15春北航《大学物理(下)》在线作业2满分答案
大学航空航天专业《大学物理(下册)》期末考试试题D卷 含答案
大学航空航天专业《大学物理(下册)》期末考试试题D卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、如图所示,一束自然光入射到折射率分别为n1和n2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r的值为_______________________。
2、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
3、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
4、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
5、同一种理想气体的定压摩尔热容大于定容摩尔热容,其原因是_______________________________________________。
6、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI),(SI).其合振运动的振动方程为x=____________。
7、气体分子的最可几速率的物理意义是__________________。
8、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
9、某一波长的X光经物质散射后,其散射光中包含波长________和波长________的两种成分,其中_________的散射成分称为康普顿散射。
10、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
二、名词解释(共6小题,每题2分,共12分)1、瞬时速度:2、质点的角动量(对点):3、波函数:4、熵增加原理:5、黑体辐射:6、相干光:三、选择题(共10小题,每题2分,共20分)1、一质点沿轴运动,其速度与时间的关系为:,当时,质点位于处,则质点的运动方程为()。
大学航空航天专业《大学物理(下册)》模拟考试试卷 附答案
大学航空航天专业《大学物理(下册)》模拟考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、质量分别为m和2m的两物体(都可视为质点),用一长为l的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O转动,已知O轴离质量为2m的质点的距离为l,质量为m的质点的线速度为v且与杆垂直,则该系统对转轴的角动量(动量矩)大小为________。
2、简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为__________。
3、一小球沿斜面向上作直线运动,其运动方程为:,则小球运动到最高点的时刻是=_______S。
4、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
5、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
6、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________7、两列简谐波发生干涉的条件是_______________,_______________,_______________。
8、一根长为l,质量为m的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
9、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
15春北航《大学物理(下)》在线作业1满分答案
奥鹏15春北航《大学物理(下)》在线作业1一、单选题(共25 道试题,共100 分。
)1. 把一个静止质量为m0的粒子,由静止加速到υ=0.6c(c为真空中的光速)需作的功等于()A. 0.18m0c*cB. 0.25m0c*cC. 0.36m0c*cD. 1.25m0c*c正确答案:B2. 对于有恒定电流通过的导体,下列说法正确的是[ ]A. 导体内部的电场强度为零B. 导体是个等势体C. 导体两端有恒定的电压存在D. 通过导体某个截面的电量在任何相等的时间内都不相等正确答案:C3. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r < R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:A. B1、B2均与r成正比.B. B1、B2均与r成反比C. B1与r成正比, B2与r成反比D. B1与r成反比, B2与r成正比正确答案:C4. 关于电流,下列说法中正确的是[ ]A. 通过导线截面的电量越多,电流越大B. 电子运动的速率越大,电流越大C. 单位时间内通过导体截面的电量越多,导体中的电流越大D. 因为电流有方向,所以电流是矢量正确答案:C5. 下列关于电阻率的叙述,错误的是[ ]A. 当温度极低时,超导材料的电阻率会突然减小到零B. 常用的导线是用电阻率较小的铝、铜材料做成的C. 材料的电阻率取决于导体的电阻、横截面积和长度D. 材料的电阻率随温度变化而变化正确答案:C6. 两块平行平板,间距为d,平板面积均为S,分别均匀带电+q和-q,若两板的线度远大于d,则它们之间相互作用力的大小为[ ]A. q*q/4πεd*dB. q*q/εSC. q*q/2εSD. ∞正确答案:C7. 关于稳恒磁场的磁场强度H的下列几种说法哪个是正确的?[ ]A. H仅与传导电流有关B. 若闭合曲线内没有包围传导电流,则该曲线上各点的H必为零C. 若闭合曲线上各点的H均为零,则该曲线所包围传导电流的代数和为零D. 以闭合曲线L为边缘的任意曲面的H通量相等正确答案:C8. 如果(1)锗用锑(5价元素),(2)硅用铝(3价元素)掺杂,则分别获得的半导体属于下述类型:A. (1)、(2)均为n 型半导体B. (1)为n 型半导体,(2)为p型半导体。
大学航空航天专业《大学物理(下册)》期末考试试卷A卷 附答案
大学航空航天专业《大学物理(下册)》期末考试试卷A卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
2、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
3、沿半径为R的圆周运动,运动学方程为 (SI) ,则t时刻质点的法向加速度大小为________;角加速度=________。
4、三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为,则压强之比_____________。
5、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
6、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
7、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
8、一根长为l,质量为m的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
9、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
10、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
北京航空航天大学工科大学物理II模拟试卷及答案两套试卷
一.选择题(将正确答案的字母填在空格内,每题3分, 共30分)1. 若f (v )为气体分子速率分布函数,N 为分子总数,m 为分子质量,则⎰21d )(212v v v v v Nf m 的物理意义是(A) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差.(B) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和. (C) 速率处在速率间隔1v ~2v 之内的分子的平均平动动能.(D) 速率处在速率间隔1v ~2v 之内的分子平动动能之和.[ ]2. 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为(A) –1200 J . (B) –700 J . (C) –400 J . (D) 700 J .[ ] 3.一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3[ ]4. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能最大,势能为零. (B) 动能最大,势能最大 .(C) 动能为零,势能为零. (D) 动能为零,势能最大 .[ ]5. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.[ ]p (×105 Pa)-3 m 3)6. 波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 5. (B) 4. (C) 3. (D) 2.[ ]7. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4 Å,则U 约为(A) 150 V . (B) 330 V .(C) 630 V . (D) 940 V .(普朗克常量h =6.63×10-34 J ·s)[ ]8. 波长λ =5000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为(A) 25 cm . (B) 50 cm .(C) 250 cm . (D) 500 cm .(普朗克常量h =6.63×10-34 J ·s)[ ]9. 已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π⋅=ψ, ( - a ≤x ≤a ) 那么粒子在x = 5a /6处出现的概率密度为(A) 1/(2a ). (B) 1/a .(C) a 2/1. (D) a /1.[ ]10. 在原子的K 壳层中,电子可能具有的四个量子数(n ,l ,m l ,m s )是(1) (1,1,0,21). (2) (1,0,0,21). (3) (2,1,0,21-). (4) (1,0,0,21-). 以上四种取值中,哪些是正确的?(A) 只有(1)、(3)是正确的.(B) 只有(2)、(4)是正确的.(C) 只有(2)、(3)、(4)是正确的.(D) 全部是正确的.[ ]二.填空题(每题3分, 共30分)1.已知一容器内的理想气体在温度为273 K 、压强为 1.0×10-2 atm 时,其密度为1.24×10-2kg/m 3,则该气体的摩尔质量M mol =____________________;容器单位体积内分子的总平动 动能=________________.(普适气体常量R =8.31 J ·mol -1·K -1)2. 同一种理想气体的定压摩尔热容C p 大于定体摩尔热容C V ,其原因是_______________________________________________________.3. 两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________. 4. 如图所示的是两个简谐振动的振动曲线,它们合 成的余弦振动的初相为__________________. 5. 如图所示, 两相干波源S 1与S 2相距3λ/4,λ为波长.设两波在S 1 S 2连线上传播时,它们的振幅都是A ,并且不随距离变化.已知在该直线上在S 1左侧各点的合成波强度为其中一个波强度的4 倍,则两波源应满足的相位条件是_________________________.6. 波长为λ2与λ1 (设λ1>λ2)的两种平行单色光垂直照射到劈形膜上,已知劈形膜的折射率为n (n >1),劈形膜放在空气中,在反射光形成的干涉条纹中,这两种单色光的从棱边数起第五级暗条纹所对应的薄膜厚度之差是______________.7. 波长为λ的单色光垂直入射在缝宽a =4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.8. 使光强为I 0的自然光依次垂直通过三块偏振片P 1,P 2和P 3.P 1与P 2的偏振化方向成45︒角,P 2与P 3的偏振化方向成45°角.则透过三块偏振片的光强I 为______________.9. 光子波长为λ,则其能量=____________;动量的大小 =___________;质量=____________.10. 根据泡利不相容原理,在主量子数n = 4的电子壳层上最多可能有的电子数为___________个. x t (s)O A A 21-x 1x 224S S (3/4)λ。
北京航空航天大学2015春《电机学》在线作业二满分答案_(1)
15春北航《电机学》在线作业二满分答案一、单选题〔共 10 道试题,共 30 分。
1.三相感应电动机对称运行时,定、转子绕组的两个旋转磁场的关系为〔。
A.始终同步B.相对定子反向C.相对定子同向、但不同步D.有时同步、有时失步正确答案:A2. 8极直流电动机采用单波绕组时,并联支路数为〔。
A.8B. 4C. 2D. 1正确答案:C3. 笼型感应电动机降压起动与直接起动时相比,〔。
A.起动电流、起动转矩均减小B.起动电流减小、起动转矩增加C.起动电流、起动转矩均增加D.起动电流增加、起动转矩减小正确答案:A4. 汽轮发电机与水轮发电机的差别为〔。
A.汽轮发电机转子为凸极结构B.水轮发电机转速快C.汽轮发电机转子半径大D.水轮发电机转子体积大正确答案:D5. 变压器带负载运行,随着负载系数的不同,效率在变化,获得最大效率时有〔。
A.铁耗比铜耗大得多B.铁耗比铜耗小的多C.铁耗等于铜耗正确答案:C6. 变压器在负载运行时,建立主磁通的激磁磁动势是〔。
A.一次绕组产生的磁动势B.二次绕组产生的磁动势C.一次和二次绕组产生的合成磁动势D.以上都不对正确答案:C7. 变压器负载运行时,若负载增大,其铁损为〔。
A.减小B.增大C.不变D.0正确答案:C8. 同步电动机的V型曲线中,以下哪一种说法是正确的〔。
A.电机处于欠励时,功率因数是超前的B.电机处于欠励时,功率因数是滞后的C.电机处于过励时,功率因数是滞后的D.曲线越高,电磁功率越小正确答案:B9. 要消除三相绕组中的齿谐波磁动势,一般可以采用〔。
A.短距绕组B.分布绕组C.斜槽D.无法消除正确答案:C10. 以下哪一种调速方法不是三相异步电动机的调速方法〔。
A.改变负载的功率因数B.改变定子绕组的极对数C.改变供电电源的频率D.改变电动机的转差率正确答案:A北航《电机学》在线作业二二、多选题〔共 10 道试题,共 40 分。
1.变压器忽然短路时,对漏磁场、绕组受的电磁力,正确论述有〔。
北京航空航天大学2015年春学期《信号与系统》在线作业二满分答案
北航《信号与系统》在线作业二一、单选题:1.将信号f(t)变换为( )( )称为对信号f(t)的尺度变换。
(满分:3)A. f(at)B. f(t–k0)C. f(t–t0)D. f(-t)正确答案:A2.在工程上,从抽样信号恢复原始信号时需要通过的滤波器是( )( )。
(满分:3)A. 高通滤波器B. 低通滤波器C. 带通滤波器D. 带阻滤波器正确答案:B3.设一个矩形脉冲的面积为S,则矩形脉冲的FT(傅氏变换)在原点处的函数值等于( )( )。
(满分:3)A. S/2B. S/3C. S/4D. S正确答案:D4.已知一连续系统在输入f(t)的作用下的零状态响应为y=f(4t),则该系统为( )( )。
(满分:3)A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统正确答案:B5.系统的冲激响应是阶跃响应的( )( )。
(满分:3)A. 四阶导数B. 三阶导数C. 二阶导数D. 一阶导数正确答案:D6.时域是实偶函数,其傅氏变换一定是( )( )。
(满分:3)A. 实偶函数B. 纯虚函数C. 任意复函数D. 任意实函数正确答案:A7.理想低通滤波器一定是( )( )。
(满分:3)A. 稳定的物理可实现系统B. 稳定的物理不可实现系统C. 不稳定的物理可实现系统D. 不稳定的物理不可实现系统正确答案:B8.信号的时宽与信号的频宽之间呈( )( )。
(满分:3)A. 正比关系B. 反比关系C. 平方关系D. 没有关系正确答案:B9.If f(t) ←→F(jω) then ( )( )。
(满分:3)A. F( jt )←→2πf(–ω)B. F( jt ) ←→2πf(ω)C. F( jt ) ←→f(ω)D. F( jt ) ←→f(ω)正确答案:A10.脉冲信号f(t)与2f(2t)之间具有相同的是( )( )。
(满分:3)A. 频带宽度B. 脉冲宽度C. 直流分量D. 能量正确答案:C二、多选题:1.以下为4个信号的拉普拉斯变换,其中存在傅里叶变换的信号是( )( )。
15春北航《大学物理(下)》在线作业3满分答案
奥鹏15春北航《大学物理(下)》在线作业3一、单选题(共25 道试题,共100 分。
)1. 均匀磁场的磁感应强度B垂直于半径为r的圆面。
今以该圆周为边线,作一球面S,则通过S的磁通量大小为[ ]A. 2πr*rBB. πr*r BC. 0D. 无法确定正确答案:B2. 真空中两块相互平行的无限均匀带电平板,其面电荷密度分别为+σ和+2σ,两板间距为d,两板间电势差为[ ]A. 0B. 3σd/2εC. σd/εD. σd/2ε正确答案:D3. 变化的电场不产生变化磁场的条件[ ]A. 电场在各向同性介质中变化B. 电场在导体中变化C. 电场随时间均匀变化D. 电场有运动电荷产生正确答案:C4. 关于稳恒磁场的磁场强度H的下列几种说法哪个是正确的?[ ]A. H仅与传导电流有关B. 若闭合曲线内没有包围传导电流,则该曲线上各点的H必为零C. 若闭合曲线上各点的H均为零,则该曲线所包围传导电流的代数和为零D. 以闭合曲线L为边缘的任意曲面的H通量相等正确答案:C5. 对欧姆定律的理解,下列说法中错误的是A. 对同一导体,导体中的电流强度与这段导体两端电压成正比B. 在电压不变时,导体的电阻愈大,通过的电流则愈小C. 在相同电压时,导体的电阻与电流成反比D. 对同一导体,导体两端电压与通过电流的比值不变正确答案:C6. 三根截面相同,长度一样的柱状导线串联在一起,电导率分别为γ1、γ2、γ3,且γ1>γ2>γ3,当通有稳恒电流时,三种导体内场强大小关系为[ ]A. E1 >E2> E3。
大学物理(赵近芳北京邮电大学出版社)下册课后习题答案
- 1 -习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷20220)33(π4130cos π412a q q a q '=︒εε解得q q 33-='(2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r qE πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解:20π4r r q E ε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S qE 0ε=,所以f =S q 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S qE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力S q S q q f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε2220)(d π4d x a xE E llP P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵22222220d d d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQy Qy E E ⎰-+2223222)d (d ll x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴R E E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强P Ed 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵22cos 221l r l +=θ 12cos cos θθ-= ∴24π4d 22220l r ll r E P ++=ελ P Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ ∵l q 4=λ ∴2)4(π422220l r l r qrE P ++=ε 方向沿 8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(x Rarctan=α)解: (1)由高斯定理0d εq S E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴)(π42200x R Sq +=Φε02εq=[221x R x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r S ααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r -∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm 时,3π4∑=ρq -3(外r )内3r∴()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2= 则rlE S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴r E 0π2ελ=沿径向向外 (3) 2R r > 0=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, nE )(21210σσε-=1σ面外, nE )(21210σσε+-= 2σ面外, nE )(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场d 33030r E ερ= ;(2) ρ+在O '产生电场d π4d 3430301E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则03ερrE PO =, 03ερr E O P '-=' ,∴00033)(3ερερερd r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p 在外场E 中受力矩E p M⨯=∴ qlE pE M ==max代入数字 4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解:⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A oC O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强r E 0π2ελ=电子受力大小r e eE F e 0π2ελ== ∴r v m r e 20π2=ελ 得1320105.12π2-⨯==e mv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷r qU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r 为r 方向单位矢量.(2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qx i x U E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d =∴ 2d d 21===AC ABAB AC E E σσ且 1σ+2σS q A=得,32S q A =σ S q A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R qR qU εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q '(电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+R qR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电qq 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力0294π432322F r qq F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得S q261==σσ S qd U 2032-=-=εσσ S qd U 2054+=-=εσσ所以CB 间电场S q d U E 00422εεσ+== )2d(212d 02S q U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外 (2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势rd r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D 得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21U E E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl Q D π2=(1)电场能量密度22222π82l r Q D w εε== 薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力为零,没有加速度.(2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q =∴355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r QW εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B= (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则 02)1.0(220=-+rIr I πμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理学第版修订版北京邮电大学出版社下册习题答案.docx
习题9 9.1 选择题(1)正方形的两对角线处各放置电荷 Q,另两对角线各放置电荷 q,若 Q 所受到合力为零,则 Q与 q 的关系为:()( A) Q=-23/2 q (B) Q=23/2 q(C) Q=-2q(D) Q=2q[ 答案: A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[ 答案: D](3)一半径为 R 的导体球表面的面点荷密度为σ,则在距球面 R处的电场强度()(A)σ / ε0(B)σ /2ε 0(C)σ /4ε 0(D)σ /8ε0 [ 答案: C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[ 答案: C]9.2 填空题(1) 在静电场中,电势不变的区域,场强必定为。
[ 答案:相同 ](2) 一个点电荷 q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[ 答案: q/6 ε0 ,将为零](3) 电介质在电容器中作用(a)——( b)——。
[ 答案: (a) 提高电容器的容量;(b)延长电容器的使用寿命](4) 电量 Q均匀分布在半径为R 的球体内,则球内球外的静电能之比。
[ 答案: 5: 6]9.3电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解 :如题9.3图示(1)以A处点电荷为研究对象,由力平衡知:q 为负电荷解得q 3 q3(2)与三角形边长无关.题 9.3 图题9.4图9.4两小球的质量都是m ,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为 2, 如题 9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题 9.4 图示解得q 2 sin 40mgtan l9.5 根据点电荷场强公式E q,当被考察的场点距源点电荷很近(r →0) 时,则0r 24场强→∞,这是没有物理意义的,对此应如何理解?解 :qr0仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上Er24π式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6在真空中有 A , B 两平行板,相对距离为 d ,板面积为 S ,其带电量分别为+ q 和q 2- q.则这两板之间有相互作用力 f ,有人说 f =40d 2,又有人说,因为f = qE , E q,所以 f =q2.试问这两种说法对吗 ?为什么 ? f 到底应等于多少?0 SS解 :题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强E q看成是一个带电板在另一带电板处的场强也是不对的.正确0S解答应为一个板的电场为 Eq,另一板受它的作用力 f qq q22 0 S 2 0 S,这是两2 0 S板间相互作用的电场力.9.7 长l =15.0cm的直导线 AB上均匀地分布着线密度=5.0x10-9-1的正电C·m荷.试求: (1) 在导线的延长线上与导线 B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距 d 2=5.0cm 处Q点的场强.解:如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq在 P 点产生场强为dE P1dx4π0(a x) 2l dxE P dE P2题 9.7图l(a x)24π02用 l 15 cm, 5.0 10 9 C m 1,a12.5 cm代入得E P 6.74102N C1方向水平向右(2) 同理dE Q1dx方向如题 9.7图所示4π0x 2 d 22由于对称性dE Qx 0 ,即 E Q只有 y 分量,l2∵dE Qy1dx dπ 0x2 d 22x 2d224以 5.0 10 9 C cm 1,l 15 cm,d2 5 cm 代入得E Q E Qy14.96 102N C1,方向沿 y 轴正向9.8一个半径为R的均匀带电半圆环,电荷线密度为, 求环心处O点的场强.解: 如 9.8 图在圆上取dl Rd题9.8 图dq dl R d,它在O点产生场强大小为RddE方向沿半径向外24π0 R则dE x dE sinsin d4π0 R积分E x sin d04π0 R2π0 R∴ E E x,方向沿 x 轴正向.2π0 R9.9均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强 E ;(2)证明:在r l 处,它相当于点电荷q 产生的场强 E .解 :如9.9图示,正方形一条边上电荷q在P点产生物强dE P方向如图,大小为4l∵cos212r 2l2∴dE Pl2 l 22 l 24π0r r42 dE P在垂直于平面上的分量dE dE P cos∴l rdE4π0r 2l 2r 2l 2r 2l 2424题9.9 图由于对称性,P 点场强沿 OP 方向,大小为q∵4l∴E P qr方向沿 OP4π0 ( r 2l 2) r2 l 2429.10 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理qE dSs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量e q.60(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使 q 处于边长 2a 的立方体中心,则边长 2a 的正方形上电通量qe60q对于边长 a 的正方形,如果它不包含q 所在的顶点,则e,24 0如果它包含 q 所在顶点则e0 .如题 9.10 图所示.题9.10图9.11 均匀带电球壳内半径6cm,外半径 10cm,电荷体密度为 2×105-3求距球心C· m5cm,8cm ,12cm 各点的场强.解 :高斯定理 E dS q, E4πr2qs00当 r 5 cm时,q 0 ,E0r 8 cm时, q p 4π(r3r内3 ) 34πr3r内2∴E323.48 104N C1,方向沿半径向外.4π0 rr 12cm时 ,4π33q( r外内3r )4πr外3r内3∴E324.10 104N C1沿半径向外 .4π0 r9.12半径为R1和R2(R2>R1)的两无限长同轴圆柱面,单位长度上分别带有电量和- , 试求 :(1)r < R1;(2)R1< r < R2;(3)r > R2处各点的场强.解 :高斯定理q E dSs取同轴圆柱形高斯面,侧面积S2πrl则 E dSSE2πrl对 (1)r R1q 0, E0(2)R1r R2q l∴E沿径向向外2π0 r(3)r R2q0∴ E 0题9.13 图9.13两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强.解 :如题9.13图示,两带电平面均匀带电,电荷面密度分别为 1 与 2 ,两面间, E1( 12 ) n201面外, E1( 12 )n202面外, E1( 12 ) n20n :垂直于两平面由 1 面指为 2 面.9.14半径为R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r <R 的小球体,如题9.14 图所示.试求:两球心O 与 O点的场强,并证明小球空腔内的电场是均匀的.解 :将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14图(a).(1)球在O点产生电场E100 ,4 π3球在 O 点产生电场E2033OO'4π0dr 3∴O点电场EOO';030d34d3(2)在O产生电场E1033 OO '4π0d球在 O 产生电场E200∴O点电场E03OO '题 9.14 图(a)题9.14图(b)(3)设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r (如题8-13(b)图)则E PO r ,30EPO r,30∴EPEPOEPO( r r )dOO'3 0 3 0 3 0∴腔内场强是均匀的.9.15一电偶极子由 q =1.0×10-6C的两个异号点电荷组成,两电荷距离d=0.2cm,把这电偶极子放在 1.0 × 105N·C-1的外电场中,求外电场作用于电偶极子上的最大力矩.解 :∵电偶极子p在外场E中受力矩∴M max pE qlE 代入数字9.16两点电荷q1=1.5× 10-8C,q2=3.0× 10-8C,相距r1=42cm,要把它们之间的距离变为 r2=25cm,需作多少功?解 : Ar2F dr r2 q1q2drq1q2 (11 )r1r2 4π0r24π0 r1r2外力需作的功A A 6.55 10 6J题9.17 图9.17如题9.17图所示,在A,B两点处放有电量分别为+q ,- q的点电荷,AB间距离为 2 R,现将另一正试验点电荷q0从O点经过半圆弧移到 C 点,求移动过程中电场力作的功.解: 如题 9.17 图示∴ A q0 (U Oq o q U C )6π0 R9.18如题9.18图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解 : (1)由于电荷均匀分布与对称性,AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dq Rd产生O点dE如图,由于对称性,O点场强沿 y 轴负方向题9.18 图[sin() sin ]4π0 R22(2)AB 电荷在 O 点产生电势,以U0同理 CD 产生U 2ln 24π 0πR 半圆环产生U 34π 0 R4 0∴U O U 1 U 2 U 3ln 22π 04 04-1的匀速率作圆周运动.求带9.19 一电子绕一带均匀电荷的长直导线以 2× 10 m ·s电直线上的线电荷密度.-31-19( 电子质量 m 0 =9.1 × 10 kg ,电子电量 e =1.60 × 10 C)解 :设均匀带电直线电荷密度为,在电子轨道处场强电子受力大小F ee eE2π 0 r∴e v 2 2π 0 rmr得2π 0 mv 212.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为E =30kV · cm ,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压.解 :平行板电容器内部近似为均匀电场9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图 ) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反;(2) 相背的两面上,电荷的面密度总是大小相等而符号相同.证 :如题 9.21 图所示,设两导体A 、 的四个平面均匀带电的电荷面密度依次为1,B2,3,4题 9.21 图(1) 则取与平面垂直且底面分别在 A 、 B 内部的闭合柱面为高斯面时,有∴230说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即又∵230∴14说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板2A ,B 和C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22 图所示.如果使 A 板带正电 3.0 ×10-7 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少?以地的电势为零,则 A 板的电势是多少?解 :如题9.22图示,令A板左侧面电荷面密度为 1 ,右侧面电荷面密度为2题9.22 图(1)∵∴∴且得而(2)U AC U AB,即E AC d AC E AB d AB1 E AC d AB2EABdAC21+q A2S2qA ,12q A3S3Sq C 1 S2q A 2 10 7C3q B 2 S 1 10 7 CU A E AC d AC 1 d AC 2.3103V9.23 两个半径分别为R1和 R2( R1< R2)的同心薄金属球壳,现给内球壳带电+ q,试计算: (1) 外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q ;球壳内表面带电则为q ,外表面带电为q ,且均匀分布,其电势U E dr qdr qR2 4π0 r24π0RR2题9.23 图(2) 外壳接地时,外表面电荷q 入地,外表面不带电,内表面电荷仍为q .所以球壳电势由内球q 与内表面q 产生:(3) 设此时内球壳带电量为q ;则外壳内表面带电量为q ,外壳外表面带电量为q q (电荷守恒),此时内球壳电势为零,且得q R1qR2外球壳上电势9.24半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d3R处有一点电荷 + q,试求:金属球上的感应电荷的电量.解 :如题9.24图所示,设金属球感应电荷为q ,则球接地时电势U O0题9.24 图由电势叠加原理有:得q q39.25 有三个大小相同的金属小球,小球 1,2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球 3先后分别接触 1, 2后移去,小球 1, 2之间的库仑力;(2) 小球 3依次交替接触小球 1,2很多次后移去,小球 1, 2之间的库仑力.解 : 由题意知q 2F 00 r 24π (1) 小球 3 接触小球 1后,小球 3和小球 1均带电qq,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电∴此时小球 1与小球 2 间相互作用力(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .32 q 2 q4 ∴ 小球 1、 2间的作用力3 3F 24π 0 r 29F9.26 在半径为 R 1 的金属球之外包有一层外半径为 R 2 的均匀电介质球壳,介质相对介电常数为r ,金属球带电 Q .试求:(1) 电介质内、外的场强;(2) 电介质层内、外的电势;(3) 金属球的电势.解 : 利用有介质时的高斯定理D dSqS(1) 介质内 ( R 1r R 2 ) 场强DQr , E 内Qrr3;4π 34π0 rr介质外 (rR 2 ) 场强(2) 介质外 (r R 2 ) 电势介质内 (R 1 r R 2 ) 电势(3) 金属球的电势9.27 如题 9.27 图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解 : 如题 9.27 图所示,充满电介质部分场强为 E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D1 1,D2 2而D1 0E 1 ,D2 0 rE2∴20 r E2r10 E1题 9.27 图题9.28图9.28两个同轴的圆柱面,长度均为l,半径分别为R1和R2(R2>R1),且l>>R2-R1,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1)在半径 r 处( R1< r < R2=,厚度为dr,长为l的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量;(3)圆柱形电容器的电容.解 :取半径为r的同轴圆柱面( S)则D S rlD( S)d2π当 (R1r R2 ) 时,q Q∴(1)电场能量密度QD2πrlD 2Q 2w22l228π r薄壳中 dW wdQ 2Q 2 dr22l22πrdrl8π r4π rl(2)电介质中总电场能量(3) 电容:∵Q 2W2CQ 2πl∴C22W ln( R2 / R1 )题9.29 图9.29如题9.29图所示,C1=0.25F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB.解 :电容C1上电量电容 C 2与 C3并联 C 23 C 2C3其上电荷 Q 23Q1∴Q23C1U 125 50 U 2C 2335C 239.30C1和 C 2两电容器分别标明“200 pF 、 500 V ”和“ 300 pF 、 900 V ”,把它们串联起来后等值电容是多少?如果两端加上 1000 V的电压,是否会击穿?解 : (1)C1与 C 2串联后电容(2)串联后电压比U 1C23,而 U 1 U 2 1000U 2C12∴U 1600 V, U 2400V即电容 C1电压超过耐压值会击穿,然后 C 2也击穿.9.31 半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2=4.0cm和 R3=5.0cm,当内球带电荷 Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量;(3)此电容器的电容值.解: 如图,内球带电Q,外球壳内表面带电Q ,外表面带电 Q题9.31 图(1) 在r R1和 R2r R3区域在 R1 r R2时QrE134π0 rr R3时QrE234π0 r∴在 R1r R2区域在 r R3区域∴总能量 W W1 W2Q 2(11 1 )8π0R1R2R3(2) 导体壳接地时,只有 R 1 r R 2 时 E Qr , W 2 0 4π 0 r 3∴W W 1 Q 2 ( 1 1 ) 1.01 10 4 J 8π 0 R 1 R 2(3) 电容器电容C 2W 4π 0 /( 1 1 ) Q 2 R 1 R 2。
大学航空航天专业《大学物理(下册)》模拟考试试题 含答案
大学航空航天专业《大学物理(下册)》模拟考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
2、某一波长的X光经物质散射后,其散射光中包含波长________和波长________的两种成分,其中_________的散射成分称为康普顿散射。
3、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
4、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
5、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
6、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
7、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
8、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
9、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
15春北航《继电保护》在线作业二满分答案
15春北航《继电保护》在线作业二满分答案一、单选题(共 10 道试题,共 30 分。
)1. 方向阻抗继电器中,记忆回路的作用是()A. 提高灵敏度B. 消除正向出口三相短路的死区C. 防止反向出口短路动作正确答案:B2. 中性点不接地系统与直接接地系统相比供电可靠性()A. 低B. 高C. 相同D. 无法确定正确答案:B3. 下列对线路距离保护振荡闭锁控制原则的描述,错误的是()A. 单侧电源线路的距离保护不应经振荡闭锁B. 双侧电源线路的距离保护必须经振荡闭锁C. 35kv及以下的线路距离保护不考虑系统振荡误动问题正确答案:B4. 装有三段式电流保护的线路,当线路首端短路时,一般由()动作切除故障。
A. 电流速断保护B. 限时电流速断保护C. 定时限过电流保护正确答案:A5. 变压器差动保护投入前,带负荷测相位和差电压(或差电流)的目的是检查()A. 电流回路接线的正确性B. 差动保护的整定值C. 保护装置动作的正确性正确答案:A6. 如果负载电流超前电压90°,这个负载是()A. 电阻B. 电容C. 电感D. 电阻、电感串连正确答案:B7. 瓦斯保护是变压器的()A. 主后备保护B. 主保护C. 辅助保护正确答案:B8. 220千伏及以上电压等级的电网,线路继电保护一般都采用()原则。
A. 远后备B. 近后备C. 都可以正确答案:B9. 电力系统短路时最严重的后果是()A. 电孤使故障设备损坏B. 使用户的正常工作遭到破坏C. 破坏电力系统运行的稳定性正确答案:C10. 高压输电线路的故障,绝大部分是()A. 单相接地故障B. 两相接地短路C. 三相短路正确答案:A北航《继电保护》在线作业二二、多选题(共 10 道试题,共 40 分。
)1. 一套性能完好的变压器纵差保护应满足()A. 当变压器内部发生短路性质的故障时应快速动作于跳闸B. 当故障变压器空载投入时,可能伴随较大的励磁涌流,应尽快动作C. 当出现纵差保护区外故障伴随很大的穿越电流时,应可靠不动作D. 正常时无论变压器发生何种形式的励磁涌流和过励磁,应可靠不动作正确答案:ABCD2. 自动重合闸的基本要求()A. 动作迅速B. 动作后能自动复归C. 重合闸时间应能整定D. 可靠的启动方式正确答案:ABCD3. 对电力系统继电保护的基本要求是()A. 选择性B. 可靠性C. 速动性D. 灵敏性正确答案:ABCD4. 变压器的运行工作状态一般分为()A. 正常工作状态B. 不正常工作状态C. 故障状态D. 过渡状态正确答案:ABC5. 110kv系统中,假设整个系统中各元件的零序阻抗角相等,在发生单相接地故障时,下面说法错误的是()A. 全线路零序电压相位相同B. 全线路零序电压幅值相同C. 全线路零序电压相位幅值都相同正确答案:BC6. 相比圆特性阻抗继电器,四边形特性方向阻抗元件的优点有()A. 具有更高的灵敏度和更强的躲负荷能力B. 具有较强的躲过渡电阻的能力C. 应用折线特性构成的四边形特性不会因电压互感器二次侧断线而误动作,可省去断线闭锁装置D. 当被保护线路上只有变压器励磁涌流时,四边形特性方向阻抗继电器不会误动作正确答案:ABCD7. 影响距离保护正确工作的因素包括()A. 短路点过渡电阻B. 电力系统振荡C. 电压回路断线D. 串联电容补偿正确答案:ABCD8. 下面说法错误的是()A. 只有距离保护才受分支系数的影响B. 距离保护电流保护均受分支系数的影响C. 电流保护不受分支系数的影响正确答案:AC9. 目前广泛应用的阻抗继电器幅值比较回路分为哪两种类型()A. 均压式B. 环流式C. 感应式D. 比较式正确答案:AB10. 继电保护装置由()几部分构成。
北航15春季《艺术素养》在线作业2满分答案
北航15春季《艺术素养》在线作业2满分答案北航15春季《艺术素养》在线作业2满分答案北航《艺术素养》在线作业2一,单选题1. 咏叹调中的“过门”是在()形成的A. 那不勒斯歌剧乐派B. 威尼斯歌剧乐派C. 罗马乐派D. 威尼斯乐派正确答案:B2. 那不勒斯歌剧乐派最大的作曲家是().A. 佩尔格莱西B. 维拉尔特C. 亚历山德罗.斯卡拉蒂D. 帕莱斯特里纳正确答案:C3. 意大利正歌剧又称().A. 威尼斯歌剧B. 意大利喜歌剧C. 那不勒斯歌剧D. 幕间剧正确答案:C4. 歌剧产生于().A. 德国B. 法国C. 意大利D. 欧洲正确答案:C5. 以下哪些不是莫扎特的喜歌剧:A. 《女人心》B. 《唐璜》C. 《费加罗的婚礼》D. 《安魂曲》正确答案:D6. ()是现存最早的一部那不勒斯喜歌剧A. 《幸福的陷阱》B. 《奥多阿尔多》C. 《光荣的胜利》D. 《格拉科》正确答案:C7. 德国宗教改革发生在()A. 文艺复兴后期B. 16世纪C. 15世纪D. 与威尼斯乐派和罗马乐派同一时期正确答案:B8. 帕莱斯特里纳风格指的是()A. 无伴奏合唱风格B. 壮丽宏伟、富于回声效果的合唱风格C. 无伴奏合唱风格与壮丽宏伟的合唱风格相结合的风格D. 复调音乐风格与世俗音乐风格相结合的风格正确答案:A9. 以下哪部作品是由法国轻歌剧的代表人物奥芬巴赫所写:A. 《玛侬》B. 《蝴蝶夫人》C. 《霍夫曼的故事》D. 《卡门》正确答案:C10. 莫扎特的《唐璜》又称为()?A. 《女人心》B. 《茶花女》C. 《弄臣》D. 《唐·乔瓦尼》正确答案:D11. 以下那部歌剧不是莫扎特创作的意大利歌剧A. 《女人心》B. 《费加罗婚礼》C. 《安魂曲》D. 《唐·乔瓦尼》正确答案:C12. 《上主是我坚固保障》是()创作的?A. 马丁.路德B. 1瓦尔特C. 1巴赫D. 恩格斯正确答案:A13. ()是巴洛克时期那不勒斯歌剧乐派的奠基人A. 亚历山德罗.斯卡拉氐B. 普罗文扎勒C. 多米尼科.斯卡拉蒂D. 帕莱斯特里纳正确答案:B14. 歌剧《奥菲欧与尤丽迪茜》的故事情节取自()?A. 希腊神话B. 罗马神话C. 民间故事D. 童话正确答案:A15. 法国抒情歌剧与趣歌剧一样都是从()演化而来;A. 法国大歌剧B. 意大利正歌剧C. 法国喜歌剧D. 意大利喜歌剧正确答案:C16. 法国大歌剧产生于().A. 19世纪末期B. 19世纪初期C. 18世纪末期D. 18世纪初期E. 18、19世纪之交正确答案:A17. 在电影《河东狮吼》中,古天乐扮演的男主人公曾演唱了一段由法国作曲家奥芬巴赫创作的歌剧《地狱中的奥菲欧》中的选曲改编的唱段,《地狱中的奥菲欧》属于().A. 法国大歌剧B. 法国喜歌剧C. 法国趣歌剧D. 法国轻歌剧正确答案:C18. 法国趣歌剧的创始者是().A. 德国作曲家奥芬巴赫B. 法国作曲家奥芬巴赫C. 法国作曲家比才D. 法国作曲家莫里亚克;正确答案:A19. 拉索是()的代表?A. 尼德兰乐派B. 勃艮第乐派C. 佛兰德乐派D. 那不勒斯乐派正确答案:C20. 《女仆做夫人》属于().A. 意大利正歌剧B. 意大利喜歌剧C. 意大利趣歌剧D. 意大利谐歌剧正确答案:C二,多选题1. 巴洛克时期的德国管风琴音乐可分为()三派A. 东德B. 西德C. 南德D. 北德正确答案:CD2. 18世纪的法国喜歌剧作品有().A. 卢梭的《乡村卜者》B. 格雷特里的《狮心王查理》C. 比才的《卡门》D. 格鲁克的《不期而遇》正确答案:ABCD3. 众赞歌的特点有().A. 歌词不再用拉丁文,而用德语B. 音乐不再是复杂的复调体,而是简朴明朗的和声体C. 歌词和音乐都清晰可闻D. 曲调由格里高利圣咏改编而成正确答案:ABC4. 那不勒斯歌剧乐派确立了().A. 返始咏叹调B. 清宣叙调C. 用乐队伴奏的戏剧性宣叙调D. 意大利序曲正确答案:ABCD5. 亚历山德罗.斯卡拉蒂的歌剧作品有().A. 《光荣的胜利》B. 《埃拉克雷利》C. 《万应解毒药》D. 《幸福的陷阱》正确答案:ABCD6. 意大利正歌剧的艺术特点是().A. 以严肃的悲剧和历史剧为主要题材B. 三幕C. 宣叙调与咏叹调交替,咏叹调为歌剧重心D. 屏气合唱和舞蹈正确答案:ABC7. 卡梅拉塔”社团的目标是要().A. 发明歌剧B. 复兴古希腊戏剧C. 恢复古希腊音乐的本色D. 复兴古罗马音乐风格正确答案:BC8. 在意大利歌剧诞生的同时又诞生了().A. 清唱剧B. 康塔塔C. 受难乐D. 奏鸣曲正确答案:AB9. 法国趣歌剧与意大利趣歌剧的不同之处表现在().A. 有说白而不唱宣叙调B. 唱宣叙调不用说白C. 从幕间剧发展而来D. 从喜歌剧发展而来正确答案:AD10. 那不勒斯歌剧乐派确立了()的形式.A. 返始咏叹调B. 清宣叙调C. 用乐队伴奏的戏剧性宣叙调D. 意大利序曲正确答案:ABCD11. 18世纪的德国歌唱剧作品有().A. 科菲的《大难临头》B. 希勒和魏塞合作的《狩猎》C. 莫扎特的《后宫诱逃》D. 希勒和魏塞合作的《魔鬼出笼》正确答案:ABD12. 意大利正歌剧的艺术特点是().A. 以严肃的悲剧和历史剧为主要题材B. 三幕C. 宣叙调与咏叹调交替,咏叹调为歌剧重心D. 屏气合唱和舞蹈正确答案:ABC13. 文艺复兴时期的德国宗教改革在音乐上的举措有().A. 恢复会众同唱众赞歌的制度B. 歌词尽量采用德语C.D. 采用简朴明朗的和声体E. 使歌词和旋律清晰可闻正确答案:ABCD14. 威尼斯乐派的主要代表作曲家有().A. 维拉尔特B. 帕莱斯特里纳C. 安德雷利.加布里埃利D. 乔凡尼.加布里埃利正确答案:ACD15. 最早的歌剧作品有().A. 《达夫尼》B. 《尤丽狄茜》C. 《安德罗梅达》D. 《阿里安娜》正确答案:AB16. “卡梅拉塔”社团成员包括意大利作曲家().A. 佩里B. 卡契尼C. 里努契尼D. 科尔西正确答案:ABCD17. 意大利最早的歌剧乐派可分为().A. 威尼斯歌剧乐派B. 罗马歌剧乐派C. 威尼斯乐派D. 那不勒斯歌剧乐派正确答案:ABD18. ()是法国大歌剧A. 奥伯的《波蒂契的哑女》B. 梅耶贝尔的《魔鬼出笼》C. 梅耶贝尔的《恶魔罗勃》D. 罗西尼的《威廉.退尔》正确答案:ACD19. 拉索所做出的贡献有().A. 总结前人经验,把复调音乐的创作推向高峰B. 为复调音乐过渡到主调音乐开辟了道路C. 所创作的世俗音乐作品闪耀着人文主义的思想光芒D. 创作有大量的弥撒曲、经文歌和圣母颂歌正确答案:ABCD20. 歌剧产生于().A. 文艺复兴晚期B. 巴洛克初期C. 17世纪末18世纪初D. 16世纪末17世纪初正确答案:BD三,判断题1. 意大利作曲家佩尔格莱西的《女仆做夫人》是一部备受争议的正歌剧。
2022年大学航空航天专业《大学物理(二)》期末考试试卷 附答案
姓名班级学号………密……….…………封…………………线…………………内……..………………不…………………….准…………………答….…………题…2022年大学航空航天专业《大学物理(二)》期末考试试卷附答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
2、一根无限长直导线通有电流I,在P点处被弯成了一个半径为R的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为_______________,方向为_________________。
3、设在某一过程P中,系统由状态A变为状态B,如果________________________________________,则过程P为可逆过程;如果_________________________________________则过程P为不可逆过程。
4、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
5、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI),(SI).其合振运动的振动方程为x=____________。
6、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
7、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
大学航空航天专业《大学物理(下册)》期末考试试题 附解析
大学航空航天专业《大学物理(下册)》期末考试试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
2、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()3、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
4、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.5、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
6、气体分子的最可几速率的物理意义是__________________。
7、一电子以0.99 c的速率运动(电子静止质量为9.11×10-31kg,则电子的总能量是__________J,电子的经典力学的动能与相对论动能之比是_____________。
8、设在某一过程P中,系统由状态A变为状态B,如果________________________________________,则过程P为可逆过程;如果_________________________________________则过程P为不可逆过程。
大学航空航天专业《大学物理(下册)》期末考试试卷D卷 附答案
大学航空航天专业《大学物理(下册)》期末考试试卷D卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
2、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
3、沿半径为R的圆周运动,运动学方程为 (SI) ,则t时刻质点的法向加速度大小为________;角加速度=________。
4、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
5、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
6、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
7、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.8、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。
9、将热量Q传给一定量的理想气体:(1)若气体的体积不变,则热量转化为_____________________________。
(2)若气体的温度不变,则热量转化为_____________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥鹏15春北航《大学物理(下)》在线作业2
一、单选题(共25 道试题,共100 分。
)
1. 三根截面相同,长度一样的柱状导线串联在一起,电导率分别为γ1、γ2、γ3,且γ
1>γ2>γ3,当通有稳恒电流时,三种导体内场强大小关系为[ ]
A. E1 >E2> E3
B. E1
C. E2> E1> E3
D. E2 >E1= E3
正确答案:B
2. 关于静电场中某点电势值的这个正负,下列说法中正确的是[ ]
A. 电势值的正负取决于置于该点的试验电荷的正负
B. 电势值的正负取决于电场力对试验电荷做功的正负
C. 电势值的正负取决于电势零点的选取
D. 电势值的正负取决于产生电场的电荷的正负
正确答案:C
3. 电流元是圆电流线圈自身的一部分,则
A. 电流元受磁力为0
B. 电流元受磁力不为0,方向沿半径向外
C. 电流元受磁力不为0,方向指向圆心
D. 电流元受磁力不为0,方向垂直圆电流平面
正确答案:B
4. 关于高斯定理的理解有下面几种说法,其中正确的是()
A. 如果高斯面上电场强度处处为零,则该面内必无电荷
B. 如果高斯面无电荷,则高斯面上电场强度处处为零
C. 如果高斯面上电场强度处处不为零,则高斯面内必有电荷
D. 如果高斯面内有净电荷,则通过高斯面的电通量必不为零
正确答案:D
5. 在某地发生两件事,相对该地静止的甲测得时间间隔为4s,若相对甲作匀速直线运动的乙测得时间间隔为5s, 则乙相对于甲的运动速度是(c表示真空中的光速)()
A. 4c/5
B. 3c/5
C. c/5
D. 2c/5
正确答案:B
6. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是
A. 线圈绕自身直径轴转动,轴与磁场方向平行
B. 线圈绕自身直径轴转动,轴与磁场方向垂直。