x)x(lnx1)1,x1.x(lnx1)1,x1.1+?111exdx的敛散性为(3)反常积分①2exdx,②2x0x0(a)①收敛,②收敛.(b)①收敛,②发散.(c)①收敛,②收敛.(d)①收敛,②发散.(4)设函数f(x)在(,)内连续,求导函数的图形如图所示,则(a)函数f(x)有2个极值点,曲线y?f(x)有2个拐点.(b)函数f(x)有2个极值点,曲线y?f(x)有3个拐点.(c)函数f(x)有3个极值点,曲线y?f(x)有1个拐点.(d)函数f(x)有3个极值点,曲线y?f(x)有2个拐点.(5)设函数fi(x)(i1,2)具有二阶连续导数,且fi(x0)0(i1,2)线,若两条曲yfi(x)(i1,2)在点(x0,y0)处具有公切线yg(x),且在该点处曲线yf1(x)的曲率大于曲线yf2(x)的曲率,则在x0的某个领域内,有(a)f1(x)f2(x)g(x)(b)f2(x)f1(x)g(x)(c)f1(x)g(x)f2(x)(d)f2(x)g(x)f1(x)ex(6)已知函数f(x,y),则 xy (a)fxfy0(b)fxfy0(c)fxfyf(d)fxfyf(7)设a,b是可逆矩阵,且a与b相似,则下列结论错误的是(a)at与bt相似(b)a1与b1相似(c)aat与bbt相似(d)aa1与bb1相似22(8)设二次型f(x1,x2,x3)a(x12x2x3)2x1x22x2x32x1x3的正、负惯性指数分别为1,2,则(a)a?1(b)a?2(c)2a1(d)a1与a2二、填空题:9~14小题,每小题4分,共24分。

x3arctan(1x2)的斜渐近线方程为____________. (9)曲线y21x (10)极限lim(11)以yx2ex和yx2为特解的一阶非齐次线性微分方程为____________. 112n(sin2sinnsin)____________. nn2nnn(12)已知函数f(x)在(,)上连续,且f(x)(x1)2f(t)dt,则当n202x时,f(n)(0)____________.(13)已知动点p在曲线y?x3上运动,记坐标原点与点p间的距离为l.若点p的横坐标时间的变化率为常数v0,则当点p运动到点(1,1)时,l对时间的变化率是_______.a11110与011等价,则a_________. 1a1(14)设矩阵11a101解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)(16)(本题满分10分)设函数f(x)t2x2dt(x0),求f(x)并求f(x)的最小值. 01(17)(本题满分10分)已知函数zz(x,y)由方程(x2y2)zlnz2(xy1)0确定,求zz(x,y)的极值.(18)(本题满分10分)设d是由直线y1,yx,yx围成的有界区域,计算二重积分x2xyy2dxdy. 22xyd(19)(本题满分10分)已知y1(x)ex,y2(x)u(x)ex是二阶微分方程(2x1)yn(2x1)y2y0的解,若u(1)e,u(0)1,求u(x),并写出该微分方程的通解。

(20)(本题满分11分)3xcost设d是由曲线yx1)与求d0t围成的平面区域,32ysint绕x轴旋转一周所得旋转体的体积和表面积。

(21)(本题满分11分)33cosx]上连续,在(0,)内是函数的一个原函数f(0)0。

222x33(Ⅰ)求f(x)在区间[0,]上的平均值; 23(Ⅱ)证明f(x)在区间(0,)内存在唯一零点。

2(22)(本题满分11分)已知f(x)在[0,11a100a,1设矩阵a1,且方程组ax无解。

a11a12a2(Ⅰ)求a的值;(Ⅱ)求方程组ataxat的通解。

(23)(本题满分11分)011已知矩阵a230000(Ⅰ)求a99(Ⅱ)设3阶矩阵b(1,2,3)满足b2ba。

记b100(1,2,3),将1,2,3分别表示为1,2,3的线性组合。

【篇二:2016考研数学(一、二、三)真题及答案解析】>2016考研数学(一)真题及答案解析考研复习最重要的就是真题,所以跨考教育数学教研室为考生提供2016考研数学一的真题、答案及部分解析,希望考生能够在最后冲刺阶段通过真题查漏补缺,快速有效的备考。

一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. ...(1)设xn是数列下列命题中不正确的是()(a)若limxna,则limx2nlimx2n1an?n?n?(b)若limx2nlimx2n1a,则limxnan?n?n?(c)若limxna,则limx3nlimx2n1an?n?n?(d)若limx3nlimx3n1a,则limxnan?n?n?【答案】(d)(2)设y?特解,则(a)a3,b2,c1 (b)a3,b2,c1 (c)a3,b2,c1 (d)a3,b2,c1 【答案】(a)【解析】将特解代入微分方程,利用待定系数法,得出a3,b2,c1。

故选a。

(3)若级数()(a)收敛点,收敛点(b)收敛点,发散点(c)发散点,收敛点(d)发散点,发散点【答案】(a)【解析】因为级数???12x1e(x)ex是二阶常系数非齐次线性微分方程yaybycex的一个23 axnn?1n在x?2处条件收敛,则xx3依次为幂级数na(x1)nn?1n的axnn?1n在x2处条件收敛,所以r2,有幂级数的性质,na(x1)nn?1?n的收敛半径也为r2,即x3,收敛区间为1x3,则收敛域为?born to win1x3,进而xx3依次为幂级数nan(x1)n的收敛点,收敛点,故选a。

n?1(4)下列级数发散的是()(a) nn8n1?(b)n?1?1)n(1)n1(c)lnnn?2?n! nn?1n?【答案】(c)【解析】(a)snu1u2...un12n2...n, 888112n7111n817nsn()23...n1sn2...nn1sn(1()n)n,84988 8limsn?存在,则收敛。

n?49?111)33收敛,所以(b)收敛。

(b)unnn?12?(1)n1(1)n1(1)n1(c),因为分别是收敛和发散,所以,lnnn2lnnn2lnnn2n2lnnn2lnn?(1)n1发散,故选(c)。

lnnn2?n!un(d)unn,limn1lime11,所以收敛。

nn1nnun n(5)设矩阵a12a,b,若集合1,2,则线性方程组axb有无穷2214a多解的充分必要条件为()(a)a, (b)a, (c)a, (d)a, 【答案】(d)【解析】axb有无穷多解rara3,a0,即(a2)(a1)0,从而a1或a2111111当a1时,a12111?14101012000232从而?232=0=1或=2时axb有无穷多解11111111当a2时,a12201111442000232从而?232=0=1或=2时axb有无穷多解所以选d.(6)二次型f(xx2221,x2,3)在正交变换xpy下的标准形为2y1y2y3,其中p(e1,e2,e3),若q(e,1e,3)e2,f(x1,x2,x3)在正交变换xqy下的标准型为((a)2y22y21y23 (b)2y2221y2y3 (c)2y2y2212y3 (d)2y2221y2y3【答案】(a)【解析】由已知得f(xtapy2y2y221,x2,x3)ytp12y3,qpe23e2(1),从而f(x)ytqtaqyytett1,x2,x32(1)e23ptape23e2(1)yytee221002(1)23ptape23e2(1)y2y21y2y3,其中e12300,010100e1)0102(均为初等矩阵,所以选a。

01(7)若a,b为任意两个随机事件,则(a)p(ab)p(a)p(b) (b)p(ab)p(a)p(b) (c)p(ab)p(a)p(b)2(d)p(ab)p(a)p(b)【答案】(c))【解析】排除法。

若ab,则p(ab)0,而p(a),p(b)未必为0,故p(a)p(b)p(ab),p(a)p(b)p(ab),故b,d错。

2若ab,则p(ab)p(a)p(a)p(b),故a错。

(8)设总体xb(m,),x1,x2,x3为来自该总的简单随机样本,为样本均值,则(a)(m1)n(1)(b)m(n1)(1) (c)(m1)(n1)(1) (d)mn(1) 【答案】(b)【解析】2?1nexes2dxm(1)in1i12?exim(n1)(1)i1二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上)....ln(cosx)_____. 2x0x1【答案】2(9)limsinxlncosx1limsinx1 【解析】limlimx0x0x22x2x0xcosx2sinx(10) 2xdx_______.?21cosx?2【答案】4【解析】sinxsinx2sinx2222xdxdxdx2xdx201cosx1cosx1cosx4222 2?z(11) 若函数zz(x,y)有方程exyzxcosx2确定,则dz(0,1)_______.【答案】dx【解析】对exyzxcosx2两边分别关于x,y,z求偏导,并将(0,1)这个代入,得到z(0,1)1,born to winzxzy(0,1)0,所以dz(0,1)dx。

(12)设是由 xyz1 与三个坐标平面所围成的空间区域,则 x2y3zdxdydz?【答案】141【解析】由对称性,x2y3zdxdydz6zdxdydz6zdzdxdy,??dz其中dz 为平面 zz 截空间区域所得的截面其面积为所以:111232x2y3zdxdydz6zdxdydz6z(1z)dz3z2zzdz0024 11(1?z2)220?022_______ 22120(13) n阶行列式002001【答案】2n?12【解析】按第一行展开得【篇三:2003-2016年考研数学二真题及解析】t>一、选择题 1—8小题.每小题4分,共32分.11.当x0时,若ln(12x),(1cosx)均是比x高阶的无穷小,则的可能取值范围是??()(a)(2,)(b)(1,2)(c)(,1)(d)(0,) 2.下列曲线有渐近线的是(a)yxsinx(b)yx2sinx(c)yxsin(d)yx12121x21 x【详解】对于yxsin,可知x1xy11且lim(yx)lim0,所以有斜渐近线yxxxxx应该选(c)3.设函数f(x)具有二阶导数,g(x)f(0)(1x)f(1)x,则在[0,1]上()(a)当f(x)0时,f(x)g(x)(b)当f(x)0时,f(x)g(x) (c)当f(x)0时,f(x)g(x)(d)当f(x)0时,f(x)g(x)xt27,4.曲线上对应于t1的点处的曲率半径是() 2yt4t1(A)(B) (C)(D)5 501005.设函数f(x)arctanx,若f(x)xf(),则x02x2()(A)1(B)121(C)(D)3322u6.设u(x,y)在平面有界闭区域d上连续,在d的内部具有二阶连续偏导数,且满足?0及xy2u2u. 20,则()2xy(a)u(x,y)的最大值点和最小值点必定都在区域d的边界上;(b)u(x,y)的最大值点和最小值点必定都在区域d的内部;(c)u(x,y)的最大值点在区域d的内部,最小值点在区域d的边界上;(d)u(x,y)的最小值点在区域d的内部,最大值点在区域d的边界上.7.行列式0aa0b00b0cd0c00d等于22(a)(adbc)(b)(adbc) (c)a2d2b2c2(d)a2d2b2c28.设1,2,3是三维向量,则对任意的常数k,l,向量1k3,2l3线性无关是向量1,2,3线性无关的(a)必要而非充分条件(b)充分而非必要条件(c)充分必要条件(d)非充分非必要条件二、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)9.?1?1dx.x22x510.设f(x)为周期为4的可导奇函数,且f(x)2(x1),x0,2,则f(7). 11.设zz(x,y)是由方程e2yzxy2z7确定的函数,则dz|11.,42212.曲线l的极坐标方程为r,则l在点(r,),处的切线方程为. 2213.一根长为1的细棒位于x轴的区间0,1上,若其线密度(x)x22x1,则该细棒的质心坐标x.2214.设二次型f(x1,x2,x3)x1x22ax1x34x2x3的负惯性指数是1,则a的取值范围是.三、解答题15.(本题满分10分)1t求极限limx?x1(t2(e1)t)dt1x2ln(1)x.16.(本题满分10分)已知函数yy(x)满足微分方程xyy1y,且y(2)0,求y(x)的极大值和极小值. 17.(本题满分10分)22xsin(x2y2)dxdy 设平面区域d(x,y)|1xy4,x0.计算xyd?22?18.(本题满分10分)2z2zx2x设函数f(u)具有二阶连续导数,zf(ecosy)满足.若(4zecosy)e x2y2xf(0)0,f(0)0,求f(u)的表达式.19.(本题满分10分)设函数f(x),g(x)在区间上连续,且f(x)单调增加,0g(x)1,证明:(1) 0(2)?bxag(t)dtxa,xa,b;f(x)dx?f(x)g(x)dx.ab?a?ag(t)dta20.(本题满分11分)设函数f(x)x,x0,1,定义函数列 1xf1(x)f(x),f2(x)f(f1(x)),,fn(x)f(fn1(x)),设sn是曲线yfn(x),直线x1,y0所围图形的面积.求极限limnsn.n?21.(本题满分11分)已知函数f(x,y)满足f2(y1),且f(y,y)(y1)2(2y)lny,求曲线f(x,y)0所y成的图形绕直线y?1旋转所成的旋转体的体积. 22.(本题满分11分) 1234设a0111,e为三阶单位矩阵.1203(1)求方程组ax0的一个基础解系;(2)求满足abe的所有矩阵.23.(本题满分11分)11证明n阶矩阵?11100111002与相似. 1100n2015年全国硕士研究生入学统一考试数学(二)试题一、选择题:1?8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. ...(1)下列反常积分收敛的是()(a)?2(b)2lnx(c)1dxdx(d) 2xxlnxx2sint?2xdx xe(2) 函数fxlim(1 t?0x在(,)内()(a) 连续 (b) 有可去间断点 (c)有跳跃间断点 (d) 有无穷间断点1?xcos,x0x(0,0),若fx在x0处连续则:( ) (3) 设函数fx0,x0(a)0 (b)01 (c)2(d)02(4)设函数f(x)在,内连续,其中二阶导数f(x)的图形如图所示,则曲线yf(x)的拐点的个数为()(a) 0(b) 1 (c)2(d) 3(5) 设函数fu,v满足fxy,x2y2,则(a)yfu1与v1fu1v1依次是 ()1111,0 (b) 0,(c),0 (d) 0,22224xy1与直线yx,y围成的平面区域,(6)设d是第一象限由曲线2xy1,函数fx,y 在d上连续,则fx,ydxdy ()d?(a)?d341sin212sin2? frcos,rsinrdr (b)??34d1sin212sin2 f?rcos,rsinrdr frcos,rsindr ?(c)d34?(d)d34f?rcos,rsindr。

相关文档
最新文档