由样本推断总体PPT
合集下载
《抽样方法》课件
分层抽样
抽样方法:根据总体的特 征将样本划分为若干层, 从每一层中随机选择样本。
系统抽样
抽样方法:按照固定的间 隔从总体中选择样本。
抽样方法的种类与适用范围
整群抽样
抽样方法:将总体划分为若干群体,从每一群中选择样本。
多阶段抽样
抽样方法:将样本选取分为多个阶段进行,每个阶段都是简单随机抽样或其他抽样方法。
无反应偏差是指样本中的一部分个体拒绝 参与调查或无法联系到的情况,需采取合 适的补偿方法。
常见问题及解决方法
1 采样偏倚
采样偏倚是指抽样过程中对某些特定人群的过度采样或忽略采样的情况,可通过调整抽 样方法或纠正数据进行解决。
实例分析
利用抽样方法进行问卷调查的实例分析
通过抽样方法进行问卷调查,可以获得一定规模的样本数据,用于分析人群的意见、行为等。
总结
1 抽样方法的重要性
2 合理运用抽样方法的必要性
抽样方法是统计学和市场研究中必不可少 的工具,能够在合理范围内推断总体的情 况。
需要根据不同场景和目的合理选择和运用 抽样方法,以获得准确、有效的样本数据。
样本容量的确定
1 样本容量的计算公式
2 影响样本容量的因素
样本容量的计算需要考虑总体大小、置信 水平、抽样误差等因素。
样本容量受到总体大小、置信水平、抽样 误差、预测精度等因素的影响。
常见问题及解决方法
1 抽样误差
2 无反应偏差
Байду номын сангаас
抽样误差是由于抽样过程中的随机变异导 致的误差,可通过增加样本容量来减小误 差。
《抽样方法》PPT课件
抽样方法是从样本中选择部分个体以推断总体的一种可行方法。本课件将介 绍抽样方法的种类、适用范围,样本容量的确定,常见问题及解决方法等内 容。
第五章 统计推断(1)
2检验是根据s判断抽出该样本的总体 其标准差是否等于
某一给定值。
检验程序:
(a) 确定假设H 0和H A: H 0:= 0;H A 有三种可能的形式: ( 1 ) 0 (2) 0 (若已知不可能小于 0 ) (3) 0 (若已知不可能大于 0 )
(b)计算检验的统计量:
1. 单个样本平均数检验
在实际研究中,常常要 检验一个样本平均数 x与已知的总体 平均数0是否有显著差异,即检 验该样本是否来自某一 已知 的总体。
已知的总体平均数一般 为一些公认的理论数值 。如畜禽正常 的生理指标、怀孕期、 生产性能指标等,都可 以样本平均数 与之比较,检验差异显 著性。
1.1 在σ已知的情况下,单个平均数的显著性 检验-u检验 检验程序:
• 两类错误之间的关系如何?
二者的区别是I型错误只有在否定H0的情况下发生,而 II型错误只有在接受H0时才会发生。 二者的联系是,在样本容量相同的情况下,I型错误减 小,II型错误就会增大;反之II型错误减小,I型错误就 会增大。比如,将显著性水平α从0.05提高到0.01,就 更容易接受H0,因此犯I型错误的概率就减小,但相应 地增加了犯II型错误的概率。
第一节 假设检验的基本步骤及原理
1. 假设检验的基本步骤
我们通过一个例子来介绍假设检验的基本步骤:
例一,已知某品种玉米 单穗重X ~ N (300,9.52 ),即单穗重 总体平均数0 300g,标准差 9.5 g。在种植过程中喷洒 了某种药剂的植株中随 机抽取9个果穗,测得平均单穗 重 x 308g,试问这种药剂对该品 种玉米的平均单穗重 有无真实影响?
• (一)提出假设
首先对样本所在的总体 作一假设。假设喷洒了 药剂的玉米单穗重 总体平均数与原来的玉米单穗重总 体平均数0之间没有真实差异, 即=0。也就是说表面差异( x 0)是由抽样误差造成的 。
某一给定值。
检验程序:
(a) 确定假设H 0和H A: H 0:= 0;H A 有三种可能的形式: ( 1 ) 0 (2) 0 (若已知不可能小于 0 ) (3) 0 (若已知不可能大于 0 )
(b)计算检验的统计量:
1. 单个样本平均数检验
在实际研究中,常常要 检验一个样本平均数 x与已知的总体 平均数0是否有显著差异,即检 验该样本是否来自某一 已知 的总体。
已知的总体平均数一般 为一些公认的理论数值 。如畜禽正常 的生理指标、怀孕期、 生产性能指标等,都可 以样本平均数 与之比较,检验差异显 著性。
1.1 在σ已知的情况下,单个平均数的显著性 检验-u检验 检验程序:
• 两类错误之间的关系如何?
二者的区别是I型错误只有在否定H0的情况下发生,而 II型错误只有在接受H0时才会发生。 二者的联系是,在样本容量相同的情况下,I型错误减 小,II型错误就会增大;反之II型错误减小,I型错误就 会增大。比如,将显著性水平α从0.05提高到0.01,就 更容易接受H0,因此犯I型错误的概率就减小,但相应 地增加了犯II型错误的概率。
第一节 假设检验的基本步骤及原理
1. 假设检验的基本步骤
我们通过一个例子来介绍假设检验的基本步骤:
例一,已知某品种玉米 单穗重X ~ N (300,9.52 ),即单穗重 总体平均数0 300g,标准差 9.5 g。在种植过程中喷洒 了某种药剂的植株中随 机抽取9个果穗,测得平均单穗 重 x 308g,试问这种药剂对该品 种玉米的平均单穗重 有无真实影响?
• (一)提出假设
首先对样本所在的总体 作一假设。假设喷洒了 药剂的玉米单穗重 总体平均数与原来的玉米单穗重总 体平均数0之间没有真实差异, 即=0。也就是说表面差异( x 0)是由抽样误差造成的 。
抽样调查的基本原理课件
需要采用科学的方法和严谨的程序来保证样本的多样性、随机性和无偏
性。
02
样本规模与成本
在复杂样本设计中,如何平衡样本规模和调查成本是一个关键问题。需
要综合考虑样本规模、调查精度和资源限制等因素,制定合理的调查方
案。
03
样本更新与维护
对于长期调查项目,如何定期更新和维护样本是一个重要任务。需要建
立有效的样本维护机制,保持样本的时效性和稳定性。
。
简单随机抽样
每个单位被选中的机会相等, 且相互独立。
分层随机抽样
将总体分成若干层,然后在每 一层内进行随机抽样。
系统随机抽样
将总体中的单位按某种顺序排 列,然后按照固定的间隔进行
随机抽样。
系统抽样
系统抽样
按照某种固定的规则从总 体中选取样本,如每隔一 定数量的单位抽取一个单 位。
适用情况
当总体中的单位排列有序 或分布均匀时,系统抽样 效果较好。
样本量的分配
样本量分配的原则
样本量分配时应遵循均匀分配、分层分配和整群分配等原则,以提高样本的代 表性和降低抽样误差。
样本量分配的方法
样本量分配的方法包括比例分配、系统分配、随机分配和最优分配等。
04
抽样调查的实施步骤
确定调查目标与范围
明确调查目的
确定调查的目标和目的,如了解市场状况、评估产品质量等。
发展历程
随着统计学和概率论的进 步,多种抽样方法如分层 抽样、系统抽样、聚类抽 样等逐渐发展起来。
当前应用
抽样调查广泛应用于社会 调查、市场研究、民意调 查等领域,成为现代统计 学的重要分支。
02
抽样调查的基本原理
随机抽样
随机抽样
从总体中随机选取一部分单位 作为样本进行调查,目的是通 过样本信息来推断总体的特征
第九章抽样统计分析的基本知识演示文稿ppt
常 是否合格
随机抽样 样本 检测 整理
二、质量数据的收集方法★
(一)全数检验 (二)随机抽样检验
(一)全数检验
全数检验是对总体中的全部个体逐一 观察、测量、计数、登记,从而获得对总 体质量水平评价结论的方法。
(二)随机抽样检验★
抽样检验是按照随机抽样的原则,从 总体中抽取部分个体组成样本,根据对样 品进行检测的结果,推断总体质量水平的 方法。
(三) 质量数据分布的规律性
以质量标准为中心的质量数据分布, 可用一个“中间高、两端低、左右对称” 的几何图形表示,即一般服从正态分布
整群抽样一般是将总体按自然存在的 状态分为若干群,并从中抽取样品群,组 成样本,然后在中选群内进行全数检验的 方法。
如对原材料质量进行检测,可按原包 装的箱、盒为群随机抽取,对中选箱、盒 做全数检验;每隔一定时间抽出一批产品 进行全数检验等。
5. 多阶段抽样
多阶段抽样又称多级抽样,是将各种 单阶段抽样方法结合使用,通过多次随机 抽样来实现的抽样方法。
标准差小说明数据分布的集中程度高, 离散程度小,均值对总体的代表性好。
标准差的平方是方差,能确切地说明数 据的离散程度和波动规律,是最常用的反映 数据变异程度的特征值。
(3) 变异系数(离散系数)
1) 总体的变异系数
Cv
2) 样本的变异系数 Rxmaxxmin
变异系数又称离散系数,是用标准差除以算术 平均数得到的相对数。它表示数据的相对离散波动 程度。变异系数小,说明分布集中程度高,离散程 度小,均值对总体(样本)的代表性好。
1. 简单随机抽样 2. 分层抽样 3. 等距抽样 4. 整群抽样 5. 多阶段抽样
1. 简单随机抽样
简单随机抽样又称纯随机抽样、完全随机 抽样,是对总体不进行任何加工,直接进行随 机抽样,获取样本的方法。
随机抽样 样本 检测 整理
二、质量数据的收集方法★
(一)全数检验 (二)随机抽样检验
(一)全数检验
全数检验是对总体中的全部个体逐一 观察、测量、计数、登记,从而获得对总 体质量水平评价结论的方法。
(二)随机抽样检验★
抽样检验是按照随机抽样的原则,从 总体中抽取部分个体组成样本,根据对样 品进行检测的结果,推断总体质量水平的 方法。
(三) 质量数据分布的规律性
以质量标准为中心的质量数据分布, 可用一个“中间高、两端低、左右对称” 的几何图形表示,即一般服从正态分布
整群抽样一般是将总体按自然存在的 状态分为若干群,并从中抽取样品群,组 成样本,然后在中选群内进行全数检验的 方法。
如对原材料质量进行检测,可按原包 装的箱、盒为群随机抽取,对中选箱、盒 做全数检验;每隔一定时间抽出一批产品 进行全数检验等。
5. 多阶段抽样
多阶段抽样又称多级抽样,是将各种 单阶段抽样方法结合使用,通过多次随机 抽样来实现的抽样方法。
标准差小说明数据分布的集中程度高, 离散程度小,均值对总体的代表性好。
标准差的平方是方差,能确切地说明数 据的离散程度和波动规律,是最常用的反映 数据变异程度的特征值。
(3) 变异系数(离散系数)
1) 总体的变异系数
Cv
2) 样本的变异系数 Rxmaxxmin
变异系数又称离散系数,是用标准差除以算术 平均数得到的相对数。它表示数据的相对离散波动 程度。变异系数小,说明分布集中程度高,离散程 度小,均值对总体(样本)的代表性好。
1. 简单随机抽样 2. 分层抽样 3. 等距抽样 4. 整群抽样 5. 多阶段抽样
1. 简单随机抽样
简单随机抽样又称纯随机抽样、完全随机 抽样,是对总体不进行任何加工,直接进行随 机抽样,获取样本的方法。
第6章--抽样推断PPT优秀课件
不考虑顺序
(N n 1)! n!(N 1)!
不重复抽样:又称不回置抽样。
考虑顺序 N !
( N n )!
可能组成的样本数目
不考虑ห้องสมุดไป่ตู้序
N! ( N n )! n!
7
标号为A、B、C、D的四个圆球从中随机抽取两个 可能样本个数
考虑顺序 N n
AA、AB、AC、AD BA 、BB、BC、BD
CA、CB、CC、CD
p
p1p0.9 8 0.0 20.8(0% 8 )
n
300
p p1np1N n 0.938 0 0.0021630000 00 0.80(6 %
计算结果表明:不重复抽样的平均误差小于重复抽样, 但是“N”的数值越大,则两种方法计算 的抽样平均误差就越接近。
24
四、抽样极限误差
含义:
抽样极限误差指在进行抽样估计时,根据研究对象的变 异程度和分析任务的要求所确定的样本指标与总体指标 之间可允许的最大误差范围。
例题二解 已知: N 20 ,n 040,0 x 0 48 ,0 3000
则:
x
n
3001(5小)时 400
x
2 1 n 3020140013.42(小时 )
n N 400 2000
计算结果表明:
根据部分产品推断全部产品的平均使用寿命时,采用
不重复抽样比重复抽样的平均误差要小。
21
抽样成数平均误差的计算公式
例题二:
某厂生产一种新型灯泡共2000只,随机抽出 400只作耐用时间试验,测试结果平均使用寿 命为4800小时,样本标准差为300小时,求抽 样推断的平均误差?
17
下面求 Y 的无偏估计 y 的方差 V ( y )
《总体分布估计》课件
03
总体分布的参数估计
点估计
01
02
03
点估计的定义
点估计是依据样本数据对 总体参数进行估计的方法 ,通过一个具体的数值来 估计总体参数。
点估计的优点
简单明了,能够为决策者 提供具体的数值参考。
点估计的缺点
由于是基于样本数据的估 计,因此存在一定的误差 和不确定性。
区间估计
区间估计的定义
区间估计是依据样本数据 给出总体参数可能存在的 区间范围,而非具体的点 值。
感谢观看
THANKS
详细描述
最大似然估计是一种常用的参数估计方法,它通过最大化样本数据的似然函数 来估计参数。在正态分布的情境下,最大似然估计与无偏估计一致,因此也可 以用来估计总体参数。
案例一:正态分布的总体参数估计
总结词
样本量和精度
详细描述
样本量的大小直接影响到估计的精度,样本量越大,估计的精度越高。在正态分布的情境下,可以通 过增加样本量来提高总体参数估计的精度。
假设检验的优点
假设检验的缺点
能够为决策者提供关于总体参数是否符合 某种假设的信息,有助于做出科学决策。
需要明确提出假设,且对样本数据的要求 较高,如果样本数据不满足假设条件,则 检验结果可能不准确。
04
非参数核密度估计
核函数的选择
总结词
核函数的选择对于非参数核密度估计至关重要,不同的核函数会对估计结果产生 不同的影响。
贝叶斯估计的步骤
01
02
03
04
步骤1
确定先验分布,根据先验知识 对未知参数进行初步的概率分
布估计。
步骤2
根据观察到的样本数据,计算 似然函数,即样本数据出现的
第二章抽样方法-PPT文档资料
在一次抽样中,抽样框的数目是与抽样单位的层 次相对应的。
上面的例子中有三个层次的抽样单位:学校、班 级、学生,则对应的抽样框也应有三个:全部学校的 名单、抽取的学校样本中的全部班级的名单、抽取班 级中的所有学生的名单。
4、参数值与统计值: 参数值也称总体值,它是关于总体中某一变量的 综合描述,或者说是总体中所有个体的某种特征的 综合数量表现。 在统计中最常见的总体值是某一变量的平均值 例如:平均年龄、平均收入等。 总体值只有通过对总体中的每一个个体都进行调 查或测量才能得到。
5、抽样误差: 总体的异质性和样本与总体范围的差异性,在用 样本的统计值去推算总体的参数值时总会有偏差, 这种偏差就是抽样误差。它是样本代表性大小的一 个标准。
当总体相当大时,可能被抽取的样本非常多,不 可能列出所有的实际抽样误差,而用平均抽样误差来 表征各样本实际抽样误差的平均水平。
抽样误差是指样本指标值与被推断的总体指标值 之差。主要包括:样本平均数与总体平均数之差;样 本成数与总体成数之差。
2、可测性原则。
可测性原则指的是抽样设计能够从样本自身计算 出有效的估计或者抽样变动的近似值。在研究中通常 用标准误来表示。通常,只有概率样本在客观上才是 可测的,即概率样本可以计算出有效的估计值或抽样 变动的近似值。但是,概率抽样也并不自动保证可测 性。比如,从一个具有周期性变化的总体中选出一个 系统样本,就不能保证这种可测性。
一、抽样的基本术语
抽样:是通过抽取总体中的部分单元,收集这些 单元的信息,运用数理统计的原理和方法,对总体进 行推断的一种手段。
总体
抽取样本 推断总体
样本
1、总体与样本。总体是指研究对象的全体,它 是由研究对象中的单元组成的。总体中单元的数目 称作总体容量。
上面的例子中有三个层次的抽样单位:学校、班 级、学生,则对应的抽样框也应有三个:全部学校的 名单、抽取的学校样本中的全部班级的名单、抽取班 级中的所有学生的名单。
4、参数值与统计值: 参数值也称总体值,它是关于总体中某一变量的 综合描述,或者说是总体中所有个体的某种特征的 综合数量表现。 在统计中最常见的总体值是某一变量的平均值 例如:平均年龄、平均收入等。 总体值只有通过对总体中的每一个个体都进行调 查或测量才能得到。
5、抽样误差: 总体的异质性和样本与总体范围的差异性,在用 样本的统计值去推算总体的参数值时总会有偏差, 这种偏差就是抽样误差。它是样本代表性大小的一 个标准。
当总体相当大时,可能被抽取的样本非常多,不 可能列出所有的实际抽样误差,而用平均抽样误差来 表征各样本实际抽样误差的平均水平。
抽样误差是指样本指标值与被推断的总体指标值 之差。主要包括:样本平均数与总体平均数之差;样 本成数与总体成数之差。
2、可测性原则。
可测性原则指的是抽样设计能够从样本自身计算 出有效的估计或者抽样变动的近似值。在研究中通常 用标准误来表示。通常,只有概率样本在客观上才是 可测的,即概率样本可以计算出有效的估计值或抽样 变动的近似值。但是,概率抽样也并不自动保证可测 性。比如,从一个具有周期性变化的总体中选出一个 系统样本,就不能保证这种可测性。
一、抽样的基本术语
抽样:是通过抽取总体中的部分单元,收集这些 单元的信息,运用数理统计的原理和方法,对总体进 行推断的一种手段。
总体
抽取样本 推断总体
样本
1、总体与样本。总体是指研究对象的全体,它 是由研究对象中的单元组成的。总体中单元的数目 称作总体容量。
第5章 用样本推断总体 5.1 总体平均数与方差的估计
做一做
种菜能手李大叔种植了一批 株数
新品种的黄瓜,为了考察这 20
20 18
种黄瓜的生长情况,李大叔 15
15
10
抽查了部分黄瓜株上长出的 10
5
黄瓜根数,得到右面的条形 图,请估计这个新品种黄瓜 0 10 13 14 15 黄瓜根数
平均每株结多少根黄瓜.
解: x 10 10 15 13 20 14 18 15 16.25
变式:抽查某商场10月份7天的营业额(单位:万元), 结果如下:
3.0,3.1,2.9,3.0,3.4,3.2,3.5. 试估计这个商场10月份的营业额(精确到0.01万元).
解:这7天营业额的平均数为:
x 3.0+3.1+2.9+3.0+3.4+3.2+3.5 3.157 7
10月份的营业额为:3.16×31=97.87万元.
例1:某单位共有280位员工参加了社会公益捐款活动, 从中任意抽取了12位员工的捐款数额,记录如下:
捐款数额/元 员工人数
0 3 456 2 9 28 16 5
估计该单位的捐款总额. x= 30 2+50 5+80 3+100 2 =62.5(元) 12 捐款总金额约为:62.5 280=17500(元)
例2:老王家的鱼塘中放养了某种鱼1500条,若干年
后,准备打捞出售,为了估计鱼塘中这种鱼的总质
量,
平均每条鱼的 质量/千克
2.8
第2次
20
3.0
第3次
10
2.5
(1)鱼塘中这种鱼平均每条重约多少千克?
x= 15 2.8+20 3.0+10 2.5 =2.82(kg) 15 20 10
《总体和样本》课件
分层抽样
整群抽样
将总体分成若干群,以群为单位进行 随机抽样,适用于群间差异较小、群 内差异较大的情况。
区域抽样
按照地理位置或行政区域划分,在每 个区域内进行随机抽样,适用于地理 分布较广、区域间差异较大的情况。
CHAPTER 04
总体和样本的误差分析
抽样误差
定义
抽样误差是由于从总体中随机抽 取样本而产生的误差。
全面性
总体包含了研究对象的全体成员,不 偏不倚,无主观筛选。
样本特性
随机性
样本是从总体中随机抽取的,每 个个体被选中的机会均等。
代表性
样本能够反映总体的特性,具有一 定的代表性。
可观测性
样本是可以直接观察和研究的,不 同于某些总体特性可能无法直接观 测。
总体和样本特性的比较
1 2
确定性vs随机性
总体和样本的关系
总体和样本的研究目的
通过样本的特性推断总体的特性。
样本的抽取方法
随机抽样、分层抽样、系统抽样等。
样本的代表性
样本的代表性越高,推断总体的准确性越高。
CHAPTER 02
总体和样本的特性
总体特性
确定性
综合性
总体中的每一个成员都是确定的、具 体的,没有遗漏和重复。
总体包含了研究对象各方面的信息, 具有综合性。
总体和样本的选取方法
随机抽样
简单随机抽样
每个样本被选中的概率相等,适 用于样本数量较小、总体异质性 较小的情况。
系统随机抽样
按照一定的间隔或顺序,每隔一 定数量的样本选取一个,适用于 总体数量较大、有明显周期性特 征的情况。
系统抽样
• 分层随机抽样:将总体分成若干层次,在每一层内进行随机抽 样,适用于总体异质性较大、需要提高样本代表性的情况。
2.2.1用样本的频率分布估计总体分布
2019/4/10
总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?
总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?
统计学课件第六章抽样调查PPT课件
特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件
统计学课件:抽样推断
3.当总体X~N(, 2),从中抽取容量为n的样本,则
n
2
(n 1)s2
2
~
(2 n-1); 2
(xi x)2
i 1
2
~
(2 n-1)
4. 2—分布的性质 (1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ), X,Y独立,则 X +Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则 E(X)= n,D(X)=2n
3、进行产品质量检验 4、进行假设检验
(一)总体和样本 1、总体 总体也称全及总体,指所有认识的研究对象全体,它是
有所研究范围内具有某种共同性质的全体单位所组成的 集合体。 一般用英文字母大写N来表示总体的单位数。 2、样本 样本又称子样,它是从全及总体中随机抽取出来,作为 代表这一总体的那部分单位组成的集合体。 一般用英文小写字母n来表示样本的单位数。
5. 分位点 设X ~ 2(n),若对于:0<<1,
存在 2 (n) 0 满足
P{X 2 (n)} ,
则称 2 (n) 为 2 (n) 分布的上分位点。
2
(n
)
(二)t 分布
若X 服从N (0,1),Y 服从自由度为n的 2分布, 且X 和Y 独立,则 X
Y /n 服从自由度为n的 t分布。
1、全及指标 根据各单位的标志值或标志属性计算的,反映总体
数量特征的综合指标称为全及指标,又称为参数。
设总体变量 X 为: X1, X 2 ,X N 则有:
X X XF N F
2 X X 2 X X 2 F
N
F
设总体 N 个单位,有 N1 个单位具有某种性质, N0 个单位不具有某种性质,
概率论与数理统计基本概念及抽样分布PPT课件
~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,
则
2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α
即
( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2
则
E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)
统计学--第三章总体均数的估计与假设检验
第三章
总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。
总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。
第四讲 用样本推断总体
率),要设计一个简单随机样本的抽样
方案。该公司希望有90%的信心使所估
计的比例只有2个百分点左右的误差。
为了节约调查费用,在这种情况下应该
抽取多少样本?
案例 总统选举的民意调查(背景) 二
据美国竞选业专业杂志 Campaigning
Reports统计历次美国总统竞选的花费: 2004年为6.93亿美元;2008年高达13亿美 元。整个总统竞选过程中,候选人一般会花 费10-15%的竞选经费在民意调查上。如何 确定被调查的人数是首先要考虑的问题。
建立工作表
样本比例区间估计的计算结果
计算 公式
样本比例为p, 样本容量为n
p z 2
p1 p , p z n 2
p1 p n
样本比例的区间估计
“比例样本容量”工作表
计算 公式
利用Excel计算必要样本数
“比例样本容量”工作表
每次民调中所需调查人数
为了调查对总统候
选人的支持率,临近11月
调查时间 9月 10月 11月初 大选前一天
极限误差 0.04 0.03 0.02 0.01
份大选前夕,希望得到更
高的精确度即更小的极限
误差,求每次调查中所需
的样本容量(置信度
95%)。
案例 三 学生每天上网的时间的区间
一、某大学为了解学生每天上网的时间,在全校 7500名学生中采取不重复抽样方法随机抽取36人, 调查他们每天上网的时间(单位:小时) ,得到下 面数据。要求:该校大学生平均上网时间的置信区间, 置信概率为90% 上网时间 3.3, 4.4, 2.1, 4.7, 3.1, 2, 1.9, 1.4, 6.2, 5.4, 1.2, 1.2, 5.8, 2.6,5.1, 2.9, 2.3, 6.4, 4.3, 3.5, 4.1, 1.8,4.2 ,2.4, 5.4, 3.5, 3.6, 0.5, 4.5, 5.7, 0.8, 3.6 , 3.2, 2.3, 1.5, 2.5
从样本统计量估计整体参数 PPT
2、 t分布
前面讲得就是样本平均数呈正态分布或接近正态分布
得情况。此外,还有两种情况:一就是总体分布为正态, 但总体方差 未知,且样本容量又较小;二就是总休分 布为非正态,而且总体方差 未知,样本容量又较小。 在这些情况下,样木平均数得分布为t分布这就是因为 总体力一差末知,在计算
这一比率时,要用样本标准差S取代 ,但就是在样本较
体参数,因而我们所希望得当然就是:这一区间越小越 好,而估计得正确概率越大越好。但就是,从进行区间 估计得公式可以瞧出,在其它条件一定时,要提高正碗 估计得概率 (即提高置信水平) , 置信区间就不可避免 地会增大, 而要使置信区间缩小,就要降低正确估计得 概率。必须牢记得就是,置信水平越低,置信区间越小, 该区间不包括总体参数得可能性就越大;置信水平越 高,置信区间越大,该区间包括总体参数得可能性就越 大。
从样本统计量估计整体参数
从样本统计量估计或推断总体参数就是推断统计 得一个重要部分。
我们在引入 “样本” 与 “总体 ” 这两个概念时 瞧到, 语言研究所涉及得总体往往非常大 (甚至就 是无限大得) , 因而难以对其中所有个体都加以研 究,研究者们所能做得只就是通过随机得方法从总 体中抽取一个具有代表性得样本加以研究,然后再 从有关样本统计量来估计或推断未知得总休参数, 例如从样本平均数来估计总体平均数。本章只讨 论如何从样本平均数X与比 分别估计总体平 均数 μ 与比 。估计得方法有两种: 点估计与 区间估计。
第一节 点估计
当总休平均数或比例未知时,我们可以直接把样本 平均数或比例用作它得估计值。由于样本统计量 为数轴上得一个点,所以称为“点估计值” 。
一个理想得点估计值至少应具备以下两个条件:
(1)无偏性
一般情况下,样本统计量就是不会与相应得总体参数完 全相同得,两者多少都会有一定得差距,但就是如果用 无限多个样本得统计量来估计总体参数,平均估计误 差将会等于0。具有这一特征得统计量就无偏估计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再从袋子中取出一些豆子作为样 过几天,再捞出一网鱼,共有m 本,数出豆子的总粒数m及其中的 再捕获 条,其中有标记的鱼为r条 青豆粒数r
设袋子中共有x粒豆子,用样本中青豆所占的比例 中青豆所占的比例
x ≈
mn x
r m
估计袋子
大家谈谈:
你得到的估计值与实际值接近吗?两 次得到的估计值差异大吗?产生差异的原 因有哪些?当样本较大时,是否估计得更 准确些?
26 35
2
3 4
回顾与反思:
通过这节课的学习你有哪 些收获?
作业:
77页,习题1、2
练一练: 从一个池塘中捞出60条鱼,全部作上标记后放回池塘 中.过几天后又捞出3网鱼,没网鱼的数量及有标记的鱼的 数量如下表所示.用每网鱼的数量及三网鱼的数量的合计数 量分别估计池塘中鱼的总数,并将结果填写在下表中.
捕捞序号 每网鱼的数量/条 有标记鱼的数量/条 估计鱼的总数/条
1
2 3 合计
18
想一想:
小明家承包了一个大鱼塘,能设 计一个方案估计池塘中鱼的总条数 吗?
做一做:
准备一小袋黄豆,一纸杯青豆,分小组模拟科学家估计鱼的 总条数的过程.
步骤
捕获
捕捞过程
从湖中捞出一网鱼,共有n条
模拟试验
从袋子中取出一些黄豆,数出黄 豆的粒数,记为n
做标记
对这n条鱼做标记后,放回湖中
将n粒青豆放进袋子中,充分混合