奥数相遇问题(含答案)精编版
【奥数思维拓展】精编人教版小学数学五年级上册相遇问题(试题)含答案与解析
奥数思维拓展:相遇问题(试题)一、选择题1.两地间的路程是455千米,甲、乙两辆汽车同时从两地开出,相向而行,经过3.5小时相遇。
甲车每小时行68千米,乙车每小时行多少千米?正确的列式是( )。
A .(455-68)÷3.5B .(455-68)÷(68÷3.5)C .455÷3.5-68D .455-68÷3.52.甲,乙两船同时从相距250千米的码头相向而行,6时后相遇。
甲船每时行驶21千米,乙船每时行驶m 千米。
下面所列方程正确的是( )。
A .625021m =-B .2166250m ⨯+=C .212506m +=÷D .21-m=250÷6 3.王顺和李小军同时从两地沿一条公路面对面走来。
王顺的速度是73米/分,李小军的速度是88米/分,经过4分钟两人相遇。
相遇时李小军比王顺多走了( )米。
A .60B .279C .644D .804.淘气要给笑笑送作业,它们同时从家出发相向而行。
淘气家离笑笑家840m ,淘气的步行速度是70米/分,笑笑的步行速度是50米/分。
他们出发后( )分钟相遇。
A .7B .8C .8.5D .7.55.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走35米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?( )。
A .1000米B .1147米C .5850米D .10000米6.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站向甲站开出,两车相遇时,相遇点离两站的中点70千米。
则甲、乙两站相距多少千米?( )。
A .140千米B .170千米C .240千米D .340千米 7.A 、B 两地相距16km ,甲、乙两人都从A 地到B 地。
甲步行,每小时4km ,乙骑车,每小时行驶12km ,甲出发2小时后乙再出发,先到达B 地的人立即返回去迎接另一个人,在其返回的路上两人相遇,则此时乙所用时间为( )。
小学奥数--多次相遇专项练习60题(有答案)
小学奥数--多次相遇专项练习60题(有答案)1.甲和乙在直路上来回跑步,他们的速度分别是每秒3米和每秒2米。
如果他们同时从两端出发,在10分钟内共迎面相遇了多少次?他们相距90米。
2.甲、乙、丙三人从东镇到西镇走路。
甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米。
甲和乙从东镇出发,丙从西镇出发。
当丙与乙相遇后,再经过2分钟,他与甲相遇。
求东西两镇间的路程长度。
3.兄弟两人在A、B两市之间往返。
兄和弟的速度比为4:3.两人同时从A市出发30分钟后,弟以原速的2倍开始跑,兄正好从B市返回。
这两人从A市出发后,多久会再次相遇?4.甲从A地往B地,乙和丙从B地往A地。
三人同时出发,甲首先在途中与乙相遇,之后15分钟又与丙相遇。
甲每分钟走70米,乙每分钟走60米,丙每分钟走50米。
问A、B 两地相距多少米?5.两地相距1800米,甲和乙同时从两地相向而行,12分钟后相遇(甲速度大于乙)。
如果每人每分钟多走25米,此次相遇地点与上次相遇点相距33米。
甲和乙的速度各是多少?6.甲和乙两地相距120千米。
客车和货车同时从甲地出发驶向乙地。
客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇。
之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇。
已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?7.甲和乙分别从A、B两地相向而行,相遇时离A地350米。
两人又继续前进,到达B、A两地后立即返回。
第二次相遇离A地150米。
求AB两地距离是多少米?8.甲和乙同时从A地出发,在直道A、B两地往返跑步。
甲每分钟跑72米,乙每分钟跑48米。
甲和乙第二次迎面相遇时,甲从后面追上乙的距离是80米。
求A、B两地相距多少米?9.甲和乙两车从A、B两地相向而行,在距A地270千米的C地相遇。
如果乙的速度提高了20%,则两车在距C地30千米的D地相遇。
实际上,甲在行驶一段时间后因事返回,但两车仍在D点相遇。
(完整版)五年级奥数相遇问题及答案
相遇问题年级 班 姓名 得分一、填空题1. 一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_____米.2. 甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行_____千米.3. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A 地,丙一人从B 地同时相向出发,丙遇到乙后2分钟又遇到甲,A 、B 两地相距____米.4. 一辆客车和一辆货车,分别从甲、乙两地同时相向而行,4小时相遇.如果客车行3小时,货车行2小时,两车还相隔全程的3011,客车行完全程需____小时.5. 甲、乙两人从A 、B 两地相向而行,相遇时,甲所行路程为乙的2倍多1.5千米,乙所行的路程为甲所行路程的52,则两地相距______千米.6. 从甲城到乙城,大客车在公路上要行驶6小时,小客车要行驶4小时.两辆汽车分别从两城相对开出,在离公路中点24千米处相遇.甲、乙两城的公路长______千米?7. 甲、乙两车分别同时从A 、B 两城相向行驶6小时后可在途中某处相遇.甲车因途中发生故障抛描,修理2.5小时后才继续行驶.因此,从出发到相遇经过7.5小时.那么,甲车从A 城到B 城共有______小时.8. 王明回家,距家门300米,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了______米.9. A 、B 两地相距10千米,一个班学生45人,由A 地去B 地.现有一辆马车,车速是人步行速度的3倍,马车每次可乘坐9人,在A 地先将第一批9名学生送往B 地,其余学生同时步行向B 地前进;车到B 地后,立即返回,在途中与步行学生相遇后,再接9名学生送往B 地,余下学生继续向B 地前进;……;这样多次往返,当全体学生都到达B 地时,马车共行了______千米.10. 从电车总站每隔一定时间开出一辆电车.甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.则电车总站每隔______分钟开出一辆电车.二、解答题11. 甲、乙两货车同时从相距300千米的A 、B 两地相对开出,甲车以每小时60千米的速度开往B 地,乙车以每小时40千米的速度开往A 地.甲车到达B 地停留2小时后以原速返回,乙车到达A 地停留半小时后以原速返回,返回时两车相遇地点与A 地相距多远?12. 甲、乙两车分别从A 、B 两站同时相向开出,已知甲车速度是乙车速度的1.5倍,甲、乙到达途中C 站的时刻依次为5:00和15:00,这两车相遇是什么时刻?13. 铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民,问军人与农民何时相遇?14. 有一辆沿公路不停地往返于M 、N 两地之间的汽车.老王从M 地沿这条公路步行向N 地,速度为每小时3.6千米,中途迎面遇到从N 地驶来的这辆汽车,经20分钟又遇到这辆汽车从后面折回,再过50分钟又迎面遇到这辆汽车,再过40分钟又遇到这辆车再折回. M 、N 两地的路程有多少千米?———————————————答 案——————————————————————答 案:1. 14题目实质上说,火车和人用8秒时间共同走了152米,即火车与人的速度和是每秒152÷8=19(米),火车的速度是每秒63360÷3600=17.6(米).所以,人步行的速度是每秒19-17.6=1.4(米).2. 86根据相遇问题的数量关系,可知两车每小时行程之和(即速度和)是 258÷4=64.5(千米).由汽车速度是拖拉机速度的2倍,可知汽车与拖拉机速度之差为速度之和的(3132-).所以,两车的速度之差为 64.5×(3132-)=64.5×31 =21.5(千米)相遇时,汽车比拖拉机多行21.5×4=86(千米).3. 3120解法一 依题意,作线段图如下:A B丙遇到乙后2分钟再遇到甲,2分钟甲、丙两人共走了(50+70)×2=240(米), 这就是乙、丙相遇时乙比甲多走的路程.又知乙比甲每分钟多走60-50=10(米). 由此知乙、丙从出发到相遇所用的时间是240÷10=24(分).所以,A 、B 两地相距(60+70)×24=3120(米).解法二 甲、丙相遇时,甲、乙两人相距的路程就是乙、丙相背运动的路程和,即(60+70)×2=260(米).甲、乙是同时出发的,到甲、丙相遇时,甲、乙相距260米,所以,从出发到甲、丙相遇需260÷(60-50)=26(分).所以, A 、B 两地相距 (50+70)×26=3120(米).4. 721 假如客车和货车各行了2小时,那么,一共行了全程的21,还剩下全程21的路程.现在客车行了3小时,货车行了2小时,还剩下3011的路程.所以,客车1小时行全程的21-3011=152. 因此,客车行完全程需1÷152= 721(小时).5. 10.5因为乙行的路程是甲行的路程的52,所以乙行的路程占全程的72,故两地相距1.5÷(1-72-72×2) =10.5(千米).6. 240大客车的速度是小客车的4÷6=32,相遇时小客车比大客车多行驶了24×2=48(千米),占全程的53-52=51,所以全程为48÷51=240(千米).7. 12.5由题意推知,两车相遇时,甲车实际行驶5小时,乙车实际行驶7.5小时.与计划的6小时相遇比较,甲车少行1小时,乙车多行1.5小时.也就是说甲车行1小时的路程,乙车需行1.5小时.进一步推知,乙车行7.5小时的路程,甲车需行5小时.所以,甲车从A 城到B 城共用7.5+5=12.5(小时).8. 580小狗跑的时间为(300-10)÷(50+50)=2.9(分),共跑了200×2.9=580(米).9. 28.75因为马车的速度是人步行速度的3倍,所以如下图所示,马车第一次到达B 地时行了10千米,第二、三、四、五次到达B 地时,分别行了20、25、27.5、28.75千米.10. 11电车15秒即41分钟行了(82-60)×10-60×41=205(米). 所以,电车的速度是每分钟205÷41=820(米).甲走10分钟的路电车需1分钟,所以每隔10+1=11(分钟)开出一辆电车.11. 根据题意,甲车从A 地行至B 地需300÷60=5(小时),加上停留2小时,经7小时从B 地返回;乙车从B 地行至A 地需300÷40=7.5(小时),加上停留半小时经8小时后从A 地返回.因此,甲车从B 地先行1小时后(走60千米),乙车才从A 地出发.所以,两车返回时的相遇时间是(300-60)÷(60+40)=2.4(小时).故两车返回时相遇地点与A 城相距40×2.4=96(千米).12. 甲车到达C 站时,乙车距C 站还差15-5=10(时)的路,这段路两车共行需10÷(1.5+1)=4(时),所以两车相遇时刻是5+4=9(时).13. 火车速度为30×1000÷60=500(米/分);军人速度为(500×41-110)÷41=60(米/分); 农民速度为(110-500×51)÷51=50(米/分). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50) =30(分),即8点30分两人相遇.14. 设老王第一次遇到汽车是在A 处,20分钟后行到B 处,又50分钟后到C 处,又40分钟后到D 处(见下图).由题意AB =1.2千米;BC =3千米;CD =2.4千米.由上图知,老王行AC 的时间为20+50=70(分),这段时间内,汽车行的路加上老王行的路正好是MN 全程的2倍.老王行BD 的时间为50+40=90(分),这段时间内,汽车行的路减去老王行的路也正好是MN 全程的2倍.上述两者的时间差为90-70=20(分),汽车在第二段时间比第一段时间多行AC 段与BD 段路,即多行 (1.2+3)+(3+2.4)=9.6(千米),所以,汽车的速度为每小时行9.6×(60÷20)=28.8(千米).在老王行AC 段的70分钟里,老王与汽车行的路正好是MN 全程的2倍,所以MN 两地的路程为(3.6+28.8)×(70÷60)÷2=18.9(千米).。
四年级奥数培优《相遇问题》含答案
相遇问题例1.一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46 千米,货车每小时行48 千米。
3.5 小时两车相遇。
甲、乙两个城市的路程是多少千米?例2.大头儿子的家距离学校3000 米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24 米,50 分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?例3.甲、乙两辆汽车分别从A、B 两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15 千米.甲车每小时行48 千米,乙车每小时行50 千米.求A、B 两地间相距多少千米?例4.甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54 千米;出发5小时后,两人还相距27 千米.问出发多少小时后两人相遇?例5.两列城铁从两城同时相对开出,一列城铁每小时走40 千米,另一列城铁每小时走45 千米,在途中每列车先后各停车4次,每次停车15 分钟,经过7小时两车相遇,求两城的距离?例6.两地相距3300 米,甲、乙二人同时从两地相对而行,甲每分钟行82 米,乙每分钟行83 米,已经行了15 分钟,还要行多少分钟两人可以相遇?例7.甲、乙两辆汽车同时从A地出发去B地,甲车每小时行50 千米,乙车每小时行40 千米.途中甲车出故障停车修理了3小时,结果甲车比乙车迟到1小时到达B地.A、B两地间的路程是多少?例8.甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙车每小时比甲车多行20 千米,比甲车提前2小时到达.求A、B 两地间的距离.例9.军事演习中,“我”海军英雄舰追及“敌”军舰,追到A岛时,“敌”舰已在10 分钟前逃离,“敌”舰每分钟行驶1000 米,“我”海军英雄舰每分钟行驶1470 米,在距离“敌”舰600 米处可开炮射击,问“我”海军英雄舰从A 岛出发经过多少分钟可射击敌舰?例10.甲乙两车分别从A、B 两地同时相向开出,4 小时后两车相遇,然后各自继续行驶3小时,此时甲车距B 地10 千米,乙车距A地80 千米.问:A,B 两地的距离是多少千米?例11.甲乙两车分别从A、B 两地同时相向开出,4 小时后两车相遇,然后各自继续行驶3小时,此时甲车距B 地10 千米,乙车距A地80 千米.问:甲车到达B地时,乙车还要经过多少时间才能到达A地?相遇问题例1.一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46 千米,货车每小时行48 千米。
【奥数思维拓展】精编人教版小学数学五年级上册多次相遇问题(试题)含答案与解析
奥数思维拓展:多次相遇问题一、填空题1.红、黑两只蚂蚁在尺子上的A,B两点之间往返爬行,红蚂蚁从A点,黑蚂蚁从B点同时出发,黑蚂蚁的速度是红蚂蚁的1.25倍。
它们第二次迎面相遇是在尺子上的124cm刻度处,第三次迎面相遇是在96cm刻度处,那么A点在( )cm刻度处。
2.甲乙丙三人,甲每分走50米,乙每分走60米,丙每分走70米。
甲、乙两人从东镇,丙一人从西镇同时相向出发,丙遇到乙后2分钟再遇到甲,两镇距离是( )米。
3.小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为( )千米.二、解答题4.甲、乙两车同时从相距300km的两站相向开出,到达对方站后立即返回.经过5小时甲、乙两车在途中相遇,相遇时甲车比乙车多行驶了120km.求两车的速度.5.快、慢两车同时从甲、乙两车站迎面开来,快车每小时行驶100km,慢车每小时行驶65km.两车到达车站后立即往回开,第二次相遇时快车比慢车多行驶了210km.求甲、乙两车站间的距离.6.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?7.小华、小明、小丽三人步行,小明每分钟走50米,小华每分钟比小明快10米,小丽每分钟比小明慢10米,小华从甲地,小明、小丽从乙地同时出发相向而行,小华和小明相遇后,过了15分钟又和小丽相遇,求甲、乙两地间的距离?8.甲、乙两人在相距90米的直路上来回的跑步,甲的速度是每秒钟3米,乙的速度是每秒钟2米,如果他们分别在直路的两端出发,跑了12分钟,共相遇多少次?9.快、慢两辆汽车同时从A、B两地相向而行,快车每小时行45千米,慢车每小时行30千米.两车不断往返于A、B两地运送货物.当两车第三次相遇后,快车又行了270千米才与慢车相遇.求A、B两地间的距离.10.赵老师和王老师每天早晨都要在长600米的一条路上练习长跑,赵老师每分钟跑110米,王老师每分钟跑90米,他们每天都是分别从路的两端出发,跑到另一端后再返回继续跑.他们第二次相遇时,已经跑了几分钟?11.李明和王华步行同时从A、B两地出发,相向而行,第一次在距离A地520米处相遇,相遇后继续前进,到对方出发点后立即原速返回,第二次在距离A地440米处相遇,计算A、B两地之间距离.12.客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲站40千米的地方,相遇后两车仍以原速度继续前进.客车到达乙站、货车达到甲站后均立即返回,结果它们又在离乙站20千米的地方相遇.求甲、乙两站之间的距离.13.甲、乙两车同时从东城出发,开往相距750千米的西城,甲车每小时行68千米,乙车每小时行57千米,甲车到达西城后立刻返回.两车从出发到相遇一共经过多长时间?14.电子游戏《保卫家园》中有两个警卫兵每天在乐乐家门前一条长20厘米的路上巡逻,大警卫每秒走0.5厘米,小警卫每秒走0.3厘米,每天早晨俩人同时从路的两段相向走来,走到对方出发地点再向后转接着走.当他们第三次相遇时,大警卫走了多少厘米?15.环形跑道400米,小百小合背向而行,小百6米/秒,小合4米/秒,当小百正面和小合相遇时,立刻转向跑.当小百追上小合时,小合立即转向跑,两人第11次碰头时离起点多少米?(按较短计算)16.甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶.甲、乙两车的速度比为3:7,并且甲、乙两车第1996次相遇的地点和第1997次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇).那么,A、B两地之间的距离是多少千米?17.快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B 到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?18.小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?19.甲、乙两名同学在周长300米的圆形跑道上从同一地点同时背向练习跑步,甲每秒跑3.5米,乙每秒跑4米,他们第十次相遇时,甲还跑多少米才能回到出发点?20.有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?21.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后,立即返回原地,途中又在距A地42千米处相遇,求两次相遇地点之间的距离.参考答案1.82【分析】第二次相遇,二者和走3个全程,第三次相遇,二者和走5个全程,将0刻度与A 之间的距离设为x ,A 、B 之间的距离设为y ,列方程组求解问题。
【寒假奥数专题】精编人教版小学数学5年级上册相遇问题(试题)含答案与解析
寒假奥数专题:相遇问题(试题)一.填空题(共10小题)1.李叔叔从A市到B市要2小时,王叔叔从B市到A市要3小时,两人同时分别从A市和B市出发,小时后相遇。
2.甲、乙两人在周长为100米的环形跑道上同时从某地同向而行,甲每分钟行250米,乙每分钟行150米,秒钟后两人相遇.3.李明和王亮沿着水库四周的道路跑步.他们从同一地点同时出发,反向而行.李明的速度是245米/分,王亮的速度是275米/分,经过15分钟两人还没相遇且相距300米.水库四周的道路长米.4.一条路上有A,O,B三个地点,O在A与B之间,A与O相距1360米.甲、乙两人同时分别从A和O点出发向B点行进.出发第10分钟,甲、乙两入离O点的距离相等;又过了30分钟,甲与乙两人在B点相遇.那么O与B两点间的距离是.5.某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果乙早出发20分钟,两人将在距离A地20千米的地方相遇;如果甲晚出发20分钟,两人恰好在AB中点相遇.那么,AB两地相距千米.6.甲、乙、丙三人从A地到B地,只有一辆自行车,自行车每小时行15km,步行每小时行5km.现先由甲骑自行车带乙,丙步行同时出发,行1小时甲骑自行车返回去接途中的丙,乙下车后步行,丙坐1小时自行车,这么轮换数次,5小时三人正好同时到B地,A、B两地相距km.7.大长腿和小短腿从大长腿家一起开车去海边,大长腿到海边后发现忘带泳衣了,立即原路返回,在距离海边32千米处与小短腿相遇.已知大长腿每小时行20千米,小短腿每小时行12千米.那么,大长腿家与海边相距千米.8.客车和货车分别从A,B两地同时开出,相向沿直线行驶,3.5小时后两车相遇,相遇后客车又行了2.5小时到达B地,这时货车距离A地80千米,A,B两地相距千米.9.王师傅每天在同一时刻到达某站,然后乘上工厂定时来接的汽车按时到工厂.有一天王师傅提前55分钟到某站,因汽车未到就步行向工厂走去,在路上遇见来接他的汽车后乘车比平时提前10分钟到达工厂.已知汽车每小时行50千米,则王师傅步行每小时行千米.10.ABCD四人同时分别从甲乙两地出发相向而行,其中AC从甲地去乙地,BD从乙地去甲地,已知AD两人出发后20分钟相遇,5分钟后A与B相遇,同时C,D也相遇,则再过分钟后B,C相遇.二.应用题(共11小题)11.一条徒步路,爸爸走完全程需要30分,妈妈走完全程需要50分。
(完整版)小学奥数相遇问题
小学奥数相遇问题一.甲乙两人同时从A、B两地相向而行,第一次在距A地300米处相遇,相遇后两人继续以原速前进,各自到达对方出发点立即返回,第二次又在距B地100米相遇。
求A、B两地相距多少米?参考答案:第一次相遇,甲乙共行了1个全程,甲行了1个300米第二次相遇,甲乙共行了3个全程,甲行了3个300米同时甲行的还是1个全程多100米A、B两地相距300×3-100=800米300*3-100=800回复:300*3-100=800米二.1、乙两辆汽车同时从A、B两地相对开出,第一次在离A地75千米处相遇。
相遇后两辆汽车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。
求A、B两地的距离。
不列方程怎么算啊两车两次相遇是共行驶了3个全程,第一次相遇(共走一个全程)时,甲车走了75千米,那么在两车行驶了3个全程时,甲车应该走了75*3=225(千米),那么AB两地的距离为:225-55=170(千米)。
由“第一次在离A地75千米处相遇”可知:两车每行完一个A、B间距离,甲车行驶75千米; 从出发到第二次相遇,两车共行驶了3个A、B间距离,所以甲车共行驶了3个75千米:75*3=225千米; 由“第二次在离B地55千米处相遇”可知:甲车到达B地后又返回行驶了55千米,也就是比一个A、B间距离多55千米。
所以A、B两地的距离是: 225-55=170千米。
三.五星级题解:两车两次相遇问题题目:A、B两城同时对开客车,两车第一次在距A城60千米处相遇,到站后各停了30分钟,让乘客上下后再返回,返回是在距B城45千米处相遇。
求A、B两城相距多少千米?分析:本题要注意利用两个等量关系,即第一次相遇时两车用的时间相等,第二次返回相遇时两车用的时间相等,由于停的时间相等,所以不影响计算距离。
设A、B两城相距X千米。
60:(X-60)=(X+45):(X+X-45)化简得:X(X-135)=0 (注:化简和解方程时要用到初中的数学知识) X=135答:A、B两城相距135千米。
相遇问题奥数题及答案
相遇问题奥数题及答案相遇问题奥数题及答案相遇问题奥数题及答案1一、统一部分量并采用比差的思维方法。
例1甲、乙两人同时从A、B两地相向而行,①1小时后两人共走全程分析与解:这道相遇问题的条件比较特殊,从①知两人同时相向而行1一时间这个量基本办法有二个:其一,将②中时间改为两人各走1小时,乙停下,甲继续走20分钟,两人正好走完全程;其二将①中时间改为两人各走=2(小时)。
二、以部分量的比的变化为线索并采用多方沟通的思维方法。
例2甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的`速度比是3∶2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A还有14千米,那么A、B两地间的距离是多少千米?分析与解:这道题可画示意图(3)。
其突出的特点是甲、乙两人在相遇前后速度量的比有变化;出发至相遇其速度比是3∶2;相遇后各自提速20%及30%,其速度比是3×(1+20%)∶2×(1+30%)=18∶13。
将速度比与路程比沟通,即其对应的路程比分别是3∶2和18∶13。
路程比3∶2即可看作将全程平均划成5段,相遇时甲走3段,乙走2段;路程比18∶13,可看作甲从相遇点到达B点的这段路程分成18等份,此时乙走13等份。
将段数与份数沟通,即由图(3)知18份=2段,这样全程5段就可分为45份,依此可得乙离A14千米时,所占份数是:45-(13+18)相遇问题奥数题及答案2甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?【答案解析】因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间。
小升初奥数题及答案:相遇问题
答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
甲乙丙三辆汽车在环形马路上同向行驶甲车行一周要36分钟乙车行一周要30分钟丙车行一周要48分钟三辆汽车同时从同一个起点出发问至少要多少时间这三辆汽车才能同时又在起点相遇
★这篇《小升初奥数题及答案:相遇问题》,是无忧考特地为大家整理的,希望对大家有所帮助! 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆 汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
六年级《相遇》奥数题及答案
六年级《相遇》奥数题及答案六年级《相遇》奥数题及答案六年级《相遇》奥数题及答案1两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的'时间.乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80*9=720(米),甲距目标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟).另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900*2(100+80)=10分钟.六年级《相遇》奥数题及答案2快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?【答案解析】解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面"取单位"准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.。
奥数相遇问题(含答案)
相遇问题相遇问题一般是指两个物体从两地出发,相向而行,共同行一段路程,直至相遇,这类应用题的基本数量关系是:总路程=速度和×相遇时间这里的“速度和”是指两个物体在单位时间内共同行的路程。
例题与方法例1.甲、乙两辆汽车同时从东村、西村之间公路的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米。
已知甲车的速度是乙车的2倍。
东、西两村之间的公路长多少千米?42×2×2=168例2.一支1800米长的队伍以每分90米的速度行进,队伍前端的联系员用9分的时间跑到队伍末尾传达命令。
联络员每分跑多少米?1800÷9-90=110例3.甲、乙两车相距516千米,两车同时从两地出发相向而行,乙车行驶6小时后停下修理车子,这时两车相距72千米。
甲车保持原速继续前进,经过2小时与乙车相遇。
求乙车的速度。
72÷2=36【 516-36×(6+2)】÷6=38例4.甲、乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇。
相遇后两列车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。
求A、B两会间的路程。
75×3-55=170练习与思考1.甲、乙两人分别从东、西两地同时相向而行。
2小时后两人相距96千米,5小时后两人相距36千米。
东、西两地相距多少千米?(96-36)÷(5-2)=20 20×2+96=1362.甲、乙两人骑车从同一地点向相反方向出发,甲车每小时行13千米,乙车每小时行12千米。
如果甲先行2小时,那么,乙行几小时后两人相距99千米?(99-13×2)÷(13+12)=2.923.甲、乙两地相距49千米,汽车行完全程要0.7小时,步行要14小时。
一个人从甲地出发,步行1.5小时后改乘汽车,他到达乙地共要几小时?(49-49÷14×1.5)÷(49÷0.7)+1.5=2.1254.甲、乙两车分别从A、B两地同时相向而行。
小学奥数思维训练-相遇问题(通用,含答案)
小学奥数思维训练-相遇问题学校:___________姓名:___________班级:___________考号:___________一、解答题1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?2.A港和B港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?3.甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
求甲、乙二人的速度各是多少?4.A、B两城间有一条公路长240千米,甲、乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?5.体育场的环形跑道长400米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。
几分钟后他们第3次相遇?6.客车和货车分别从甲、乙地相向而行,客车行全程需要4小时,货车每小时行60千米,行了90千米,遇上客车,求甲、乙两地的距离?7.一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时后两车相距多少千米?8.甲、乙两车从相距675千米的两地相对出发,甲每小时行45千米,乙每小时行60千米,甲先行1小时后,乙才出发,再经过几小时两车才能相遇?9.一条长400米的环形跑道,甜甜在练习骑自行车,她每分钟行560米,彬彬在练长跑,他每分钟跑240米,两人同时从同地同向出发,经过多少分钟两人可以相遇?10.一列客车以每小时90千米的速度从甲站出发,4小时可到达乙站,有一列货车从乙站开出,6小时可以到达甲站。
(完整版)六年级奥数--相遇问题
相遇问题概念:速度=路程÷时间路程=速度×时间时间=路程÷速度1、甲、乙两人分别从两地同时相向而行,8小时可以相遇,如果两人每小时都少行1.5千米。
那么10小时后相遇,问两地相距多少千米?2、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,骑自行车每小时行11千米,两人同时出发,然后在离甲、乙两地中点9千米处相遇。
求甲乙两地间的距离是多少千米?3、A、B两地相距21千米,上午6时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙到达A地后也立即返回,上午9时他们第二次相遇,此时甲行的路程比乙行的路程多9千米,甲每小时行多少千米?4、某城市的环城公路全长180千米,甲、乙两辆汽车同时从同地背向出发绕这条环城公路行驶了2.5小时相遇。
如果甲车先行36千米,那么在乙车出发几小时后两车相遇?5、兄弟两人同时从家里出发步行去车站,16分钟哥哥到达车站,弟弟离车站还有240米,哥哥的速度是每分钟82米,弟弟每分钟走多少米?6、甲、乙两人同时以相距4800米的两地相向而行,甲骑自行车,乙步行。
6分钟两人相遇。
已知甲的速度是乙的速度的3倍,求甲乙两人的速度各是多少?7、小明步行45分钟从A地到B地,小华乘车15分钟可以B地到A地,当小明和小华在路上相遇时,小明已经走了30分钟,小华接小明乘车返回B地,还需要多少分钟?8、一辆客车和一辆货车同时从相距225千米的两地相向而行,客车每小时行50千米,货车每小时行40千米,行了几小时后两车相距45千米?再行几小时后两车又相距45千米?9、甲、乙两辆车从相距240千米的两地同时相向而行,因遇雾天,甲车每小时比原来少行15千米,乙车每小时比原来少行10千米,出发后,经过3小时两车相遇。
已知甲车原来每小时比乙车快15千米,甲、乙两车原来的速度各是多少?10、甲、乙两车相距516千米,两车同时从两地出发相向行,乙车行驶6小时后停下修车,这时两车相距72千米,甲车保持原速继续前进,经过2小时与乙车相遇,求乙车的速度?11、两辆汽车上午8点整分别从相距210千米的甲、乙两度相向而行,第一辆汽车在途中修车停了45分钟,第二辆车因加油停了半小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相遇问题
相遇问题一般是指两个物体从两地出发,相向而行,共同行一段路程,直至相遇,这类应用题的基本数量关系是:
总路程=速度和×相遇时间
这里的“速度和”是指两个物体在单位时间内共同行的路程。
例题与方法
例1.甲、乙两辆汽车同时从东村、西村之间公路的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米。
已知甲车的速度是乙车的2倍。
东、西两村之间的公路长多少千米?
42×2×2=168
例2.一支1800米长的队伍以每分90米的速度行进,队伍前端的联系员用9分的时间跑到队伍末尾传达命令。
联络员每分跑多少米?
1800÷9-90=110
例3.甲、乙两车相距516千米,两车同时从两地出发相向而行,乙车行驶6小时后停下修理车子,这时两车相距72千米。
甲车保持原速继续前进,经过2小时与乙车相遇。
求乙车的速度。
72÷2=36
【 516-36×(6+2)】÷6=38
例4.甲、乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇。
相遇后两列车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。
求A、B两会间的路程。
75×3-55=170
练习与思考
1.甲、乙两人分别从东、西两地同时相向而行。
2小时后两人相距96千米,5小时后两人相距36千米。
东、西两地相距多少千米?
(96-36)÷(5-2)=20 20×2+96=136
2.甲、乙两人骑车从同一地点向相反方向出发,甲车每小时行13千米,乙车每小时行12千米。
如果甲先行2小时,那么,乙行几小时后两人相距99千米?
(99-13×2)÷(13+12)=2.92
3.甲、乙两地相距49千米,汽车行完全程要0.7小时,步行要14小时。
一个人从甲地出发,步行1.5小时后改乘汽车,他到达乙地共要几小时?
(49-49÷14×1.5)÷(49÷0.7)+1.5=2.125
4.甲、乙两车分别从A、B两地同时相向而行。
甲车每小时行82千米,乙车每小时行72千米,两车在离中点30千米处相遇。
AB两地相距多少千米?
30×2÷(82-72) ×(82+72) =924
5.甲、乙两车同时从东、西两地相向开出,甲车每小时行40千米,经过3小时已驶过中点25千米,这时乙车与甲车还相距7千米。
求乙车的速度。
(40×3-25×2-7) ÷3=21
6.甲、乙两车同时同地同向行进,甲车每小时行30千米,乙车每小时行的路程是甲车的1.5倍。
当乙车行到90千米的地方时立即按原路返回,又行了几小时和甲车相遇?
[90-90÷(30×1.5) ×30] ÷(30+30×1.5)=0.4
7.两辆汽车从同一地点向相反方向开出,第一辆汽车每小时行48千米,第二辆汽车每小进行52千米。
如果第一辆车先行1.2小时,那么,两辆汽车同时行驶几小时后,它们之间的距离为557.6千米?
(557.6-48×1.2) ÷(48+52)=5
8.一架运输机和一架客机同时从某地起飞相背飞行,2.5小时后两机相距3650千米。
已知客机比运输机每小时多飞行100千米,运输机每小时飞行多少千米?
9.A、B两地相距6千米,甲、乙两人分别从A、B两地同时出发在两地间往返行走(到达另一地后就马上返回),在出发40分后两人么一次相遇。
乙到达A地后马上返回,在离A地2千米的地方两人第二次相遇。
求甲、乙两人的速度。
10.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米。
两车相遇后又以原速继续前进,客车到达乙地后立即返回,货车到达甲地后也立即返回,两车在距中点108千米处再以一次相遇。
甲、乙两地相距多少千米?。