高三正余弦定理、解三角形综合讲义
2023届高三数学一轮复习专题 解三角形 讲义 (解析版)
单元(或主题)教学设计模板以下内容、形式均只供参考,参评者可自行设计。
教学过程既可以采用表格式描述,也可以采取叙事的方式。
如教学设计已经过实施,则应尽量采用写实的方式将教学过程的真实情景以及某些值得注意和思考的现象和事件描述清楚;如教学设计尚未经过实施,则应着重将教学中的关键环节以及教学过程中可能出现的问题及处理办法描述清楚。
表格中所列项目及格式仅供参考,应根据实际教学情况进行调整。
问题,体验数学在解决实际问题中的作用,提升学生数学抽象、数学建模、直观想象、数学运算的数学核心素养。
重点:掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。
3.单元(或主题)整体教学思路(教学结构图)第一课时,正弦定理及可以解决的问题第二课时,余弦定理及可以解决的问题第三课时,三角形内角和定理、正弦定理、余弦定理的选择第1课时教学设计课题正弦定理课型新授课□章/单元复习课□专题复习课√习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本课时是解三角形复习课的起始课,由实际问题出发引起学生对定理及变形的回忆,提升学生数学建模、直观想象的核心素养;由几个典型的例题,归纳出正弦定理可以解决的类型,再由定理本身出发再次分析定理可以解决的类型,提升学生逻辑推理、数学运算的核心素养,提高学生对数学符号解读的能力。
再析定理,进而推出“三角形面积公式”,提升学生逻辑推理的核心素养。
3、你还有哪些收获?活动意图说明对于本节课的重点内容强化提问,既检测又强化重点。
“你还有哪些收获”,希望学生能够答出:三角形面积公式、SSA 的情况可能出现两解、取舍的方法、方程和数形结合的思想方法等。
环节六:课堂检测教的活动61、 在中,已知 45,30,10A C c cm ︒︒===,求a 边. 2、 在△ABC 中,π32,6,2===B b c ,求∠A 。
高三数学 正余弦定理、解斜三角形 知识精讲 通用版
高三数学 正余弦定理、解斜三角形 知识精讲 通用版【本讲主要内容】一. 本周教学内容:正余弦定理、解斜三角形【知识掌握】【知识点精析】1. 三角形面积计算公式:设△ABC 的三边为a 、b 、c ,三个内角分别为A 、B 、C ,高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r 。
(1)S △=12ah a =12bh b =12ch c(2)S △=12absinC=12acsinB=12cbsinA(3)S △=Pr (其中P 为周长之半,r 为内切圆半径)(4)S ABC =∆ 2. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即A a sin =B b sin =Ccsin (=2R )。
(其中R 为外接圆半径)利用正弦定理,可以解决以下两类有关三角形的问题。
(1)已知两角和任一边,求其两边和一角;(2)已知两边和其中一边的对角,求另一边的对角。
(从而进一步求出其的边和角)3. 余弦定理:三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a 2=b 2+c 2-2bccosA ;① b 2=c 2+a 2-2cacosB ;② c 2=a 2+b 2-2abcosC 。
③在余弦定理中,令C=90°,这时cosC=0,所以c 2=a 2+b 2。
由此可知余弦定理是勾股定理的推广。
由①②③可得:cosA=bc a c b 2222-+;cosB=cab ac 2222-+;cosC=abc b a 2222-+。
利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其它两个角。
4. 强调几点:(1)利用余弦定理判定△ABC 的形状:⇔+=222b a c △ABC 为直角△⇔A+B=2π2c <⇔+22b a △ABC 为钝角△⇔A+B <2π 2c >⇔+22b a △ABC 为锐角△⇔A+B >2π(2)三角形的四个“心”:重心:三角形三条中线交点。
三角函数解三角形正弦定理和余弦定理课件理新ppt
正弦定理的应用
01
正弦定理可以应用于求解三角形中的边、角、面积等问题,其中最常用的应用 是求解三角形的三边关系和三角形的面积公式。
02
在求解三角形的三边关系时,可以使用正弦定理得到两边之比的表达式,再结 合余弦定理得到第三边的表达式,从而得到三边之间的关系。
03
在求解三角形的面积公式时,可以使用正弦定理得到三角形的底和高,从而得 到三角形的面积公式。
三角函数解三角形正弦定理和余弦 定理课件理新ppt
xx年xx月xx日
contents
目录
• 引言 • 正弦定理 • 余弦定理 • 案例分析 • 结论与展望 • 参考文献
01
引言
课程背景
1
三角函数是数学中的基础内容之一,具有广泛 的应用价值。
2
解三角形是三角函数应用的重要方面之一,涉 及到很多实际问题。
《三角函数解题方 法与技巧》
《高中数学竞赛教 程》
《三角函数图像与 性质》
THANKS
利用正弦定理和余弦定理解三角形
如何根据三角形的已知信息求解三边长
利用正弦定理求解三角形边长
利用余弦定理求解三角形边长
通过具体案例展示,进行计算
三角形的判定方法
如何判断一个三角形是否为直 角三角形
利用正弦定理和余弦定理进行 三角形判定
通过具体案例展示,进行计算
05
结论与展望
总结正余弦定理在解三角形中的应用
正弦定理:对于任意三角形,已知一边和它的对角 ,无法确定三角形的大小和形状,需要再知道其他
一些信息才能确定三角形的大小和形状.
余弦定理:对于任意三角形,已知三边,可确定这 个三角形的形状和大小;已知两边和其中一边的对
第四章 三角函数解三角形 第四讲 正、余弦定理及解三角形课件 理
基本类型
已知两角及其中 一角的对边,如 A,B,a
一般解法
继续学习
数学
知识全通关
第四章·第四讲
5
正、余弦定理及解三角形
已知两边和它们 的夹角,如a,b,C
已知三边
可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由 A+B+C=180°,求出第三个角; 由余弦定理求出一个角后,也可以根据正弦定理求出第二个角,但仍然是先求 较小边所对的角
题型全突破 16
考法四 正、余弦定理在平面几何中的应用
考法指导 (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、 余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果. 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的 一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.
数学
考情精解读
第四章·第四讲
2
考纲解读
正、余弦定理及解三角形
考点
2016全国
2015全国 2014全国
自主命题区域
命题规律 命题趋势
利用正、余 弦定理解 三角形 【40%】
·全国Ⅱ,13,5分 ·全国Ⅲ,8,5分
·2016江苏,15,14分 ·2016浙江,16,14分 ·2015江苏,15,14分 ·全国Ⅱ,4,5分 ·2015北京,12,5分 ·2014浙江,18,14分 ·2014北京,15,13分
c2=a2+b2-2abcos C
继续学习
数学
知识全通关
第四章·第四讲
2
正、余弦定理及解三角形
变形
继续学习
数学
三角函数解三角形正弦定理和余弦定理课件理ppt
针对正弦和余弦函数的计算,数学家们不断优化算法,提高计算的效率和准 确性,例如快速傅里叶变换(FFT)等算法。
正弦定理和余弦定理在物理和工程中的应用进展
量子力学
在量子力学中,正弦和余弦函数是描述波动性粒子的基本波函数的常见形式,例 如电子和光子的波函数。
信号处理
正弦和余弦函数是信号处理的基础,包括模拟信号和数字信号的处理,如振幅调 制、频率调制、数字信号处理(DSP)等。
01
航海
在航海中,三角函数被用来确定船只的位置、航向和速度等。利用三
角函数可以计算船只与目标之间的角度、距离和时间等参数,从而保
证船只的准确航行。
02
航空
在航空中,三角函数被用来确定飞机的位置、航向和速度等。利用三
角函数可以计算飞机与目标之间的角度、距离和时间等参数,从而保
证飞机的准确航行。
03
地理
工程学
02
在工程学中,三角形边角关系可以用来解决结构分析和设计问
题。
物理学
03
在物理学中,三角形边角关系可以用来解决速度、加速度和力
的问题。
05
解三角形的实际应用
在工程、建筑和物理中的应用
工程设计
在工程设计中,三角函数被广泛应用于各种设计问题,如结构支撑、悬臂和框架等。利用 三角函数可以求出所需的数据,如压力、扭矩、弯曲等。
正弦定理的变式和推论
变式
正弦定理的变式包括比例式、等角式和差角式等。这些变式都可以由正弦定理推 出。
推论
正弦定理的推论有很多,比如正弦定理的逆定理、正弦定理的推广等。这些推论 都可以帮助我们更好地应用正弦定理。
03
余弦定理
余弦定理的证明和应用
高考数学一轮复习正弦定理余弦定理及解三角形课件理
基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7
=
7 14 .
基础诊断 考点突破
课堂总结
在
Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形
新高考高中数学解三角形的综合-教案(解析版)
学科教师辅导讲义学员编号:年级:高二课时数:学员姓名:辅导科目:数学学科教师:授课主题解三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握正弦定理和余弦定理的基本内容;②能灵活使用正余弦定理结合三角函数基本公式进行变形;③运用正弦定理和余弦定理解决实际问题。
授课日期及时段T(Textbook-Based)——同步课堂一、知识框架二、知识概念体系搭建(一)正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即A a sin =B b sin =Ccsin . 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 变形:①C B A c b a sin :sin :sin ::= ②角化边 C R c BR b A R a sin 2sin 2sin 2===③边化角 Rc C Rb B Ra A 2sin 2sin 2sin ===(二) 余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即 a 2=b 2+c 2-2bc cos A ; ① b 2=c 2+a 2-2ca cos B ; ② c 2=a 2+b 2-2ab cos C .③在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. 由此可知余弦定理是勾股定理的推广.由①②③可得cos A =bc a c b 2222-+; cos B =ca b a c 2222-+; cos C =abc b a 2222-+.利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. (3)在∆ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角. (三) 三角形中的公式变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
正余弦定理讲义
正余弦定理讲义
正余弦定理是高中数学中的重要知识点,也是解决三角形相关问题的基础。
本讲义将详细介绍正余弦定理的定义、公式及其应用。
一、正余弦定理的定义
正余弦定理是指在任意三角形ABC中,设三角形三边分别为
a、b、c,对应的内角分别为A、B、C,那么:
① 余弦定理:$a^2=b^2+c^2-2bccos A$;
② 正弦定理:$dfrac{a}{sin A}=dfrac{b}{sin
B}=dfrac{c}{sin C}$。
二、正余弦定理的公式
1. 余弦定理的公式:
$a^2=b^2+c^2-2bccos A$;
$b^2=a^2+c^2-2accos B$;
$c^2=a^2+b^2-2abcos C$。
2. 正弦定理的公式:
$dfrac{a}{sin A}=dfrac{b}{sin B}=dfrac{c}{sin C}$。
三、正余弦定理的应用
1. 判断三角形是否存在
若已知三角形的三边长,应用正余弦定理可以求出三个角的正余弦值,从而判断这个三角形是否存在。
2. 求角度
已知三角形的三边长,应用余弦定理可以求出对应角的余弦值,进而求出对应角的角度大小。
3. 求边长
已知三角形的某两边和夹角,应用余弦定理可以求出第三边的长度。
4. 判断三角形的形状
通过正余弦定理可以判断三角形是锐角三角形、钝角三角形还是直角三角形。
5. 解决实际问题
应用正余弦定理可以解决很多实际问题,如测量高楼建筑物的高度、计算船舶航行距离等。
以上就是正余弦定理的讲义内容,希望对大家学习有所帮助。
三角函数正弦定理余弦定理及解三角形课件pptx
在物理学中的应用
三角函数可以用于描述周期性运动、振动、波动等物理现象。
在数学中的应用
三角函数可以用于求解一些代数方程的解,解决一些数形结合的问题。
三角函数的应用
03
正弦定理
三角形中任意一边的平方等于其他两边平方的和与这两边夹角的正弦的乘积的两倍,即$a^{2} = b^{2} + c^{2} - 2bc\sin A$
表述中的重点
余弦定理是一个关于三角形边角关系的恒等式,可以通过已知两边和其中一边的对角解出其他边角
余弦定理的表述
已知三角形的三条边a、b、c,可以使用余弦定理求出三角形中每个角的角度
已知三边求角度
已知三角形两条边及其夹角,可以使用余弦定理求出第三条边的长度
已知两边及其夹角求第三边
用余弦定理解决三角形问题
xx年xx月xx日
三角函数正弦定理余弦定理及解三角形课件pptx
contents
目录
引言三角函数正弦定理余弦定理解三角形三角函数与生活小结与展望
01
引言
三角函数是数学中的基础内容之一,具有广泛的应用价值。
本课程以三角函数为背景,介绍正弦定理、余弦定理及解三角形的相关知识。
课程简介
使学生掌握正弦定理、余弦定理的推导及证明方法。
余弦定理
通过实例讲解了解三角形的基本方法,包括利用正弦定理、余弦定理、勾股定理等方法进行求解。
解三角形
下一步学习计划与展望
需要进一步掌握三角函数的应用,如三角函数在几何、物理等学科中的应用。
深入理解三角函数
提升解题能力
学习三角函数图像
学习三角函数的变换
需要多做练习题,掌握解三角形的技巧和方法,提高解题能力和速度。
2020年浙江高三数学总复习:正弦定理和余弦定理 复习讲义
第一节 正弦定理和余弦定理一、正弦定理正弦定理内容:sin a A =sin b B =sin cC=2R(R 为△ABC 外接圆半径). 变形形式:①a=2Rsin A,b=2Rsin B,c=2Rsin C. ②sin A=2a R ,sin B=2b R ,sin C=2c R . ③a ∶b ∶c=sin A ∶sin B ∶sin C.④sin a A =sin sin a b A B ++=sin sin sin a b c A B C++++.1.概念理解(1)正弦定理主要解决两类三角形问题:①知两角和一边;②知两边和其中一边所对应的角.在第②类中要注意会出现两组解的特殊情况. (2)正弦定理中边角互化公式:a=2Rsin A 和sin A=2a R 是表达式变形中常用公式,在统一角度或统一长度上发挥作用. 2.与正弦定理有关的结论(1)三角形中:A+B+C=π,sin(A+B)=sin C, cos(A+B)=-cos C.(2)在△ABC 中,已知a,b 和A 时,解的情况如下:二、余弦定理余弦定理内容:a 2=b 2+c 2-2bc ·cos A, b 2=a 2+c 2-2ac ·cos B,c 2=a 2+b 2-2ab ·cos C.变形形式:cos A=2222b c a bc +-,cos B=2222a c b ac+-,cos C=2222a b c ab+-.1.概念理解(1)余弦定理解决两类三角形问题:一是知两边及其夹角的三角形,二是知三边的三角形.(2)利用余弦定理来解决三角形问题时,要注意角的取值范围.通常求解三角形的内角度数时,不是解该角的正弦,而是解该角的余弦. 2.与余弦定理有关的结论 由cos A=2222bc a bc+- (设A 为最大内角)若b 2+c 2>a 2,则该三角形为锐角三角形. b 2+c 2=a 2,则该三角形为直角三角形. b 2+c 2<a 2,则该三角形为钝角三角形.1.在△ABC 中,内角A,B,C 的对边分别为a,b,c.若asin Bcos C+csin Bcos A=12b,且a>b,则∠B 等于( A ) (A)π6 (B)π3(C)2π3 (D)5π6 解析:由正弦定理得sin Asin Bcos C+sin Csin Bcos A=12sin B, 所以sin Bsin(A+C)=12sin B. 因为sin B ≠0,所以sin(A+C)= 12,即sin B=12,所以B=π6或5π6.又因为a>b,所以A>B, 所以B=π6.故选A.2.设△ABC 的内角A,B,C 所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC 的形状为( B ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不确定解析:由正弦定理得sin B ·cos C+sin C ·cos B=sin 2A, 所以sin(B+C)=sin A=sin 2A. 因为sin A ≠0,所以sin A=1. 即A=π2. 所以三角形为直角三角形.故选B.考点一 利用正弦定理解三角形 【例1】 (1)在△ABC 中°,求角A,C 和边c.(2)已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若求角A 的大小.解:(1)由正弦定理sin a A =sin b B ,得sin A=sin a B b,所以A=60°或120°. ①当A=60°时,C=75°,由sin a A =sin c C ,得c=sin sin a C A ⋅=2·sin 75°②当A=120°时,C=15°,c=2·sin 15°(2)由A+C=2B,A+C+B=180°得B=60°.=1sin A, 所以sin A=12.所以A=30°或150°. 又因为b>a, 所以B>A. 所以A=30°.利用正弦定理解三角形(1)注重条件和图形的结合;(2)知两边及一边对应的角时,要区分三角形解的情况,通常情况下先利用正弦定理求角,再利用“大边对大角”的条件排除; (3)正弦定理的变形公式.1.(2017·山东卷)在△ABC 中,角A,B,C 的对边分别为a,b,c.若△ABC 为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C+cos Asin C,则下列等式成立的是( A ) (A)a=2b (B)b=2a (C)A=2B (D)B=2A解析:因为等式右边=sin Acos C+(sin Acos C+cos Acos C) =sin Acos C+sin(A+C)=sin Acos C+sin B,等式左边=sin B+2sin Bcos C,所以sin B+2sin Bcos C=sin Acos C+sin B. 由cos C>0,得sin A=2sin B, 根据正弦定理,得a=2b,故选A. 2.在△ABC 中,B=60°则AB+2BC 的最大值为 .解析:在△ABC 中,由正弦定理得sin AB C =sin BCA 所以AB+2BC=2sin C+4sin A =2sin(120°-A)+4sin Aϕ),其中,tan ϕ,又因为A ∈(0°,120°), 所以最大值为答案考点二 利用余弦定理解三角形【例2】 若△ABC 的内角A,B,C 所对的边a,b,c 满足(a+b)2-c 2=4,且C=60°,则ab 的值为( ) (A)43 (C)1 (D)23解析:由已知得a 2+b 2-c 2+2ab=4,由于C=60°,所以cos C=2222a b c ab +-=12,即a 2+b 2-c 2=ab,因此ab+2ab=4,ab=43,故选A.利用余弦定理解三角形:一般地,如果式子中含有角的余弦或边的二次关系时,考虑使用余弦定理.(2017·浙江卷)已知△ABC,AB=AC=4,BC=2. 点D 为AB 延长线上一点,BD=2,连接CD,则△BDC 的面积是 ,cos ∠BDC= .解析:依题意作出图形,如图所示.则sin ∠DBC=sin ∠ABC. 由题意知AB=AC=4,BC=BD=2, 则cos ∠ABC=14,sin ∠所以S △BDC =12BC ·BD ·sin ∠DBC=12×2×2因为cos ∠DBC=-cos ∠ABC =2222BD BC CD BD BC+-⋅=288CD -=-14, 所以.由余弦定理,得cos ∠答案考点三 正、余弦定理的综合应用【例3】 设△ABC 的内角A,B,C 所对应的边分别为a,b,c, 已知()sin a bA B ++=sin sin a c AB --.(1)求角B;(2)若,求△ABC 的面积.解:(1)因为()sin a bA B ++=sin sin a c AB --,所以a b c+=a ca b --, 所以a 2-b 2=ac-c 2, 所以cos B=2222ac b ac +-=2ac ac =12, 又因为0<B<π,所以B=π3.(2)由可得由sin a A =sin b B可得a=2, 而sin C=sin(A+B) =sin Acos B+cos Asin B,所以△ABC 的面积S=12.(1)利用正、余弦定理解三角形的关键是根据已知条件及所求结论确定三角形及所需应用的定理.(2)对于面积公式S=12absin C=12acsin B=12bcsin A,一般是已知哪一个角就选用哪一个公式.(2017·全国Ⅰ卷)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC的面积为23sin a A .(1)求sin Bsin C;(2)若6cos Bcos C=1,a=3,求△ABC 的周长. 解:(1)由题设得12acsin B=23sin a A ,即12csin B=3sin aA . 由正弦定理得12sin Csin B=sin 3sin A A , 故sin Bsin C=23. (2)由题设及(1)得cos Bcos C-sin Bsin C=-12, 即cos(B+C)=-12. 所以B+C=2π3,故A=π3. 由题设得12bcsin A=23sin a A ,即bc=8,由余弦定理得b 2+c 2-bc=9, 即(b+c)2-3bc=9, 得故△ABC 的周长为类型一 利用正弦定理解三角形1.△ABC 的内角A,B,C 所对的边分别为a,b,c.若,则c等于( B )(B)2解析:由已知及正弦定理得1sin A ,所以cos,A=30°.B=60°,C=90°,c 2=a 2+b 2=4,所以c=2.故选B. 2.在△ABC 中,a,b,c 分别是内角A,B,C 的对边,向量p=(1,-sin B),p ∥q,且bcos C+ccos B=2asin A,则C 等于( A ) (A)30° (B)60° (C)120° (D)150° 解析:因为p ∥q,所以cosB=sin B,即得tan ,所以B=120°.又因为bcos C+ccos B=2asin A,所以由正弦定理得sin Bcos C+sin Ccos B=2sin 2A, 即sin A=sin(B+C)=2sin 2A, 又由sin A ≠0,得sin A=12, 所以A=30°,C=180°-A-B=30°.故选A. 类型二 利用余弦定理解三角形3.在△ABC 中,已知b 2+c 2=bc+a 2,则角A= . 解析:由已知得b 2+c 2-a 2=bc,于是cos A=2222b c a bc +-=2bc bc =12.所以A=60°. 答案:60°4.若锐角△ABC 的面积为,且AB=5,AC=8,则BC 等于 .解析:设内角A,B,C 所对的边分别为a,b,c.由已知及12得因为A 为锐角,所以A=60°,cos A=12. 由余弦定理得a 2=b 2+c 2-2bccos A=64+25-2×40×12=49,故a=7,即BC=7.答案:7类型三 正弦定理和余弦定理的综合应用5.在△ABC 中,∠B=120°∠BAC 的角平分线,则AC 等于( D )(C)2解析:如图,在△ABD 中,由正弦定理,得sin ∠ADB=sin AB BAD ∠.由题意知0°<∠ADB<60°,所以∠ADB=45°,则∠BAD=180°-∠B-∠ADB=15°, 所以∠BAC=2∠BAD=30°,所以∠C=180°-∠BAC-∠B=30°,所以于是由余弦定理, 得故选D.。
正余弦定理妙解三角形问题和最值问题(讲义)(原卷版)-2024年高考数学二轮复习讲练测(新教材高考)
正三角形的面积依次为 S1 , S2 , S3 .已知 S1 S2 S3
3 , sin B 1 .
2
3
(1)求 ABC 的面积;
(2)若 sin Asin C 2 ,求 b . 3
10.(2022•乙卷)记 ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 sin C sin( A B) sin B sin(C A) . (1)证明: 2a2 b2 c2 ; (2)若 a 5 , cos A 25 ,求 ABC 的周长.
. .
6.(2021•乙卷)记 ABC 的内角 A , B ,C 的对边分别为 a ,b ,c ,面积为 3 , B 60 ,a2 c2 3ac , 则b .
7 .( 2021 • 浙 江 ) 在 ABC 中 , B 60 , AB 2 , M 是 BC 的 中 点 , AM 2 3 , 则 AC
知 AB ∥ DC ,且 DC c , AD (1 ) AP . BAC ACD 180 .
例 1.(2023·河南安阳·高三统考期末)在 ABC 中,内角 A,B,C 所对的边分别为 a,b,c,若 a2 b2 c2 ab , 且 AB 边上的中线 CD 1,则 ABC 面积的最大值为( )
图,点 E ,H ,G 在水平线 AC 上,DE 和 FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”, EG 称为“表距”, GC 和 EH 都称为“表目距”, GC 与 EH 的差称为“表目距的差”,则海岛的高 AB (
)
A. 表高 表距 表高 表目距的差
B. 表高 表距 表高 表目距的差
..................................................................................................................................................2
高三正余弦定理与解三角形
正弦余弦定理涵义及公式一、同步知识梳理一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。
2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C ===(2)化角为边:sin ,sin ,sin ;222a b cA B C RR R ===(3)::sin :sin :sin a b c A B C =(4)2sin sin sin sin sin sin a b c a b cR A B C A B C++====++.3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一)二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=3=+3=-210,∵102sin 45sin o B =,12=3(+76,2267===b .122bc ==-sin cos B Bsin C的对边长分别为】对是cos化角化边都可以。
析】:2b2b解法二:由余弦定理得:a2=AsinAsinbc=.【总结】面对解三角形,可以考虑正弦定理,也可以考虑余弦定理,两种方法只是计算量上的差别。
,(I)由正弦定理得。
正弦定理和余弦定理讲义
正弦定理和余弦定理讲义一、知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容(1)a sin A =b sin B =c sin C =2R (2)a 2=b 2+c 2-2bc cos_A ;b 2=c 2+a 2-2ca cos_B ; c 2=a 2+b 2-2ab cos_C变形(3)a =2R sin A , b =2R sin_B , c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(5)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (6)a sin B =b sin A , b sin C =c sin B , a sin C =c sin A(7)cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.在△ABC 中,已知a ,b 和A 时,解的情况A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).注意:1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) (4)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( )(5)在三角形中,已知两边和一角就能求三角形的面积.( ) 题组二:教材改编2.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________.3.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________. 题组三:易错自纠4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c <b cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .等边三角形5.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定6.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.三、典型例题题型一:利用正、余弦定理解三角形1.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( ) A.3π4 B.π3 C.π4 D.π62.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于( ) A.725 B .-725 C .±725 D.24253.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.思维升华:(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. 题型二:和三角形面积有关的问题典例 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.思维升华:(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 跟踪训练 (1)若AB =2,AC =2BC ,则S △ABC 的最大值为( ) A .2 2 B.32C.23D .32(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.题型三:正弦定理、余弦定理的简单应用 命题点1:判断三角形的形状 典例 (1)在△ABC 中,cos A2=1+cos B2,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .无法确定(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定引申探究:1.本例(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 2.本例(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状. 命题点2:求解几何计算问题典例 (1)如图,在△ABC 中,B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.(2)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是______. 思维升华:(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.跟踪训练 (1)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.四、反馈练习1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( ) A .1 B .2 C .4 D .62.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3 B.5π6 C.π6或5π6D.π63.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C 等于( ) A .30° B .45° C .60° D .75°4.△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba 等于( )A .2 3B .2 2 C. 3 D.25.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,sin A ,sin B ,sin C 成等比数列,且c =2a ,则cos B 的值为( ) A.14 B.34 C.24D.236.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B =asin A,则cos B 等于( ) A .-12 B.12 C .-32 D.327.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为______. 9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________.10.E ,F 是等腰直角三角形ABC 斜边AB 上的三等分点,则tan ∠ECF =________. 11.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A . (1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .12.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.13.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于( )A .27B .4C .2 3D .3314.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________.15.在△ABC 中,若AB =4,AC =7,BC 边的中线AD =72,则BC =________.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC边上的中线AM 的长为7. (1)求角A 和角B 的大小; (2)求△ABC 的面积.。
最全面的解三角形讲义
解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系 式 a <b sin A a =b sin Ab sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.6.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c.【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2)若a=3,求bc的最大值;(3)求cb Ca--︒)30sin(的值.【变式】1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a= .2.(1)△ABC中,a=8,B=60°,C=75°,求b;(2)△ABC中,B=30°,b=4,c=8,求C、A、a.3.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为 .4.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.5.在△ABC中,角A、B、C所对的边分别为a、b、c.若(3b-c)cosA=acosC,则cosA= .6. 在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2-b2)tanB=3ac,则角B的值为 .7.在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,C=3π.(1)若△ABC的面积等于3,求a、b的值;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.题型二判断三角形形状【例题】在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.【变式】已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.题型三测量距离问题【例题】如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【变式】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.题型四测量高度问题【例题】如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【变式】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C 与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.题型五正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【变式】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.巩固训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3 ,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= .8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 . 9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状.11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ;(2)求a ,b 的值.13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522m15.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ).A.α>β B.α=β C.α+β=90° D.α+β=180°16.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的( ).A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10°17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里 B.53海里C.10海里 D.103海里18.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?参考答案例题答案题型一 正弦、余弦定理【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=BCb sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°, c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°,c=226-. 【例题2】 解(1)由余弦定理知:cosB=ac b c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-ca b+2得:ac b c a 2222-+·2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cosB=acb c a 2222-+=ac ac2- =-21∵B 为三角形的内角,∴B=32π.(2)将b=13,a+c=4,B=32π代入b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB ∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bc a c b 2222-+=bc bc 2-=-21,又∵A∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc(当且仅当c=b 时取等号),∴3-bc≥2bc(当且仅当c=b 时取等号).即当且仅当c=b=1时,bc 取得最大值为1.(3)由正弦定理得:===CcB b A a sin sin sin 2R, ∴CR B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒=C B C A sin sin )30sin(sin --︒ =CC C C sin )60sin()sin 23cos 21(23--︒- C C C C sin 23cos 23)sin 43cos 43--==21【变式】1. 22. 解(1)由正弦定理得BbA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab,由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C=2.从而tanC=2tan 12tan22C C -=-34. 5.336. 3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a .(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA, 即sinBcosA=2sinAcosA, 当cosA=0时,A=2π,B=6π,a=334,b=332.当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332. 题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)]∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为:sin 2AcosAsinB=sin 2BcosBsinA∴sinAsinB(sinAcosA -sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a acb c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2) 即(a 2-b 2)(a 2+b 2-c 2)=0∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos 2B-8cosB+5=0,∴2(2cos 2B-1)-8cosB+5=0.∴4cos 2B-8cosB+3=0,即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π. ∵a,b ,c 成等差数列,∴a+c=2b. ∴co sB=acbc a 2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c. 又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cosB+5=0,∴2(2cos 2B-1)-8cosB+5=0.∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0. 解得cosB=21或cosB=23(舍去).∴cosB=21,∵0<B <π,∴B=3π, ∵a,b,c 成等差数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB=2sin 3π=3. ∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3, ∴sinA+sin A cos 32π-cos A sin 32π=3. 化简得23sinA+23cosA=3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A+6π=2π,∴A=3π,∴C=3π,∴△ABC 为等边三角形.题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45° 在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a . 在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m ,tan 60°=CD BD, ∴BD =CDtan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDCsin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6巩固训练1. 等腰;2.53;3. 45°;4. 33;5. 60°;6. 45°或135°;7. 65π; 8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得, cosB=ac b c a 2222-+=acbc c 22+=a cb 2+=ab a 22=b a 2=BA sin 2sin , 所以sinA=sin2B,故A=2B. (2)解 因为a=3b,所以ba=3, 由a 2=b(b+c)可得c=2b, cosB=ac b c a 2222-+=22223443bb b b -+=23, 所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形. 11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53. 所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533. (2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB, 故1320AB 2=65,AB=213. 所以BC=C A AB sin sin ⨯=211.12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根,则x 1+x 2=ab c 222-,x 1·x 2=-a b .∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab4=4. ∴a 2+b 2-c 2=ab.又cosC=abc b a 2222-+=ab ab 2=21,又∵C∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab=40 ……① 由余弦定理c 2=a 2+b 2-2abcosC,即c 2=(a+b)2-2ab(1+cos60°). ∴72=(a+b)2-2×40×⎪⎭⎫ ⎝⎛+211.∴a+b=13.又∵a>b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin22B A +-cos2C=27, 得4cos 22C-cos2C=27,∴4·2cos 1C +-(2cos 2C-1)=27,整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC,即7=a 2+b 2-ab,∴7=(a+b)2-3ab , 由条件a+b=5,得7=25-3ab,ab=6, ∴S △ABC =21absinC=21×6×23=233. 14.解析 由正弦定理得AB sin ∠ACB =ACsin B,又∵B =30°∴AB =AC ·sin ∠ACBsin B =50×2212=502(m).答案 A15.解析 根据仰角与俯角的定义易知α=β.答案 B 16.解析 如图.答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75.解得BC =56(海里).答案 5 619.如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分)在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)。
(完整版)解三角形完整讲义
正余弦定理知识要点:3、解斜三角形的常规思维方法是:(1)已知两角和一边(如 A 、 B 、 C ),由 A+B+C = π求 C ,由正弦定理求 a 、b ; (2)已知两边和夹角(如 a 、b 、c ),应用余弦定理求 c 边;再应用正弦定理先求较短边所 对的角,然后利用 A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如 a 、b 、A ),应用正弦定理求 B ,由 A+B+C = π求 C , 再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况;(4)已知三边 a 、b 、c ,应余弦定理求 A 、B ,再由 A+B+C = π,求角 C 。
4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5、解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定 理及几何作图来帮助理解” 。
6、已知三角形两边 a,b,这两边夹角 C ,则 S =1/2 * absinC7、三角学中的射影定理:在△ ABC 中, b a cosC c cosA ,⋯8、两内角与其正弦值:在△ ABC 中, A B sin A sinB ,例题】在锐角三角形 ABC 中,有 (A . cosA>sinB 且 cosB>sinAC . cosA>sinB 且 cosB<sinA正弦定理专题:公式的直接应用1、已知 △ ABC 中, a2,b 3, B 60o ,那么角 A 等于( )A . 135oB . 90oC .45oD .30o2、在△ ABC 中, a = 2 3 ,b = 2 2 , B = 45°,则 A 等于( C )A .30°B . 60°C .60°或 120°D . 30°或 150°3、△ABC 的内角 A ,B ,C 的对边分别为 a , b ,c ,若 c 2,b 6,B 120o ,则 a1、 正弦定理a sin Ab sin B 2R 或变形: a:b:c sinCsin A :sin B :sin C .2a b 22c 2bc cos AcosA2、余弦定理:b 22a 2 c 2accosB 或 cosB2cb 2 2 a 2ba cosCcosCb 22c 2 a2bc222a cb 22ac222b 2a c2abB )B . cosA<sinB 且 cosB<sinA D . cosA<sinB 且 cosB>sinA9、三角形内切圆的半径:2S bc,特别地, r 直a b c 斜616、已知 ABC 的内角 A , B ,C 所对的边分别为 a ,b ,c ,若sin A ,b3sinB ,33则 a 等于 . ( 3 )336 12 6,12 6 24)2、已知 △ ABC 的周长为 2 1,且sinA sinB 2sinC .(1)求边 AB 的长;1(2)若 △ ABC 的面积为 sin C ,求角 C 的度数.专题:三角形个数4、已知△ ABC中,A 30o , C 105o , b 8,则 a 等于(B )A . 4B.4 2C.4 3D.4 55、在△ ABC 中,a=10,B=60°,C=45° ,则 c 等于 ( B)A . 10 3B . 10 3 1C . 3 1D . 10 3C . 3D . 2等于( )A . 6B .27、△ ABC 中, B 45o,C60o , c 1,则最短边的边长等于(B.3: 2两部分,则 cosA ( C )1 13 A .B .C .324cos2Acos2B119、在△ ABC 中,证2222ab 2a 2b 2D .0证明:cos2Acos2B 1 2sin 2 Ab 21 2sin2 Bb 21 1 sin2 A sin 2 B 222 2 2a b a b由正弦定理得:sin 2 Aa 22sinb 2cos2A 2a专题:两边之和1、在△ ABC 中,A =60°, B =45°, cos2B b 21b 2ab 12, a =;b = .8、△ ABC 中,A:B1: 2,C 的平分线 CD 把三角形面积分成1、△ ABC中,∠ A=60°, a= 6 , b=4, 那么满足条件的△ ABC ( C ) A.有一个解 B.有两个解C.无解D.不能确定2、Δ ABC中,a=1,b= 3 , ∠ A=30° ,则∠ B等于( B )A.60°B.60°或120° C.30°或150° D.120°3、在△ ABC 中,根据下列条件解三角形,则其中有两个解的是( D )A.b = 10,A = 45°, B = 70°B.a = 60,c = 48,B = 100°C.a = 7,b = 5,A = 80°D.a = 14,b = 16,A = 45°4、符合下列条件的三角形有且只有一个的是( D )A.a=1,b=2 ,c=3 B.a=1,b= 2 ,∠ A=30°专题:等比叠加D. 32专题:变式应用1、在△ ABC中,若∠ A:∠ B:∠C=1:2:3,则a : b : c 1: 3:22、已知△ABC中,a∶b∶c=1∶3 ∶2,则A∶B∶C等于( A )A.1∶2∶3B.2∶3∶1C.1:3:2D.3:1:23、在△ ABC 中,周长为7.5cm ,且sinA :sinB:sinC=4:5:6,下列结论:① a:b:c4:5:6② a:b:c 2: 5 : 6 ③a2cm,b 2.5cm,c 3cm④ A: B:C 4:5:6其中成立的个数是( C )A.0 个B. 1 个C.2个D.3个5、C.a=1,b=2,∠ A=100°C.b=c=1, ∠B=45°在△ ABC中,a=12,b=13,C=60°,此三角形的解的情况是(A.无解B.一解C.二解B)D.不能确定6、满足A=45 ,c= 6 ,a=2 的△ ABC 的个数记为m, 则 a m 的值为( A )7、8、A.4 B.2 C.1 D.不定已知△ ABC 中,a181,b 209,A 121 ,则此三角形解的情况是无解在△ ABC中,已知50 3 ,c 150 ,B 30o,则边长a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正余弦定理、解三角形综合讲义
一、考试要求:
了解利用向量知识推导正弦定理和余弦定理;掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题
二、知识梳理:
考点1 正弦定理
1.正弦定理:a sin A =b sin B =c
sin C =2R ,其中R 是三角形外接圆的半径.由正
弦定理可以变形为:
(1)a ∶b ∶c =
(2)a = ,b = ,c =
(3)sin A = ,sin B = ,sin C =
考点2 余弦定理
在ABC ∆中a 2= ,
b 2= ,
c 2= .
余弦定理可以变形为:cos A = , cos B = , cos C = . 考点3 内角和定理
面积公式: .S △ABC =12ab sin C =12bc sin A =12ac sin B
在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 在三角形中大边对大角,反之亦然.
1.(广州调研)△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,已知
a =2,
b =3,则sin A sin A +C
=( ) A.23 B.32 C .-23 D .-32
2.在△ABC 中,已知BC =8,AC =5,三角形面积为12,则cos2C =( )
A .-725 B.725 C .-2425 D.2425
3.(全国)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,
则sin A cos A +cos 2B =( )
A .-12 B.12
C .-1
D .1 4.在△ABC 中,如果lg a -lg c =lgsin B =-lg 2,并且B 为锐角,则△ABC 的形状是( )
A .等腰三角形
B .直角三角形
C .等边三角形
D .等腰直角三角形
5.在△ABC 中,AB =3,BC =5,CA =7,则AB →〃BC →=( )
A .-152 B.152 C .-15 32 D.15 32
6.已知a ,b ,c 分别为△ABC 的三个内角的所对的边,若a =1,b =3,A +C =2B ,则sin C =________.
7.已知a ,b ,c 分别为△ABC 的三个内角的所对的边,若a =2,b =2,sin B +cos B =2,则角A 的大小为______.
8.在锐角三角形ABC 中,A ,B ,C 的对边分别为a ,b ,c ,b a +a b
=6cos C ,则tan C tan A +tan C tan B
=________.
1.(广州海珠调研)已知A ,B ,C 是△ABC 的内角,A =π3.a ,b ,c 分别是其对边长,向量m =(cos B ,sin B ),n =(cos C ,-sin C ).
(1)求m 〃n 的大小;
(2)若a =2,cos B =33
,求b 的长.
2.(2011年广东深圳调研)已知向量a =⎝ ⎛⎭⎪⎫-1,sin α2与向量b =⎝ ⎛⎭⎪⎫45
,2cos α2
垂直,其中α为第二象限角.
(1)求tan α的值;
(2)在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,若b 2+c 2-a 2=2bc ,求tan(α+A )的值.
3.(2011年全国)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .己知a sin A +c sin C -2a sin C =b sin B .
(1)求B ;
(2)若A =75°,b =2,求a ,c .
4.(2011年山东)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b
. (1)求sin C sin A
的值; (2)若cos B =14
,△ABC 的周长为5,求b 的长.
5.(惠州调研)已知A ,B ,C 为△ABC 的三内角,且其对边分别为a ,b ,c ,
若m =⎝ ⎛⎭⎪⎫-cos A 2,sin A 2,n =⎝
⎛⎭⎪⎫cos A 2,sin A 2,且m 〃n =12. (1)求角A 的值;
(2)若a =2 3,b +c =4,求ABC 的面积.
高考尝试
1.(湖南)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足c sin A =a cos C .
(1)求角C 的大小;
(2)求3sin A -cos ⎝
⎛⎭⎪⎫B +π4的最大值,并求取得最大值时角A ,B 的大小.
2. ABC ∆的内角C B A ,,
所对的边分别为c b a ,,. (I )若c b a ,,
成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,
成等比数列,求B cos 的最小值.
3.在ABC ∆中,3,2,600===∠BC AC A ,则AB 等于___________。