微生物的进化系统发育分类描述
微生物的分类和系统发育
![微生物的分类和系统发育](https://img.taocdn.com/s3/m/f2ee2a5cfe00bed5b9f3f90f76c66137ee064f2a.png)
病毒
定义:病毒是一种非细胞微生物, 必须寄生在活细胞中才能复制繁殖。
形态:病毒的形态各异,常见的有 球形、杆形和丝形等。
添加标题
添加标题
添加标题
添加标题
分类:病毒可以根据其宿主范围和 基因组类型进行分类,如DNA病毒 和RNA病毒,以及单链和双链病毒。
繁殖方式:病毒通过吸附、侵入、 复制和释放等过程在宿主细胞内繁 殖。
应用:藻类在食品、饲料、医药、化工等领域具有广泛的应用价值
微生物的系统发育
进化树
定义:表示生物进化关系的图形,由共同祖先出发,随着时间发展而分支 进化 作用:揭示生物之间的亲缘关系和进化历程
构建方法:基于基因序列、蛋白质序列等分子生物学数据
应用领域:生物分类学、进化生物学、古生物学等
基因组学
基因组学在微生物系统发育研究中的应用 基因组学在微生物分类中的作用 基因组学在微生物进化研究中的应用 基因组学在微生物生态学研究中的应用
微生物的分类和系统发育
汇报人:XX
微生物的分类 微生物的系统发育
微生物的分类
细菌ห้องสมุดไป่ตู้
定义:细菌是 一种单细胞微 生物,是所有 生物中最原始
的一种
分类依据:根 据细菌的形态、 染色反应、培 养特性等特征
进行分类
常见种类:球 菌、杆菌、螺
旋菌等
生物学意义: 细菌在自然界 中分布广泛, 是地球生态系 统的重要组成 部分,对人类 也有着重要的
真菌
真菌分为酵母菌、霉菌和蘑 菇三大类
真菌属于真核生物,具有细 胞核和细胞器
真菌通过无性繁殖和有性繁 殖的方式进行繁殖
真菌在生态系统中扮演着分 解者、生产者和消费者的角
色
《微生物学》微生物的分类
![《微生物学》微生物的分类](https://img.taocdn.com/s3/m/5b992fdb2f60ddccdb38a0c4.png)
PART THREE
第三节 微生物分类单元与分类等级
PART THREE 微生物分类单元与分类等级
分类单元(taxa)是指具体的分类群,如细菌域(Bacteira)、放
1 线菌目(Actinomycetales)、红球菌属(Rhodococcus)等就分 别代表一个分类单元。
分类等级,按照域(domain)、界(kingdom)、门(division/phylum)、
PART FIVE 原核微生物的分类
图5-2 BIOLOG GenⅢ鉴定板 (关统伟,2016) a, 实验内容;b,结果判读
PART FIVE 原核微生物的分类
图5-3 BIOLOG鉴定系统操作过程 (关统伟,2016)
PART FIVE 原核微生物的分类
二、 化学分类
细胞脂肪酸 组分测定
全细胞水解 糖组分分析
PART FOUR 微生物的命名
二、 三名法
• 当 某 一 种 微 生 物 是 一 个 亚 种 (subspecies, “subsp”) , 或 是 一 个 变 种 (variety, “var”,亚种的同义词)时,使用三名法。
• 三名法(trinominal nomenclature)命名的学名原则:
PART FIVE 原核微生物的分类
a.
b.
API Staph细菌鉴定系统
c.
图5-1 API Staph鉴定试条 (关统伟,2016) a. 实验内容;b,操作步骤;c,结果判读
PART FIVE 原核微生物的分类
Biolog全自动微生物鉴定系统
Biolog全自动微生物鉴定系统是美国安普科技中心(ATC US)研发的一套 系统。此系统适用于动、植物检疫,临床和兽医的检验、食品、饮水卫生的 监控,药物生产,环境保护,发酵过程控制,生物工程研究,以及土壤学、 生态学和其它研究工作等。此系统的商品化,开创了细菌鉴定史上新的一页。 特点是自动化、快速(4 ~ 24h)、高效和应用范围广。
微生物分类的方法
![微生物分类的方法](https://img.taocdn.com/s3/m/778d8890ac51f01dc281e53a580216fc710a5365.png)
微生物分类的方法
1.形态学分类:
-非细胞型微生物(病毒):根据其核酸类型、壳体结构、基因组大小和结构等特征分类。
-原核细胞型微生物(细菌、古菌):通过显微镜观察它们的形态如形状、排列方式(杆菌、球菌、螺旋菌等)、染色反应(革兰氏阳性菌或革兰氏阴性菌)、鞭毛结构以及特殊结构(芽孢、荚膜等)来初步分类。
-真核细胞型微生物(真菌、原生动物等):根据孢子形态、菌丝构造、繁殖方式等进行区分。
2.生理生化特征:
-进行一系列生化实验,例如糖发酵试验、氧化酶试验、触酶试验、脂肪酸组成分析等,以确定微生物在新陈代谢上的差异并据此分类。
3.分子生物学方法:
-DNA-DNA杂交技术:比较不同微生物间全基因组或者特定基因序列的相似度,以此作为分类依据。
-16SrRNA基因测序:这是细菌和古菌分类的金标准,通过分析16SrRNA基因序列的同源性和系统发育关系进行分类。
-基因组学分析:随着高通量测序技术的发展,对微生物全基因组进行测序,通过比对基因组序列构建系统发育树,实现更精细的分类。
4.生态分布与功能特性:
-微生物在自然环境中的分布、生存策略及所起的生态功能也是分类的重要参考因素。
微生物学知识点
![微生物学知识点](https://img.taocdn.com/s3/m/221d90d5dc88d0d233d4b14e852458fb760b3869.png)
微生物学知识点微生物学是研究微生物的起源、结构、生理、遗传、分类、繁殖等方面的学科,也是生物学的重要分支之一、微生物学的研究对象主要包括细菌、真菌、病毒等。
下面是微生物学的几个重要知识点。
1.微生物的起源和进化:微生物是地球上最早出现的生命形式之一,其起源可以追溯到40亿年前。
微生物通过进化不断适应和适应变化的环境,演化成了今天的各种形式。
微生物在地球上的生命史和环境适应能力的研究是微生物学的重要内容。
2.微生物的结构:微生物的结构包括细菌的细胞壁、胞质、核物质以及相关的细胞器;真菌的菌丝体、菌丝、孢子等;病毒的DNA或RNA核酸和蛋白质壳。
了解微生物的结构可以帮助揭示其功能和生理特性。
3.微生物的生理特性:微生物的生理特性包括新陈代谢、营养、呼吸、繁殖等。
微生物可以通过多种方式获取能量和营养物质,如光合作用、化学发酵和异养等。
了解微生物的生理特性可以对其生长和代谢过程进行研究。
4.微生物的遗传和突变:微生物的遗传特性是指微生物遗传信息的传递和变异。
微生物可以通过基因重组、纵横转移等方式传递基因信息,进一步影响其适应性和功能。
微生物的突变是指其基因产生突变或重组,从而使其产生新的遗传信息。
5.微生物的分类和系统发育:微生物的分类主要根据其形态、生理特性和遗传信息等进行分类。
微生物的分类可以通过传统的分离培养和形态鉴定,也可以通过分子生物学技术如PCR、DNA测序等进行分类。
同时,微生物的系统发育是指通过研究微生物的遗传信息和进化关系来建立微生物的分类系统。
6.微生物与人类健康:微生物对人类健康有重要影响。
一方面,微生物可以引起人类各种疾病,如细菌感染、真菌感染、病毒感染等。
另一方面,微生物在人类肠道和皮肤上起着重要的保护作用,维护人体的健康状态。
7.微生物与环境的关系:微生物在自然界中广泛存在,并与环境密切相关。
微生物参与了地球上的物质循环过程,如氮循环、硫循环等。
微生物还可以通过合成蛋白质、产生酶等方式参与生物技术的应用,如生物燃料的生产、环境污染物的降解等。
微生物的进化系统发育和分类鉴定
![微生物的进化系统发育和分类鉴定](https://img.taocdn.com/s3/m/040ab278b5daa58da0116c175f0e7cd1842518d0.png)
第22页
第三节 细 菌 分 类
分类是认识客观事物一个基础方法。咱 们要认识、研究和利用各种微生物资源 也必须对他们进行分类。
分类学内容包括三个相互依存又有区分 组成个别: 分类、命名和判定。
微生物的进化系统发育和分类鉴定
第23页
第三节 细 菌 分 类
分类(classification)是依据一定标准(表 型特征相同性或系统发育相关性)对微生物 进行分群归类, 依据相同性或相关性水平排 列成系统, 并对各个分类群特征进行描述, 方 便考查和对未被分类微生物进行判定;
微生物的进化系统发育和分类鉴定
第31页
第三节 细 菌 分 类
三、细菌分类和伯杰氏手册
20世纪60年代以前, 国际上不少细菌 分类学家都曾对细菌进行过全方面分类, 提出过一些在当代有影响细菌分类系统。 但70年代以后, 对细菌进行全方面分类、 影响最大是《伯杰氏手册》。所以该书 当前已成为对细菌进行分类判定主要参 考书。
微生物的进化系统发育和分类鉴定
第32页
第四节 微生物分类判定特征 和技术
鉴于微生物体形微小、结构较简单等特点, 微 生物分类和判定除了像高等生物那样, 采取传 统形态学、生理学和生态学特征之外, 还必须 寻找新特征作为分类判定依据。
在这方面微生物分类学家比动植物分类学家表 现了更高热情, 他们从不一样层次(细胞、分 子)、用不一样学科(化学、物理学、遗传学、
微生物的进化系统发育和分类鉴定
第17页
三、rRNA次序和进化
2. 全序列分析法
寡核苷酸编目分析法, 只取得了16SrRNA分子大 约30%序列资料, 加上采取是一个简单相同性计 算方法, 所以其结果有可能出现误差, 应用上受 到一定限制。
生物3.10微生物的类群、营养、代谢和生长
![生物3.10微生物的类群、营养、代谢和生长](https://img.taocdn.com/s3/m/b15846927e192279168884868762caaedd33bade.png)
微生物的能量代谢
化能自养生物
01
利用化学反应释放的能量来合成有机物质的微生物,如硝化细
菌。
化能异养生物
02
利用有机物质氧化过程中释放的能量来合成有机物质的微生物,
如大肠杆菌。
光能自养生物
03
利用光能来合成有机物质的微生物,如藻类。
微生物的代谢途径
糖酵解途径
葡萄糖在无氧条件下被分解成丙 酮酸,产生少量能量和还原力的 代谢途径,是厌氧微生物的主要 代谢途径。
三羧酸循环
在有氧条件下,线粒体中的乙酰 CoA完全氧化成二氧化碳和水, 并释放能量的代谢途径。
戊糖磷酸途径
葡萄糖经过一系列反应生成五碳 糖和六碳糖的代谢途径,是需氧 生物的主要糖代谢途径之一。
04 微生物的生长
微生物的生长曲线
延迟期
细胞适应生长环境,不进行分 裂,数量基本不变。
对数生长期
细胞快速分裂,数量呈指数增 长。
氧气
好氧微生物需要氧气进行呼吸,厌氧微生物 则在无氧环境下生长。
微生物的生长繁殖方式
无性繁殖
通过二分裂、出芽等方式进行无性繁殖,繁殖速度快。
有性繁殖
通过配子结合形成合子,再发育成新个体,繁殖速度慢。
THANKS FOR WATCHING
感谢您的观看
03 微生物的代谢
分解代谢和合成代谢
分解代谢
微生物通过分解有机物质获取能量和营养物质的过程。这些有机物质可以是糖 类、蛋白质、脂肪等。分解代谢过程中,微生物产生能量并合成新的细胞成分。
合成代谢
微生物利用能量和营养物质合成细胞成分的过程。合成代谢过程中,微生物消 耗能量并产生新的细胞成分,如蛋白质、核酸等。
生物3.10微生物的类群、营养、 代谢和生长
微生物的分类方法
![微生物的分类方法](https://img.taocdn.com/s3/m/ec95ce0768eae009581b6bd97f1922791688be8b.png)
微生物的分类方法微生物是一类微小的生物体,包括细菌、真菌、原生动物和病毒等多种类型。
为了便于研究和分类微生物,科学家们使用了多种分类方法。
下面将介绍一些常见的微生物分类方法。
一、分类方法的发展概述微生物分类方法的发展可以追溯到17世纪的拉特内尔系统。
他通过观察和描述微生物的形态特征,将微生物分为三个大类:细菌、真菌和原生动物。
之后,人们发现微生物还包括病毒等特殊类型,为了更准确地分类微生物,不断有新的分类方法被提出。
基于形态特征的分类方法是最早也是最常用的分类方法之一、细菌可以根据形状(球形、杆状、螺旋形)、大小、颜色等特征进行分类。
真菌可以根据菌丝形态、子实体的形状、颜色等特征进行分类。
原生动物可以根据鞭毛、纤毛、假足、鳞片等结构特征进行分类。
这种方法的优势是直观、简单,但有时不够准确,因为不同种类的微生物可能存在相似的形态特征。
生物化学分类方法利用微生物在生化反应上的差异进行分类。
细菌可以根据其对不同营养源的利用能力、产气能力、氧需求、酶活性等生化特征进行分类。
真菌可以根据其对碳源和氮源的利用能力、酶的产生能力等生化特征进行分类。
利用生化方法可以确定微生物的代谢途径、生态位、对环境的适应能力等,有助于更深入地了解微生物的功能和特性。
随着遗传学的发展,基于遗传特征的分类方法被广泛应用于微生物分类。
该方法利用微生物的基因组DNA序列进行分类。
通过序列比对和构建系统发育树,可以确定不同微生物之间的亲缘关系和进化关系。
常用的是16SrRNA基因,这个基因片段在细菌和原生动物中普遍存在。
利用这一方法,可以准确地确定一些微生物属于哪个科、属和种。
利用微生物的免疫学特性进行分类也是一种常见的方法。
通过检测微生物产生的抗原和体液抗体的相互作用关系,可以将微生物分成不同的免疫血清型,进而进行分类。
这种方法被广泛应用于病原微生物的分类和诊断。
例如,人们常用血清学方法来鉴别细菌和病毒等病原微生物种类。
总结起来,微生物的分类方法有形态特征、生物化学特征、遗传特征和免疫学特征等。
微生物的进化、系统发育和分类鉴定
![微生物的进化、系统发育和分类鉴定](https://img.taocdn.com/s3/m/5e69f18283d049649b66587a.png)
主要仪器设备
通用:气相色谱、液相色谱、质谱、X射 线衍色、核磁共振波谱仪、激光拉曼光谱仪、 激光显微镜等。 专用:阻抗测定、放射测量、微量量热计、 生物发光测量仪、药敏自动测量仪、自动微生物 检测仪。
现代分子生物学和免疫学技术 DNA探针,PCR、DNA芯片、ELISA、免疫 荧光、放射免疫及全自动免疫诊断。 计算机的应用 分类鉴定中的应用:分类单位确定、选择 分类特征;特征资料收集;资料编码、标准化; 相似性数值聚类分析。 在线控制:pH、温度、时间、压力、搅拌 转速、溶氧、补料等。 图像处理、分析、三维模拟,资料存储。
菌株或品系(strain):同种微生物不同来源的 纯培养。模式菌株:按照命名法规的要求,当命名一 个新种时,需要指定一个菌株为这个种的命名模式。 群(group,series):某些微生物特性介于两 种微生物之间,不易区分,两个种及它们之间的微生 物统称为群。
2、分类单元的命名
每一种微生物都有一个自己的专门名称。名称 分两类,一类是地区性的俗名(common name, vernacular name);另一类是国际上统一使用的名 称,即学名(scientific name)。 中国科学院命名(俗名) As1299―――――“1”表示细菌。 As2604―――――“2”表示酵母菌。 As3758―――――-“3”表示霉菌。 As4650――――――“4”表示放线菌。 As5604――――――“5”表示真菌。
噬菌体分型 根据噬菌体的宿主范围可将细菌分为不同的噬 菌型和利用噬菌体裂解作用的特异性进行细菌鉴 定。
3 氨基酸顺序和蛋白质分析
蛋白质是基因的产物,蛋白质氨基酸顺 序直接反应mRNA顺序而与编码基因密切相关。 因此,可以通过对某些同源蛋白质氨基酸比 较来分析不同生物系统发育的关系,序列相 似性越高,其亲缘关系愈近。
第11章微生物的进化、系统发育和分类鉴定
![第11章微生物的进化、系统发育和分类鉴定](https://img.taocdn.com/s3/m/815e4fc44028915f804dc26e.png)
分类(classification):根据生物特征的相似程度 将其分群归类。
地球上的物种估计大约有150万,其中微生物超过10万种, 而且其数目还在不断增加。
生物分类的二种基本原则:
(参见P313)
a)根据表型(phenetic)特征的相似程度分群归类,这种 表型分类重在应用,不涉及生物进化或不以反映生 物亲缘关系为目标; b)按照生物系统发育相关性水平来分群归类,其目标 是探寻各种生物之间的进化关系,建立反映生物系 统发育的分类系统。
a)在两群生物中,如果同一种分子的序列差异很大时,
------------进化距离远,进化过程中很早就分支了。 b)如果两群生物同一来源的大分子的序列基本相同, ------------处在同一进化水平上。
2. 作为进化标尺的生物大分子的选择原则
1)在所需研究的种群范围内,它必须是普遍存在的。
2)在所有物种中该分子的功能是相同的。
上个世纪60-70年代:
(参见P314)
分析和比较生物大分子的结构特征,特别是
蛋白质、RNA和DNA这些反映生物基因组特征
的分子序列,作为判断各类微生物乃至所有 生物进化关系的主要指征。
分子计时器(molecular chronometers) 进化钟(evolutionary clock)
1. 生物大分子作为进化标尺依据 蛋白质、RNA和DNA序列进化变化的显著 特点是进化速率相对恒定,也就是说,分子 序列进化的改变量(氨基酸或核苷酸替换数 或替换百分率)与分子进化的时间成正比。
b 进化距离,即任意两个生物RNAs 间非同源序列的比例
(参见P317) 2. 特征序列或序列印记(signature sequence)
通过对r RNA全序列资料的分析比较(特别是采 用计算机)发现的在不同种群水平上的特异的 特征性寡核苷酸序列,或在某些特定的序列位 点上出现的单碱基印记。
微生物的进化系统发育
![微生物的进化系统发育](https://img.taocdn.com/s3/m/e81075ae846a561252d380eb6294dd88d0d23d2e.png)
03
生物信息学方法将有助于发现 新的进化规律和模式,为进化 生物学提供新的理论框架和见 解。
感谢您的观看
THANKS
微生物的进化关系分析
进化关系分析主要关注不同微生物种 群之间的遗传差异和相似性,通过比 较基因组学、蛋白质组学等方法来研 究。
VS
进化关系分析有助于揭示微生物种群 之间的亲缘关系和演化历程,对于理 解微生物多样性和生态系统的功能具 有重要意义。
微生物的进化速率和方向
进化速率是指பைடு நூலகம்种在进化过程中基因序列、形态特征等发生变化的速度,而进化方向则是指物种在进 化过程中所呈现的趋势或路径。
微生物的进化系统发育
目录
• 微生物的进化历程 • 系统发育学的基本概念 • 微生物的系统发育分析 • 微生物进化系统发育的应用 • 微生物进化系统发育的未来展望
01
微生物的进化历程
微生物的起源
生命之源
微生物是地球上最早的生命形式之一,大约在35亿年前就已经存在。目前普遍认为,微生物是通过自我复制的分 子逐渐演化而来,这一过程发生在地球的原始大气和海洋环境中。
微生物鉴定
通过比较未知微生物与已知微生物的基因序列,可以确定微生物的种类和种群,为疾病 诊断、环境监测等领域提供依据。
微生物生态学研究
生态位分析
微生物群落分析
通过研究微生物在生态系统中的位置和作用, 揭示微生物在生态系统中的功能和相互关系。
通过分析微生物群落的基因序列,了解微生 物群落的组成、结构和动态变化,为环境保 护和生物修复提供指导。
分子系统发育分析是利用分子生物学技 术,通过比较不同微生物的基因序列、 蛋白质序列等分子标记来推断它们的进 化关系。
常用的分子系统发育分析方法包括基因序列 比对、系统发生树构建等,这些方法能够揭 示微生物间的亲缘关系和进化路径。
微生物的进化系统发育
![微生物的进化系统发育](https://img.taocdn.com/s3/m/625f7e1b3a3567ec102de2bd960590c69ec3d80c.png)
系统发育树的解读
物种分类
01
系统发育树可以帮助我们了解不同物种之间的亲缘关系,从而
进行正确的物种分类。
生物进化历程
02
系统发育树揭示了生物的进化历程,有助于我们理解生物进化
的规律和机制。
生物多样性的起源
03
通过系统发育树的研究,我们可以了解生物多样性的起源和演
化过程,为生物多样性的保护和利用提供科学依据。
01
环境污染
人类活动造成的环境污染可能影响微生物的生存和进化,如工业废水排
放可能影响水生微生物群落结构。
02
城市化与生态系统变化
城市化进程中生态系统发生变化,可能影响自然微生物群落的平衡和进
化。
03
农业活动与转基因生物
农业活动中使用农药和转基因生物可能对土壤微生物群落产生影响,改
变其进化轨迹。
THANKS
病原微生物在进化过程中可能发生变异,导致其致病力增强或传播 方式改变,从而引发新的疾病或使原有疾病更难治疗。
耐药性进化
微生物在进化过程中可能发展出对抗生素等药物的耐药性,使得一 些常见的感染病变得难以治疗。
共生微生物进化
共生微生物与人体和谐共存,其进化可能影响人体健康状况,如肠 道微生物群落的改变可能影响人体消化、免疫等方面。
微生物的进化机制
基因突变
基因突变是微生物进化的重要机制之一。基因突变可以产生新的 基因和性状,使微生物能够适应新的环境。
基因重组
基因重组也是微生物进化的重要机制之一。通过基因重组,微生物 可以获得新的遗传物质,从而产生新的性状和适应性。
自然选择
自然选择是微生物进化的关键机制之一。在自然环境中,只有适应 环境的微生物才能生存和繁殖,从而推动微生物的进化。
微生物的分类和鉴定
![微生物的分类和鉴定](https://img.taocdn.com/s3/m/1ee81d03c5da50e2524d7fde.png)
界(Kindom):真菌界 门(Phyllum):真菌门 纲(Class):子囊菌纲 目(Order):内孢霉目 科(Family):内孢霉科 属(Genus):酵母属 种(Species):啤酒酵母
(二)种的概念
在微生物中,种的定义是很难下的。至今还找不 到一个公认的、明确的种的定义。 种的定义:是一个基本分类单元,是一大群表型 特征高度相似、亲缘关系极其接近、与同属内的 其他物种有着明显差异的一大群菌株的总称。 新种(species nova,sp. nov或nov sp.):是指权 威性的分类、鉴定手册中从未记载过的一种新分 离并鉴定过的微生物。 如北京棒杆菌AS 1.299,新种(Corynebacterium pekinense sp.nov AS 1.299)
“subsp”)或变种(variety,简称“var”,) 时,学名应三名法拼写。
学名 = 属名+种名加词 + 符号subsp或var + 亚种和变种的加词
排斜体 排正体(可省略) 排斜体(不可省略)
例:苏云金芽孢杆菌蜡螟亚种
Bacillus thuringiensis subsp galleria
禽流感病毒
照片中的蓝色部分就是H5N1禽流感病毒, 下面的红色部分则是健康人体细胞,照片 显示H5N1正在攻击健康的细胞。
• H和N都是指病毒的糖蛋白(蛋白质),一种糖蛋白 叫血凝素(HA),另一种叫神经氨酸酶(NA)。 这两种糖蛋白容易发生变异。 • 根据糖蛋白变异的情况,HA分为H1—H15十五个不 同的型别,NA分为N1—N9九个不同的型别。 • 其中H5与H7为高致病亚型。
4.菌株(strain)
菌株:又称品系,表示由一个独立分离的单细胞 (或单个病毒粒)繁殖而成的纯遗传型群体及其 一切后代。 菌株===纯培养物===纯分离物 菌株===克隆 菌株的名称,可随意确定,一般可用字母加编号 表示,字母多表示实验室、产地或特征等的名称, 编号表示序号等数字。 例如:大肠埃希氏菌的两个菌株 E.coli K12 基因组已于1997年发表 E.coli O-157:H7 基因组已于2001年发表
微生物的分类和鉴定
![微生物的分类和鉴定](https://img.taocdn.com/s3/m/d4f1cbe6a0c7aa00b52acfc789eb172ded6399e9.png)
微生物的分类和鉴定第十章微生物的分类和鉴定一、名词解释:01.系统学(systematics):是研究生物多样性及其分类和演化关系的科学。
分子系统学是检测、描述并揭示生物在分子水平上的多样性及其演化规律的科学。
研究内容包括了群体遗传结构、分类学、系统发育和分子进化等领域。
02.系统树:在研究生物进化和系统分类中,常用一种树状分支的图型来概括各种(类)生物之间的亲缘关系,这种树状分支的图型也称为发育树(phylogenetic tree)。
03.分子系统树:通过比较生物大分子序列差异的数值构建的系统树称为分子系统树。
04.微生物分类学(microbial taxonomy):是一门按微生物的亲缘关系把它们安排成条例清楚的各种分类单元或分类群的科学,其具体任务有三,即分类、鉴定和命名。
05.分类(classification):根据文献资料,经过科学的归纳和理性的思考,整理成一个科学的分类系统。
即解决从个别到一般或从具体到抽象的问题。
06.鉴定(identification):通过详细观察和描述一个未知名称纯种微生物的各种性状特征,然后查找现成的分类系统,以达到对其知类、辨名的目的。
即解决从一般到特殊或从抽象到具体的问题07.命名(nomenclature):为一个新发现的微生物确定一个新学名的过程。
08.培养物(culture):是指一定时间一定空间内微生物的细胞群或生长物。
如微生物的斜面培养物、摇瓶培养物等。
如果某一培养物是由单一微生物细胞繁殖产生的,就称之为该微生物的纯培养物(pure culture)。
09.菌株(strain):从自然界分离得到的任何一种微生物的纯培养物,都可以称为微生物的一个菌株;用实验方法(如通过诱变)所获得的某一菌株的变异型,也可以称为一个新的菌株,以便与原来的菌株相区别。
菌株是微生物分类和研究工作中最基础的操作实体。
10.标准菌株:指能代表这个种的各典型性状的一个被指定的菌株。
考研必备《微生物》第10章微生物分类鉴定
![考研必备《微生物》第10章微生物分类鉴定](https://img.taocdn.com/s3/m/b5a816c72cc58bd63186bdc6.png)
(根据现有系统确定未知微生物分类归属的过程)
主要以细菌为例介绍微生物分类、命名和鉴定的有关知识
一、分类单元及其等级
界
门
纲
目
科 属
(参见P339)
种
根据Carl Woese的 理论,现在还在界 之上使用域(domain)
(把全部生物先分为 古生菌域、细菌域和 真核生物域, 域下面再分界。)
(参见P346)
(参见P360)
16S rRNA被普遍公认为是一把好的谱系分析的“分子尺”
1)rRNA普遍存在于一切细胞内; 2)它们的生理功能既重要又恒定; 3)16SrRNA在细胞中含量较高、较易提取;
4)编码rRNA的基因十分稳定;
5)rRNA的某些核苷酸序列非常保守; 6)相对分子量适中。
利用16SrRNA建立分子进化树的美国科学家
(根据现有数据建立系统的过程)
命名(nomenclature):是根据命名法规,给每一个分类群一个专有 的名称;
(分类系统建立过程中的步骤之一)
鉴定(identification或determination):借助于现有的微生物分类
系统,通过特征测定,确定未知的、或新发现的、或未明确分类
地位的微生物所应归属分类群的过程。
第10章
微生物的分类和鉴定
第一节:细菌分类
(参见P339)
分类是认识客观事物的一种基本方法。我们要认识、 研究和利用各种微生物资源也必须对它们进行分类。
分类学涉及三个相互依存又有区别的组成部分:
分类、
命名、
鉴定
分类(classification):根据一定的原则(表型特征相似性或系统发育 相关性)对微生物进行分群归类,根据相似性或相关性水平排列成 系统,并对各个分类群的特征进行描述,以便查考和对未被分类的 微生物进行鉴定;
微生物可以分成哪三行八大类啊详细点
![微生物可以分成哪三行八大类啊详细点](https://img.taocdn.com/s3/m/bc2b01d908a1284ac950431e.png)
悬赏分:0 -解决时间:2006-9-19 13:07
提问者:zzj7746 -魔法学徒一级
最佳答案
微生物的分类,鉴定及命名
1,生物界的分类
地球上的物种估计大约有150万,其中微生物超过10万种,而且其数目还在不断增加.
在生物进化历史过程中演化形成生物种类和种群的多样性.
为种内的再分类.
当某一个种内的不同菌株存在少数明显而稳定的变异特征或遗传形状,而又不足以区分成新种时,可以将这些菌株细分成两个或更多的小的分类单元——亚种.
变种是亚种的同义词,因"变种"一词易引起词义上的混淆,从1976年后,不在使用变种一词.通常把实验室中所获得的变异型菌株,称之为亚种.
如:E.coli k12(野生型)是不需要特殊aa的,而实验室变异后,可从k12获得某aa的缺陷型,此即称为E.coli k12的亚种.
表型特征结合分子水平上比较微生物的基因型特征(如16S rRNA)探讨微生物进化,系统发育和分类鉴定.
★微生物分类学的三个任务:分类,鉴定及命名
☆分类是根据微生物的相似性和亲缘关系,将微生物归入不同的分类类群.
☆鉴定是确定一个新的分离物属于已经确认的分类单元的过程.
☆命名是根据国际命名法规给微生物分类单元以科学的名称.
a)根据表型(phenetic)特征的相似程度分群归类,这种
表型分类重在应用,不涉及生物进化或不以反映生
物亲缘关系为目标;
b)按照生物系统发育相关性水平来分群归类,其目标
是探寻各种生物之间的进化关系,建立反映生物系
统发育的分类系统.
★从两界系统经历过三界系统,四界系统,五界系统甚至六界系统,最后又有了三原界(或三总界)系统.
微生物的分类
![微生物的分类](https://img.taocdn.com/s3/m/adc2e7ffaa00b52acfc7ca43.png)
一、进化指征的选择
②选择在各种生物中功能同源的大分子。 催化不同反应的酶的氨基酸序列或者具有 不同功能核酸的核苷酸序列不能进行比较, 因为功能不相关的分子也意味着进化过程 中来源不同,对这一类不相关分子进行比 较也不期望他们会表现出序列的相似性。
第一节 绪论
分子生物学的发展,使我们不仅可 以根据表型特征,而且可以从分子水平上, 通过研究和比较微生物乃至整个生物界的 基因型特征来探讨生物的进化、系统发育 和进行分类鉴定。
第二节 进化的测量指征
20世纪70年代以前,生物类群间的亲缘 关系主要是根据形态结构、生理生化、行 为习性等表型特征以及少量的化石资料来 判断它们之间的亲缘关系。
一、进化指征的选择
20世纪70年代以后研究为生物的 系统发育,主要是分析和比较生物大分子 的结构特征,特别是蛋白质、RNA和DNA 这些反映生物基因组特征的分子序列,作 为判断各类微生物乃至所有生物进化关系 的主要特征。
一、进化指征的选择
为了准确确定各种生物之间的进化关系, 还必须挑选恰当的大分子来进行序列研究。 在挑选大分子时应注意以下几点:
API系统已为国内外微生物学家所公认,并为许多实验室 普遍选用,适用于API系统鉴定的细菌有700多种,由于具 有自动、快速、高效的特点,可广泛应用于医药、临床、 兽医、食品、水质测定、环境保护、药物生产、发酵、生 物工程、动植物检疫、 生态学和土壤学等 研究,特别适合于 快速、大量的菌株 鉴定。
高度相似、亲缘关系极其接近、与同属内的其他物种有着明 显差异的一大群菌株的总称。在微生物中,一个种只能用该 种内的一个典型菌株当作它的具体代表,此菌株维该种的模 式种。
微生物分类的三域学说鉴定依据
![微生物分类的三域学说鉴定依据](https://img.taocdn.com/s3/m/9b6f2d75af1ffc4ffe47ac70.png)
5. 三域学说的意义
五界分类系统的依据主要为营养方式、形态和 细胞结构。 三域学说主要根据遗传特性 研究意义: 三域理论的建立和发展,从分子水平上对生物 分界的划分进行了新的探讨 对于研究生明的起源和生物进化也具有重要科 学价值。
理解真核生物起源的内共生学说 地球上所有生物有同一祖先 线粒体来源于细菌,即细菌被真核生物吞噬, 与宿主发生内共生关系,后演变为线粒体 好氧细菌被变形虫状的原始真核生物吞噬后、 经过长期共生能成为线粒体 蓝藻被吞噬后经过共生能变成叶绿体
2. 三域学说的建立
Carl Woese
20世纪70年代末由于美国伊利诺斯大学的 C.R.Woese(伍斯)等人对大量微生物和其他生 物进行16s和18srRNA的寡核苷酸测序 并比较其同源性水平后,提出了一个与以往各种 界级分类不同的新系统,称为三域学说(Three Domains Theory) “域”是一个比界更高的界级分类单元,过去曾 称原界。三个域指的是细菌域(以前称“真细菌 域”)、古生菌域(以前称古细菌域)、和真核 生物域
高等动植物化石资料丰富,可根据形态学、比较 胚胎学等进行分类 微生物个体小,形态简单,容易受环境影响而变 异,有些种类缺少有性繁殖,化石资料少 微生物分类学(Microbial taxonomy)要按微生 物的亲缘关系把它们安排成条理清楚的各种分类 单元或分类群的科学
分类,建立分类系统 鉴定是通过详细观察和描述一个未知名称纯种微 生物的各种形状特征,查找分类系统,确定其在 系统中的位置,达到知类、辨名的目的 命名是为一个新发现的微生物,按照国际命名法 ,给予一个新的学名 分类是宏观战略工作,鉴定是细微工作,命名是 重新总结
The Three-Domain System
微生物的分类方法(一)
![微生物的分类方法(一)](https://img.taocdn.com/s3/m/576b410ff011f18583d049649b6648d7c0c7085b.png)
微生物的分类方法(一)微生物的分类1. 传统分类方法•构建在形态学和生物学特征上的分类方法。
•包括原核生物和真核生物两个域。
•原核生物包括细菌和古细菌。
•真核生物包括原生生物和真核生物。
2. 分子生物学分类方法•基于微生物的基因组和遗传信息进行分类。
•利用16S rRNA和18S rRNA序列进行分析。
•通过比对序列相似性进行分类。
•可以更准确地识别和分类微生物。
3. 元基因组学分类方法•基于微生物基因组内的多个基因进行分类。
•可以揭示微生物的功能和环境适应性。
•可以分析微生物的代谢途径和功能群。
4. 共生状态分类方法•将微生物按照其与宿主的相互作用类型进行分类。
•分为共生、寄生和共生/寄生两种类型。
•可以研究微生物与宿主之间的关系。
5. 生态学分类方法•根据微生物在生态系统中的功能和角色进行分类。
•包括产气生物、异养微生物和光合微生物等类别。
•可以研究微生物对生态系统的影响。
6. 基因功能分类方法•将微生物根据其基因功能进行分类。
•可以研究微生物的代谢途径和功能特点。
•可以揭示微生物的潜在应用前景。
7. 福尔马林方法•将微生物根据形态、染色和细胞结构进行分类。
•包括细菌、放线菌和真菌等不同类型。
•可以通过显微镜观察到微生物的形态特征。
8. 表型分型方法•将微生物根据特定的表型特征进行分类和鉴定。
•包括生长特征、代谢特征和菌落特征等。
•可以快速鉴定微生物的种类。
以上是微生物分类的一些常见方法,每种方法都有其独特的优势和适用范围。
通过综合应用不同的分类方法,可以更全面地了解微生物的多样性和功能特点,为微生物研究和应用提供重要的参考依据。
9. 生物化学分类方法•根据微生物的代谢产物和酶活性进行分类。
•可以研究微生物的代谢功能和生物合成能力。
•可以应用于微生物鉴定和药物研发。
10. 系统发育分类方法•通过比较微生物的遗传关系和进化树来进行分类。
•利用多序列比对和系统发育树构建的方法。
•可以揭示微生物的亲缘关系和演化历史。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rRNA序列测定和分析方法
1、寡核苷酸编目分析法-30%序列, 发现古生菌
(1)16SrRNA提取--T1核酸酶水 解--同位素标记--电泳分离、放 射自显影技术、电泳图谱,确定 寡核苷酸分子序列
相似性系数法和序列印记法比较亲 缘关系
• 相似性系数法:通过计算相似性 系数SAB值来确定微生物之间的关 系(SAB=2NAB/(NA+NB)
三界生物的主要特征
• 伍斯:用寡核苷酸序列编目分析法
• 三界(域) :Bacteria(细菌)、Archaea(古生菌)和 Eukarya(真核生物)
第二节 细菌分类
• 分类(classification)是根据一定的原则(表型特征
相似性或系统发育相关性)对微生物进行分群归类, 排列成系统,并对各个分类群的特征进行描述, 以便查考和对未被分类的微生物进行鉴定
门Phylum(phybum) 纲Class(Classis) 目Order(Ordo) 科Family(Familia) 属Gennus(Genus) 种Species(Species)
“亚”、“超”、“族”—辅 助单元
分类单元及其等级
• 培养物(culture),是指一定时间一定空间内微生物的细胞群或生长物。
• 菌株(strain),从自然界中分离得到的任何一种微生物的纯培养物都可以 称为微生物的一个菌株;用实验方法(如通过诱变)所获得的某一菌株的变 异型---新的菌株,与野生型区别。
• 种群(population)----是指一定空间中 同种个体的组合。
• 种(species),是生物分类中基本的分类单元和分类等级,具有共同特征 的亚种组成
“新种”(sp.nov): 新被鉴定的种发表时应在其学名后标上 sp.nov.的符号,新种发表前应将其模式菌株的培养物存放在一 个永久性的保藏机构,并应允许人们从中取得
2、在16SrRNA分子中(系谱分析的分子尺,古化石),既含有 高度保守的序列区域,又有中度保守和高度变化的序列区域, 因而它适用于进化距离不同的各类生物亲缘关系的研究
3、16SrRNA分子量大小适中,便于序列分析. (5S\16S\23S,120个核苷酸\1540\2900)
4、rRNA普遍存在于真核生物和原核生物中,且占总RNA的 90%,便于提取(伍斯)。
古生菌、细菌和真核生物的16S(18S)RNA的印记序 列
2、全序列分析法 用反转录酶和双脱氧序列分析,可以对未经纯化的rRNA抽提物 进行直接的序列测定
双脱氧核苷终止法测定全序列
系统发育树
• 系统发育树----在研究生物进化和系统分类中,常用一种 树状分枝的图型来概括各种(类)生物之间的亲缘关系,这 种树状分枝的图型被称为系统发育树(phylogenetic tree),简称系统树
• 命名(nomenclature)是根据命名法规,给每一个
分类群一个专有的名称
• 鉴定(identification或determination)则是指借
助于现有的微生物分类系统,通过特征测定,确 定未知的、或新发现的、或未明确分类地位的微 生物所应归属分类群的过程
分类单元及其等级
七级分类单元 • 界Kingdom(Regnum)
第十二章 微生物的进化、系统发 育和分类鉴定
• 进化的测量指征 的快速鉴定和自动化分析技术
第一节 进化的测量指征
• 高等动植物判断亲缘关系:形态结构、生理生 化、行为习性等表型特征,少量的化石资料
• 微生物:形体微小、结构简单、缺少有性繁殖 过程,依靠表型特征无法测量其系统发育
• 无根树:只是简单表示生物类群之间的系统发育关系, 并不反映进化途径
• 有根树:不仅表示出A、 B、C、D的亲疏,而且反 映出它们有共同的起源及 进化方向
全生命系统树(Olsen和Woese 1993)
• 基因组系列研究表明:在域内和域间存在广泛的 基因水平转移,及真核生物拥有来自细菌或古生 菌的基因,两域之间也有频繁的基因交换。甚至 细菌也可从真核生物域获得基因。
• 序列印记法:通过序列比较后, 若发现某些序列仅为某种(群)微 生物所特有,这些序列即可作为 该种(群)微生物的印记序列
序列印记通常出现在某一特定系统发育群的全部 成员或绝大多数成员。 20世纪70年代末,生命分为三界的理论,就是采 用寡核苷酸编目分析法对大量微生物分析比较后 提出来的
电泳的原理
• 亚种(subspecies)或变种(variety),当某一个种内的不同菌株存在少数明 显而稳定的变异特征或遗传性状而又不足以区分成新种时,将这些菌株 细分成两个或更多的小的分类单元--亚种。亚种是正式分类单元中地位最 低的分类等级。
• 型(form或type),常指亚种以下的细分
• 属(genus),是介于种(或亚种)与科之间分类等级,也是生物分类中的基 本分类单元。通常是把具有某些共同特征或密切相关的种归为一个高一 级的分类单元,称之属。
双命名法 学名 = 属名 + 种名 + 首命人.年 + 现命人.年
词首大写 词首小写 通常学术论文中不写
Bacillus subtilis (Ehrenberg) Cohn 1872 Escherichia coli (Migula) Castellani et Chalmers 1919
学名 = 属名 + 种名 + 亚种或变种名称
• 2、在各种生物中功能同源的大分子
• 3、为了鉴定大分子序列的同源位置或同源区, 要求所选择的分子序列必须能严格线性排列, 以便进行进一步的分析比较
• 4、根据所比较的各类生物之间的进化距离来 选择适当的分子序列 (选择进化速率低的分子 序列)
rRNA作为进化的分子指征依据
1、rRNA参予生物蛋白质的合成过程,其功能是任何生物都必 不可少的,而且在生物进化的漫长历程中,其功能保持不变
进化指征的选择:
• 微生物的系统发育,主要是分析和比较生物大分子 的结构特征,特别是蛋白质、RNA和DNA这些反 映生物基因组特征的分子序列,作为判断各类微生 物乃至所有生物进化关系的主要指征
• 蛋白质、RNA和DNA序列进化变化的显著特点是 进化速率相对恒定
合适的指征大分子
• 1、必须普遍存在于所研究的各个生物类群中